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Abstract

Current end-to-end retrieval-based dialogue
systems are primarily based on Recurrent Neu-
ral Networks or Transformers with attention
mechanisms. Despite promising results have
been achieved, these models usually suffer
from slow inference speed or an enormous
amount of parameters. In this paper, we pro-
pose a novel lightweight fully convolutional ar-
chitecture called DialogConv for the response
selection. DialogConv is built exclusively on
convolutions for distilling the matching fea-
tures of context and response. The dialogue
is modeled in a 3D view, where DialogConv
conducts convolution operations on embed-
ding dimension, word dimension and utter-
ance dimension iteratively to capture richer se-
mantic information from a multi-view of con-
text. On four benchmark datasets, Dialog-
Conv is approximately 4.0x smaller and up to
27x faster in inference compared with strong
baselines. Moreover, DialogConv can achieve
competitive performance results on four public
datasets.

1 Introduction

An important challenge for building intelligent di-
alogue systems is the response selection problem,
which aims to select a proper response from a set
of candidates given the context of a conversation.
Such retrieval-based dialogue systems have drawn
great attention from academic and industrial com-
munities owing to the advantage of informative and
fluent responses (Tao et al., 2021).

The existing retrieval-based dialogue systems
can be categorized into two patterns: (i) Separate
Pattern (Wu et al., 2017; Zhang et al., 2018b; Zhou
et al., 2018; Gu et al., 2019); (ii) Concatenated Pat-
tern (Tan et al., 2015; Zhou et al., 2016). Separate
Pattern (i.e., Figure 1 (a)) encodes the utterance
one by one separately, while Concatenated Pattern
(i.e., Figure 1 (b)) concatenates all utterances into
a consecutive word sequence. Methods based on
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Figure 1: Flat pattern. (a) is separate pattern and (b) is
concatenated pattern.

these two patterns usually take RNNs (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014) and at-
tention mechanism (Bahdanau et al., 2014) as the
backbone. Although promising results have been
achieved, these methods are often slow for both
training and inference due to their recurrent nature.

More recently, Pre-trained Language Model
(PrLLM) pattern (Cui et al., 2020; Gu et al., 2020;
Liu et al., 2021) has obtained the state-of-the-art
performance in response selection. However, these
methods that taking Transformer as the de-facto
standard architecture suffer from an enormous
amount of parameters and heavy computational
cost. The extremely large model scale not only
leads to increased training cost but also prevents
researchers from rapid iteration. Meanwhile, the
slow inference speed hinders the dialogue systems
from being deployed in real-world scenarios.

Additionally, previous studies (Sankar et al.,
2019; Li et al., 2021) demonstrate that Concate-
nated Pattern is usually insensitive to dynamic as-
sociated features between utterances. On the other
hand, the Separate Pattern lacks contextual infor-
mation when encoding each individual utterance.
In fact, the matching features for response selection
are more likely to appear in local context (Lu et al.,
2019). Convolution structure is naturally adept in
capturing the local structure features of text, and
thus suitable for capturing dynamic matching fea-
tures between dialogue context and response.



word
&

word
O”e, \

word

5

&
&
N

emb emb emb

@ (b) (©

Figure 2: Fully convolutional multi-view modeling. (a)
is convolution in embedding view, (b) is convolution in
word view and (c) is convolution in utterane view.

In this paper, we propose a fully! convolu-
tional network model (dubbed as DialogConv)
without any RNN or attention module for multi-
view response selection. Different from previous
study (Zhou et al., 2016) that models dialogue in
plane view, DialogConv models the dialogue con-
text and response together in 3D space from stereo
view, namely embedding view, word view and ut-
terance view (i.e. Figure 2). In embedding view,
convolutions are conducted on the plane formed by
the word sequence dimension and utterance dimen-
sion. In word view, convolutions are conducted on
the plane composed of embedding dimension and
utterance dimension. In utterance view, we con-
duct convolutions along the depth of conversation
to extract dialogue discourse features across utter-
ances. Intuitively, for the convolution operation in
Figure 2 (b) and (c), we assume that the more se-
mantic features can be distilled with considering a
scalar of embedding as semantic unit (Zhang et al.,
2018a).

DialogConv based exclusively on CNN utilizes
much fewer parameters and computing resources.
The average number of parameters of DialogConv
is 12.4M, which is 3.5x to 4.0x smaller than RNN
based models. The inference speed of the model
can be up to 26.9x faster than existing models.
Moreover, DialogConv attains competitive results
on four benchmarks, and even better performance
when pre-trained using contrastive learning. To
summarize, we make the following contributions:

* We propose an efficient convolutional re-
sponse selection model DialogConv, which,
to the best of our knowledge, is the first re-
sponse selection model exclusively built on
multiple convolution layers without any RNN
or attention module.

