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Abstract

Current end-to-end retrieval-based dialogue001
systems are primarily based on Recurrent Neu-002
ral Networks or Transformers with attention003
mechanisms. Despite promising results have004
been achieved, these models usually suffer005
from slow inference speed or an enormous006
amount of parameters. In this paper, we pro-007
pose a novel lightweight fully convolutional ar-008
chitecture called DialogConv for the response009
selection. DialogConv is built exclusively on010
convolutions for distilling the matching fea-011
tures of context and response. The dialogue012
is modeled in a 3D view, where DialogConv013
conducts convolution operations on embed-014
ding dimension, word dimension and utter-015
ance dimension iteratively to capture richer se-016
mantic information from a multi-view of con-017
text. On four benchmark datasets, Dialog-018
Conv is approximately 4.0x smaller and up to019
27x faster in inference compared with strong020
baselines. Moreover, DialogConv can achieve021
competitive performance results on four public022
datasets.023

1 Introduction024

An important challenge for building intelligent di-025

alogue systems is the response selection problem,026

which aims to select a proper response from a set027

of candidates given the context of a conversation.028

Such retrieval-based dialogue systems have drawn029

great attention from academic and industrial com-030

munities owing to the advantage of informative and031

fluent responses (Tao et al., 2021).032

The existing retrieval-based dialogue systems033

can be categorized into two patterns: (i) Separate034

Pattern (Wu et al., 2017; Zhang et al., 2018b; Zhou035

et al., 2018; Gu et al., 2019); (ii) Concatenated Pat-036

tern (Tan et al., 2015; Zhou et al., 2016). Separate037

Pattern (i.e., Figure 1 (a)) encodes the utterance038

one by one separately, while Concatenated Pattern039

(i.e., Figure 1 (b)) concatenates all utterances into040

a consecutive word sequence. Methods based on041
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Figure 1: Flat pattern. (a) is separate pattern and (b) is
concatenated pattern.

these two patterns usually take RNNs (Hochreiter 042

and Schmidhuber, 1997; Cho et al., 2014) and at- 043

tention mechanism (Bahdanau et al., 2014) as the 044

backbone. Although promising results have been 045

achieved, these methods are often slow for both 046

training and inference due to their recurrent nature. 047

More recently, Pre-trained Language Model 048

(PrLM) pattern (Cui et al., 2020; Gu et al., 2020; 049

Liu et al., 2021) has obtained the state-of-the-art 050

performance in response selection. However, these 051

methods that taking Transformer as the de-facto 052

standard architecture suffer from an enormous 053

amount of parameters and heavy computational 054

cost. The extremely large model scale not only 055

leads to increased training cost but also prevents 056

researchers from rapid iteration. Meanwhile, the 057

slow inference speed hinders the dialogue systems 058

from being deployed in real-world scenarios. 059

Additionally, previous studies (Sankar et al., 060

2019; Li et al., 2021) demonstrate that Concate- 061

nated Pattern is usually insensitive to dynamic as- 062

sociated features between utterances. On the other 063

hand, the Separate Pattern lacks contextual infor- 064

mation when encoding each individual utterance. 065

In fact, the matching features for response selection 066

are more likely to appear in local context (Lu et al., 067

2019). Convolution structure is naturally adept in 068

capturing the local structure features of text, and 069

thus suitable for capturing dynamic matching fea- 070

tures between dialogue context and response. 071
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Figure 2: Fully convolutional multi-view modeling. (a)
is convolution in embedding view, (b) is convolution in
word view and (c) is convolution in utterane view.

In this paper, we propose a fully1 convolu-072

tional network model (dubbed as DialogConv)073

without any RNN or attention module for multi-074

view response selection. Different from previous075

study (Zhou et al., 2016) that models dialogue in076

plane view, DialogConv models the dialogue con-077

text and response together in 3D space from stereo078

view, namely embedding view, word view and ut-079

terance view (i.e. Figure 2). In embedding view,080

convolutions are conducted on the plane formed by081

the word sequence dimension and utterance dimen-082

sion. In word view, convolutions are conducted on083

the plane composed of embedding dimension and084

utterance dimension. In utterance view, we con-085

duct convolutions along the depth of conversation086

to extract dialogue discourse features across utter-087

ances. Intuitively, for the convolution operation in088

Figure 2 (b) and (c), we assume that the more se-089

mantic features can be distilled with considering a090

scalar of embedding as semantic unit (Zhang et al.,091

2018a).092

DialogConv based exclusively on CNN utilizes093

much fewer parameters and computing resources.094

The average number of parameters of DialogConv095

is 12.4M, which is 3.5x to 4.0x smaller than RNN096

based models. The inference speed of the model097

can be up to 26.9x faster than existing models.098

Moreover, DialogConv attains competitive results099

on four benchmarks, and even better performance100

when pre-trained using contrastive learning. To101

summarize, we make the following contributions:102

• We propose an efficient convolutional re-103

sponse selection model DialogConv, which,104

to the best of our knowledge, is the first re-105

sponse selection model exclusively built on106

multiple convolution layers without any RNN107

or attention module.108

• We model the dialog from a stereo view,109

where 2D and 1D convolution operations are110

conducted on word, utterance and embedding111

1Here ‘fully’ means DialogConv is built exclusively on
CNNs.

