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 a b s t r a c t

Temporal knowledge graphs (TKGs) extrapolation reasoning, intending to predict future events given the known 
KG sequence, benefits broad applications like policy-making and financial analysis. The key to this issue is to 
discern how knowledge evolves within these sequences. Currently, most works focus on modeling the evolution 
patterns through continuous sampling from TKGs, without ensuring the samples contain relevant facts or consid-
ering the knowledge beyond the samples. Faced with these challenges, we propose a novel model that performs 
prediction by capturing fact and logic knowledge evolution patterns (FL-Evo). For modeling fact evolution pat-
tern, the fact knowledge is first distilled from large language models using designed prompts and subsequently 
refined with TKG. Then, entity-based subgraph sampling strategy extracts relevant facts from the TKG, capturing 
fact evolution patterns. Furthermore, logical knowledge mined from the TKG helps to derive the corresponding 
evolution pattern. Finally, the outputs of these two evolution patterns are integrated to realize the final predic-
tion. Experimental results on five benchmark datasets demonstrate that FL-Evo outperforms existing temporal 
knowledge graph reasoning models, with improvements of up to 3.97% in Hit@3 and 4.07% in Hit@10. Notably, 
FL-Evo substantially enhances reasoning performance for unseen entities lacking prior records.

1.  Introduction

Temporal Knowledge Graph Extrapolation Reasoning (TKGR), aimed 
at predicting future events given the known KG sequence, benefits vari-
ous downstream applications, like financial analysis (Li & Sanna Passino, 
2024) and policy-making (Deng, Rangwala, & Ning, 2020). In con-
trast to static knowledge graphs, which organize facts into triplets 
(source, relation, target), temporal knowledge graphs expand this struc-
ture to quadruples, incorporating timestamps i.e., (source, relation, tar-
get, timestamp). The quadruples indicate the facts are available at the 
specific timestamps. Due to the never-ending information and the lim-
itations in knowledge extraction approaches, TKGs are incomplete in 
nature. Performing extrapolation reasoning based on incomplete facts 
is a formidable challenge.

Recently, many efforts have been devoted to learning the fact evo-
lution patterns, such as the dynamic representation of entities and rela-
tions, to enhance TKGR performance. TTransE (Jiang et al., 2016) and 
TA-DisMult (García-Durán, Dumancic, & Niepert, 2018) complete TKG 
by adding temporal dimension into static knowledge graph reasoning 
approach. RE-NET (Jin, Qu, Jin, & Ren, 2019) employs RGCN to model 
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the structure information of TKG. Reinforcement learning is used in 
TITer (Sun, Zhong, Ma, Han, & He, 2021), which constructs the temporal 
edges to solve the isolated temporal subgraphs problem. CyGNet (Zhu, 
Chen, Fan, Cheng, & Zhan, 2020) introduces copy-generation mecha-
nisms to predict repetition facts. Tirgn (Li, Sun, & Zhao, 2022a) posits 
events that follow sequential, repetitive, and cyclical patterns, propos-
ing a time-guided recurrent graph network for TKGR. THCN (Xu, Ou, Xu, 
& Fu, 2022) utilizes the causal convolutional network to realize predic-
tion.

Although the above methods have advanced temporal knowledge ex-
trapolation reasoning, there are still three challenges: (1)  Insufficient 
knowledge. Current approaches rely on sampled TKGs, which neglects 
the knowledge beyond the samples (Fig. 1). This limitation results in in-
accuracies in fact representation. (2) Inefficient Sampling. As shown in 
Fig. 1, related facts are not consistently present. Most previous methods 
sample temporal subgraphs continuously from TKG, without consider-
ing whether the samples contain the related facts, leading to inefficient 
evolution learning. (3) Inability to Handle Unseen Entities. Since en-
tities are constantly emerging over time, effectively capturing evolving 
knowledge based on existing data becomes crucial. The limitation of 
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Fig. 1. The challenges of existing TKGR methods. These works only use the knowledge contained in the red rectangle. The green denotes the facts related to the 
query, and the relevant facts are out of the red rectangle. The red font is the correct answer.

insufficient information and inefficient sampling leads to a tough evo-
lution acquisition, thereby degrading the reasoning performance on un-
seen entities.

To tackle the these issues, we propose the Fact and Logic Evolution 
model (FL-Evo), which leverages the knowledge from different aspects 
to capture various evolution patterns like fact and logic. FL-EVO con-
sists of four components, including fact and logic knowledge (FLM), fact 
knowledge evolution pattern (FEM), logic knowledge evolution pattern 
(LEM) and fusion module (FM). The FLM serves as background knowl-
edge base, incorporating fact and logic knowledge derived from LLM 
and TKG. For modeling the fact evolution pattern, the fact knowledge 
formed by entity and relation is drawn from a large language model 
(LLM) through various designed prompts and then refined with the TKG. 
Afterward, FEM employs the entity-based subgraph sampling strategy to 
extract the relevant subgraphs from TKG, capturing the fact evolution. 
In Fig. 1, given a query (Shimon Peres, Praise or endorse, ?, 2014.02.18 
), the result John Kerry is realized via the relevant facts contained in 
temporal subgraphs which precede the target timestamp 2014.02.18, 
i.e., 2014.02.01 and 2014.02.03. For the logic evolution pattern, LEM 
first extracts the logic knowledge like temporal rules from TKG. The 
temporal rules are then utilized to derive the logic knowledge evolu-
tion, assisting in reasoning. The prediction John Kerry can be obtained 
via the temporal rule praise or endorse ← praise or endorse. FM realizes 
the final prediction John Kerry by fusing the outputs from these evo-
lution patterns like fact and logic knowledge evolution patterns. The 
proposed model leverages known knowledge from different aspects to 
explore knowledge evolution patterns, boosting reasoning performance. 
Overall, the contributions of the proposed model are as follows:

• We propose a novel model for temporal knowledge graph extrapola-
tion reasoning that leverages existing knowledge from diverse per-
spectives to model evolution patterns like fact and logic, enhancing 
reasoning performance.

• Various prompts are designed to extract world fact knowledge from 
large language models, enhancing model generalization and en-
abling FL-Evo to handle unseen entities.

• We conduct extensive experiments on five benchmark datasets, the 
results outperform baseline methods and significantly improve MRR 
and Hit@10, demonstrating improvements of up to 3.97% and 
4.07% in Hit@3 and Hit@10. Especially, reasoning performance on 
unseen entities indicates the effectiveness of the proposed method.

The remaining paper is structured as follows. Some related works are 
introduced in Section 2. In Section 3, we first define the notations used in 
this paper and then elaborate on the proposed model in detail. Section 4 
reports the experimental setup and the results. Finally, conclusions are 
drawn in Section 5.

2.  Related work

In this section, we first distinguish the difference between static 
knowledge graph reasoning and temporal knowledge graph reasoning. 

Then, we introduce the related work over temporal KG reasoning from 
interpolation and extrapolation settings.

2.1.  Reasoning method for static knowledge graph

Static KG reasoning, predicting the missing facts from existing in-
formation, can be divided into two categories, i.e., embedding-based 
model and multi-hop model. Embedding-based models infer the miss-
ing facts by mapping entities and relations into multi-dimensional 
vector space. There are bilinear models (Trouillon, Welbl, Riedel, 
Gaussier, & Bouchard, 2016), distance-based models (Bordes, Usunier, 
Garcia-Duran, Weston, & Yakhnenko, 2013), and neural network mod-
els (Dettmers, Minervini, Stenetorp, & Riedel, 2018). Multi-hop reason-
ing models achieve the target entities through traveling on the knowl-
edge graph edges. DeepPath (Xiong, Hoang, & Wang, 2017) is the 
first to adopt reinforcement learning to perform multi-hop reasoning. 
RLH (Wan, Pan, Gong, Zhou, & Haffari, 2020) leverages hierarchical 
reinforcement learning to predict missing facts. AnyBURL (Meilicke, 
Chekol, Ruffinelli, & Stuckenschmidt, 2019) extracts horn rules and em-
ploys them for reasoning tasks. However, these methods are not suitable 
for temporal KG reasoning due to their disregard for temporal informa-
tion.

