
Under review as a conference paper at ICLR 2024

ITERATIVE GRAPH NEURAL NETWORK ENHANCE-
MENT USING EXPLANATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

We formulate an XAI-based model improvement approach for Graph Neural Net-
works (GNN) for node classification, called Explanation Enhanced Graph Learn-
ing (EEGL). The goal is to improve predictive performance using explanations.
EEGL is an iterative algorithm, which starts with a learned “vanilla” GNN and
repeatedly uses frequent subgraph mining to find relevant patterns in explana-
tion subgraphs, which are then analyzed further to obtain application-dependent
features corresponding to the presence of certain subgraphs in the node neigh-
borhoods. Giving an application-dependent algorithm for such an extension of
the Weisfeiler-Leman (1-WL) algorithm has been posed as an open problem. We
present the results of experiments on different synthetic datasets, compare them
with other feature annotations, and analyse the training dynamics.

1 INTRODUCTION

XAI-based model improvement is a relatively recent research direction in XAI. The general under-
lying observation is that explanations, besides providing information to the user about the model’s
decision in order to increase trustworthiness, can also be used to improve the model. Improvement
can be achieved from different aspects, including predictive power, efficiency and robustness. Ex-
planations can be used to modify the model in various ways, such as modifying the input data and
its representation, the model or the loss function. A recent survey is given in (25).

In this paper we consider Graph Neural Networks (GNN) for node classification within the XAI-
based model improvement paradigm. GNN form an important variant of deep neural networks for
graph applications. Message-passing GNN (MPNN), the basic version of GNN, is well known to
have limited representational power due to its connections to the Weisfeiler-Leman (1-WL) algo-
rithm and the limitations of that algorithm (20; 26). For node classification problems, two nodes
which are indistinguishable by 1-WL are indistinguishable by any MPNN.

Extending the power of MPNN in order to overcome these limitations is a fundamental challenge.
One approach is higher-order variants of WL, which are significantly more expressive, but compu-
tationally less tractable (11). Another approach is to provide additional structural information in
the form of adding structural information as node features. For vanilla MPNN node feature vectors
are constant. The number of triangles in the 1-hop neighborhood of a node can be such an added
feature. This information cannot be detected by the 1-WL algorithm. Adding node features counting
the number of rooted subgraphs isomorphic to a given rooted pattern graph has been proposed in (9).
They suggest domain-specific patterns, e.g., cliques for social networks and cycles for molecules.
Adding new features counting the number of rooted homomorphisms is proposed in (8). Building
on these proposals, a general question, formulated in (8), is how to select useful patterns? We refer
to this problem as the GNN pattern selection problem. It is noted in (8) that “one important remark
is that selecting the best set of features is still a challenging endeavor”. It is also pointed out that the
application-dependence of the best set of features adds to the difficulty of the problem.

XAI-based model improvement suggests to use explanations for solving the GNN pattern selection
problem. Explanations are often of the form of a rooted subgraph.

We propose the EXPLANATION ENHANCED GRAPH LEARNING (EEGL) approach for iterative
enhancement of the predictive performance of GNN for node classification. EEGL uses frequent
connected subgraph mining to identify patterns which occur in many explanation subgraphs for

1

Under review as a conference paper at ICLR 2024

nodes of a given class. These patterns are then analyzed further to select the best patterns. Features to
be introduced represent the presence or absence of these patterns in the neighborhood. Starting with
vanilla MPNN, the process can be iterated. We use synthetic data with ground truth explanations.
This choice is justified in detail in Section 4.1.

A few remarks are in order about assumptions underlying the approach and its intended scope of ap-
plications 1. It is assumed that the learning problem is such that 1. there exist explanation subgraphs
of reasonable quality and 2. the GNN learning and explanation algorithm to be improved is of rea-
sonable quality. The hypothesis, then, is that if assumptions 1. and 2. hold then explanations can
be used to construct useful features, and those can be used to improve performance. Assumptions 1.
and 2. are not expected to hold in general. On the other hand, in view of assumption 2., the goal is
to improve a weak learner using weak explanations

Applications where the assumptions may hold could be in scientific discovery. In this context, EEGL
may be thought of as describing the following scenario (related to previous work on XAI and the
philosophy of science, such as (21)) . A scientist has an idea about some kind of explanation of
a property. This can be communicated to the data scientist, and running EEGL may be helpful in
exploring, and perhaps correcting, the initial idea. If EEGL fails, then this may be an indication that
the original idea was not correct.

For the experimental evaluation of the EEGL approach, one can consider the following questions:

Q1: Can the performance of GNNs be improved by using frequent subgraph mining of explana-
tions? Do iterations help?

Q2: How does the performance of EEGL-trained GNN compare to other feature initializations?

Q3: What is the effect of the relationship between motif symmetries and label partitions?

The objective of the paper is to provide first steps towards answering these questions. Regarding
Q1 and Q2 the overall results are positive. For Q2 we considered three other feature assignments: 1.
one-hot encoding of true class labels, 2. randomly assigned numerical features, 3.“maliciously” se-
lected subgraph features. Here 2. is related to results of (1; 10) on the power of random initialization
and 3. to the comment of (8) that performance “almost always benefits from any set of additional fea-
tures”. Q3 is one of the main research questions concerning overcoming the weaknesses of MPNN.
We started with benign cases towards understanding the viability of the approach.

