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Abstract

This study focuses on the assessment of Tumor-Infiltrating Lymphocytes (TILs) in
Breast ductal carcinoma in situ (DCIS) by integrating artificial intelligence with interna-
tional guidelines. DCIS is a non-invasive cancer with intrinsic potential to evolve to invasive
breast cancer (IBC), making it critical to understand factors influencing this progression.
TILs are a prognostic biomarker in IBC, but their role in DCIS remains under-explored.
This work proposes an automated pipeline for computing TILs scores using deep learning
for DCIS segmentation and TILs detection, following the guidelines of the International
Immuno-Oncology Biomarker Working Group. We report the inter-observer variability
at TILs scoring among Pathologists and show that the Al-based TILs scores have good
concordance with human assessments. Future research will aim to reduce false positives
in DCIS segmentation and detection, support the reference standard with immunohisto-
chemical staining, and expand the dataset to enhance the robustness of the TILs detection
algorithm. Ultimately, this method aims to aid Pathologists in assessing the risk associated
with DCIS lesions
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1 Introduction

Ductal Carcinoma In Situ (DCIS) is a non-invasive form of breast cancer that has garnered
significant attention owing to its increasing incidence and potential to progress to invasive
breast cancer (IBC). DCIS is characterized by the presence of neoplastic cells within the
breast ducts, without invasion beyond the basement membrane. DCIS is both morpho-
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logically and clinically heterogeneous precursor lesion which might be identified through
mammographic breast cancer screening programs in some cases (Wiechmann and Kuerer,
2008). To improve patient outcomes and treatment strategies, it is crucial to understand
the factors influencing the progression of DCIS to IBC. The neoplastic transition evolving
to IBC involves a multistep process of progression through the stages of atypical hyperpla-
sia, DCIS, and ultimately invasive carcinoma (Chen et al., 2020). Studies have shown that
a significant proportion of high grade DCIS cases may progress to invasive breast cancer
within 30 years (Groen et al., 2017).

The management of DCIS poses challenges with questions surrounding the necessity
of surgery for low-grade DCIS and the role of active surveillance (Coleman, 2019). The
standard of care for DCIS typically involves either breast conservative surgery or mastec-
tomy for patients treated with conservative surgery, ASCO guidelines suggest a clearance of
margins greater than 2 mm (Morrow et al., 2016) and possible omission of radiotherapy for
selected low-risk women (Rakovitch et al., 2018). Recent study compared genomics profile
from patients with an initial DCIS lesion and a later invasive recurrence, showing that in
18% of the cases the invasive recurrence was not genetically related to the DCIS, while in
75% of the cases a clonal relation between the two lesions was found, suggesting that tumor
cells were not eliminated during the initial treatment of DCIS (Lips et al., 2022). In order to
avoid overtreatment and to move toward personalized medicine, it is important to develop
new biomarkers that help assessing the exact invasive potential of the DCIS lesion.

Tumor-Infiltrating Lymphocytes (TILs) are a well known prognostic biomarker in IBC,
with high TILs density associated with better response to adjuvant or neoadjuvant therapy
and with a positive outcome (Ibrahim et al., 2014; Denkert et al., 2015; Dieci et al., 2018).
In the context of DCIS, the assessment of TILs is an emerging area of research, while
the role of different TILs in DCIS is still not well defined (Dieci et al., 2018). Several
studies have investigated the quantification of TILs in DCIS and their correlation with
clinical outcomes (Komforti et al., 2020), their potential prognostic significant related to
the underlying genomics instability (Toss et al., 2020), and their association with a second
breast cancer event (Farolfi et al., 2020).

Automated analysis of the tumor micro environment and assessment of TILs through
deep learning techniques is increasingly gaining interest in the immuno oncology community.
In the field on DCIS researchers have focused on analyzing the spatial distribution of TILs
between patients with pure DCIS and the ones with IBC adjacent to DCIS (Narayanan
et al., 2021). Generative Adversarial Networks (GAN) have also been used to segment
DCIS and the resulting segmentation mask used to compute a TILs score (Hagos et al.,
2022).