2.2.  Reasoning method for temporal knowledge graph

Temporal KG Reasoning consists of interpolation and extrapola-
tion (Jin et al., 2019). Interpolation reasoning infers the missing facts 
within the existing timestamp. TA-TransE (García-Durán et al., 2018) 
and TTransE (Jiang et al., 2016) conduct temporal reasoning by adding 
a temporal dimension to the static reasoning method, which injects tem-
poral labels into each relation. TA-DisMult (García-Durán et al., 2018) 
decomposes the timestamp into the sequence of temporal tokens. How-
ever, interpolation methods are limited in predicting future events due 
to their reliance on known timestamps. Extrapolation reasoning infers 
events at future timestamps by utilizing the existing information. CluS-
TeR (Zhu et al., 2020) employs reinforcement learning to extract rele-
vant facts. RE-GCN (Li et al., 2021) enhances reasoning performance 
by integrating entity attributes from static KGs into temporal KGs. 
TLogic (Liu, Ma, Hildebrandt, Joblin, & Tresp, 2022) extracts the tem-
poral rule from the TKG and achieves target entities based on the high-
confidence rules. The transformer is used in rGalT  (Gao et al., 2022) to 
realize the temporal knowledge extrapolation reasoning. LMS (Zhang, 
Hui, Mu, & Tian, 2024) introduces a novel method to perform tempo-
ral knowledge graph reasoning by using multi-graph learning. Dynamic 
hypergraph embedding is used in DHE-TKG (Liu et al., 2024). KGTrans-
former (Li & Sanna Passino, 2024) introduces an attention-based GNN 
to conduct reasoning on financial dataset. THCN (Chen et al., 2024) 
employs causal convolutional network to realize prediction. TaReT (Ma 
et al., 2024) integrates topological relation graphs and temporal fusion 
information to perform reasoning.

Existing works sample subgraphs continuously from TKG to per-
form prediction, without ensuring the inclusion of relevant facts. This
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Table 1 
Notation Table.
 Symbol  Meaning  Symbol  Meaning
  Enity set   Relation Set
  Temporal Knowledge graph 𝑡𝑖 𝑖th temporal subgraph
||  The number of entities ||  the number of relations
𝑒𝑠  Source entity 𝑟𝑞  Query relation
𝑡𝑞  Query timestamp 𝑒𝑜  Target entity
𝑡𝑖
𝑒𝑠  the 𝑖th temporal subgraph containing 𝑒𝑠 𝑡𝑖  the timestamp of 𝑖th temporal subgraph

 m  the number of sampled subgraphs 𝑠  Static Knowledge Graph
𝐻  Embedding 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅)  softmax function
 LLM  Large language model  FLM  Fact and Logic Knowledge Module
 FEM  Fact Knowledge Evolution Module  LEM  Logic Knowledge Evolution Module

strategy is inadequate to capture evolution patterns, leading to degraded 
performance in predicting unseen entities lacking records. The proposed 
model utilizes information from various perspectives to model knowl-
edge evolution, enhancing TKG extrapolation reasoning.

3.  Method

In this section, we first introduce the task of temporal knowledge 
graph extrapolation reasoning and some notations (Table 1). Then the 
overview framework of FL-Evo and the details are given. Finally, we 
describe the loss function leveraged in the training process.

3.1.  Notations

Temporal KG. TKG is regarded as a sequence of subgraphs, ordered 
by timestamp, i.e.,  = {𝑡0 ,𝑡1 ,… ,𝑡𝑇 }, where 𝑡𝑚 = ( ,, 𝑡𝑚 ).  and 
 denote the set of entities and relations across the entire timestamp, 
while  𝑡𝑚  is the facts at time 𝑡𝑚 i.e., (𝑒, 𝑟, 𝑜, 𝑡𝑚). The quadruple represents 
there is a relation r ∈  between entities 𝑒, 𝑜 ∈  at timestamp 𝑡𝑚. The 
inverse relation is often added into the dataset, i.e., (𝑜, 𝑟−1, 𝑒, 𝑡𝑚). Mean-
while, the static KG can be treated as 𝑠 = (𝑠,𝑠,𝑠), where represent 
entity, relation, and fact set respectively.

Temporal KG Extrapolation Reasoning. Temporal Knowledge 
Graph Extrapolation Reasoning aims to predict events at timestamp 𝑡𝑞
using the facts occurring before 𝑡𝑞 , i.e., (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞) or (?, 𝑟𝑞 , 𝑒𝑜, 𝑡𝑞). For 
each prediction at timestamp 𝑡𝑞 , the history temporal subgraphs can be 

represented as 𝑡0∶𝑡𝑞−1𝑒𝑠 . 𝑡𝑖𝑒𝑠  denotes the 𝑖th temporal subgraph, contain-
ing the entity 𝑒𝑠. 

𝑡𝑞−1
𝑒𝑠  indicates the temporal subgraph containing the 

entity 𝑒𝑠, which is closest to the query timestamp, and 𝑡𝑞−1 is the corre-
sponding timestamp.

Temporal Rule. Temporal rule with confidence mined from TKG 
can be formulated as the conjunction of atoms with timestamps 
𝑐𝑜𝑛𝑓 𝑟𝑞(𝑒𝑠, 𝑒𝑜, 𝑡𝑞) ← 𝑟1(𝑒𝑠, 𝑧1, 𝑡1),… , 𝑟𝑛(𝑧𝑛−1, 𝑒𝑜, 𝑡𝑛) (1)

where 𝑡1,… , 𝑡𝑛 < 𝑡𝑞 . 𝑟1 and 𝑟𝑛 are relation variants, while 𝑧1 and 𝑧𝑛−1 are 
entity variants. 𝑡1 and 𝑡𝑛 are timestamps. 𝑐𝑜𝑛𝑓 is the confidence score 
of the temporal rule. For the prediction (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), the candidate set is 
regard as 𝑟𝑢𝑙𝑒

𝑒𝑠
, obtained through temporal rule. In this paper, 𝑟𝑞(𝑒𝑠, 𝑒𝑜, 𝑡𝑞)

is equal to (𝑒𝑠, 𝑟𝑞 , 𝑒𝑜, 𝑡𝑞). To simplify the expression of the temporal rule, 
𝑟𝑞(𝑒𝑠, 𝑒𝑜, 𝑡𝑞) ← 𝑟1(𝑒𝑠, 𝑧1, 𝑡1),… , 𝑟𝑛(𝑧𝑛−1, 𝑒𝑜, 𝑡𝑛) is equal to 𝑟𝑞 ← 𝑟1,… , 𝑟𝑛.