Contributions In summary, the contributions of the paper are the following: it (i) applies an
XAI-based iterative model improvement method to GNN, (ii) provides an automated, application-
dependent solution to the GNN pattern selection problem, and (iii) applies frequent connected sub-
graph mining to XAI.

Outline The rest of the paper is organized as follows. In Sections 2 we overview related work. The
EEGL system is presented in Section 3. We report and discuss the experimental results obtained in
Section 4. Finally, in Section 5 we conclude and formulate some problems for further research.

2 RELATED WORK

Besides the most closely related works, already cited in Section 1, we mention briefly some further
references, using survey papers covering related work when possible. A recent general survey of
XAI, including some discussion of the role of XAI-based model improvement, is (6). In the sur-
vey of (19) of the different variations of the Weisfeiler-Leman algorithm, Section 5.2 is about neural
architectures extending 1-WL, including (8; 9). A subsection discusses other subgraph-enhanced ap-
proaches, including (29) on node classification, which implement some form of symmetry-breaking
to address the limitations of 1-WL. Thus these approaches exploit properties of the network, but do
not take the learning problem into consideration. A detailed computational study is given in (11),
including results on k-WL. The need for synthetic examples is discussed in (18).

Explanatory interactive machine learning (13; 14) considers explanations returned by the learner and
corrected by the user as part of the human-in-the-loop learning process. Faithfulness, a basic metric

1See also (25) for related remarks on XAI-based model improvement in general.

2

Under review as a conference paper at ICLR 2024

Algorithm 1 EXPLANATION ENHANCED GRAPH LEARNING (EEGL)
Input: graph G, set T ✓ V (G)⇥C of training examples for some finite set C of class labels, node

feature vector dimension d, relative frequency threshold ⌧ 2 (0, 1], and iteration number K
Output: GNN model � : V (G)! C

1: X INIT FEATURE MATRIX(G, d)
2: for k = 1, . . . ,K do

3: � GNN LEARNING(G,X, T) . GNN Learning Module
4: for all c 2 C do Ec ; . Node Explainer Module
5: for all v 2 V (G)
6: Ev GNN NODE EXPLAINER(G,X,�, v)
7: add Ev to Ec, where c = �(v)
8: for all c 2 C do . Pattern Extraction Module
9: Pc MAXIMAL FREQUENT PATTERN MINING(Ec, ⌧)

10: P> TOP ROOTED PATTERNS(P,min{d, |P|}, T), where P =
S

c2C Pc

11: X UPDATE FEATURE MATRIX(G,�,P>, d) . Feature Annotation Module
12: return �

for evaluating explanations, measures the predictive power of explanation subgraphs (4) 2. Other
works, closer to the present paper, use explanations in an automated manner as a tool for improving
prediction. In (5) the effect of incorporating linear approximations into the learning process is
considered. Similarly, (3) uses explainability information to guide message passing in GNN. The
SUGAR system (24) uses a reinforcement pooling mechanism to incorporate significant subgraphs
into graph classification.

3 THE EEGL SYSTEM

In this section we present the main components of the EXPLANATION ENHANCED GRAPH LEARN-
ING (EEGL) system. Background on GNN, GNNEXPLAINER, the Weisfeiler-Leman algorithm, and
frequent subgraph mining is given in (15; 23; 27) and Appendix A. For a graph G, V (G) and E(G)
denote the sets of nodes and edges. Graphs are always undirected. A rooted graph is a pair (G, v),
where v 2 V (G). Graph G1 is isomorphic to graph G2 if there is a bijection : V (G1)! V (G2)
such that {u, v} 2 E(G1) iff { (u), (v)} 2 E(G2) for all u, v 2 V (G1). Furthermore, G1 is sub-
graph (resp. induced subgraph) isomorphic to G2 if G2 has a subgraph (resp. induced subgraph) that
is isomorphic to G1, or equivalently, if there exists an injective function ' : V (G1)! V (G2) such
that {'(u),'(v)} 2 E(G2) if {u, v} 2 E(G1) (resp. {'(u),'(v)} 2 E(G2) iff {u, v} 2 E(G1)),
for all u, v 2 V (G1)). A rooted graph (G1, r) has a rooted subgraph isomorphism (resp. rooted in-
duced subgraph isomorphism) into a rooted graph (G2, v) if there is a subgraph isomorphism (resp.
induced subgraph isomorphism) ' from G1 into G2 such that '(r) = v. A rooted pattern is a pair
(P, v) such that P is a connected graph and v 2 V (P).

The pseudocode of EEGL is given in Alg. 1 (see, also, Fig. 4 in Appendix B for a high-level depiction
of the EEGL process). It consists of the (i) GNN learning, (ii) node explainer, (iii) pattern extraction,
and (iv) feature annotation modules. The four modules are used to learn an unknown target function
f : V (G) ! C, where G is the input graph and C is a finite set of class labels. In addition to G,
the input to EEGL contains also a set T = {(v, f(v)) : v 2 V 0} of training examples for some
V 0 ✓ V (G), the dimension d of the node feature vectors, a relative frequency threshold ⌧ 2 (0, 1],
and a positive integer K specifying the number of iterations (cf. Alg. 1). In each iteration of the
outer loop in Alg. 1 (lines 2–11), all nodes of G are associated with a d-dimensional feature vector.
The feature vectors of the nodes are represented by an n⇥ d feature matrix X , where n = |V (G)|.
We now describe the above four modules.