dimensions iteratively, and thus finer-grained 112

and dynamic matching features can be cap- 113

tured. 114

• Extensive experiments on four benchmark 115

datasets show that DialogConv can achieve 116

competitive results with faster speed and 117

fewer computing resources. 118

2 Related Work 119

2.1 Retrieval-based Dialogue Framework 120

Most existing methods follow the Encoding- 121

Interaction-Aggregation-Prediction process, which 122

takes interaction between dialogue context and re- 123

sponse as the core. These methods try to mine deep- 124

semantic features by sequence modeling, for exam- 125

ple, using attention-based pairwise matching mech- 126

anism to capture the interactive features between 127

dialogue context and candidate response. How- 128

ever, previous studies (Sankar et al., 2019; Li et al., 129

2021) demonstrate that most existing mehtods are 130

insensitive to dynamic features across utterances. 131

Besides, most existing methods employ recurrent 132

structure to model the sequence features of utter- 133

ances, which leads to the slow inference speed of 134

the model. Although methods transformer-based 135

get rid of the weakness of recurrent structure, these 136

methods usually enjoy huge amount of parameters. 137

Training and inference demand heavy computation 138

cost. In this paper, we propose to model dialogue 139

context from multi-view using the fully convolu- 140

tional structure. DialogConv is a lightweight model 141

which more small and faster compared with most 142

existing methods. 143

2.2 Convolutional Neural Networks 144

In the past few years, CNN has been the go-to 145

model in the computer vision field. The main rea- 146

son is that CNN enjoys the advantage of parameter 147

sharing and high concurrency. Besides, convolu- 148

tional structure is better at modeling the local struc- 149

ture. A large number of excellent architectures 150

based on CNN have been proposed (Krizhevsky 151

et al., 2012; Simonyan and Zisserman, 2014; 152

Szegedy et al., 2015; He et al., 2016; Dai et al., 153

2021). Compared with Recurrent Neural Net- 154

works (Hochreiter and Schmidhuber, 1997), con- 155

volutional structure is adept at capturing local lo- 156

cal dependencies of text and faster. Compared 157

with Transformer, convolutional structure is more 158

lightweight. In this paper, we propose a novel fully 159
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convolutional architecture using convolution lay-160