3.2.  Model overview

The framework of FL-Evo is shown in Fig. 2. FL-Evo utilizes the ex-
isting knowledge from different aspects to capture diverse evolution-
ary patterns including fact and logic. The proposed model includes fact 
and logic knowledge (FLM), fact knowledge evolution pattern (FEM), 
logic knowledge evolution pattern (LEM) and fusion module (FM). The 
FLM is treated as background knowledge base, incorporating fact and 
logic knowledge derived from LLMs and TKG. For the fact knowledge
evolution pattern, the fact knowledge formed by entity and relation is 
first drawn from LLMs through designed prompts, followed by refined 

Fig. 2. The FL-Evo consists of fact and logic knowledge (FLM), fact knowledge evolution pattern(FEM), logic knowledge evolution pattern(LEM) and fusion module 
(FM). The FLM, integrated with LLM, stores the entire temporal knowledge graph and world knowledge, initializing the fact representation and mining the temporal 
rules. FEM selects temporal subgraphs containing the relevant facts, effectively learning the fact evolution. Temporal rules are used to obtain the logic evolution in 
LEM. The final prediction is achieved by fusing the output of these evolution patterns. m represents the number of sampled subgraphs. The pictures are the source 
entity 𝑒𝑠. 𝑡𝑞−𝑚

𝑒𝑠  represents the 𝑚th sampled subgraph containing 𝑒𝑠, and 𝑡𝑞−𝑚 denotes the timestamp of the corresponding subgraph.
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Fig. 3. The example of the Large Language Model and the prompts used in the 
proposed model.

with TKG. FEM then adopts the entity-based subgraphs sampling strat-
egy to extract the relevant subgraphs from the TKG, aiding in capturing 
the fact evolution patterns. For logic evolution modeling, LEM extracts 
logical knowledge, such as rules, from the TKG. These rules are then 
used in LEM to model the corresponding evolution patterns. Finally, FM 
integrates outputs from these evolution patterns to predict future events.

3.3.  Initialize fact knowledge representation

To enhance reasoning accuracy, it is crucial to leverage the exist-
ing knowledge. Previous works only utilize knowledge contained in the 
TKGs, ignoring a lot of valuable knowledge. In the proposed model, the 
FLM incorporates not only the entire TKG but also world knowledge.

Entity and Relation Prompts. As the never-ending information and 
the limitations of knowledge extraction methods, the existing TKGs con-
tain finite facts, leading to deficiencies in entities and relations repre-
sentation. Leveraging the knowledge stored in LLMs, which are trained 
on extensive data, enriches the background knowledge of TKG. How-
ever, LLMs also contain biases that could affect the quality of the gener-
ated facts. To address this issue, we employ specific entity and relation 
prompts to guide LLMs in generating facts.

Furthermore, to ensure the integrity of temporal knowledge extrac-
tion and minimize biases in the responses, temporal prompts are con-
structed. These temporal prompts are restricted to timestamps and en-
tities, without additional information, minimizing the influence of ir-
relevant context. As illustrated in Fig. 3, the ICEWS141 dataset records 
facts that occurred during 2014. For the entity Likud, the prompt can be 
constructed as ’Before 2014, what’s the background knowledge of the entity 
Likud?’.

Compared to entities, as the relations meaning remains relatively 
stable, the relation prompt omits the temporal information. For exam-
ple, for the relation ’Consult’, the relation prompt can be constructed as 
’what’s the meaning of the relation Consult’.

Given the prompts, the LLM feedbacks relevant descriptions. Then, 
the descriptions are encoded with LLM (Fig. 3). Finally, a pooling layer 
is used to reconstruct the description embedding i.e., 𝐻𝐿𝐿𝑀

𝑒𝑛𝑡  and 𝐻𝐿𝐿𝑀
𝑟𝑒𝑙 :

𝐻𝐿𝐿𝑀
𝑒𝑛𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐿𝐿𝑀(𝑝𝑟𝑜𝑚𝑝𝑡𝑒𝑛𝑡)) (2)

𝐻𝐿𝐿𝑀
𝑟𝑒𝑙 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐿𝐿𝑀(𝑝𝑟𝑜𝑚𝑝𝑡𝑟𝑒𝑙)) (3)

𝑝𝑟𝑜𝑚𝑝𝑡𝑒𝑛𝑡 and 𝑝𝑟𝑜𝑚𝑝𝑡𝑟𝑒𝑙 denote entities and relations prompts respec-
tively. 𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(⋅) is a pooling layer and 𝐿𝐿𝑀 is a large language 
model. 𝐻𝐿𝐿𝑀

𝑒𝑛𝑡 ∈ ℝ||×𝑑1  and 𝐻𝐿𝐿𝑀
𝑟𝑒𝑙 ∈ ℝ2||×𝑑2  can be regarded as the 

initial representation of entities and relations. 𝑑1 and 𝑑2 denote the di-
mension of entity and relation embeddings. The details of prompts are 
illustrated in Appendix A.

1 The integrated crisis early warning system

Static Knowledge Graph Module. Most previous TKGR methods 
only utilize information within a limited set of sampled temporal sub-
graphs. However, the perception of the entities requires consideration 
across their entire temporal history up to the query timestamp. Ad-
ditionally, the initial embeddings for entities and relations, generated 
by LLMs, may contain biases that negatively impact reasoning perfor-
mance. To address these issues, we refine the embeddings by leveraging 
a static knowledge graph, which helps mitigate the biases and improve 
the quality of the representations. Given a query (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), we con-
vert all temporal subgraphs preceding 𝑡𝑞 into static knowledge graph 
𝑡𝑞𝑠  by disregarding the timestamps. The facts within 𝑡𝑞𝑠  can be aggre-
gated through RGCN2, yielding the comprehensive representations of
entities. 

𝐻 (𝑙+1)
𝑖𝑛𝑖𝑡_𝑒 = 𝑓 (

∑

(𝑒,𝑟,𝑜)∈
𝑡𝑞
𝑠

(
𝑊 𝑙

𝑟 𝐻
𝑙
𝑜

|𝑒|
) +𝑊 𝑙

𝑙𝑜𝑜𝑝𝐻
𝑙
𝑒) (4)

𝑊𝑟 and 𝑊𝑙𝑜𝑜𝑝 is the learnable parameters. |𝑒| is determined by the 
number of neighboring entities for a given entity e. 𝐻0

𝑒  is 𝐻𝐿𝐿𝑀
𝑒𝑛𝑡 , while 

𝐻 (𝑙+1)
𝑖𝑛𝑖𝑡_𝑒  is regarded as 𝐻𝐹𝐿𝑀

𝑖𝑛𝑖𝑡_𝑒 ∈ ℝ||×𝑑1 .

3.4.  Fact knowledge evolution pattern modeling

As illustrated in Fig. 1, most previous works learn the fact evolution 
patterns within finite sampled temporal subgraphs. Therefore, it is es-
sential to incorporate temporal subgraphs related to the query. In FEM, 
we first sample the relevant temporal subgraphs and then capture the 
fact evolution pattern (Fig. 4).

Entity-based Subgraph Sampling. The existing methods adopt con-
tinuous subgraph sampling, without ensuring the sampled subgraphs 
encompass the relevant facts, which fails to capture the fact evolution 
(Fig. 1). Given a query (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), we first extract all subgraphs con-
taining the source entities 𝑒𝑠 i.e., 

𝑡0∶𝑡𝑞−1
𝑒𝑠 . Finite subgraphs are then 

sampled from the extracted temporal subgraphs to learn evolution pat-
terns. The closer a sampled subgraph is to the query timestamp, the 
greater its impact on reasoning performance (Han, Chen, Ma, & Tresp, 
2021). Thereby, the exponential distribution is utilized for temporal sub-
graph sampling. As illustrated in Fig. 4, given a query (Likud, Consult, 
?, 2014.11.12), the temporal subgraphs preceding 2014.11.12 are ob-
tained, i.e., 2014.09.10, 2014.09.16 and 2014.10.10.

Time Encoder. Different from the previous works sampling contin-
uously, FL-Evo extracts the entity-based temporal subgraphs, leading to 
the sparsity of time interval, i.e., Δ𝑡 = 𝑡𝑞 − 𝑡𝑡, where 𝑡𝑡 is the timestamp 
of the sampled subgraph. As the occurrence of the facts follows cyclical 
patterns (Li et al., 2022b), the cosine function is used to encode time 
Eq. (5): 
𝐻𝑡 = 𝑐𝑜𝑠(𝑊𝑡Δ𝑡 + 𝑏𝑡) (5)

𝑐𝑜𝑠(⋅) is the cosine function, 𝑊𝑡 is a learnable parameter and 𝑏𝑡 denotes 
bias.