* We model the dialog from a stereo view,
where 2D and 1D convolution operations are
conducted on word, utterance and embedding

"Here “fully’ means DialogConv is built exclusively on
CNNEs.

dimensions iteratively, and thus finer-grained
and dynamic matching features can be cap-
tured.

» Extensive experiments on four benchmark
datasets show that DialogConv can achieve
competitive results with faster speed and
fewer computing resources.

2 Related Work

2.1 Retrieval-based Dialogue Framework

Most existing methods follow the Encoding-
Interaction-Aggregation-Prediction process, which
takes interaction between dialogue context and re-
sponse as the core. These methods try to mine deep-
semantic features by sequence modeling, for exam-
ple, using attention-based pairwise matching mech-
anism to capture the interactive features between
dialogue context and candidate response. How-
ever, previous studies (Sankar et al., 2019; Li et al.,
2021) demonstrate that most existing mehtods are
insensitive to dynamic features across utterances.
Besides, most existing methods employ recurrent
structure to model the sequence features of utter-
ances, which leads to the slow inference speed of
the model. Although methods transformer-based
get rid of the weakness of recurrent structure, these
methods usually enjoy huge amount of parameters.
Training and inference demand heavy computation
cost. In this paper, we propose to model dialogue
context from multi-view using the fully convolu-
tional structure. DialogConv is a lightweight model
which more small and faster compared with most
existing methods.

2.2 Convolutional Neural Networks

In the past few years, CNN has been the go-to
model in the computer vision field. The main rea-
son is that CNN enjoys the advantage of parameter
sharing and high concurrency. Besides, convolu-
tional structure is better at modeling the local struc-
ture. A large number of excellent architectures
based on CNN have been proposed (Krizhevsky
et al.,, 2012; Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016; Dai et al.,
2021). Compared with Recurrent Neural Net-
works (Hochreiter and Schmidhuber, 1997), con-
volutional structure is adept at capturing local lo-
cal dependencies of text and faster. Compared
with Transformer, convolutional structure is more
lightweight. In this paper, we propose a novel fully



convolutional architecture using convolution lay-
ers to encode dialogue utterances from multi-view.
Compared with existing methods, DialogConv not
only enjoys the advantage of faster inference speed
but also can capture finer-grained and dynamic
matching features.

3 Methodology

3.1 Problem Formalization

The instance in the dialogue dataset can be rep-
resented as (c,r,y). Here we treat multi-turn re-
sponse selection in chatbots as binary classification
task. Specifically, the union of dialogue context ¢
and response r are regarded as the overall context
¢ ={u1,ua,...,us_1,7}. 7 is a candidate response
and y € {0,1}, where y = 1 indicates that 7 is
a proper response for c; otherwise y = 0. As the
core of retrieval based dialogue system, the aim
of response selection is to build a discriminator
g(c) on (¢, y), which measures the matching score
between c and 7.

3.2 Fully Convolutional Multi-view Matching

We propose a fully convolution encoder for multi-
view response selection. Multiple views include:
embedding view, word view, and utterance view.
In embedding view, the convolution operations are
conducted in the plane formed by word dimension
and utterance dimension, which allow communica-
tion between different embeddings. In word view,
the convolution operations are conducted in the
plane formed by embedding dimension and utter-
ance dimension, which allow communication be-
tween different words. In word view, the utterance-
level and context-level features will be distilled
when convolution operations are across a single ut-
terance and whole dialogue sequence, respectively.
In utterance view, we consider each utterance as
an utterance-level semantic flow and extract the
dialogue flow feature along the depth of dialogue.

Note that the structure of DialogConv, which
follows the matching process of Local-Contextual-
Discourse, is not strictly designed according to the
views. DialogConv will mix features iteratively
from multiple views in each matching stage. Fig-
ure 3 shows an overview of our proposed Dialog-
Conv that contains six layers: (i) Embedding Layer;
(i) Local matching layer; (iii) Context matching
layer; (iv) Discourse matching layer; (v) Aggrega-
tion layer; (vi) Prediction Layer.

Symbol Definition: conv@i represents the i-th

convolution operation in Figure 3, d represents the
dimension of word embedding, s stands for length
of utterance, and ¢ is the number of utterances in-
cluding response. G € R****¢is a 3D tensor which
represents the input of DialogConv. The prediction
layer is a fully-connected layer.