GNN Learning Module (line 3 of Alg. 1) In each iteration, EEGL first learns a new GNN � for G
using G, X , and T as input. While G and T are never changed, X is recalculated in each iteration.

2A comment on terminology. In this paper we do not discuss the evaluation of explanations. Thus we mean
accuracy in the standard ML, and not in the XAI sense, as used in (4) and somewhat differently in (27).

3

Under review as a conference paper at ICLR 2024

It is initialized in line 1 for the first iteration and updated in line 11 for the further iterations. We
use the “vanilla” initialization, i.e., X is initialized with the n ⇥ d matrix of ones. The function
GNN LEARNING (line 3) is realized with graph convolutional networks (GCN) (17).

Node Explainer Module (lines 4–7 of Alg. 1) The GNN model � is used as input to the node
explainer module, together with G and X . This is called for each v 2 V (G) separately (lines 5–
6). It returns an individual subgraph Pv of G as the explanation for the model’s prediction of the
class of v by �(v). In our experiments, the node explainer function GNN NODE EXPLAINER
(line 6) is realized with the GNNEXPLAINER system (27). Most explanation graphs returned by
GNNEXPLAINER contained the nodes themselves. This property is crucial for EEGL.3 If v 2 Pv ,
it is marked as the root of Pv . We note that GNNEXPLAINER calculates also a feature mask for
each explanation pattern. These are disregarded in EEGL, but could play a role in future work. The
explanation graphs are partitioned according to the corresponding predicted class labels (lines 4 and
7); the block containing the explanation graphs for a class c 2 C is denoted by Ec (cf. line 7).

Pattern Extraction Module (lines 8–10) This module generates a set of maximal frequent rooted
patterns from the explanation graphs computed by the previous module. This will then be used by the
next module. The underlying assumption behind the synthetic examples is that there is a set of class
patterns for each class label. More precisely, for input graph G, target function f , and class label
c 2 C there is a set Sc of (almost) contrastive rooted patterns such that (i) for most 4 v 2 V (G) with
f(v) = c, there is a rooted pattern (Pc, rc) 2 Sc and a rooted subgraph isomorphism from (Pc, rc)
to (G, v) and (ii) there is no such rooted pattern in Sc and rooted subgraph isomorphism for most
v0 2 V (G) with f(v0) 6= c. The set Sc is the underlying ground truth.

Let v 2 V (G) be a node selected uniformly at random such that �(v) = c for some c 2 C
and let (Pc, rc) be a rooted pattern from Sc. It follows from the assumptions that with a certain
probability, a rooted explanation graph (Pv, v) 2 Ec computed for v contains a subgraph P 0

v such that
v 2 V (P 0

v) and (P 0
v, v) is a rooted subgraph of (Pc, rc) (i.e., there is a rooted subgraph isomorphism

from (P 0
v, v) to (Pc, rc)). Since P 0

v is a subgraph of Pv and rooted subgraph isomorphism is used
for pattern matching, (P 0

v, v) contains less structural constraints. Hence, it can be regarded as a
generalization of (Pv, v).5 Thus we need to calculate a set of rooted patterns that generalize a large
fraction of the rooted explanation graphs in Ec and, in order to avoid redundancy, are most specific at
the same time with respect to this property. As mentioned above, there are two sources of errors for
the explanation patterns computed by the previous module. First, with a certain probability, the true
class label f(v) is predicted incorrectly by � (i.e., f(v) 6= c = �(v)). Second, there is no guarantee
that the explanation graph (Pv, v) provides a genuine explanation for predicting the class label of v
by �(v) = c, independently whether or not �(v) = f(v). Still, it is reasonable to assume that many
of the individual explanation patterns computed for c have a relatively large overlap with some of
the unknown class patterns in Sc. Accordingly, we expect that most frequent rooted subgraphs of Ec
computed in the node explanation module are actually rooted subgraphs of some patterns in Sc.

The above arguments motivate considering the maximal frequent rooted subgraphs of Ec (i.e., which
are frequent and all their proper connected supergraphs are infrequent in Ec w.r.t. ⌧) (line 9). The
assumptions imply that they contain at least a part of the structural information assigning a node to
class c. These patterns can be regarded as the most specific generalizations of most of the individual
explanations in Ec. ((For more details please see Appendix C.)

After the computation of the maximal frequent rooted subgraphs for all c 2 C (lines 8–9), a small
subset P> of top rooted patterns is selected from P =

S
c2C Pc (line 10). More precisely, for each

(P, r) 2 Pc, EEGL evaluates how well (P, r) performs as a classifier for class c by computing its
F1-score on the training set T . The module then returns the top d0 patterns with the highest F1-scores
in a round-robin fashion from P , where d0 = min{d, |P|}.

Feature Annotation Module (line 11) Using P> = {(P1, r1), . . . , (Pd0 , rd0)}, in the feature anno-
tation module we update X for the next iteration of the main loop by setting ~xv[j] to 1 if there is a
rooted subgraph isomorphism from (Pj , rj) to (G, v); otherwise to 0, for all v 2 V (G) and j 2 [d0].
If d0 < d, the last d� d0 entries in ~xi are set to some value.