Entity Encoder. The structure representation of TKG captures the 
correlation between entities and relations. Even though the GCN can 
effectively aggregate the graph structure information, it tends to over-
shadow the initial meaning of the entity through multi-hop aggrega-
tion (Zhao, Zhang, Kong, & Yin, 2021). To address this issue, we aug-
ment the final aggregation by incorporating the initial entity represen-
tation.

ℎ𝑙𝑜𝑜𝑝𝑒,𝑡 = 𝑊𝑙𝑜𝑜𝑝ℎ
0
𝑒,𝑡 (6)

𝑎𝑔𝑔𝑙+1𝑒,𝑡 = 1
|𝑒|

∑

(𝑒,𝑟,𝑜)∈𝑡𝑒𝑠

(

𝑊𝑒ℎ
𝑙
𝑜,𝑡 +𝑊𝑟ℎ𝑟,𝑡

)

(7)

ℎ𝑙+1𝑒,𝑡 = ℎ𝑙𝑜𝑜𝑝𝑒,𝑡 + 𝑎𝑔𝑔𝑙+1𝑒,𝑡 (8)

2 https://github.com/JinheonBaek/RGCN
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Fig. 4. The reasoning process of temporal representation evolution in FEM. We 
extract relevant facts using entity-based subgraph sampling strategy. The blue is 
the facts related to the query. The green denotes the timestamp of the subgraph 
containing the source entity.

𝑊𝑙𝑜𝑜𝑝, 𝑊𝑒 and 𝑊𝑟 are the learnable parameters, and ℎ𝑙𝑜,𝑡 is the 𝑙th layer 
embeddings of entity 𝑜 at timestamp t. ℎ𝑟,𝑡 is the relations embeddings 
at timestamp t. ℎ0𝑒,𝑡 is 𝐻𝐹𝐿𝑀

𝑖𝑛𝑖𝑡_𝑒  and ℎ𝑙+1𝑒,𝑡  is regarded as 𝐻𝐹𝐸𝑀
𝑒,𝑡 .

In the TKG, the entities meaning evolves over time. We integrate 
entity embedding with time encoding to depict the dynamic nature of 
entities, i.e., 𝐻𝑒,𝑡 = [𝐻𝐹𝐸𝑀

𝑒,𝑡 || 𝐻𝑡], where 𝐻𝐹𝐸𝑀
𝑒,𝑡  is the embedding of 𝑒

at timestamp 𝑡, 𝐻𝑡 denotes the timestamp 𝑡 embedding, and || signifies 
the concatenation operation. GRU is used to learn the entity evolution 
pattern: 
𝐻 ′

𝑒,𝑡 = 𝐺𝑅𝑈 (𝐻 ′
𝑒,𝑡−1,𝐻𝑒,𝑡) (9)

𝐻 ′
𝑒,𝑡−1 and 𝐻 ′

𝑒,𝑡 are the hidden embedding of entity 𝑒 at t-1 and t.
Relation Encoder. Similarly, the relation embedding contains not 

only the static relation representation but also the time embedding, i.e., 
𝐻𝑟,𝑡 = [𝐻𝐿𝐿𝑀

𝑟𝑒𝑙 ||𝐻𝑡], where 𝐻𝐿𝐿𝑀
𝑟𝑒𝑙  denotes the initial relation representa-

tion, obtained from LLM (Eq. (3)), 𝐻𝑡 is the timestamp embedding, and 
|| signifies the concatenation operation. GRU is also utilized to obtain 
the evolution pattern through the timeline: 
𝐻 ′

𝑟,𝑡 = 𝐺𝑅𝑈 (𝐻 ′
𝑟,𝑡−1,𝐻𝑟,𝑡) (10)

𝐻 ′
𝑟,𝑡−1 and 𝐻 ′

𝑟,𝑡 are the hidden embedding of relation 𝑟 at t-1 and t times-
tamps.

3.5.  Logical knowledge evolution pattern modeling

Fact evolution modeling is inclined to reasoning the events with rep-
etition (Li et al., 2022a), failing to deal with unseen entities. To address 
this issue, previous research treats all entity vocabulary as candidate 
sets, assuming candidate entities follow a uniform distribution. How-
ever, entities should have different probabilities relying on the context. 
For example, as shown in Fig. 1, if the path 𝑃𝑟𝑎𝑖𝑠𝑒 𝑎𝑛𝑑 𝑒𝑛𝑑𝑜𝑟𝑠𝑒 holds, 
the result of 𝑃𝑟𝑎𝑖𝑠𝑒 𝑎𝑛𝑑 𝑒𝑛𝑑𝑜𝑟𝑠𝑒 is more likely to be an entity related to 
the path.

In the FL-Evo, LEM captures logic evolution based on temporal rules 
extracted from the entire TKG. FL-Evo employs temporal rule mining 
methods, like TLogic (Liu et al., 2022) and StreamLearner (Omran, 
Wang, & Wang, 2019), to derive rules automatically from the TKG. As 
the same head holds different bodies like 𝑟𝑢𝑙𝑒1:  0.86 Praise and endorse
← Praise and endorse and 𝑟𝑢𝑙𝑒2:  0.54 Praise and endorse ← Discuss by 
telephone, Make an appeal or request, Engage in negotiation. Given a query 
(𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), each rule generates its own rule candidate set, 

𝑟𝑢𝑙𝑒
𝑒𝑠 ,𝑟𝑞

= 𝑟𝑢𝑙𝑒1
𝑒𝑠 ,𝑟𝑞 ∪ 𝑟𝑢𝑙𝑒2

𝑒𝑠 ,𝑟𝑞 …𝑟𝑢𝑙𝑒𝑛
𝑒𝑠 ,𝑟𝑞 (11)

where 𝑟𝑢𝑙𝑒𝑖
𝑒𝑠 ,𝑟𝑞  is a candidate entity set based on the 𝑖th rule. Since dif-

ferent rules hold different confidence, candidates derived from higher-
confidence rules should receive higher scores (Liu et al., 2022). In addi-
tion, candidates supported by multiple rules should be assigned higher 
scores: 
𝑆𝑐𝑜𝑟𝑒(𝑒) = 1 − Π𝑐𝑜𝑛𝑓 (𝑒)|𝑒∈𝑟𝑢𝑙𝑒𝑒𝑠,𝑟𝑞

(1 − 𝑐𝑜𝑛𝑓 (𝑒)) (12)

where 𝑐𝑜𝑛𝑓 (𝑒) is the confidence of the rule generating the candidate 
entity 𝑒. Given a query (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), if candidate entities exist in 𝑟𝑢𝑙𝑒

𝑒𝑠 ,𝑟𝑞
, 

the 𝑟𝑢𝑙𝑒
𝑒𝑠 ,𝑟𝑞

 obtains corresponding score. Otherwise, the score is 0. 𝑟𝑢𝑙𝑒
𝑒𝑠 ,𝑟𝑞

is an N-dimensional vector. N is equal to the number of entities ||.

3.6.  Information fusion modeling

The fusion module integrates the outputs from different evolution 
patterns to predict future events.