3.2.1 Local Matching Layer
The local matching layer is in charge of distilling
features of each utterance. The local matching
stage contains features from embedding and word
view. First, we employ 1x1 convolutions in word
view and embedding view respectively. The pro-
cess can be described formally as:

Gy = Conv2D%ing (5 (qY) (1)

1X1t><s

Go = CoanD}”XOEfxd(Gl) +G (2)

where o (-) stands for GELUs (Hendrycks and Gim-
pel, 2016) activation function, Conv2DfT’i’flemg
represents 2D convolution with a convolution ker-
nel size of 1x1 is employed in word view and
ConUQD”i”;”{fxd represents 2D convolution with a
convolution kernel size of 1x1 is performed in em-
bedding view. The 1x1 convolution pays attention
to the information of the current element itself and
does not consider the influence of the local con-
text. When 1x1 convolution is employed in embed-
ding view, the abstract semantic features of words
will be captured by communication between differ-
ent words. When 1x1 convolution is employed in
word view, the features of words will be captured
by communication between different embeddings.
Multi-scale convolution (Szegedy et al., 2015; Gao
et al., 2019) has been proven to be effective in
extracting local features. Therefore, we employ
1x3 convolution in word view and 1x1 convolution
in embedding view to capture the local matching
features. The formal description is as follows:

G3 = Conv2D M9 (5(Gy)) 3)

1><3t><s

Gy = Com2DY2¢ (G3) + Ga 4)

Note that we focuse on features for a single utter-
ance in local matching layer.

3.2.2 Context Matching Layer

The context matching layer is responsible for distill-
ing the matching features based on whole dialogue
context. First, we flatten (G4 into a two-dimensional
tensor G5 € R(*$)*d_This is equivalent to concate-
nating all utterances into a single consecutive word
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Figure 3: Overview of our DialogConv.

sequence in chronological order. Then we employ
convolutions across words sequence with kernel
size of 1 in embedding view, and kernel size of 5
across embedding dimension in word view. The
details are as follows:

Gg = ConleflTnbeddmg(U(G5)) 4)

G? = freshape(conv]-ngiord(Gﬁ)) + GB (6)

where frcshape 18 a function, standing for reshaping
the output of the convolution into the same shape as
Gs, G7 € R™*4 and | = t % s. The context-level
features can be aggregated through communication
between different words concatenating all utter-
ances. Context-level information is fundamental
for extracting discourse features across different
utterances.

3.2.3 Discourse Matching Layer

Previous layers are responsible for understanding
dialogue utterances according the contextual infor-
mation. The discourse matching layer pays atten-
tion to the implied non-sequential dialogue flow
features along the depth of the dialogue. Captur-
ing dynamic semantic features across utterances is
very important to selecting correct response. We
employ orthogonal convolution to extract dynamic
dialogue flow features across utterances. The spe-
cific process is as follows:

Gs = Conv2D"2%M9 (5(Gr)) (7

1><3t><s

Gy = Conv2DMP%4ing () (8)

3><1t><s

G = CORU?Dembeddm‘q(Gg) + Gr 9)

1><1t><5
The 1x3 convolution and 3x1 convolution are

called as orthogonal convolutions because the direc-
tions of their convolution kernels are vertical. The

1x3 convolution is responsible for building seman-
tic flow based on context-level features for single
utterance and 3x1 convolution distills the dialogue
flow features across depth of dialogue. Finally, we
integrate the infomation by 1x1 convolution. Note
that we adopt orthogonal convolution in word view
to realize the extraction of the features of the dia-
logue flow. The detailed reasons will be discussed
in the experiment section.

3.2.4 Aggregation Layer

The aggregation layer is responsible for getting
high-level semantic infomation by integrating
mathching features from previous layers. First,
we employ max-pooling to obtain the sentential
representation G € R™_ Then we adopt two
layers of convolution to distill matching features
along embedding dimension and depth of dialogue
respectively. The description is as follows:

Gia = Convl D™ (G 1y (10)

G13 — COTL’Ungtterance(Gm) + Gll (11)

We employ the max-pooling operation again based
on (G13 to get the final contextual representation O.

3.3 Self-supervised Pre-training

As a lightweight neural structure, the performance
of DialogConv can be further improved by pre-
training strategy using small-scale corpus. The way
of masked language model pre-training (Devlin
et al., 2019; Lan et al., 2020) usually requires large-
scale corpus, while the self-supervised contrastive
learning can learn general representation feature in
relatively small-scale corpus.