3Parameters can be chosen so that GNNEXPLAINER (27) is forced to include v in Pv for all v 2 V (G).
4The qualifications almost, most refer to both noise in the data and errors in prediction and explanation.
5By generalization we mean the relationship between two rooted patterns in the poset of all rooted patterns

defined by rooted subgraph isomorphism, and not “generalization” from data as used in machine learning.

4

Under review as a conference paper at ICLR 2024

BA
Base Graph

 1 1

2 2

3

0

(a) M1

BA
Base Graph

 1 1

2 2

3

0 4

(b) M 0
1

BA
Base Graph

1 1

2 2

3

0
4

(c) M 00
1

BA
Base Graph

0

4

3

4

32

4 4

1
8

7

8
7

6

8 8

5

(d) M2

BA
Base Graph

0

4

3

4

32

4 4

1
8

7

8
7

6

8 8

5

(e) M 0
2

BA
Base Graph

0

3

3

3

32

3 3 1

6

6

6
6

5

6 6

4

(f) M 00
2

Figure 1: The motifs used in the dataset generation: The “house” motif (a) with asymmetric (b) and symmetric
extensions (c), motif pairs with 1-WL indistinguishable nodes (d,e) and a supergraph of (d) keeping the nodes
1-WL indistinguishable (f).

Experiments with EEGL as described above showed that its runtime is infeasible on larger graphs,
the culprit being the annotation module. To speed up EEGL, we therefore apply two heuristics
in the feature annotation module. First, we use rooted induced subgraph isomorphism, instead of
rooted subgraph isomorphism. Second, when deciding if there exists a rooted induced subgraph
isomorphism from a rooted pattern (P, r) into (G, v) for some v 2 V (G), it suffices to consider the
✏-hop neighborhood of v, where ✏ is the eccentricity of r in P (i.e., the maximum distance between
r and any other node u 2 V (P)). Instead of ✏, we use the radius ⇢ of P (i.e., the minimum of the
node eccentricities over all nodes in P). Feature vector annotation using these heuristics is sound,
but incomplete (i.e., it cannot return false positives). Still, our experimental results reported in the
next section clearly demonstrate that even with these heuristics, EEGL is able to achieve significant
improvements in predictive performance, in practically feasible time.

4 EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the EEGL system on synthetic data and address the ques-
tions formulated in the introduction. In Section 4.1 we describe the datasets used and the experi-
mental setup. The description of the datasets is accompanied by discussions of the combinatorial
considerations behind the choice of the motifs. In Section 4.2 these considerations are matched by
discussions on how they explain different observations on the performance of the extended 1-WL
algorithm (both successes and failures).

4.1 DATASETS AND EXPERIMENTAL SETUP

Synthetic Data Exploring the possibilities and limitations of EEGL is a long-term project. The first
“sanity check” is a pilot project in the most favorable circumstances. That is provided by the kind
of synthetic examples we consider, with ground truth available. A detailed understanding of this
case is a challenging task in itself, and that is the topic of this first paper on the approach. The use
of synthetic data is also justified by (18), discussing the SOTA on node classification benchmarks.
According to (18), current real-world datasets are unsuitable for a deeper understanding as they do
not allow for a systematic study of the effect of various graph parameters on performance. The
focus of (18) is on parameters such as class size distributions, and edge densities between classes
(corresponding to heterophily versus homophily). We are interested in the effect of the structural
complexity of the node classification task, which can be relevant, for example, for scientific appli-
cations. We focus on the approach of starting with the synthetic model of BA-graphs with motifs
attached. This model has been introduced in (27) and it has become a standard benchmark for GNN.
We gradually increase structural complexity by changing the complexity of the motifs attached.

Datasets Synthetic graphs used in the experiments are constructed as follows. We first generate a
Barabási-Albert (BA) random base graph (7), and then attach copies of one or two small graph motifs
to m nodes selected uniformly at random from the base graph. The motifs used in our experiments

5

Under review as a conference paper at ICLR 2024

are shown in Fig. 1, together with specifying how to attach them to the base graph. As an example,
the “house” motif (Fig. 1a) used in GNNEXPLAINER (27) is attached to the base graph via one of its
nodes with label 1. For all motifs we use the same node and motif numbers as in (27), i.e., n = 300
and m = 80. For M2,M 0

2,M
00
2 , we select one of the two motifs uniformly at random and attach it

to the base graph. Thus, the size of the graphs is between 700 and 940. In the next step we assign a
class label to each node of the graph obtained. In particular, the class labels of the motifs’ nodes are
indicated in Fig. 1, while the nodes of the base graph are all labeled by 0. Finally, we add a small
amount of structural noise to the motifs by selecting a small set of random edges.

Recall that our underlying assumption behind the data is that each node class can be characterized
with a set of (unknown) contrastive rooted graph patterns. To see that the graphs in the experiments
fulfill this assumption, note that for each motif in Fig. 1, all nodes having the same label can be
distinguished from the other nodes by some characteristic rooted pattern(s). For example, the node
with label 3 in Fig. 1a can be distinguished from the nodes with label 1 or 2 by the “house” graph
with the top node as the root. Regarding the nodes of the base graph, our experimental results
suggest that most of them can be represented by a set of rooted patterns. We cannot expect a clear
contrastive property for all classes because of the structural noise added in the last step to the graph.
We note that the class of the base graph nodes is handled in the same way as all other node classes
(i.e., EEGL has no prior knowledge of the graph generation process).