ers to encode dialogue utterances from multi-view.161

Compared with existing methods, DialogConv not162

only enjoys the advantage of faster inference speed163

but also can capture finer-grained and dynamic164

matching features.165

3 Methodology166

3.1 Problem Formalization167

The instance in the dialogue dataset can be rep-168

resented as (c, r, y). Here we treat multi-turn re-169

sponse selection in chatbots as binary classification170

task. Specifically, the union of dialogue context c171

and response r are regarded as the overall context172

c = {u1, u2, ..., ut−1, r}. r is a candidate response173

and y ∈ {0, 1}, where y = 1 indicates that r is174

a proper response for c; otherwise y = 0. As the175

core of retrieval based dialogue system, the aim176

of response selection is to build a discriminator177

g(c) on (c, y), which measures the matching score178

between c and r.179

3.2 Fully Convolutional Multi-view Matching180

We propose a fully convolution encoder for multi-181

view response selection. Multiple views include:182

embedding view, word view, and utterance view.183

In embedding view, the convolution operations are184

conducted in the plane formed by word dimension185

and utterance dimension, which allow communica-186

tion between different embeddings. In word view,187

the convolution operations are conducted in the188

plane formed by embedding dimension and utter-189

ance dimension, which allow communication be-190

tween different words. In word view, the utterance-191

level and context-level features will be distilled192

when convolution operations are across a single ut-193

terance and whole dialogue sequence, respectively.194

In utterance view, we consider each utterance as195

an utterance-level semantic flow and extract the196

dialogue flow feature along the depth of dialogue.197

Note that the structure of DialogConv, which198

follows the matching process of Local-Contextual-199

Discourse, is not strictly designed according to the200

views. DialogConv will mix features iteratively201

from multiple views in each matching stage. Fig-202

ure 3 shows an overview of our proposed Dialog-203

Conv that contains six layers: (i) Embedding Layer;204

(ii) Local matching layer; (iii) Context matching205

layer; (iv) Discourse matching layer; (v) Aggrega-206

tion layer; (vi) Prediction Layer.207

Symbol Definition: conv@i represents the i-th208

convolution operation in Figure 3, d represents the 209

dimension of word embedding, s stands for length 210

of utterance, and t is the number of utterances in- 211

cluding response. G ∈ Rt∗s∗d is a 3D tensor which 212

represents the input of DialogConv. The prediction 213

layer is a fully-connected layer. 214

3.2.1 Local Matching Layer 215

The local matching layer is in charge of distilling 216

features of each utterance. The local matching 217

stage contains features from embedding and word 218

view. First, we employ 1×1 convolutions in word 219

view and embedding view respectively. The pro- 220

cess can be described formally as: 221

G1 = Conv2Dembedding
1×1t×s

(σ(G)) (1) 222

223
G2 = Conv2Dword

1×1t×d
(G1) +G (2) 224

where σ(·) stands for GELUs (Hendrycks and Gim- 225

pel, 2016) activation function, Conv2Dembedding
1×1t×s

226

represents 2D convolution with a convolution ker- 227

nel size of 1×1 is employed in word view and 228

Conv2Dword
1×1t×d

represents 2D convolution with a 229

convolution kernel size of 1×1 is performed in em- 230

bedding view. The 1×1 convolution pays attention 231

to the information of the current element itself and 232

does not consider the influence of the local con- 233

text. When 1×1 convolution is employed in embed- 234

ding view, the abstract semantic features of words 235

will be captured by communication between differ- 236

ent words. When 1×1 convolution is employed in 237

word view, the features of words will be captured 238

by communication between different embeddings. 239

Multi-scale convolution (Szegedy et al., 2015; Gao 240

et al., 2019) has been proven to be effective in 241

extracting local features. Therefore, we employ 242

1×3 convolution in word view and 1×1 convolution 243

in embedding view to capture the local matching 244

features. The formal description is as follows: 245

G3 = Conv2Dembedding
1×3t×s

(σ(G2)) (3) 246

247
G4 = Conv2Dword

1×1t×d
(G3) +G2 (4) 248

Note that we focuse on features for a single utter- 249

ance in local matching layer. 250

3.2.2 Context Matching Layer 251

The context matching layer is responsible for distill- 252

ing the matching features based on whole dialogue 253

context. First, we flattenG4 into a two-dimensional 254

tensorG5 ∈ R(t∗s)∗d. This is equivalent to concate- 255

nating all utterances into a single consecutive word 256
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Figure 3: Overview of our DialogConv.