Therefore, we employ contrastive learning to
learn effective representation by pulling semanti-
cally close neighbors together and pushing apart



non-neighbors (Hadsell et al., 2006). Given a set
of paired examples D = (x;, z; ), where x; is the
conversation context c, az::r is the correct response.
We adopt the previous contrastive learning frame-
work and take a cross-entropy objective with neg-
atives x; that includes responses with y = 0 and
in-batch negatives (Chen et al., 2017). The training
objective is:

esz'm(aci,aci+ )/ T

l. =log — -
le:ll‘ eszm(m,xi]—)/T _‘_esim(a:q;,:vj')/T
(12)
where 7 is a temperature hyperparameter and
sim(-, -) is the cosine similarity.

4 Experiments

4.1 Datasets

In this paper, we conduct extensive experiments
on four public datasets: (i) Ubuntu Dialogue
(Ubuntu) (Lowe et al., 2015); (i1) Multi-Turn Di-
alogue Reasoning (MuTual) (Cui et al., 2020);
(ii1) Douban Conversation Corpus (Douban) (Wu
et al., 2016); (iv) E-commerce Dialogue Corpus
(ECD) (Zhang et al., 2018b).

Ubuntu consists of 1 million context-response
pairs for training, 0.5 million pairs for validation,
and 0.5 million pairs for testing. The ratio of the
positive and the negative is 1:1 in training, and 1:9
in validation and testing. Douban consists of 1 mil-
lion context-response pairs for training, S0k pairs
for validation, and 10k pairs for testing. Response
candidates are retrieved from Sina Weibo and la-
beled by human judges. ECD contains 1 million
context-response pairs for training, 10k pairs for
validation, and 10k pairs for testing and consists of
five different types of conversations (e.g., commod-
ity consultation, logistics express, recommenda-
tion, negotiation and chitchat) based on over twenty
commodities. MuTual is the first human-labeled
reasoning-based dataset for multi-turn dialogue,
which contains 7,088 context-response pairs for
training, 886 pairs for validation, and 886 pairs for
testing. The ratio of the positive and the negative
is 1:3 in training, validation and testing. Note that
the description of the Metrics is in the appendix.

4.2 Baselines

TF-IDF (Lowe et al., 2015) is a traditional method
of information retrieval. LSTM is a Long Short-
Term Memory neural network. BILSTM is a bidi-
rectional long and short-term memory neural net-
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Figure 4: (a) is the impact of different granularity of
convolution along depth of dialogue (i.e., conv@8).
(b) is the performance comparison of DialogConv-like
models.

work. MV-LSTM (Wan et al., 2016) is a semantic
matching method based on LSTM. QANET (Yu
et al., 2018) is a machine reading comprehension
method based on CNN. MH-LSTM (Wang and
Jiang, 2016) is an extractive machine reading com-
prehension model based on LSTM. BIDAF (Seo
et al., 2017) is a machine reading comprehension
model based on bi-directional attention flow. R-
NET (Wang et al., 2017) is a machine reading com-
prehension model with multiple attention. Multi-
View (Zhou et al., 2016) is a multi-turn dialogue
retrieval-based method based on token view and
utterance view. DL2R (Yan et al., 2016) is a
multi-turn retrieval-based dialogue model based
on sentence pair matching. SMN (Wu et al., 2017)
is a matching model based on attention mecha-
nism. DUA (Zhang et al., 2018b) is a hierarchi-
cal interaction model based on attention mecha-
nism. DAM (Zhou et al., 2018) is a deep interac-
tion method based on attention. IMN (Gu et al.,
2019) is a retrieval-based dialogue model with bi-
directional matching. MRFN (Tao et al., 2019)
is a retrieval-based dialogue model with multiple
types of representations. Iol (Tao et al., 2019) is
a retrieval-based dialogue model based on mul-
tiple interactions. MSN (Yuan et al., 2019) is a
retrieval-based dialogue model with multi-hop se-
lector mechanism. BERT (Devlin et al., 2019) is
an autoencoding language model based on Trans-
former.