The following considerations motivated our choice of the motifs in Fig. 1. Regarding the “house”
graph motif M1 (Fig. 1a), its nodes belong to three different classes. Note that without the dashed
edge attaching M1 to the base graph, the three labels indicate the node orbits6 of this motif, i.e., the
equivalence classes of the nodes under automorphisms. Note also that by attaching M1 to the base
graph via one of its nodes labeled by 1, we implicitly break its inherent symmetry, obtaining five
singleton node orbits. This motif is considered among others for a “historical” reason; it was used
in the experimental evaluation of GNNEXPLAINER (27) and also by the recent graph data generator
SHAPEGGEN (3) 7. The second motif M 0

1 (Fig. 1b) is obtained from M1 by adding a new edge to
it. Its endpoint labeled by 4 has a strong impact on the node orbits: It breaks the symmetry of the
“house” graph explicitly, and not via the attachment to the base graph. In particular, the six nodes
of M 0

1 belong to six different (singleton) node orbits. One can easily check that they are pairwise
distinguishable by 1-WL. Thus, the class labels in case of this motif do not reflect the motif’s node
orbits and 1-WL labels. The reason of considering this motif is to investigate whether the GNN
trained via EEGL is still able to handle this kind of “merged” node classes. In M 00

1 (Fig. 1c), the
third version of the “house” motif, we attach the motif to the base graph via a node connected to
both nodes of label 1. The symmetry of the “house” graph is not destroyed in this way. In particular,
the class labels represent the node orbits. Note, however, that two nodes of the same label that
belong to different occurrences of the motif in the graph can have different 1-WL labels because
of asymmetries in the whole graph. Our purpose with this motif is to study whether the iteratively
upgraded GNN is able to ignore structural information making locally (i.e., w.r.t. the motif only)
indistinguishable nodes globally distinguishable.

The other three motifs in Fig. 1 are motif pairs, with class labels indicating their node orbits. A
reason for considering them is that certain nodes in the motif pairs are indistinguishable by 1-WL.
For example, in case of M2 (Fig. 1d), nodes with label 4 have the same 1-WL label as those with
label 8. We have a similar situation for labels 1 and 5, 2 and 6, and 3 and 7. Since the corresponding
nodes are indistinguishable by 1-WL, they are indistinguishable by GNN. In case of M2 we have,
however a situation similar to M 00

1 (Fig. 1c). Being attached to different base graph nodes, locally
indistinguishable nodes can become distinguishable in the global graph. Thus, one of our goals with
M2 and its variants M 0

2 (Fig. 1e) and M 00
2 (Fig. 1f) is to examine the influence of the asymmetry in

the base graph on the predictive performance of EEGL. There are only small structural differences
between M2 and M 0

2 and between M2 and M 00
2 . While M 0

2 is obtained from M2 by edge deletion
and insertion, M 00

2 is a supergraph of M2. Our goal with M 0
2 and M 00

2 is to study not only the issue
discussed for M2, but also the sensitivity of EEGL to structural changes.

6Two nodes u, v belong to the same node orbit iff there is an automorphism (i.e., an isomorphism from the
motif to itself) mapping u to v. If two nodes are in the same node orbit then their 1-WL labels are identical.
The converse of this claim is, however, not true.

7This paper appeared just before the submission of our paper. In future work we are going to evaluate EEGL
on other graphs generated by SHAPEGGEN as well.

6

Under review as a conference paper at ICLR 2024

M1 M 0
1 M 00

1 M2 M 0
2 M 00

2

LE 100.0± 0.00 99.86± 0.46 100.0± 0.00 99.78± 0.46 99.15± 0.83 99.58± 0.54
A 98.42± 1.60 97.16± 2.11 98.71± 1.58 51.01± 7.77 52.48± 7.06 65.13± 7.57
R 97.57± 1.37 92.76± 4.15 98.98± 0.99 80.08± 4.07 79.44± 5.41 93.45± 4.8993.45± 4.8993.45± 4.89
R0 98.28± 1.64 90.19± 5.80 99.57± 0.6999.57± 0.6999.57± 0.69 51.38± 7.06 52.24± 6.36 55.14± 4.60
R1 99.71± 0.6199.71± 0.6199.71± 0.61 99.44± 0.96 99.43± 1.00 89.36± 18.19 87.91± 14.59 78.02± 16.70
R2 99.71± 0.6199.71± 0.6199.71± 0.61 99.86± 0.4499.86± 0.4499.86± 0.44 99.14± 1.38 91.83± 14.0491.83± 14.0491.83± 14.04 98.11± 1.7898.11± 1.7898.11± 1.78 84.02± 14.04

Table 1: Average weighted F1-score results in percentage (mean ± standard deviation) obtained with 10-fold
cross-validation for the motifs in Fig. 1 with the label encoding (LE), adversarial (A), random (R) settings, and
for the three iterations of EEGL (R0, R1, R2).