sequence in chronological order. Then we employ257

convolutions across words sequence with kernel258

size of 1 in embedding view, and kernel size of 5259

across embedding dimension in word view. The260

details are as follows:261

G6 = Conv1Dembedding
1l

(σ(G5)) (5)262

263
G7 = freshape(Conv1D

word
5d

(G6)) +G5 (6)264

where freshape is a function, standing for reshaping265

the output of the convolution into the same shape as266

G5, G7 ∈ Rt∗s∗d and l = t ∗ s. The context-level267

features can be aggregated through communication268

between different words concatenating all utter-269

ances. Context-level information is fundamental270

for extracting discourse features across different271

utterances.272

3.2.3 Discourse Matching Layer273

Previous layers are responsible for understanding274

dialogue utterances according the contextual infor-275

mation. The discourse matching layer pays atten-276

tion to the implied non-sequential dialogue flow277

features along the depth of the dialogue. Captur-278

ing dynamic semantic features across utterances is279

very important to selecting correct response. We280

employ orthogonal convolution to extract dynamic281

dialogue flow features across utterances. The spe-282

cific process is as follows:283

G8 = Conv2Dembedding
1×3t×s

(σ(G7)) (7)284

285
G9 = Conv2Dembedding

3×1t×s
(G8) (8)286

287
G10 = Conv2Dembedding

1×1t×s
(G9) +G7 (9)288

The 1×3 convolution and 3×1 convolution are289

called as orthogonal convolutions because the direc-290

tions of their convolution kernels are vertical. The291

1×3 convolution is responsible for building seman- 292

tic flow based on context-level features for single 293

utterance and 3×1 convolution distills the dialogue 294

flow features across depth of dialogue. Finally, we 295

integrate the infomation by 1×1 convolution. Note 296

that we adopt orthogonal convolution in word view 297

to realize the extraction of the features of the dia- 298

logue flow. The detailed reasons will be discussed 299

in the experiment section. 300

3.2.4 Aggregation Layer 301

The aggregation layer is responsible for getting 302

high-level semantic infomation by integrating 303

mathching features from previous layers. First, 304

we employ max-pooling to obtain the sentential 305

representation G11 ∈ Rt∗d. Then we adopt two 306

layers of convolution to distill matching features 307

along embedding dimension and depth of dialogue 308

respectively. The description is as follows: 309

G12 = Conv1Dembedding
t (G11) (10) 310

311
G13 = Conv1Dutterance

s (G12) +G11 (11) 312

We employ the max-pooling operation again based 313

on G13 to get the final contextual representation O. 314

3.3 Self-supervised Pre-training 315

As a lightweight neural structure, the performance 316

of DialogConv can be further improved by pre- 317

training strategy using small-scale corpus. The way 318

of masked language model pre-training (Devlin 319

et al., 2019; Lan et al., 2020) usually requires large- 320

scale corpus, while the self-supervised contrastive 321

learning can learn general representation feature in 322

relatively small-scale corpus. 323

Therefore, we employ contrastive learning to 324

learn effective representation by pulling semanti- 325

cally close neighbors together and pushing apart 326
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non-neighbors (Hadsell et al., 2006). Given a set327

of paired examples D = (xi, x
+
i ), where xi is the328

conversation context c, x+i is the correct response.329

We adopt the previous contrastive learning frame-330

work and take a cross-entropy objective with neg-331

atives x−i that includes responses with y = 0 and332

in-batch negatives (Chen et al., 2017). The training333

objective is:334

lc = log
esim(xi,x

+
i )/τ∑|x−i |

j=1 e
sim(xi,x

−
ij)/τ + esim(xi,x

+
i )/τ

(12)335

where τ is a temperature hyperparameter and336

sim(·, ·) is the cosine similarity.337

4 Experiments338

4.1 Datasets339

In this paper, we conduct extensive experiments340

on four public datasets: (i) Ubuntu Dialogue341

(Ubuntu) (Lowe et al., 2015); (ii) Multi-Turn Di-342

alogue Reasoning (MuTual) (Cui et al., 2020);343

(iii) Douban Conversation Corpus (Douban) (Wu344

et al., 2016); (iv) E-commerce Dialogue Corpus345

(ECD) (Zhang et al., 2018b).346

Ubuntu consists of 1 million context-response347

pairs for training, 0.5 million pairs for validation,348

and 0.5 million pairs for testing. The ratio of the349

positive and the negative is 1:1 in training, and 1:9350

in validation and testing. Douban consists of 1 mil-351

lion context-response pairs for training, 50k pairs352

for validation, and 10k pairs for testing. Response353

candidates are retrieved from Sina Weibo and la-354

beled by human judges. ECD contains 1 million355

context-response pairs for training, 10k pairs for356

validation, and 10k pairs for testing and consists of357

five different types of conversations (e.g., commod-358

ity consultation, logistics express, recommenda-359

tion, negotiation and chitchat) based on over twenty360

commodities. MuTual is the first human-labeled361

reasoning-based dataset for multi-turn dialogue,362

which contains 7,088 context-response pairs for363

training, 886 pairs for validation, and 886 pairs for364

testing. The ratio of the positive and the negative365

is 1:3 in training, validation and testing. Note that366

the description of the Metrics is in the appendix.367

4.2 Baselines368

TF-IDF (Lowe et al., 2015) is a traditional method369

of information retrieval. LSTM is a Long Short-370

Term Memory neural network. BiLSTM is a bidi-371

rectional long and short-term memory neural net-372
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Figure 4: (a) is the impact of different granularity of
convolution along depth of dialogue (i.e., conv@8).
(b) is the performance comparison of DialogConv-like
models.