In this study we have focused on identifying DCIS as well as other relevant morphological
classes for an objective and reproducible TILs score computation according to the recom-
mendations of the International Immuno-Oncology Biomarker Working Group on Breast
Cancer. We collected and annotated hematoxylin and eosin (H&E) stained digital pathol-
ogy Whole Slide Images (WSIs) from Santa Chiara Hospital and used the publicly available
BRACS dataset as an external validation set (Brancati et al., 2022). Aim of the study is
to provide Pathologist a tool to enable quantitative assesment of TILs abundance in DCIS.
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2 Materials and Methods

2.1 Data collection

A total of 100 WSIs were used for this study. Data was obtained from two independent
sources: Santa Chiara Trento Hospital, for a total of 55 WSIs used for training, and BRACS
dataset, for the remaining 45 used for testing.

In our pipeline we did not use QuPath (Bankhead et al., 2017) annotations of DCIS
areas available within the BRACS dataset. Pathologist annotated selected area of interests,
using the same classes of the TIGER challange (Computational Pathology Group, 2022),
but including only dcis in the in-situ tumor. The class included in the annotations where
the following: tumor_associated_stroma, inflammed_stroma, healthy_glands, invasive_tumor,
necrosis, dcis, rest.

Annotation on both dataset were made by trained Pathologist which sparsely annotated
the slides using QuPath. All slides from both datasets were converted into tif format and
saved at a resolution of 0.5 micron per pixel.

2.2 DCIS segmentation

In our study we used a version of nnUNet (Isensee et al., 2020) adapted for digital pathology
applications (Spronck et al., 2023) for multi-class tissue segmentation in whole-slide images.
Training parameters encompass a square patch size of 512 pixels, a mini-batch size of 18
samples, and input resolution of 0.5 micro per pixels. The training dataset was partitioned
into a 5 fold cross validation. Training have been performed for 1000 epochs and model
checkpoints have been saved based on the overall DICE score performance on the internal
validation set. Regions in the WSI which were not annotated, have been excluded from
loss calculation. Classes other than DCIS and rest where not used for the following part
of the analysis and where therefore ignored. DICE score limited to the DCIS class have
been computed on the external BRACS dataset. We limited our evaluation on this class
since it was the relevant one for the TILs score computation. During training we adopted
a weighted sampling strategy to increase the frequency of sampling of DCIS regions (see
weights in Table 1). An example of a segmentation mask is reported in Figure 1

Label Weigth
rest 0.125
tumor_associated_stroma | 0.125
inflammed _stroma 0.125
healthy_glands 0.125
dcis 0.250
invasive_tumor 0.125
necrosis 0.125

Table 1: Annotation weights used during nnUNet training
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(a) Ground truth annotations (b) Segmentation output from nnUNet

Figure 1: Example of the nnUNet segmentation output. DCIS is colorued in pink, necrosis
in blue, inflammed stroma in yellow, while stroma in light blue. Images are
visualized using the ASAP software.

2.3 TILs detection

TILs detection (see Figure 2) was done using Biototem algorithm and pipeline!, the best
performing algorithm in the computer vision task of the Tumor InfiltratinG lymphocytes
in breast cancER (TIGER) challenge (Computational Pathology Group, 2022), hosted on
the Grand Challenge Platform.

The model is based on UperNet with a Visual Attention Network (VAN) backbone, which
enables long-range correlations in self-attention. The algorithm adapt the SFCN-OPI
model, originally designed for nuclei detection, to improve TILs localization and reduc-
ing false positives.

We leveraged this model to identify TILs in BRACS slides. Detection results where then
converted into xml format.

2.4 Pathologist TILs score

Two Pathologist provided TILs score for each WSI of the BRACS dataset following the
International Immuno-Oncology Biomarker Working Group on Breast Cancer guidelines.
Pathologist evaluated TILs score by assessing the stromal area around DCIS and reported
a score per slide as a percentage of the stromal area infiltrated by lymphocytes. Pathologist
scored the TILs ratio with 5% steps.