Experimental Setup We now describe the method for evaluating the performance of EEGL. Recall
from Section 3 that the input graph G is associated with a feature matrix X of size n⇥d, representing
the feature vectors of the n nodes of G. For each graph G used in the experimental evaluation, we
have carried out four experiments, three with GCN (17) (used also in EEGL) and one with our
EEGL system. The GCN experiments use precomputed feature vectors. Motivation for choosing
these settings and discussion of the experiments are given in the next section.
In the label encoding setting, feature vectors are essentially one-hot encodings of the node labels. In
the adversarial setting, feature annotation is done with a precomputed set of rooted patterns. These
do not have any rooted subgraph isomorphism into the motif nodes, but do have rooted subgraph
isomorphisms to some nodes in the base graph. In the randomized setting, feature annotation is done
using precomputed random numbers from [0, 1].
Regarding the parameters, in case of d we follow (27) and set it to 10 in all experiments. EEGL
calls GASTON (22) to generate the candidate frequent patterns. This subroutine has two parameters,
a frequency threshold ⌧ and an upper bound N on the size of the frequent patterns. To compensate
the two sources of error discussed in Sect. 3, we set ⌧ = 0.7 as a rule of thumb and N = 10 to
control the runtime. For the experiments with EEGL, we have carried out three iterations, except
for one case. Recall from Sect. 3 that X is set to the matrix of ones. Thus, the first round can be
regarded as the vanilla setting for GCN because the feature matrix provides no information. Finally,
for all experiments with GCN and EEGL, we have used 10-fold cross validation.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

The results for the motifs in Fig. 1 are presented in Table 1. The rows correspond to the feature ma-
trix definitions for GCN and to the three iterations of EEGL. We report the means of the 10 weighted
F1-scores (percentage) obtained for the 10 folds, together with the standard deviations. As expected,
the best result (always close to 100%) is consistently achieved by CGN with the label encoding set-
ting (row LE), which uses the target function in the definition of the feature matrix. Thus, values
in row LE should be regarded as upper bounds on performance achievable by CGN. Below we give
our answers to the three questions formulated in Sect. 1. The quantitative experimental results are
accompanied with an interpretative analysis. We peek under the hood of EEGL to understand its
training dynamics.

Answer to Q1 In order to answer this question from the introduction, we need to compare the results
obtained for the vanilla setting (R0) to those for the second (R1) and third (R2) iteration of EEGL
(see Table 1). While the results are inconclusive for M1 and M 00

1 (there are no sharp differences
between R0 and R1, R2), there is a remarkable improvement for M 0

1. Recall that in case of M 0
1

(Fig. 1b), the node with label 4 breaks the local symmetry of the house graph, implying that classes
1 and 2 are unions of different orbits. This property holds, at least implicitly, for M1 as well. A closer
look at the confusion matrices shows that the cause of the error in R0 is the difficulty to distinguish
between base graph nodes and the attachment node of label 4. In contrast to M1 and M 00

1 , there is
a sharp improvement already from the second iteration of EEGL in case of the structurally more
complex motif pair M2 and its variants M 0

2,M
00
2 . We illustrate this improvement by the confusion

matrices shown in Fig. 2. They were calculated for the test nodes for M 0
2 in one of the 10 folds. Out

of the 94 test nodes in this fold, only 52 nodes have been classified correctly by the vanilla setting
(Round-0). Using the maximal frequent patterns extracted from the explanations in the definition of
the feature matrix, the number of correctly classified nodes increases to 71 (Round-1), which, in turn,
is improved in the next iteration of EEGL to 92 (Round-2), i.e., only two nodes are misclassified. It

7

Under review as a conference paper at ICLR 2024

Figure 2: Example of the confusion matrices for a fold of M
0
2

is important to note that in case of M2,M 0
2, and M 00

2 , there is a further improvement in R2 compared
to R1. This phenomenon cannot be observed for M1 and its variants because for these motifs, the
results obtained in the second iteration (R1) are already very close to those with label encoding
(LE). This indicates that, at least on structurally more complex motifs, EEGL is capable of iterative
self-improvement from explanations, with the remark that in case of a few folds, we could observe
the opposite, i.e., a drop in the predictive performance.

Answer to Q2 As noted earlier, LE (label encoding) provides an upper bound for achievable pre-
diction, and it achieved almost perfect prediction for each variant. The “adversarial” (A) feature
initialization addresses the issue, raised in (8), that any set of subgraph features is expected to im-
prove upon the prediction performance of MPNN. Comparing the improvement of EEGL with other
feature initializations seems to be a nontrivial matter. One possibility would be to consider random
subgraph features, but it is not clear what would be the relevant notion of a random graph here. We
consider a weakest possible formulation, and try to show that EEGL brings more improvement than
some feature initialization. This, however, includes cases when the subgraph features do not occur
at all, and thus feature initialization trivializes. Therefore we attempt to find an “unhelpful” but non-
trivial subgraph initialization. The approach is to use subgraph features which do not occur at all in
the motifs, but may occur in the base graph. As the base graph is random, the features are expected
to be of limited help. Note that motif nodes get a trivial initialization, but the nontrivial initialization
of the base graph nodes may have an effect on the motif nodes. Similarly to EEGL, these features are
problem dependent as well. The experiments show that indeed, EEGL is better than A (see Table 1),
and the difference between the two is larger for the larger variants. Randomized feature initializa-
tion has been shown to be powerful in a theoretical sense (1; 10). Randomization extends MPNN
in a different direction than EEGL. The comparison is inconclusive for the three rounds in Table 1:
randomization performs better for M 00