4.3 Implementation Details

We implement DialogConv using Tensorflow 2, and
train DialogConv on Intel(R) Core(TM) i7-10700
CPU 2.90HZ*16 with a single GeForce RTX 2070
SUPER (8G). We consider at most 10 turns and



Ubuntu Douban
Method R10@]1 | R10@2 | R10@5 | MAP | MRR | P@1 | R10@1 | R10@2 | R10@5
CNN 0.549 0.684 0.896 0.417 | 0.440 | 0.226 0.121 0.252 0.647
LSTM 0.638 0.784 0.949 0.485 | 0.537 | 0.320 0.187 0.343 0.720
Bi-LSTM 0.630 0.780 0.944 0.479 | 0.514 | 0.313 0.184 0.330 0.716
MV-LSTM 0.653 0.804 0.946 0.498 | 0.538 | 0.348 0.202 0.351 0.710
MH-LSTM 0.653 0.799 0.944 0.500 | 0.537 | 0.345 0.202 0.348 0.720
Multi-View 0.662 0.801 0.951 0.505 | 0.543 | 0.342 0.202 0.350 0.729
DL2R 0.626 0.783 0.944 0.488 | 0.527 | 0.330 0.193 0.342 0.705
SMN 0.726 0.847 0.961 0.529 | 0.569 | 0.397 0.233 0.396 0.724
DUA 0.757 0.868 0.962 0.551 | 0.599 | 0.421 0.243 0.421 0.780
DAM 0.767 0.874 0.969 0.550 | 0.601 | 0.427 0.254 0.410 0.757
MREFN 0.786 0.886 0.976 0.571 | 0.617 | 0.448 0.276 0.435 0.783
IMN 0.794 0.889 0.974 0.570 | 0.615 | 0.433 0.262 0.452 0.789
Tol 0.796 0.894 0.974 0.573 | 0.621 | 0.444 0.269 0.451 0.786
MSN 0.800 0.899 0.978 0.587 | 0.632 | 0.470 0.295 0.452 0.788
BERT 0.808 0.897 0.975 0.591 | 0.633 | 0.454 0.280 0.470 0.828
DialogConv 0.788 0.883 0.979 0.571 | 0.624 | 0.432 0.272 0.453 0.785
DialogConv* 0.801 0.904 0.976 0.572 | 0.634 | 0.457 0.282 0.452 0.825

Table 1: Results on Ubuntu and Douban datasets. The first group model adopts Concatenated Pattern. The second
group model belongs to Separate Pattern. The third group model belongs to PrLM-based Pattern. DialogConv* rep-
resents the performance when pre-training using contrastive learning. Bold indicates the best result and underline

indicates the second best result.

ECD MuTual
Method RI0@1| R10@2| RI0@5| R@]I R@2 | MRR
TF-IDF - - - 0.279 | 0.536 | 0.542
CNN 0.328 0.515 0.792 - -
LSTM 0.365 0.536 0.828 - -
Bi-LSTM 0.365 0.536 0.825 0.260 | 0.491 | 0.743
MV-LSTM 0.412 0.591 0.857 -
QANET 0.455 0.662 0.920 0.247 | 0.517 | 0.522
BIDAF 0.491 0.708 0.933 0.357 | 0.589 | 0.589
MH-LSTM 0.410 0.590 0.858

DL2R 0.399 0.571 0.842

SMN 0.453 0.654 0.886 0.299 | 0.585 | 0.595
DUA 0.501 0.700 0.921 0.437 | 0.698 | 0.658
DAM 0.526 0.727 0.933 0.458 | 0.718 | 0.673
IMN 0.621 0.797 0.964 0.404 | 0.622 | 0.638
Tol 0.563 0.768 0.950 0.421 | 0.686 | 0.647
MSN 0.606 0.770 0.937 0.420 | 0.677 | 0.646
BERT 0.610 0.814 0.973 0.648 | 0.847 | 0.795

DialogConv | 0.827 0.889 0.962 0.602 | 0.834 | 0.769
DialogConv* | 0.844 0.891 0.963 0.622 | 0.854 | 0.782

Table 2: Results on ECD and MuTual datasets. The
first group model adopts Concatenated Matching. The
second group model belongs to Separate Interaction.
The third group model belongs to PrLM-based Inter-
action. DialogConv* represents the performance when
pre-training using contrastive learning. Bold indicates
the best result and underline indicates the second best
result.