Representation evolution decoder. The entity and relation embed-
ding can be obtained from FEM. Li et al. (2021) regards a convolutional 
neural network as a decoder, achieving better results. In this paper, Con-
vTransE (Zhen, Wang, Zhou, Fang, & Quan, 2018)3 is regarded as the 
decoder: 
𝐏𝐹𝐸𝑀 = 𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝐸(𝐻𝑒,𝑡,𝐻𝑟,𝑡) (13)

𝐻𝑒,𝑡 and 𝐻𝑟,𝑡 is the embedding of entity 𝑒 and relation 𝑟 at the timestamp 
𝑡, obtained from Eqs. (9) and (10). 
𝐶𝑜𝑛𝑣𝑇 𝑟𝑎𝑛𝑠𝐸(𝐻𝑒,𝑡,𝐻𝑟,𝑡) = 𝑓 (𝑣𝑒𝑐(𝑀(𝐻𝑒,𝑡,𝐻𝑟,𝑡))𝑊 ) (14)

𝑀(𝐻𝑒,𝑡,𝐻𝑟,𝑡) is the output from the convolution layer. 𝑣𝑒𝑐(⋅) transforms 
the feature matrix into a vector. 𝑓 (⋅) signifies the activation function 
and W is a learnable parameter.

Logic evolution decoder. From LEM, the 𝑟𝑢𝑙𝑒
𝑒𝑠 ,𝑟𝑞

 denotes the can-
didate set based on temporal rules. Softmax is used to decode the
𝑟𝑢𝑙𝑒

𝑒𝑠 ,𝑟𝑞
: 

𝐏𝐿𝐸𝑀 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑟𝑢𝑙𝑒
𝑒𝑠 ,𝑟𝑞

) (15)

Scoring Function. After decoding various evolution patterns, we use 
weight factor 𝛼 to perform the final predictions. 
𝐏𝑓𝑖𝑛𝑎𝑙 = (1 − 𝛼)𝐏𝐹𝐸𝑀 + 𝛼𝐏𝐿𝐸𝑀 (16)

3.7.  Training objective

Given a query (𝑒𝑠, 𝑟𝑞 , ?, 𝑡𝑞), entity prediction can be seen as a multi-
label learning problem. We employ cross-entropy during extrapolation 
reasoning: 
𝑒 =

∑

(𝑒𝑠 ,𝑟𝑞 ,𝑒𝑜 ,𝑡𝑞 )∈
𝑡𝑞

𝑦𝑒𝑡𝑞 𝑙𝑜𝑔𝐏(𝑒𝑜|𝑒𝑠, 𝑟𝑞 , 𝑡𝑞) (17)

where 𝑦𝑒𝑡𝑞  is equal to 1, if e=𝑒𝑜, otherwise 0. 𝐏(𝑒𝑜|𝑒𝑠, 𝑟𝑞 , 𝑡𝑞) is the final 
probability of entity prediction.

4.  Experiments

This section elucidates the effectiveness of FL-Evo on temporal 
knowledge graph reasoning. We first describe the details of the experi-
mental setting, like baseline methods and evaluation metrics. Secondly, 
we present comparative results. Then the results on unseen and seen en-
tities are discussed. After that, we analyze the importance of hyperpa-
rameters, followed by the ablation study. Finally, case study is provided 
to illustrate the reasoning process of our model.

3 https://github.com/Lee-zix/RE-GCN
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Fig. 5. The details of dataset. || and || denote the number of entities and relations respectively. Mean, Median and Max signify the average, median, and max 
of the entity temporal interval.

4.1.  Experiment setup

Dataset. Five datasets are used to evaluate the proposed model i.e., 
ICEWS14, ICEWS05-15, ICEWS18 (Boschee et al., 2015), GDELT (Tone, 
2015) and FinDKG (Li & Sanna Passino, 2024). The first three datasets 
are from the Integrated Conflict Early Warning System (ICEWS), con-
taining political events, finance events and so on. GDELT is sampled 
from the global database of events, language, and tone. FinDKG is devel-
oped from financial news articles collected from the Wall Street Journal 
spanning from 1999 to 2023. All of these datasets are event-based, and 
each event is time-stamped. Given the task of extrapolation reasoning, 
the dataset is split into the train, valid, and test (timestamps of train 
<  timestamps of valid <  timestamp of test). The details of dataset are 
shown in Fig. 5, including entities temporal intervals.

Baseline and Evaluation Metrics. Three types of reasoning mod-
els are treated as baselines: (1) static knowledge graph reasoning: 
ComplEx (Trouillon et al., 2016), R-GCN (Schlichtkrull et al., 2017), 
and ConvTransE (Zhen et al., 2018); (2) Interpolation reasoning: TA-
Dismult (García-Durán et al., 2018), TNTCompIEX (Lacroix, Obozinski, 
& Usunier, 2020) and DE-SimpIE (Goel, Kazemi, Brubaker, & Poupart, 
2020); (3) Extrapolation reasoning: TITer (Sun et al., 2021), RE-GCN (Li 
et al., 2021), CluSTeR (Zhu et al., 2020), RE-Net (Jin et al., 2019), 
xERTE (Han et al., 2021), TLogic (Liu et al., 2022), GHT (Sun, Geng, 
Zhong, Hu, & He, 2022), rGalT (Gao et al., 2022), PPT (Xu, Liu, 
Peng, Jia, & Peng, 2023), HGLS (Zhang, Xia, Liu, Wu, & Wang, 2023), 
TECHS (Lin, Liu, Mao, Xu, & Cambria, 2023), TR-Rules (Li et al., 2023), 
THCN (Chen et al., 2024), KGTransformer (Li & Sanna Passino, 2024) 
and TaReT (Ma et al., 2024). The mean reciprocal rank (MRR) and 
Hit@{1, 3, 10} are used as evaluation metrics.

The details of implementation. As temporal rules play an impor-
tant role in the LEM, we leverage TLogic (Liu et al., 2022)4 to mine 
temporal rules from temporal knowledge graphs. LLAMAv2-13B 5 is 
used as LLM (Touvron et al., 2023). The embedding dimension of en-
tities and relations is 200. We use Adam (Kingma & Ba, 2014) as an 
optimizer and the learning rate is 0.001. The number of sampled sub-
graphs and factor 𝛼 are chosen from {1, 3, 5, 10} and 𝛼 ∈ (0.0, 1.0). 
The epoch is set to 15. The code and data of FL-EVO is available at 
https://github.com/ruishenliu/FL-EVO.

4.2.  Results on TKG

The results on MRR and Hit@{1, 3, 10} are elaborated in Tables 2 
and 3. Compared to baseline models, FL-Evo consistently improves 
Hit@3 by 3.97%, 0.16%, 0.21%, 0.63% and 19.47%, and shows signif-
icant enhancements in Hit@10 by 1.49%, 4.07%, 0.34%, 0.16% and 
27.39%. The FL-EVO also achieves significant improvement in the fi-
nancial dataset. As static reasoning methods disregard timestamp infor-
mation, the results of the static reasoning models are almost the worst. 
FL-Evo outperforms interpolation reasoning models because interpola-

4 https://github.com/liu-yushan/TLogic
5 https://huggingface.co/meta-llama

Fig. 6. The sensitivity analysis of the number of the sampled subgraphs on 
ICEWS14.

tion reasoning relies on known event timestamps, limiting their ability 
to predict future events efficiently. The proposed model also surpasses 
most extrapolation reasoning models. Despite RE-GCN utilizing global 
and local information to capture the event evolution pattern, it adopts 
continuous sampling, limiting their ability to represent facts. CluSTeR 
and TITer extract subgraphs using reinforcement learning, without con-
sidering the relevant facts. The entity-based subgraph sampling strategy 
ensures each extracted subgraph contains the relevant facts, enabling 
the learning of fact evolution patterns. By integrating LLMs into FLM, FL-
Evo obtains more information and enriches the fact knowledge formed 
by entity and relation. TLogic searches the related history information 
through rules. However, due to limited sampled subgraphs, they are un-
able to make full use of the existing information. As proposed in FL-Evo, 
sufficient information is leveraged from different aspects to explore evo-
lution patterns.