2 , but worse for all other motifs. However, for six iterations
randomization becomes worse for this most “complex” pattern M 00

2 as well (see Table 4.2). The re-
sults in Table 4.2 were obtained by reruning EEGL on the M 00

2 datasets, now with six iterations, and
by calculating mean and standard deviation of the results of five 10-fold cross-validations for each
iteration. In summary, the results on the synthetic datasets show that EEGL outperforms other node
feature definitions in predictive performance, with the remark that the number of iterations needed
by EEGL may depend on the complexity of the structures behind the target classes.

Answer to Q3 For answering this question we use frequent patterns extracted from the explanations
as well. Consider again the confusion matrices in Fig. 2 computed for a fold for M 0

2 (see Appendix D
for the detailed results on M 0

2). Regarding the vanilla setting (Round-0), note that 83% (5 out of 6)
of the nodes of label 2 are misclassified by label 6, 100% (8 out of 8) of the nodes of class label
3 are classified by 7, 60% (3 out of 5) of the nodes of label 5 are classified by 1, and 100% (22
out of 22) of the nodes with class label 8 are classified mistakenly by class 4. The remaining three
misclassifications arise from classifying motif nodes with base graph label 0. These misclassifica-
tions confirm that vanilla GNN is unable to distinguish between nodes having the same 1-WL label.
Indeed, class label pairs 2 and 6, 3 and 7, 5 and 1, and 8 and 4 have the same 1-WL label. We have
a different picture for the second iteration (Round-1 in Fig. 2). Consider, for example, the two class
labels 4 and 8. The maximal frequent patterns extracted for M 0

2 in the first iteration are given in the
top row of Fig. 3. (The same fold is used as for the confusion matrices in Fig. 2.) One can check

8

Under review as a conference paper at ICLR 2024

R0 R1 R2 R3 R4 R5 R6
59.21± 0.95 71.42± 4.68 81.68± 5.54 90.08± 3.89 93.48± 2.49 94.09± 2.10 96.44± 3.0896.44± 3.0896.44± 3.08

Table 2: Average weighted F1-score results in percentage (mean ± SD) obtained for M 00
2 for six iterations of

EEGL. The result for Round-6 (R6) outperforms 95.23± 0.77, the result for the random (R) setting.

Figure 3: The d = 10 maximal frequent subgraphs extracted by EEGL in the first (R0 ! R1) and the second
(R1 ! R2) iteration for one fold of M 0

2. Class labels indicated on top. There are two patterns for label 0.

that by removing the node of degree 1 from the maximal frequent pattern extracted from the expla-
nations for label 4, we obtain the entire left-hand side motif in M 0

2 (see, also, Fig. 1e). Similarly, we
obtain a subgraph of the right-hand side motif in M 0

2, if we remove the node of degree 1 from the
maximal frequent pattern extracted for label 8. Thus, the two patterns are genuine in the sense that
they can distinguish between classes 4 and 8, as they are embedded by rooted (induced) subgraph
isomorphism, and not by homomorphism. This additional power is reflected in the confusion matrix
for iteration Round-1 in Fig. 2. Out of the 36 nodes of label 4 or 8, 22 are misclassified in Round-0,
and only 7 in Round-1. After the second iteration the patterns for classes 4 and 8 do not change (see
the bottom row of Fig. 3). Still, as shown in the last confusion matrix (see Round-2 in Fig. 2), only
1 node out of 36 remains misclassified, due to the fact that the other patterns may change and can
therefore influence the feature matrix. We speculate that the small changes in the patterns for label 1
and label 5 (see Fig. 3) also contribute to this better second prediction accuracy on nodes with label
4 or 8.

Runtime EEGL first selects d0 d frequent rooted patterns (see line 10 of Alg. 1) and then cal-
culates the feature vector for all nodes by checking rooted induced subgraph isomorphism for each
of the d0 patterns (line 11). EEGL needed in average between around 20 minutes (motif M1) and
1 hour (motif M 00

2) for one iteration and for a single fold. Since EEGL computes everything from
scratch in each iteration, the runtime grows linearly with K (number of iterations in Alg. 1).

5 CONCLUDING REMARKS

We introduced EEGL, an iterative XAI-based model improvement approach to extend MPNN us-
ing frequent subgraph mining of explanation subgraphs to obtain features for improving predictive
performance. The approach produced encouraging initial results, and it poses many directions for
further research. We mention two general questions, continuing the list from the introduction.

Q4: How do predictive performance and running time scale with the complexity of the motifs?

As noted earlier, the bottleneck is feature annotation. We plan to explore several improvement
options, such as producing explanations from restricted tractable classes (an interesting challenge in
itself, requiring new denoising procedures) and using only a subset of the nodes for annotation.

Q5: Does improved prediction performance in the iterations imply improved explanation quality?