50 words for Ubuntu, Douban, ECD while at most
8 turns and 50 words for MuTual in the experi-
ments. The dimension of word embeddings is set
to 200. Two-dimensional convolution is used in 1st,
2nd, 3rd, 4th, 8th, 9th and 10th layers while one-
dimensional convolution is employed in 6th, 7th,
12th and 13th layers. The stride of all convolution

layer is [1,1] or 1. The filters size of 1st, 2nd, 4th,
Sth, 9th and 11st convolution layers is [1,1]. [1,3],
5, [1,3], [3,1] and 3 are filters size for the 3rd, 6th,
7th, 8th and 10th convolution layer respectively. In
the supervised learning stage, we train DialogConv
and other models with Adam optimizer while use
Stochastic Gradient Descent (SGD) for optimizing
in unsupervised stage. In the supervised training
stage, staged optimization strategy is employed and
learning rates are initialized as le-3, Se-4, le-4, Se-
5 and le-5. The batch-size is 32 for the MuTual
and 64 for the other datasets. In the pre-training
stage, we only set the batch size 128. Larger batch
size can be set for better results under the devices
allow. The temperature 7 is set to 0.007.

4.4 Results

Table 1 and 2 report the testing results of Dialog-
Conv as well as all comparative models on four
datasets. Although DialogConv does not achieve
state-of-the-art performance, the model can attain
near-optimal results in most cases. Besides, we cal-
culate the confidence level (p<0.05) of DialogConv,
which demonstrates the results of DialogConv are
credible. The best results are shown in bold text.
On Ubuntu dataset, DialogConv outperforms most
classic models such as SMN, DUA, DAM, and has
comparable performance with MRFN. When pre-
training with contrastive learning, the performance
of DialogConv is close to BERT, even outperform-



Inference Time(CPU/GPU) Parameters(M)
Models Per | Nodes| Edges | Ubuntu(m)| Douban(s) | ECD(s) MuTual(s) | Ubuntu| Douban| ECD| MuTual
SMN 1.508] 2,417 | 4,283 | 39.0/22.2 | 46.8/30.1 | 43.4/28.6 | 14.9/12.4 | 90.2 68.5 9.8 | 44
DAM 1.453| 12,85 | 22,226 | 176.7/45.3| 227.3/68.1| 226.8/65.7| 90.5/37.9 | 94.8 67.1 13.1] 8.0
DUA 1.461| 4,412 | 7,797 | 142.9/49.3| 176.1/64.3| 174.6/64.2| 63.7/26.3 | 96.4 69.7 157 14.8
101 1.493| 1,1704| 283,731 346.7/39.2| 421.3/48.5| 429.1/47.0| 156.7/22.2| 96.0 69.3 153 10.2
MSN 1.452] 955 1,468 | 105.3/12.9| 127.9/16.7| 125.5/13.8| 44.6/7.0 89.1 62.4 10.5] 13.1
DialogConv| 1.424 216 329 12.9/5.4 17.5/7.4 16.4/7.0 7.0/3.4 229 13.3 93 | 41

Table 3: Comparison of model complexity and inference time. The perplexity (i.e.,
loss on validation dataset of all corpora.) is computed based on the average loss on a validation dataset of all
corpora. Nodes represent the number of nodes in the model graph. Edges represent the number of edges in the

Per = 2% and L is the average

model graph.

ing BERT on R10@2. On Douban dataset, the
performance is 1.3% lower than the best result on
R10@1. However, the performance of pre-trained
DialogConv can achieve near-optimal results. It
is a surprise on ECD dataset that DialogConv has
an absolute advantage of 21.7% on R10@1 and
7.5% on R10@2. DialogConv on MuTual dataset
outperforms the compared baseline models?, in-
cluding some classic machine reading comprehen-
sion models such as QANET, BIDAF RENT. The
pre-trained DialogConv can achieve comparable
results with BERT. Note that DialogConv does not
use large-scale pre-trained word vectors, such as
GloVe based on Common Crawl corpus>.

DialogConv achieves relatively better results on
ECD and MuTual dataset. We conduct further anal-
ysis for this phenomenon and find that the MuTual
dataset contains many reused contexts. In other
words, the context of one example is likely to be
part of the context of the other examples. We con-
jecture that DialogConv based on convolution struc-
ture is good at capturing local dynamic features
across utterances compared with general sequence
models. For the ECD dataset, compared with the
Douban and Ubuntu datasets, the positive and neg-
ative responses are easier to identify because the
fact that the difference is obvious. DialogConv can
incorporate features of multi-view stereo, which
is more sensitive to differences in semantic and
makes it easier to select the correct response from
candidate responses.