1. https://github.com/biototem/TIGER_challenge_2022
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(a) TILs detection (b) H&E area of reference

Figure 2: Biototem’s TILs detection output

2.5 Automatic TILs score computation

DCIS segmentation mask derived from nnUNet model where converted into xml annotation
files and merged with the TILs detection from Biototem algorithm. A buffer area of 250 mi-
crometer where computed around each DCIS polygon annotation, merging buffers deriving
from adjacent DCIS. The dimension of the buffer area is within the range suggested by the
International guidelines, which suggest to inspect an area up to two high-power microscopic
fields.

The buffer of a geometry is defined as the Minkowski sum of the geometry with a circle
with radius equal to the absolute value of the buffer distance. A representative example is
shown in Figure 3. We then counted the number of TILs detection within this buffer. We
approximated the TILs area as being the one of a circle having a diameter of 8 micrometers
(Swiderska-Chadaj et al., 2019). Tils score for each WSI is therefore computed as follows:

>, TIL; € (B area - DCIS area) x 50 pm 1)
B area — DCIS area

TILs_score =

where B is the buffer derived from geometric operation. According to TILs scoring guide-
lines, immune hostspots identified by the class inflammed_stroma (i.e., regions with high-
density clusters of lymphocytes within the stromal region) were included in the computation
both by pathologist and by our computational approach.

2.6 Statistical Analysis

Performance of the DCIS segmentation model was evaluated using the DICE score. The
correlation between the automatic TILs scores and the pathologists’ scores was analyzed
using Pearson and Spearman correlation coefficients to assess agreement.
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Figure 3: The buffer area used to computed tils detection. The total buffer area is repre-
sented in red, while the pink area represent the DCIS identified by nnUNet

3 Results and Discussion

The DCIS DICE score achieved by the model was of 0.69 with a variance of 0.08.

The computed TILs score was compared with the one estimated by Pathologist, resulting
in a Pearson correlation coefficient of 0.53 with Pathologist 1 and 0.65 with Pathologist 2.
Interestingly the correlation between Pathologist is limited to 0.48, showing a stronger
concordance with the computed TILs score.

Spearman correlation coefficient showes a correlation of 0.57 between Pathologist 1 and
2. The computed TILs score shows a Spearman correlation of 0.61 with Pathologist 1 and
0.74 with Pathologist 2.
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Interestingly, this result is in contrast with what was highlighted in the study by Hagos
et al (Hagos et al., 2022) in which the concordance between Pathologist was higher than
the concordance between Pathologist and Al-based computed score.

We developed a pipeline to automatically compute TILs scores following the guidelines
for TILs assessment from the International Immuno-Oncology Biomarker Working Group.
This study shows the discordance between Pathologists in computing density ratios with
little to no quantitative guidance. On the contrary, computed TILs score is shown to
correlate better with both Pathologist.

It has to be noted that the computed TILs score tend to be always low, potentially
showing a tendency in underestimating the TILs score Figure 4. However this dataset did
not contain any cases with high TILs score, therefore this hypothesis should be tested in
future work, by integrating a wider and more diverse dataset.

Distribution of TILs Scores
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Figure 4: Distribution of TILs scores within Pathologist and the computed ones for the
BRACS dataset

Future work will focus on reducing the number of false positives prediction in DCIS
class as well as integrating immunohistochemistry staining to validate the predictions made
by the TILs detection algorithm. Another point of action will be also increasing the size of
the training dataset, with the goal to improve the segmentation performance of nnUNet.
Additionally, in order to further investigate the robustness of these results, we plan to
expand the number of pathologist who will assign TILs score for the BRACS validation
dataset.
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In conclusion we developed a pipeline to compute the TILs score in ductal carcinoma
in situ using state of the art deep learning method for DCIS segmentation and TILs de-
tection. Those output have been combined and exploited to compute TILs score following
international guidelines. All results have been computed on an external and independent
dataset, which has never been used in any part of the training protocol, to showcase the
robustness of our method, with the aim to develop a tool able to assist Pathologist in DCIS
risk assessment. Upon acceptance we aim to make our BRACS annotation publicly avail-
able, to faster the reproducibility of the study and to enlarge the number of high quality
annotations, useful to develop large scale Deep Learning applications.
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