4.3.  Unseen and seen entity analysis

As the never-ending information, unseen entities continually emerge. 
In the ICEWS14 and ICEWS18 datasets, there are 25.79% and 33.38% 
entities without history, respectively. Previous work often suffers from 
inadequate information and inefficient sampling, leading to inferior rea-
soning performance on unseen entities. To tackle with this issue, FL-
Evo makes use of the knowledge from various aspects to model evolu-
tion patterns. We adopts the FLM integrated with LLMs, providing ad-
ditional information. The FEM captures fact evolution pattern through 
entity-based subgraphs sampling strategy. The learned evolution pat-
terns can be extended to unseen entity prediction. Additionally, LEM 
explores logic evolution to assist in reasoning.

We conduct experiments on both seen and unseen entities using ded-
icated test datasets based on ICEWS14 and ICEWS18. The test datasets 
are divided into two parts, containing only seen and unseen entity 
queries, respectively (Appendix B). Tables 4 and 5 report that the pro-
posed model consistently outperforms others. Although TLogic lever-
ages temporal rules for TKGR, its performance is hindered by limitations 
in the number of sampled subgraphs. FEM and FLM make significant 
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Table 2 
The entity prediction results on ICEWS14, ICEWS0515 and ICEWS18. All results are percentages. The best results are in bold.

 ICEWS14  ICEWS0515  ICEWS18
 Model  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10
 ComplEx  30.84  21.51  34.48  49.59  31.69  21.44  35.74  52.04  21.01  11.87  23.47  39.94
 R-GCN  28.03  19.42  31.95  44.83  27.13  18.83  30.41  43.16  15.05  8.13  16.49  29.00
 ConvTransE  31.50  22.46  34.98  50.03  30.28  20.79  33.80  49.95  23.22  14.26  26.13  41.34
 TA-DistMult  26.22  16.83  29.72  45.23  27.51  17.57  31.46  47.32  16.42  8.60  18.13  32.51
 TNTCompIEX  34.05  25.08  38.50  50.92  27.54  9.25  30.80  42.86  21.23  13.28  24.02  36.91
 DE-SimpIE  33.36  24.85  37.15  49.82  35.02  25.91  38.99  52.75  19.30  11.53  21.86  34.80
 TITer  36.06  27.51  40.16  52.05  38.11  26.83  44.43  59.44  25.34  18.09  28.17  38.95
 RE-GCN  37.78  27.17  42.50  58.84  38.27  27.43  43.06  59.93  27.51  17.82  31.17  46.55
 CluSTeR  46.0  33.8  –  71.2  44.6  34.9  –  63.0  32.3  20.6  –  55.9
 RE-NET  35.77  25.99  40.10  54.87  36.86  26.24  41.85  57.60  26.17  16.43  29.89  44.37
 xERTE  40.79  32.70  45.56  57.30  46.62  37.84  52.31  63.92  29.31  21.03  33.51  46.48
 TLogic  43.04  33.56  48.27  61.23  46.97  36.21  53.13  67.43  29.82  20.54  33.95  48.53
 GHT  37.40  27.77  41.66  56.19  41.5  30.79  46.85  67.73  27.40  18.08  30.76  45.76
 rGalT  38.33  28.57  42.86  58.13  38.89  27.58  44.19  59.10  27.88  18.01  31.59  47.02
 PPT  38.42  28.94  42.5  57.01  38.85  28.57  43.35  58.63  26.63  16.94  30.64  45.43
 HGLS 47.00 35.06  – 70.41  46.21  35.32  –  67.12  29.32  19.21  – 49.83
 TECHS  43.88  34.59  49.36  61.95  48.38  38.34  54.69  68.92  30.85  21.81  35.39  49.82
 TR-Rules  43.32  33.96  48.55  61.17  47.64  37.06  53.80  67.57  30.41  21.10  34.58  48.92
 THCN  45.39  36.5  50.84  66.07  51.94  40.32  57.79  72.18  35.63  24.90  39.26  56.76
 TaReT 47.56  36.04 51.03  69.32 52.39 39.23 58.69 72.63 34.98  24.68 39.41 56.76
 KGTransformer  23.98  –  26.89  41.22  –  –  –  –  –  –  –  –
 FL-Evo  48.09 35.63  55.00  71.90  52.48  40.05  58.85  76.70  35.43 24.47  39.62  57.10

 +0.53  –  +3.97  +1.49  +0.09  +0.82  +0.16  +4.07  +0.45  –  +0.21  +0.34
Table 3 
The entity prediction results on GDELT and FinDKG. All results are percentages. The best results are in bold.

 GDELT  FinDKG
 Model  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10
 ComplEx  9.84  5.17  9.58  18.23  –  –  –  –
 R-GCN  12.17  7.40  12.37  20.63  6.17  –  6.87  10.13
 ConvTransE  19.07  11.85  20.32  33.14  –  –  –  –
 TA-DistMult  11.17  5.09  11.58  22.65  –  –  –  –
 TNTCompIEX  –  –  –  –  –  –  –  –
 DE-SimpIE  –  –  –  –  –  –  –  –
 TITer  15.75  10.94  15.74  25.37  –  –  –  –
 RE-GCN  19.31  11.99  20.61  33.59  –  –  –  –
 RE-NET  26.17  16.43  29.89  44.37  10.95  –  11.89  18.17
 CluSTeR  18.3  11.6  -  31.9  –  –  –  –
 xERTE  19.45  11.92  20.84  34.18  –  –  –  –
 TLogic  21.07  13.39  23.24  37.07  –  –  –  –
 GHT  20.04  12.68  21.37  34.42  –  –  –  –
 rGalT  19.56  12.11  20.89  34.15  –  –  –  –
 PPT  –  –  –  –  –  –  –  –
 HGLS  19.04  11.79  –  33.23  –  –  –  –
 TECHS  –  –  –  –  –  –  –  –
 TR-Rules  –  –  –  –  –  –  –  –
 THCN  23.46  15.18  25.21  39.03  –  –  –  –
 TaReT 23.03 15.26 24.63 39.42  –  –  –  –
 KGTransformer  —  –  –  – 12.45  – 13.76 21.13

 FL-Evo  24.01  16.04  25.26  39.58  30.38  21.19  33.23  48.52
 +0.98  +0.78  +0.63  +0.16  +17.93  –  +19.47  +27.39

contributions to the results, thereby validating the effectiveness of the 
proposed model in leveraging existing information.

4.4.  Sensitivity analysis

The number of the sampled temporal subgraphs. The learning of 
the evolution is determined by the information within the finite sampled 
subgraphs. Thereby, the reasoning performance is sensitive to its size. 
Fig. 6 presents that the optimal result is achieved when it is equal to 5. 
If the size is less than 5, there is insufficient information to support the 
pattern learning. Conversely, since the more recent facts have a greater 
impact on inference, the introduction of more premature facts affects 
inference performance.

Factor Weight 𝛼. LEM introduces temporal rules to assist reasoning. 
The weight factor 𝛼 is used in FM to balance the importance of FEM 
and LEM. As shown in Fig. 7, when the 𝛼 is equal to 0.5, the reasoning 
performance peaks. It indicates both representation and logic evolution 
patterns are important.

4.5.  Entity embedding analysis

In FL-EVO, we initialize entity and relation embedding using a LLM 
through various prompts and subsequently refine the representation 
with TKG. To verify the ability of the proposed encoding methods, Fig. 8 
illustrates a 2D visualization of entity embedding on ICEWS14. Each 
node denotes an entity embedding, and colors denote different groups, 
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Table 4 
The unseen entity prediction results on ICEWS14 and ICEWS18. All results are percentages. We rerun their codes with the released 
hyperparameters. The best results are in bold. "w/o" removes the corresponding component from the overall framework.