4.5 Model Complexity and Inference Time

To measure the simplicity of our base model, we
analyze the model from multiple dimensions. Here
we have selected some relatively lightweight mod-
els among the existing methods. It is obvious that
language models are large and bloated. For exam-

*https://nealcly.github.io/MuTual-leaderboard/
3https://github.com/stanfordnlp/GloVe

MuTual ECD
Method R@l | R@2 | MRR | R10@1| R10@2| R10@5
DialogConv | 0.614 | 0.825 | 0.778 | 0.833 0.901 0.988
-LocM 0.580 | 0.786 | 0.754 | 0.813 0.881 0.958
-ConM 0.577 | 0.801 | 0.759 | 0.806 0.823 0.919
-DisM 0.578 | 0.785 | 0.753 | 0.810 0.845 0.910
-Agg 0.573 | 0.783 | 0.750 | 0.804 0.824 0.870

Table 4: Module-level ablation experiment results of
DialogConv on validation set.

ple, the parameter quantity of BERTp,s is 110M
and BERT,;¢. is 340M. Compared with language
models, the advantages of DialogConv are obvious.
Table 3 compares the model complexity and infer-
ence time of DialogConv and some classic models.
According to perplexity, the result of DialogConv
is reliable. The third and fourth column show the
number of nodes and edges in the model graph. Di-
alogConv possesses 216 nodes and 329 edges. The
number of nodes in DialogConv is 4.4x to 54.2x
less than other models. The number of edges in
DialogConv is 4.5x to 864.4x less than other mod-
els. The faster inference speed and fewer model
parameters are important in real-world scenarios.
The average parameter of DialogConv is 12.4M,
which is 3.5x to 4.0x smaller than other models.

Besides, we test the practical inference time of
models on CPU and GPU. DialogConv has an
absolute speed advantage over other models, no
matter on CPU or GPU. DialogConv is 2.15x to
9.65x faster on the GPU device and 2.61x to 19.90x
faster on the CPU device than other models. The
CPU and GPU are described in Implementation De-
tails subsection above. DialogConv is faster than
other models because it employs lightweight CNN
structure, which has greater advantages in terms
of speed compared to Recurrent Neural Networks.
The main reason is that DialogConv employ fully
convolutional structure and does not rely on com-
plex attention-based interaction structures, which
consume huge computing resources.



4.6 Ablation Study

Table 4 reports the results of module ablation. -
LocM: removing the local matching layer; -ConM:
removing the context matching layer; -DisM: re-
moving the discourse matching layer; -Agg: replac-
ing the aggregation layer with max-pooling. We
can observe that each sub-module plays a critical
role in DialogConv. Specifically, the local match-
ing layer can capture the utterance-level features
by mixing features from embedding and word view.
The context matching layer will update matching
features based on whole dialogue context and re-
sponse. According to Table 4, the local match-
ing layer has the least impact on model perfor-
mance. We conjecture that the context matching
layer can distill local features to some extent due
to the characteristics of convolution layer. The
discourse matching layer allows word with local
contextual information interaction in different utter-
ances, which can distill implied dynamic features
across utterances. Therefore discourse matching
plays a vital role in extracting the matching fea-
tures.

4.7 Discussion

4.7.1 Discourse Matching

According to the above analysis, the matching fea-
tures may appear in local context. Note that the
local here is relative to the dialogue context. In
other words, the local utterance sequences con-
tain more valuable feature information. In fact, it
should conduct convolutions on the plane formed
by embedding dimension and word sequence di-
mension. However, these operations will capture
features across whole depth of dialogue not the
local features. Therefore, we employ orthogonal
convolutions along the depth of dialogue in the
word view due to the sparsity and feature local-
ity of the dialogue. We conduct in-depth experi-
ments to investigate the influence of convolution
along the depth of dialogue on DialogConv (i.e.,
conv@8). As shown in Figure 4 (a), the perfor-
mance of DialogConv begins to decline when the
filter size increases to a certain extent. This phe-
nomenon verifies the feature locality of the dia-
logue. In addition, we replace the conv@8 with
Conv2Dyl{""°¢(Gy) to distill matching features
along the depth of whole dialogue. The results of
DialogConv drop dramatically. We believe that this
phenomenon is consistent with the characteristics
of dialogue. The correlation between the farther

utterances (e.g u; and ujg) is weak or even irrel-
evant. Intuitively, the closer utterances are more
relevant (e.g., 1 and uy), fusion of infomation in
local context is beneficial for distilling matching
features.

4.7.2 Fully Convolution Structure

DialogConv only employs convolutions to distill
the matching features between dialogue context
and response. In multi-turn dialogues, the local
context of dialogue is time-sensitive. This is be-
cause the topic and intention in a conversation may
change over time (Feng et al., 2021). The dynamic
implied features are benefical for selecting correct
response. Compared with RNN, CNN is better at
modeling the local dependencies. In fully convolu-
tion setting, we encode the dialogue context from
multi-view.