work. MV-LSTM (Wan et al., 2016) is a semantic 373

matching method based on LSTM. QANET (Yu 374

et al., 2018) is a machine reading comprehension 375

method based on CNN. MH-LSTM (Wang and 376

Jiang, 2016) is an extractive machine reading com- 377

prehension model based on LSTM. BIDAF (Seo 378

et al., 2017) is a machine reading comprehension 379

model based on bi-directional attention flow. R- 380

NET (Wang et al., 2017) is a machine reading com- 381

prehension model with multiple attention. Multi- 382

View (Zhou et al., 2016) is a multi-turn dialogue 383

retrieval-based method based on token view and 384

utterance view. DL2R (Yan et al., 2016) is a 385

multi-turn retrieval-based dialogue model based 386

on sentence pair matching. SMN (Wu et al., 2017) 387

is a matching model based on attention mecha- 388

nism. DUA (Zhang et al., 2018b) is a hierarchi- 389

cal interaction model based on attention mecha- 390

nism. DAM (Zhou et al., 2018) is a deep interac- 391

tion method based on attention. IMN (Gu et al., 392

2019) is a retrieval-based dialogue model with bi- 393

directional matching. MRFN (Tao et al., 2019) 394

is a retrieval-based dialogue model with multiple 395

types of representations. IoI (Tao et al., 2019) is 396

a retrieval-based dialogue model based on mul- 397

tiple interactions. MSN (Yuan et al., 2019) is a 398

retrieval-based dialogue model with multi-hop se- 399

lector mechanism. BERT (Devlin et al., 2019) is 400

an autoencoding language model based on Trans- 401

former. 402

4.3 Implementation Details 403

We implement DialogConv using Tensorflow 2, and 404

train DialogConv on Intel(R) Core(TM) i7-10700 405

CPU 2.90HZ*16 with a single GeForce RTX 2070 406

SUPER (8G). We consider at most 10 turns and 407
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Ubuntu Douban
Method R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5
CNN 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647
LSTM 0.638 0.784 0.949 0.485 0.537 0.320 0.187 0.343 0.720
Bi-LSTM 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716
MV-LSTM 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
MH-LSTM 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
Multi-View 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729
DL2R 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705
SMN 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724
DUA 0.757 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780
DAM 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757
MRFN 0.786 0.886 0.976 0.571 0.617 0.448 0.276 0.435 0.783
IMN 0.794 0.889 0.974 0.570 0.615 0.433 0.262 0.452 0.789
IoI 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786
MSN 0.800 0.899 0.978 0.587 0.632 0.470 0.295 0.452 0.788
BERT 0.808 0.897 0.975 0.591 0.633 0.454 0.280 0.470 0.828
DialogConv 0.788 0.883 0.979 0.571 0.624 0.432 0.272 0.453 0.785
DialogConv* 0.801 0.904 0.976 0.572 0.634 0.457 0.282 0.452 0.825

Table 1: Results on Ubuntu and Douban datasets. The first group model adopts Concatenated Pattern. The second
group model belongs to Separate Pattern. The third group model belongs to PrLM-based Pattern. DialogConv* rep-
resents the performance when pre-training using contrastive learning. Bold indicates the best result and underline
indicates the second best result.

ECD MuTual
Method R10@1 R10@2 R10@5 R@1 R@2 MRR
TF-IDF - - - 0.279 0.536 0.542
CNN 0.328 0.515 0.792 - - -
LSTM 0.365 0.536 0.828 - - -
Bi-LSTM 0.365 0.536 0.825 0.260 0.491 0.743
MV-LSTM 0.412 0.591 0.857 - - -
QANET 0.455 0.662 0.920 0.247 0.517 0.522
BIDAF 0.491 0.708 0.933 0.357 0.589 0.589
RNET 0.362 0.500 0.770 0.270 0.435 0.513
MH-LSTM 0.410 0.590 0.858 - - -
Multi-View 0.421 0.601 0.861 - - -
DL2R 0.399 0.571 0.842 - - -
SMN 0.453 0.654 0.886 0.299 0.585 0.595
DUA 0.501 0.700 0.921 0.437 0.698 0.658
DAM 0.526 0.727 0.933 0.458 0.718 0.673
IMN 0.621 0.797 0.964 0.404 0.622 0.638
IoI 0.563 0.768 0.950 0.421 0.686 0.647
MSN 0.606 0.770 0.937 0.420 0.677 0.646
BERT 0.610 0.814 0.973 0.648 0.847 0.795
DialogConv 0.827 0.889 0.962 0.602 0.834 0.769
DialogConv* 0.844 0.891 0.963 0.622 0.854 0.782

Table 2: Results on ECD and MuTual datasets. The
first group model adopts Concatenated Matching. The
second group model belongs to Separate Interaction.
The third group model belongs to PrLM-based Inter-
action. DialogConv* represents the performance when
pre-training using contrastive learning. Bold indicates
the best result and underline indicates the second best
result.