 ICEWS14  ICEWS18
 model  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10
 REGCN  12.66  8.23  13.68  21.34 12.07 7.49 13.34 20.66
 xERTE  16.9 13.8  19.4  22.67  8.05  6.33  9.29  11.39
 T-logic  16.46  13.51  17.98  21.81  8.6  7.2  9.00  11.08
 PPT  10.87  7.93  11.30  16.35  3.22  1.90  3.49  5.34
 HGLS 19.92  13.69 22.16 33.35  14.44  7.7  15.07  29.26
 w/o LLM  29.63  22.67  31.78  43.44  25.85  19.89  26.80  37.58
 w/o FLM  16.75  10.38  18.56  32.42  8.44  3.95  8.23  18.12
 w/o FEM  11.68  6.96  12.76  20. 64  10.88  6.46  12.03  19.04
 w/o LEM  30.94  23.20  33.58  46.22  26.70  20.81  28.13  37.96
 FL-Evo  31.04  23.20  33.81  47.56  26.94  21.07  28.18  38.03

 +11.12  +9.40  +11.65  +14.21  +14.87  +13.58  +14.84  +17.37

Table 5 
The seen entity prediction results on ICEWS14 and ICEWS18. All results are percentages. We rerun their codes with the released 
hyperparameters. The best results are in bold. "w/o" removes the corresponding component from the overall framework.

 ICEWS14  ICEWS18
 Model  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10
 REGCN  43.74  33.01  49.06  64.30 33.25 22.85 37.43 53.73
 xERTE  42.6  34.12  47.90  59.86  30.23  21.58  34.64  48.13
 T-logic  44.92  34.99  50.44  63.94  30.76  21.18  34.93  50.00
 PPT  39.84  29.73  44.39  59.67  26.67  16.69  30.52  46.58
 HGLS 47.76 35.31 53.95 72.66  29.47  18.71  32.80  51.55
 w/o LLM  49.10  36.38  55.78  73.72  34.54  23.49  38.84  56.87
 w/o FLM  47.31  34.76  53.75  72.09  33.20  22.70  36.70  53.75
 w/o FEM  39.22  28.53  44.30  59.74  33.12  23.59  36.74  51.61
 w/o LEM  48.73  36.16  55.23  73.12  35.17  24.20  39.19  56.82
 FL-Evo  50.04  37.04  57.04  75.26  35.81  24.67  40.61  57.52

 +2.28  +1.73  +3.09  +2.60  +2.56  +1.76  +3.18  +3.79

Table 6 
Ablation Study on ICEWS14 and ICEWS18. All results are percentages. "w/o" removes the corresponding component from the overall 
framework.

 ICEWS14  ICEWS18
 Model  MRR  Hit@1  Hit@3  Hit@10  MRR  Hit@1  Hit@3  Hit@10
 w/o LLM  46.78  34.57  53.09  70.31  34.36  23.32  38.53  56.54
 w/o FLM  44.35  32.51  50.26  67.72  32.43  22.24  35.85  52.64
 w/o FEM  37.43  27.13  42.24  57.20  32.89  23.46  36.51  51.44
 w/o LEM  46.47  34.43  52.57  69.81  34.85  24.02  38.83  56.46
 FL-Evo  48.09  35.63  55.00  71.90  35.43  24.47  39.62  57.10

Fig. 7. The sensitivity analysis of the factor weight 𝛼 on ICEWS14.

e.g. red signifies the entity belonging to Greece, including Kidnap-
per(Greece), Citizen(Greece), Lawmaker(Greece), etc. Comparing Fig. 8(a) 
and (b), embeddings initialized by LLM outperform random initializa-
tion. Entities sharing similar concepts are clustered closer together, like 
the Head of Government of Greece, Pakistan, and Botswana. The entities 
with China are surrounding the entity China. It demonstrates LLM pro-
vides the concept of entities. As illustrated in Fig. 8(c), FLM encoding is 

the best, i.e., each group in its zone, refining the embedding generated 
by the LLM. It denotes the comprehensive concept of entities should be 
across the entire time, which can improve the reasoning performance.

In addition, we analyze the entity embeddings for entities without 
history, represented in brown. From Fig. 8(b), the entities with Greece
are close to the Greece group, demonstrating LLM contains knowledge 
about Greece assisting in entity embedding. As shown in Fig. 8(c), all 
unseen entities are clustered within the Greece group, highlighting the 
effectiveness of FLM in encoding unseen entities. Therefore, learning 
entity representations across the historical context is crucial for com-
prehensive knowledge representation and improved reasoning perfor-
mance.

4.6.  Ablation study

To evaluate the impact of each component on FL-Evo, we conduct ab-
lation experiments on the ICEWS14 and ICEWS18 datasets. As depicted 
in Table 6, each component has a positive effect on our model. FEM ex-
hibits the greatest influence on the results, indicating the significance of 
capturing the fact evolution based on entity-based subgraph sampling 
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Fig. 8. The visualization of embedding entities on ICEWS14. Each color represents the corresponding group. For example, the red indicates the entities belonging 
to Greece, including Policy(Greece), Citizen(Greece), Lawmaker(Greece), etc. The brown denotes the unseen entity embeddings.

Fig. 9. The case study of HGLS and FL-Evo. The red font denotes the answer. The 
picture represents the source entity. Each temporal subgraph is annotated with a 
timestamp. In LEM, each number means the confidence of the rule. 𝑟𝑞 ← 𝑟1,… , 𝑟𝑛
is equal to 𝑟𝑞(𝑒𝑠, 𝑒𝑜, 𝑡𝑞) ← 𝑟1(𝑒𝑠, 𝑧1, 𝑡1),… , 𝑟𝑛(𝑧𝑛−1, 𝑒𝑜, 𝑡𝑛), where 𝑡1,… , 𝑡𝑛 < 𝑡𝑞 . Q3 is 
the reasoning process of the unseen entity.

strategy. Conversely, continuous sampling fails to obtain the fact evo-
lution. The FLM consistently contributes to the reasoning performance 
across datasets, demonstrating the benefits of utilizing existing infor-
mation for extrapolation reasoning. Even though the LLM contains the 
bias, the integration of world knowledge from LLM enhances the rep-

resentation of entities and relations, boosting reasoning performance. 
Additionally, LEM also plays an important role in FL-Evo, illustrating 
that logic knowledge evolution can effectively assist in performing pre-
dictions.

4.7.  Case study

To illustrate the effectiveness of the proposed model, Fig. 9 presents 
the reasoning process of HGLS and FL-Evo. Comparing the results, four 
points can be concluded: (1) Improving the reasoning performance. 
FL-Evo consistently ranks ground truth higher than HGLS, indicating 
enhanced predictive accuracy. (2) Enhancing evolution modeling. As 
shown in Fig. 9 Q1, the related facts are not constantly occurring, i.e., 
20141101, 20141103 and 20141111 6. FEM effectively samples the re-
lated subgraphs and captures the fact evolution pattern. (3) Leveraging 
knowledge sufficiently. In Q2, given a query (France, Express intent to 
cooperate economically, ?, 20141123), despite HGLS sampling subgraphs 
containing relevant facts, the result is still lower than the proposed 
model. FL-Evo leverages information from various aspects to capture 
evolution patterns, improving reasoning performance. (4) Enriching the 
entity representation. Q3 is the reasoning performance of an unseen en-
tity. The proposed model represents the events across the entire timeline 
and draws the world knowledge from LLM. As shown in Fig. 8 (c), the 
proposed model represents the unseen entity accurately, which is useful 
for prediction.

In summary, FLM contains sufficient knowledge that can be used in 
FEM and LEM. FEM samples relevant subgraphs to learn fact evolution 
and perform predictions. LEM realizes the prediction via grounding the 
temporal rules. FM achieves the final result through fusing these two 
evolution patterns. These cases demonstrate the ability of each compo-
nent and the effectiveness of the proposed model.