Different from the flat pattern based dialogue
modeling in previous studies (Zhou et al., 2016),
DialogConv models the dialogue in a stereo view.
Another difference is that convolutions we em-
ployed are better for capturing local dynamic fea-
tures. In order to explore the rationality of full
convolutional encoder, we conduct further exper-
imental analysis. For comparison, we denote the
original model as LCD (i.e., Local-Contextual-
Discourse). We exchange discourse matching layer
with local matching layer and context matching
layer respectively, getting the model denoted as
DLC and LDC. We think that the premise for dis-
course mathcing layer works is based on contextual
features. As shown in the results of Figure 4 (b),
the performance of DialogConv is best when dis-
course matching layer based on the context match-
ing layer.

4.8 Conclusion

In this paper, we propose DialogConv, a multi-view
lightweight architecture based exclusively on CNN.
DialogConv conducts convolutions on embedding
view, word view, and utterance view iteratively to
capture matching features. DialogConv can cap-
ture more richer semantic infomation through fus-
ing features from multi-view. The model we pro-
posed is faster and has fewer parameters compared
with existing models. Experiment results show that
DialogConv requires less computing resources to
achieve competitive results on Ubuntu, Douban,
ECD and MuTual datasets. DialogConv provides
a valuable reference for the dialogue system being
deployed in the real-world scenarios.
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A Appendix

A.1 Metrics

We follow previous studies (Zhang and Zhao, 2021)
employing evaluation metric Rn@k to measure
model performance for datasets Ubuntu, Douban,
ECD, which calculates the proportion of true posi-
tive response among the top-k selected responses
from the list of n available candidates for one
context. Besides, additional conventional metrics
MAP (Mean Average Precision) (Baeza-Yates and
Ribeiro-Neto, 1999) and MRR (Mean Recipro-
cal Rank) (Voorhees et al., 1999) are employed
on Douban. We employ recall at position 1 in 4
candidates(R@1), recall at position 2 in 4 candi-
dates(R@2) and MRR are used for MuTual, which
follow previous study (Liu et al., 2021).

A.2 Convolution Visualization

Feature visualization is a more intuitive way to
observe model behavior. Figure 6 presents visual-
ized result of some utterances of an example (i.e.,
Figure 5) from MuTual and Figure 7 presents the
visualized result of the correct response for the
corresponding example. Figure 6 shows the visu-
alization of the output for the discourse matching
layer. Some key features are marked by the red rect-
angle. DialogConv is easier to learn features that
appear in the response. For example, DialogConv
learns the key features of “teachers” and “electron-
ically” that appear in the correct response. To our
surprise that DialogConv learns some indirect fea-
tures that do not appear directly in the response, for
instance, “school” related to teacher and “green”
related to “electronically”. We conjecture that the
multi-view modeling method allows DialogConv to
extract matching features from stereo view, which
endows the model the ability to find the association
between features.

12



A: Tim, You 're going to talk about your project and how to lead a greener life. Why did you choose that subject ?

B: Well. We 'd learned a lot about the environment in our science lessons, so | decided to see what | could do in my own life
rather than just act completely helpless. And | knew the rest of my family would be interested.

A: Did you find it easy to get information ?

B: Yeah, | discovered there were lots of people at my age trying to be green. | 'd always gone to school by car.
catching a bus would be better, but there 's no bus. where we live. So | *ve gone for riding my bike to school now.

A: Ok. And what about being green once you 're actually at school?

B: Well, | realized that although all school paper was recycled and most of my friends use both sides of paper. We use huge
quantities and | thought we should cut down and then it came to me that we should be sending in most of our work electronically.
| 'm going to recommend it to our teachers.

A: So you are going to advice your teachers to ask students to send in their homework electronically, right

Figure 5: An example from MuTual (Cui et al., 2020). The last utterance is the correct response. Direct key
information has been marked in blue. And indirect key information is marked in purple.
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Figure 6: The feature visualization results G1o of the matching layers. (a) is the result of the first utterance’s
convolution feature visualization. (b) is the result of the fourth utterance’s convolution feature visualization. (c)
is the result of the fifth utterance’s convolution feature visualization. (d) is the result of the sixth utterance’s
convolution feature visualization. The larger the color value is, the more important the feature is. Keywords
recognized by DialogConv have been marked in the red rectangle.
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Figure 7: The feature visualization result of the correct response.
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