50 words for Ubuntu, Douban, ECD while at most408

8 turns and 50 words for MuTual in the experi-409

ments. The dimension of word embeddings is set410

to 200. Two-dimensional convolution is used in 1st,411

2nd, 3rd, 4th, 8th, 9th and 10th layers while one-412

dimensional convolution is employed in 6th, 7th,413

12th and 13th layers. The stride of all convolution414

layer is [1,1] or 1. The filters size of 1st, 2nd, 4th, 415

5th, 9th and 11st convolution layers is [1,1]. [1,3], 416

5, [1,3], [3,1] and 3 are filters size for the 3rd, 6th, 417

7th, 8th and 10th convolution layer respectively. In 418

the supervised learning stage, we train DialogConv 419

and other models with Adam optimizer while use 420

Stochastic Gradient Descent (SGD) for optimizing 421

in unsupervised stage. In the supervised training 422

stage, staged optimization strategy is employed and 423

learning rates are initialized as 1e-3, 5e-4, 1e-4, 5e- 424

5 and 1e-5. The batch-size is 32 for the MuTual 425

and 64 for the other datasets. In the pre-training 426

stage, we only set the batch size 128. Larger batch 427

size can be set for better results under the devices 428

allow. The temperature τ is set to 0.007. 429

4.4 Results 430

Table 1 and 2 report the testing results of Dialog- 431

Conv as well as all comparative models on four 432

datasets. Although DialogConv does not achieve 433

state-of-the-art performance, the model can attain 434

near-optimal results in most cases. Besides, we cal- 435

culate the confidence level (p<0.05) of DialogConv, 436

which demonstrates the results of DialogConv are 437

credible. The best results are shown in bold text. 438

On Ubuntu dataset, DialogConv outperforms most 439

classic models such as SMN, DUA, DAM, and has 440

comparable performance with MRFN. When pre- 441

training with contrastive learning, the performance 442

of DialogConv is close to BERT, even outperform- 443
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Models Per Nodes Edges
Inference Time(CPU/GPU) Parameters(M)

Ubuntu(m) Douban(s) ECD(s) MuTual(s) Ubuntu Douban ECD MuTual
SMN 1.508 2,417 4,283 39.0/22.2 46.8/30.1 43.4/28.6 14.9/12.4 90.2 68.5 9.8 4.4
DAM 1.453 12,85 22,226 176.7/45.3 227.3/68.1 226.8/65.7 90.5/37.9 94.8 67.1 13.1 8.0
DUA 1.461 4,412 7,797 142.9/49.3 176.1/64.3 174.6/64.2 63.7/26.3 96.4 69.7 15.7 14.8
IOI 1.493 1,1704 283,731 346.7/39.2 421.3/48.5 429.1/47.0 156.7/22.2 96.0 69.3 15.3 10.2
MSN 1.452 955 1,468 105.3/12.9 127.9/16.7 125.5/13.8 44.6/7.0 89.1 62.4 10.5 13.1
DialogConv 1.424 216 329 12.9/5.4 17.5/7.4 16.4/7.0 7.0/3.4 22.9 13.3 9.3 4.1

Table 3: Comparison of model complexity and inference time. The perplexity (i.e., Per = 2L and L is the average
loss on validation dataset of all corpora.) is computed based on the average loss on a validation dataset of all
corpora. Nodes represent the number of nodes in the model graph. Edges represent the number of edges in the
model graph.

ing BERT on R10@2. On Douban dataset, the444

performance is 1.3% lower than the best result on445

R10@1. However, the performance of pre-trained446

DialogConv can achieve near-optimal results. It447

is a surprise on ECD dataset that DialogConv has448

an absolute advantage of 21.7% on R10@1 and449

7.5% on R10@2. DialogConv on MuTual dataset450

outperforms the compared baseline models2, in-451

cluding some classic machine reading comprehen-452

sion models such as QANET, BIDAF RENT. The453

pre-trained DialogConv can achieve comparable454

results with BERT. Note that DialogConv does not455

use large-scale pre-trained word vectors, such as456

GloVe based on Common Crawl corpus3.457

DialogConv achieves relatively better results on458

ECD and MuTual dataset. We conduct further anal-459

ysis for this phenomenon and find that the MuTual460

dataset contains many reused contexts. In other461

words, the context of one example is likely to be462

part of the context of the other examples. We con-463

jecture that DialogConv based on convolution struc-464

ture is good at capturing local dynamic features465

across utterances compared with general sequence466

models. For the ECD dataset, compared with the467

Douban and Ubuntu datasets, the positive and neg-468

ative responses are easier to identify because the469

fact that the difference is obvious. DialogConv can470

incorporate features of multi-view stereo, which471

is more sensitive to differences in semantic and472

makes it easier to select the correct response from473

candidate responses.474

4.5 Model Complexity and Inference Time475

To measure the simplicity of our base model, we476

analyze the model from multiple dimensions. Here477

we have selected some relatively lightweight mod-478

els among the existing methods. It is obvious that479

language models are large and bloated. For exam-480

2https://nealcly.github.io/MuTual-leaderboard/
3https://github.com/stanfordnlp/GloVe