5.  Conclusions and future work

In this paper, FL-Evo improves reasoning performance by captur-
ing fact and logic knowledge evolution patterns. The proposed model 
includes four parts, including fact and logic knowledge (FLM), fact 
evolution (FEM), logic evolution (LEM), and fusion module (FM). The 
FLM serves as background knowledge base, incorporating fact and logic 
knowledge derived from LLMs and TKG. For fact knowledge evolution 
pattern, the fact knowledge formed by entity and relation is first distilled 
from LLMs using designed prompts, followed by refined with TKG. FEM 
then extracts entity-based subgraphs from FLM, aiding in capturing fact 
evolution patterns. Additionally, LEM utilizes the logical knowledge, 

6 In this paper, YYMMDD is equal to YY.MM.DD
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mined from FLM, to derive the logical knowledge evolution pattern, as-
sisting in reasoning. Finally, the fusion module enhances the reasoning 
performance by integrating the outputs of these two evolution patterns. 
Extensive experiments have been conducted on five benchmarks. The 
experiment results outperform the TKG reasoning models, with improve-
ments of up to 3.97% and 4.07% in Hit@3 and Hit@10, respectively. It 
is particularly noteworthy that FL-Evo has substantially enhanced rea-
soning performance for unseen entities lacking prior records, exceeding 
baseline models by 14.87% in MRR and 17.37% in Hit@10.

Moreover, our model also faces several challenges. First, we lever-
age LLMs to enhance entity and relation embeddings, and LLMs contain 
biases that can impact reasoning performance. Future research should 
develop effective methods to identify and mitigate biases, improving the 
accuracy of the embeddings. Second, the proposed sampling strategy re-
lies on a fixed length and exponential distribution, which limits its abil-
ity to extract relevant facts comprehensively. To address this limitation, 
future work could explore alternative approaches, such as reinforcement 
learning and causal inference, to enable adaptive sampling. By treating 
the sampling process as a sequential decision problem, reinforcement 
learning could be employed. The state, action space, reward function, 
and policy network of reinforcement learning could be developed to 
guide the model in capturing relevant facts comprehensively, improving 
reasoning performance. Third, the framework of our proposed model is 
complex, and there is a need for a more intuitive tool to simplify its ap-
plication. Lastly, it is crucial to test the model across different domains 
to evaluate its generalizability and practical utility.
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Appendix A.  Prompt example

In the proposed model, we design various prompts to extract world 
knowledge from a large language model, enriching the representation 
of entities and relations. These prompts are customized for entities and 
relations to maintain data integrity and confidentiality. For example, if 
the query timestamp is 2014, the entity prompt is ’Before 2014, what’s the 
background knowledge of the entity [entity]?’. For the relation, the prompt 
is ’what’s the meaning of the relation [relation]’.

Table A.1 
The example of prompt for relation information extraction on ICEWS14. 
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛−1 means the inverse relation.
 Relation Prompt Template LLM response
 Assassinate Template: what is the 

meaning of the relation 
’[relation]’?
Example: what is the 
meaning of the relation 
’Assassinate’?

Assassinate is a verb that 
means to kill someone 
secretly or by treachery, 
especially a political leader 
or a public figure. It can also 
refer to the act of attempting 
to kill someone in this way.

𝐴𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒−1 Template: what is the inverse 
meaning of the relation 
’[relation]’?
Example: what is the inverse 
meaning of the relation 
’Assassinate’?

The opposite or inverse 
meaning of the word 
"assassinate" is "protect" or 
"defend". … The police 
department worked to defend 
the community from 
potential threats and attacks.

Table A.2 
The example of prompt for entity information extraction on ICEWS14 and 
ICEWS18.

 DataSet Prompt Template LLM response
 ICEWS14 Template: before 2014, what is 

the background knowledge of 
the entity [Entity]
Example: before 2014, what is 
the background knowledge of 
the entity Joaquim Barbosa?

Joaquim Barbosa is a Brazilian 
lawyer and politician who 
served as a Federal SupFEMe 
Court (STF) justice from 2003 
to 2018. He was born in 1950 
in the state of Bahia, … He has 
been a vocal critic of corruption 
and inequality in Brazil.

 ICEWS18 Template: before 2018, what is 
the background knowledge of 
the entity [Entity]?
Example: before 2018, what is 
the background knowledge of 
the entity Alassane Ouattara?

Alassane Ouattara is a politician 
and economist from Côte 
d’Ivoire who has been the 
President of Côte d’Ivoire since 
2010 … After the 2010 
presidential election, in which 
Ouattara defeated Gbagbo, he 
was sworn in as President of 
Côte d’Ivoire.

Tables A.1 and A.2 list the relation and entity prompts used in the 
proposed model. In our experiments, we refer to LLAMAv2-13B as LLM 
and utilize its encoder to encode responses. These embeddings serve as 
the initial representation for both entities and relations. For example, if 
the entity is ’Alassane Ouattara’ and the timestamp is 2018. The prompt 
is ’before 2018, what is the background knowledge of the entity Alassane 
Ouattara?’. The LLM generates the response based on the prompt, like 
’Alassane Ouattara is a politician and economist from Côte d’Ivoire who ... 
President of Côte d’Ivoire’. After LLM answers, the response is fed into 
LLM again to get the corresponding encoding based on the hidden state. 
The encoding is used to initialize the reasoning process. The process of 
relation is similar to the entity. In addition, we randomly extract 100 
responses generated by the LLM for manual evaluation to ensure the 
reliability of the generated responses. To speed up the reasoning process, 
the LLM responses can be stored in advance.

Appendix B.  Test dataset

In this paper, we conduct extrapolation temporal reasoning. Due to 
the never-ending information and the limitation of information extrac-
tion methods, not every entity has a record. As shown in Fig. B.1, in 
ICEWS14 and ICEWS18, there are 25.79% and 33.38% entities with-
out history. The key to improving reasoning performance is to capture 
the evolution patterns. If an entity does not have a record, it is diffi-
cult to capture the entity evolution pattern, leading to weakened rea-
soning performance. In this paper, we leverage the known information 
from diverse aspects to model knowledge evolution. And we conduct
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Fig. B.1. The details of unseen and seen dataset. || and || are the number of entities and relations respectively. Unseen and seen denote the size of unseen and 
seen test datasets respectively. The Pie charts denote the unseen entity and seen entity ratio in each dataset.

experiments on unseen entities to prove the effectiveness of our model. 
Fig. B.1 presents the dataset used to conduct unseen and seen entity ex-
periments (Section 4.3). We only split the original test dataset into two 
parts, i.e., unseen and seen queries. The original train dataset is used 
to train the proposed model. According to the released codes and the 
hyperparameters, we rerun the baselines to get their results.

Appendix C.  Examples

To demonstrate the reasoning process of our model and its applica-
tion across different domains, we present additional examples (Fig. C.1). 
The first example is from the financial dataset (FinDKG), while the sec-
ond is political event prediction contained in ICEWS14. In FEM, the 
entity-based sampling strategy is employed to extract subgraphs con-
taining the source entity, i.e., 2022.06.12, 2022.06.19, and 2022.06.26 
in Q1, and 2014.09.16, 2014.09.17, and 2014.09.18 in Q2. Using the 
extracted subgraphs and representations derived from FLM, we make 
predictions based on fact evolution patterns. Then, we use the rules au-
tomatically extracted from TKG through rule mining methods to realize 
the logic evolution prediction. Finally, the fusion module integrates out-
puts from these evolution patterns to predict future events. 

Fig. C.1. The case study on the financial and politics event prediction . 
The blue denotes the source entity.
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