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Abstract— This study proposes an automated virtual test
creation pipeline that replicates real-world environments in
simulation for autonomous vehicle development. By integrating
publicly available tools, the pipeline accelerates AV testing
with minimal human intervention. Our approach develops
real-world maps for open-source simulators like CARLA and
LGSVL, facilitating testing and development of most exist-
ing autonomous driving controllers, including Autoware and
Apollo. This study outlines the methodology and results of
our approach, highlighting its potential to significantly enhance
the scalability and efficiency of autonomous vehicle testing and
development.

I. INTRODUCTION

The recent emergence and intricate nature of autonomous
vehicle (AV) technology have made establishing standard
testing and verification procedures challenging [1]. Current
automotive testing procedures, such as the Federal Motor
Vehicle Safety Standards [2] and ISO 26262 [3], focus
on safety-related components and design features but do
not encompass driving intelligence assessment. Given the
potential catastrophic consequences of hidden errors in driv-
ing intelligence, various testing approaches, such as virtual
simulation, X-in-the-loop simulation, closed-track testing,
and on-road testing, have been proposed.

The advantages of various types of testing are comple-
mentary and vital to the successful deployment of AVs, de-
spite their budget and complexity differences. Virtual testing
offers scalability and cost benefits in driving intelligence
development and evaluation. However, most current methods
rely on manual map creation, requiring substantial human
intervention and time expenditure. As suggested by the US
Department of Defence, the manual creation and touch-
up required to generate high-resolution geospecific terrain
models for simulation takes several months [4]. Additionally,
seamless integration of AV controllers like Autoware or
Apollo with customized maps remains elusive. Furthermore,
there is currently no mechanism to seamlessly integrate an
AV controller such as Autoware or Apollo with customized
maps. For instance, Autoware requires two specific file types,
namely, Point Cloud Data (PCD) and vector maps, to enable
its operation within any simulation environment. The PCD
data facilitates vehicle localization while vector maps are
vital for path planning. Both files must be appropriately
aligned to enable Autoware to function with customized
maps.
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The available literature on the topic is relatively scarce,
with only two studies being identified. De Miguel et al.
[5] presented a process for converting OpenStreetMaps to
CARLA map. However, this method only incorporates road
layout and does not include buildings or other terrain objects,
which limits its applicability to LIDAR-based external AV
control stack. Another study by Mondal et al. [6] also
described a similar pipeline, which relies on Blender for
simulation, but did not generate files required by external
AV control stack.

The lack of a rapid procedural generation pipeline impedes
the creation of virtual testing scenarios and consequently
limits scalability and transferability from simulation to re-
ality. To address these challenges, this paper proposes a
novel pipeline that automatically generates customized maps
and associated Autoware files from real-world data sources.
The process aims to increase the diversity of available
testing scenarios and accelerate edge-case replication from
on-road driving. This approach is essential for virtual AV
verification and can facilitate testing and optimization of AV
control stacks. The study focuses on two popular open-source
virtual simulators in AV research, namely CARLA [7] and
LGSVL[8].

II. PROPOSED MAP DEVELOPMENT PIPELINE

A summary of the proposed pipeline is presented in Fig.
1. As the first step towards the creation of customized
maps from real-world locations, a unified data source that
contains comprehensive information and specifications of the
environment is required. Considering its open-source nature
and the availability of detailed information, OpenStreetMap
(OSM) [9] was chosen as the data source for this study. The
resulting OSM data consists of three primary components:
node, way, and relation. Additionally, the data includes
supplementary information regarding elements within the
area, such as coordinates, element types, speed limit, building
height, and others.

Afterwards, in order to create a map model based on
the downloaded source data, various options are available.
Mondal et al. [6] utilized blender-osm to construct road
and building models in Blender, while commercialized map
generation tools (Mapbox [10], Citygen3D [11], AccuCi-
ties [12]) could be employed with minor adaptations. The
proposed pipeline can accommodate either of these options
provided an original OSM file is available, and the resulting
3D map model can be exported in FBX format. In addition to
the 3D map model, a road specification file is also required
to define the vehicle routes while creating the map. As



Fig. 1. Workflow of the map customisation pipeline.

both simulators support roads defined with OpenDRIVE,
an automatic conversion script was developed to generate
the OpenDRIVE file from the corresponding OpenStreetMap
file.

With the 3D map model and OpenDRIVE file obtained,
the next step is to import these files into the simulators.
Both simulators have their own procedure for adding new
maps. For CARLA, a json file needs to be created to specify
the name of the map, the directory of those files, etc. For
LGSVL, both files can be imported directly into the scene.
An example of the map in LGSVL is shown in Fig. 2.

Fig. 2. Map ingested in LGSVL.

After the customised maps are created and imported in
both simulators, the next step is to prepare them for testing
AV control stack (Autoware, Apollo, etc.). Since the files
required by most existing AV control stack are similar
and interconvertible, this study focuses on the testing of
Autoware. As outlined in the previous section, two types of
files (PCD and vector map) are both needed to run Autoware
on customised maps. To facilitate the recording of PCD, an
automatic recording function was developed in CALRA. A
simulated AV with LIDAR sensor is spawned at different
locations in the map (with the spawn points derived from
the OpenDRIVE file), and automatically navigates through

the map with the CARLA’s Autopilot mode while recording
the PCD data of its surrounding environment. This process
will run iteratively and will stop automatically once the entire
map is covered. These PCD files can then be concatenated
to form the PCD of the customised map, as shown in Fig.
6. Meanwhile, the required vector map (Autoware LaneLet2
and Aisan vector map) can be generated from the corre-
sponding OpenDRIVE file. These files can then be specified
in Autoware to facilitate AV testing on the customised maps.

Fig. 3. PCD of the customised map.

III. CONCLUSIONS

In this study, we developed a pipeline for automated
procedural generation of customized maps from real-world
environments. This pipeline minimizes human intervention
and creates simulation-ready maps for CARLA and LGSVL,
facilitating the testing of AV control stacks. Existing AV
controllers like Autoware and Apollo can be tested in cus-
tomized maps with LIDAR-based localization and camera-
based perception systems functioning seamlessly. Further-
more, traffic simulation software such as SUMO can be
used to create realistic traffic scenarios. Although focused
on CARLA, LGSVL, and Autoware, the pipeline can be
extended to other simulators and AV control stacks.
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APPENDIX

A. Example location in OpenStreetMap

Fig. 4. Example from OpenStreetMap.

B. FBX model example from AccuCities

Fig. 5. FBX model of the map.

C. Example map in CARLA

Fig. 6. Map ingested in CARLA.