MuTual ECD
Method R@1 R@2 MRR R10@1 R10@2 R10@5
DialogConv 0.614 0.825 0.778 0.833 0.901 0.988
-LocM 0.580 0.786 0.754 0.813 0.881 0.958
-ConM 0.577 0.801 0.759 0.806 0.823 0.919
-DisM 0.578 0.785 0.753 0.810 0.845 0.910
-Agg 0.573 0.783 0.750 0.804 0.824 0.870

Table 4: Module-level ablation experiment results of
DialogConv on validation set.

ple, the parameter quantity of BERTbase is 110M 481

and BERTlarge is 340M. Compared with language 482

models, the advantages of DialogConv are obvious. 483

Table 3 compares the model complexity and infer- 484

ence time of DialogConv and some classic models. 485

According to perplexity, the result of DialogConv 486

is reliable. The third and fourth column show the 487

number of nodes and edges in the model graph. Di- 488

alogConv possesses 216 nodes and 329 edges. The 489

number of nodes in DialogConv is 4.4x to 54.2x 490

less than other models. The number of edges in 491

DialogConv is 4.5x to 864.4x less than other mod- 492

els. The faster inference speed and fewer model 493

parameters are important in real-world scenarios. 494

The average parameter of DialogConv is 12.4M, 495

which is 3.5x to 4.0x smaller than other models. 496

Besides, we test the practical inference time of 497

models on CPU and GPU. DialogConv has an 498

absolute speed advantage over other models, no 499

matter on CPU or GPU. DialogConv is 2.15x to 500

9.65x faster on the GPU device and 2.61x to 19.90x 501

faster on the CPU device than other models. The 502

CPU and GPU are described in Implementation De- 503

tails subsection above. DialogConv is faster than 504

other models because it employs lightweight CNN 505

structure, which has greater advantages in terms 506

of speed compared to Recurrent Neural Networks. 507

The main reason is that DialogConv employ fully 508

convolutional structure and does not rely on com- 509

plex attention-based interaction structures, which 510

consume huge computing resources. 511
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4.6 Ablation Study512