There are several metrics for evaluating GNN explanations (16). The evaluation of explanations
in XAI is a difficult issue, with several results indicating the problematic nature of explanations
produced (see, e.g. (2)). The lack of ground truth exacerbates the difficulties. Considering syn-
thetic problems where ground truth is available may be useful, but (12) warns of possible pitfalls.
Considering node feature explanations could also be useful in this context.

9

Under review as a conference paper at ICLR 2024

REFERENCES

[1] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural
networks with random node initialization. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, pages 2112–2118. ijcai.org, 2021.

[2] J. Adebayo, J. Gilmer, M. Muelly, I. J. Goodfellow, M. Hardt, and B. Kim. Sanity checks for
saliency maps. In Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, pages 9525–9536, 2018.

[3] C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik. Evaluating explainability for graph neural
networks. Scientific Data, 10:144, 2023.

[4] C. Agarwal, M. Zitnik, and H. Lakkaraju. Probing GNN explainers: A rigorous theoretical
and empirical analysis of GNN explanation methods. In International Conference on Artificial
Intelligence and Statistics, AISTATS 2022, volume 151 of Proceedings of Machine Learning
Research, pages 8969–8996. PMLR, 2022.

[5] M. Al-Shedivat, A. Dubey, and E. P. Xing. The intriguing properties of model explanations.
CoRR, abs/1801.09808, 2018.

[6] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri,
R. Guidotti, J. D. Ser, N. D. Rodrı́guez, and F. Herrera. Explainable artificial intelligence
(XAI): what we know and what is left to attain trustworthy artificial intelligence. Inf. Fusion,
99:101805, 2023.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[8] P. Barceló, F. Geerts, J. Reutter, and M. Ryschkov. Graph Neural Networks with Local Graph
Parameters. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 25280–25293.
Curran Associates, Inc., 2021.

[9] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach. Intell.,
45(1):657–668, 2023.

[10] G. Dasoulas, L. D. Santos, K. Scaman, and A. Virmaux. Coloring graph neural networks for
node disambiguation. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 2126–2132. ijcai.org, 2020.

[11] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Benchmarking
graph neural networks. J. Mach. Learn. Res., 24:43:1–43:48, 2023.

[12] L. Faber, A. K. Moghaddam, and R. Wattenhofer. When comparing to ground truth is wrong:
On evaluating GNN explanation methods. In KDD ’21: The 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 332–341. ACM, 2021.

[13] F. Friedrich, W. Stammer, P. Schramowski, and K. Kersting. A typology to explore and guide
explanatory interactive machine learning. CoRR, abs/2203.03668, 2022.

[14] F. Friedrich, W. Stammer, P. Schramowski, and K. Kersting. A typology for exploring the
mitigation of shortcut behaviour. Nat. Mac. Intell., 5(3):319–330, 2023.

[15] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, pages 52–74, 2017.

[16] J. Kakkad, J. Jannu, K. Sharma, C. C. Aggarwal, and S. Medya. A survey on explainability of
graph neural networks. CoRR, abs/2306.01958, 2023.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

10

Under review as a conference paper at ICLR 2024

[18] S. Maekawa, K. Noda, Y. Sasaki, and M. Onizuka. Beyond real-world benchmark datasets:
An empirical study of node classification with GNNs. In NeurIPS, 2022.

[19] C. Morris, Y. Lipman, H. Maron, B. Rieck, N. M. Kriege, M. Grohe, M. Fey, and K. M. Borg-
wardt. Weisfeiler and Leman go machine learning: The story so far. CoRR, abs/2112.09992,
2021.

[20] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and Leman go neural: Higher-order graph neural networks. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, pages 4602–4609. AAAI Press, 2019.

[21] H. Naik and G. Turán. Explanation from specification. CoRR, abs/2012.07179, 2020.

[22] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In
Proc, of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 647–652. ACM, 2004.

[23] S. Nijssen and J. N. Kok. The gaston tool for frequent subgraph mining. Electronic Notes in
Theoretical Computer Science, 127(1):77–87, 2005. Proceedings of the International Work-
shop on Graph-Based Tools (GraBaTs 2004).

[24] Q. Sun, J. Li, H. Peng, J. Wu, Y. Ning, P. S. Yu, and L. He. SUGAR: subgraph neural network
with reinforcement pooling and self-supervised mutual information mechanism. In WWW ’21:
The Web Conference 2021, pages 2081–2091, 2021.

[25] L. Weber, S. Lapuschkin, A. Binder, and W. Samek. Beyond explaining: Opportunities and
challenges of XAI-based model improvement. Inf. Fusion, 92:154–176, 2023.

[26] K. Xu, S. Jegelka, W. Hu, and J. Leskovec. How Powerful are Graph Neural Networks? In 7th
International Conference on Learning Representations, ICLR 2019, pages 1–17, 2019.

[27] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating ex-
planations for graph neural networks. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pages
9240–9251, 2019.

[28] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating expla-
nations for graph neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[29] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan, V. K. Prasanna, L. Jin, and
R. Chen. Decoupling the depth and scope of graph neural networks. CoRR, abs/2201.07858,
2022.

11

	Introduction
	Related Work
	The EEGL System
	Experimental Evaluation
	Datasets and experimental setup
	Experimental Results and Analysis

	Concluding Remarks
	Background
	Explanation Enhanced Graph Learning
	Pattern Extraction Module
	Results

