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ABSTRACT

This paper introduces a method for zero-shot video restoration using pre-trained
image restoration diffusion models. Traditional video restoration methods often
need retraining for different settings and struggle with limited generalization across
various degradation types and datasets. Our approach uses a hierarchical latent
warping strategy for keyframes and local frames, combined with token merging
that uses a hybrid correspondence mechanism that integrates spatial information,
optical flow, and feature-based matching. We show that our method not only
achieves top performance in zero-shot video restoration but also significantly
surpasses trained models in generalization across diverse datasets and extreme
degradations (8× super-resolution and high-standard deviation video denoising).
We present evidence through quantitative metrics and visual comparisons on various
challenging datasets. Additionally, our technique works with any 2D restoration
diffusion model, offering a versatile and powerful tool for video enhancement tasks
without extensive retraining.
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Figure 1: Zero-shot temporal-consistent diffusion model for video restoration and beyond.
Given a pre-trained diffusion model for single-image restoration, our method generates temporally
consistent restored video with fine details without any further training. Our method applies to other
video applications, such as depth estimation.
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1 INTRODUCTION

Diffusion models have recently achieved remarkable success in image restoration tasks (Xia et al.,
2023; Lin et al., 2024). These models can generate realistic details, overcoming the limitations of
traditional regression-based methods that often produce blurry outputs without fine details (Fig. 2
(a)). The state-of-the-art methods employing convolutional neural networks (CNNs) (Albawi et al.,
2017; Kalchbrenner et al., 2014; O’shea & Nash, 2015) or transformers (Dosovitskiy et al., 2021; Liu
et al., 2021b; Vaswani et al., 2017) trained on large-scale data have shown incredible effectiveness in
image restoration.

Given the success of diffusion models in image restoration, a natural extension is to apply them
to video restoration. Video restoration, which typically involves denoising, super-resolution, and
deblurring, is a valuable field that transforms low-quality videos into high-quality ones. However,
directly applying image-based diffusion models to video restoration presents significant challenges.
Notably, performing per-frame inference on videos using these models often results in severe
flickering (Fig. 2 (b)), especially when using Latent Diffusion Models (LDMs).

Surprisingly, the application of image restoration diffusion models to video restoration remains largely
unexplored. While some attempts have been made to adapt these models for video tasks, they typically
involve fine-tuning with 3D convolution and temporal attention layers. However, such approaches
require extensive computational resources (e.g., 32 A100-80G GPUs for video upscaling (Zhou et al.,
2023)) and task-specific retraining, limiting their practicality and generalizability.

In this paper, we present a novel, training-free approach to leverage pre-trained image restoration
diffusion models for video restoration. Our method introduces two key modules: hierarchical latent
warping and hybrid flow-guided spatial-aware token merging. These modules work in tandem to
enforce temporal consistency in both latent and token (feature from the attention layer) spaces,
enabling high-quality video restoration without any additional training or fine-tuning. Our method
(Fig. 2 (c)) achieves both realistic and temporally consistent results without any additional training,
leveraging an image diffusion model to restore videos effectively.

Fig. 1 illustrates our method’s capability to generate temporally consistent restored videos across
various tasks, including denoising, super-resolution, and depth estimation, without any further training.
Our zero-shot video restoration framework can be applied to any pre-trained image diffusion model,
offering a versatile solution that can adapt to various restoration tasks.

While inspired by recent advances in diffusion-based generation models like VidToMe (Li et al.,
2024) and TokenFlow (Geyer et al., 2023), our work goes beyond combining existing techniques.
Our main contributions are:

• First zero-shot video restoration using diffusion models, balancing temporal consistency
and detail generation across various image-based models.

• Training-free framework manipulating latent and token spaces with hierarchical latent
warping and improved token merging.

• State-of-the-art results in extreme scenarios, surpassing traditional methods in generalizabil-
ity and robustness.

2 RELATED WORK

Video Restoration. Video restoration aims to restore high-quality frames from degraded videos,
addressing issues such as noise, blur, and low resolution (Chan et al., 2021a;c; Isobe et al., 2020;
Li et al., 2023; Youk et al., 2024; Zhang et al., 2018; Liu et al., 2019; 2021a). This task is more
challenging than image restoration (Guo et al., 2019) due to the need for temporal consistency.
Learning-based approaches employ architectures like optical flow warping (Huang et al., 2022; Pan
et al., 2020; Shi et al., 2023a;b; Xue et al., 2019), deformable convolutions (Chan et al., 2021a;b; Dai
et al., 2017; Tian et al., 2020; Wang et al., 2019; 2020; Zhu et al., 2019), and attention mechanisms to
handle temporal dependencies (Cao et al., 2021; Li et al., 2020; Liang et al., 2022; Zamir et al., 2022).
Major limitations include dependency on paired HQ-LQ data (Chan et al., 2022b; Xie et al., 2023;
Yang et al., 2021), assumptions of predefined degradation processes (Kim et al., 2017; 2016; Kong
et al., 2023; Li et al., 2020; Liang et al., 2022), and the need for retraining for different degradation
levels (Liu & Sun, 2013; Nah et al., 2019; Yi et al., 2019; Youk et al., 2024). These factors reduce
effectiveness in real-world applications and lead to poor generalization. Additionally, these methods
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Figure 2: 4× video super-resolution results. (a) Traditional regression-based methods such as
FMA-Net (Youk et al., 2024) are limited to the training data domain and tend to produce blurry results
when encountering out-of-domain inputs. (b) Although applying image-based diffusion models such
as DiffBIR (Lin et al., 2024) to individual frames can generate realistic details, these details often
lack consistency across frames. (c) Our method leverages an image diffusion model to restore videos,
achieving both realistic and consistent results without any additional training.