Table 4 reports the results of module ablation. -513

LocM: removing the local matching layer; -ConM:514

removing the context matching layer; -DisM: re-515

moving the discourse matching layer; -Agg: replac-516

ing the aggregation layer with max-pooling. We517

can observe that each sub-module plays a critical518

role in DialogConv. Specifically, the local match-519

ing layer can capture the utterance-level features520

by mixing features from embedding and word view.521

The context matching layer will update matching522

features based on whole dialogue context and re-523

sponse. According to Table 4, the local match-524

ing layer has the least impact on model perfor-525

mance. We conjecture that the context matching526

layer can distill local features to some extent due527

to the characteristics of convolution layer. The528

discourse matching layer allows word with local529

contextual information interaction in different utter-530

ances, which can distill implied dynamic features531

across utterances. Therefore discourse matching532

plays a vital role in extracting the matching fea-533

tures.534

4.7 Discussion535

4.7.1 Discourse Matching536

According to the above analysis, the matching fea-537

tures may appear in local context. Note that the538

local here is relative to the dialogue context. In539

other words, the local utterance sequences con-540

tain more valuable feature information. In fact, it541

should conduct convolutions on the plane formed542

by embedding dimension and word sequence di-543

mension. However, these operations will capture544

features across whole depth of dialogue not the545

local features. Therefore, we employ orthogonal546

convolutions along the depth of dialogue in the547

word view due to the sparsity and feature local-548

ity of the dialogue. We conduct in-depth experi-549

ments to investigate the influence of convolution550

along the depth of dialogue on DialogConv (i.e.,551

conv@8). As shown in Figure 4 (a), the perfor-552

mance of DialogConv begins to decline when the553

filter size increases to a certain extent. This phe-554

nomenon verifies the feature locality of the dia-555

logue. In addition, we replace the conv@8 with556

Conv2Dutterance
3×1s×d

(G8) to distill matching features557

along the depth of whole dialogue. The results of558

DialogConv drop dramatically. We believe that this559

phenomenon is consistent with the characteristics560

of dialogue. The correlation between the farther561

utterances (e.g u1 and u10) is weak or even irrel- 562

evant. Intuitively, the closer utterances are more 563

relevant (e.g., u1 and u2), fusion of infomation in 564

local context is beneficial for distilling matching 565

features. 566

4.7.2 Fully Convolution Structure 567

DialogConv only employs convolutions to distill 568

the matching features between dialogue context 569

and response. In multi-turn dialogues, the local 570

context of dialogue is time-sensitive. This is be- 571

cause the topic and intention in a conversation may 572

change over time (Feng et al., 2021). The dynamic 573

implied features are benefical for selecting correct 574

response. Compared with RNN, CNN is better at 575

modeling the local dependencies. In fully convolu- 576

tion setting, we encode the dialogue context from 577

multi-view. 578

Different from the flat pattern based dialogue 579

modeling in previous studies (Zhou et al., 2016), 580

DialogConv models the dialogue in a stereo view. 581

Another difference is that convolutions we em- 582

ployed are better for capturing local dynamic fea- 583

tures. In order to explore the rationality of full 584

convolutional encoder, we conduct further exper- 585

imental analysis. For comparison, we denote the 586

original model as LCD (i.e., Local-Contextual- 587

Discourse). We exchange discourse matching layer 588

with local matching layer and context matching 589

layer respectively, getting the model denoted as 590

DLC and LDC. We think that the premise for dis- 591

course mathcing layer works is based on contextual 592

features. As shown in the results of Figure 4 (b), 593

the performance of DialogConv is best when dis- 594

course matching layer based on the context match- 595

ing layer. 596

4.8 Conclusion 597

In this paper, we propose DialogConv, a multi-view 598

lightweight architecture based exclusively on CNN. 599

DialogConv conducts convolutions on embedding 600

view, word view, and utterance view iteratively to 601

capture matching features. DialogConv can cap- 602

ture more richer semantic infomation through fus- 603

ing features from multi-view. The model we pro- 604

posed is faster and has fewer parameters compared 605

with existing models. Experiment results show that 606

DialogConv requires less computing resources to 607

achieve competitive results on Ubuntu, Douban, 608

ECD and MuTual datasets. DialogConv provides 609

a valuable reference for the dialogue system being 610

deployed in the real-world scenarios. 611
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A Appendix834

A.1 Metrics835

We follow previous studies (Zhang and Zhao, 2021)836

employing evaluation metric Rn@k to measure837

model performance for datasets Ubuntu, Douban,838

ECD, which calculates the proportion of true posi-839

tive response among the top-k selected responses840

from the list of n available candidates for one841

context. Besides, additional conventional metrics842

MAP (Mean Average Precision) (Baeza-Yates and843

Ribeiro-Neto, 1999) and MRR (Mean Recipro-844

cal Rank) (Voorhees et al., 1999) are employed845

on Douban. We employ recall at position 1 in 4846

candidates(R@1), recall at position 2 in 4 candi-847

dates(R@2) and MRR are used for MuTual, which848

follow previous study (Liu et al., 2021).849

A.2 Convolution Visualization850

Feature visualization is a more intuitive way to851

observe model behavior. Figure 6 presents visual-852

ized result of some utterances of an example (i.e.,853

Figure 5) from MuTual and Figure 7 presents the854

visualized result of the correct response for the855

corresponding example. Figure 6 shows the visu-856

alization of the output for the discourse matching857

layer. Some key features are marked by the red rect-858

angle. DialogConv is easier to learn features that859

appear in the response. For example, DialogConv860

learns the key features of “teachers” and “electron-861

ically” that appear in the correct response. To our862

surprise that DialogConv learns some indirect fea-863

tures that do not appear directly in the response, for864

instance, “school” related to teacher and “green”865

related to “electronically”. We conjecture that the866

multi-view modeling method allows DialogConv to867

extract matching features from stereo view, which868

endows the model the ability to find the association869

between features.870
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A: Tim, You 're going to talk about your project and how to lead a greener life. Why did you choose that subject ?

B: Well. We 'd learned a lot about the environment in our science lessons, so I decided to see what I could do in my own life

rather than just act completely helpless. And I knew the rest of my family would be interested.

A: Did you find it easy to get information ?

A: Ok. And what about being green once you 're actually at school?

A: So you are going to advice your teachers to ask students to send in their homework electronically, right

B: Yeah, I discovered there were lots of people at my age trying to be green. I 'd always gone to school by car.  

catching a bus would be better, but there 's no bus. where we live. So I 've gone for riding my bike to school now.

B: Well, I realized that although all school paper was recycled and most of my friends use both sides of paper. We use huge 

quantities and I thought we should cut down and then it came to me that we should be sending in most of our work electronically.

I 'm going to recommend it to our teachers.

Figure 5: An example from MuTual (Cui et al., 2020). The last utterance is the correct response. Direct key
information has been marked in blue. And indirect key information is marked in purple.

(a) (b)

(c) (d)

Figure 6: The feature visualization results G10 of the matching layers. (a) is the result of the first utterance’s
convolution feature visualization. (b) is the result of the fourth utterance’s convolution feature visualization. (c)
is the result of the fifth utterance’s convolution feature visualization. (d) is the result of the sixth utterance’s
convolution feature visualization. The larger the color value is, the more important the feature is. Keywords
recognized by DialogConv have been marked in the red rectangle.
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Figure 7: The feature visualization result of the correct response.
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