often lose significant detail, similar to image restoration (Chen et al., 2022; Liang et al., 2021; Wang
et al., 2021; Zhang et al., 2021).

Diffusion Models for Image Restoration. With significant advancements in diffusion models (Choi
et al., 2021; Dhariwal & Nichol, 2021; Hertz et al., 2023; Ho et al., 2020; Rombach et al., 2022),
many diffusion-based approaches have been proposed for image restoration (Fei et al., 2023; Ho
et al., 2020; Nichol et al., 2021; Sohl-Dickstein et al., 2015; Song et al., 2020b; Wang et al., 2023;
Yang et al., 2023b). These methods include training diffusion models from scratch (Rombach et al.,
2022; Saharia et al., 2022; Xia et al., 2023; Yue et al., 2024), introducing constraints into the reverse
diffusion process of pre-trained models (Kawar et al., 2022), and fine-tuning frozen pre-trained
diffusion models with additional trainable layers (Wang et al., 2023; Yang et al., 2023b; Zhang
et al., 2023), as seen in StableSR (Wang et al., 2023) and DiffBIR (Lin et al., 2024). Despite their
effectiveness in image restoration, these methods face challenges in video restoration due to temporal
inconsistencies caused by the diffusion process’s randomness. In contrast, our method allows these
approaches to work on video without any training, addressing the temporal consistency issue while
leveraging the strengths of image restoration diffusion models.

Video Editing Methods for Temporal Consistency. Recent research has extended pre-trained
image diffusion models to video tasks (Esser et al., 2023; Ho et al., 2022a;b; Hu et al., 2023; Lu et al.,
2023; Luo et al., 2023; Mei & Patel, 2023; Kara et al., 2024). Various methods have been proposed to
enhance temporal consistency in video editing, which can be categorized based on the level at which
they operate:

• Latent Space Level: Approaches working at the latent space level include Rerender-A-
Video (Yang et al., 2023a), which employs latent warping (Teed & Deng, 2020; Xu et al.,
2022) and frame interpolation. While these methods aim to maintain consistency in the
latent representations of consecutive frames, they may struggle with semantic consistency
in demanding restoration tasks. Our method introduces a novel hierarchical latent warping
technique that addresses these limitations.

• Token Level: Methods operating at the token level include VidToMe (Li et al., 2024) and
TokenFlow (Geyer et al., 2023), which enhance temporal consistency by merging attention
tokens across frames. Token merging (Bolya et al., 2023) is another technique used at this
level. However, these techniques often produce blurry outputs in restoration tasks. Our
approach improves upon these methods by introducing a hybrid flow-guided spatial-aware
token merging technique that maintains sharpness while ensuring temporal consistency.
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Figure 3: Pipeline of our proposed zero-shot video restoration method. We process low-quality
(LQ) videos in batches using a diffusion model, with a keyframe randomly sampled within each batch.
(a) At the beginning of the diffusion denoising process, hierarchical latent warping provides rough
shape guidance both globally, through latent warping between keyframes, and locally, by propagating
these latents within the batch. (b) Throughout most of the denoising process, tokens are merged before
the self-attention layer. For the downsample blocks, optical flow is used to find the correspondence
between tokens, and for the upsample blocks, cosine similarity is utilized. This hybrid flow-guided,
spatial-aware token merging accurately identifies correspondences between tokens by leveraging both
flow and spatial information, thereby enhancing overall consistency at the token level.

While these video editing techniques generate impressive results with minimal effort, they often
struggle with semantic consistency and detail preservation in demanding restoration tasks. Our
work draws inspiration from these approaches but introduces novel elements specifically designed to
address the challenges of video restoration, combining the strengths of latent and token-level methods
while mitigating their individual weaknesses.

3 METHOD

Given a low-quality video with n frames
{
y1, y2, . . . , yn

}
, we aim to restore it to high-quality{

x1, x2, . . . , xn
}

using image-based diffusion models. Directly applying these models frame-by-
frame causes temporal inconsistency due to inherent stochasticity, especially in extreme degradation
(Fig. 2 and Fig. 6). Our method (Fig. 3) addresses this by enforcing temporal stability in latent and
token spaces through Hierarchical Latent Warping (Sec. 3.2) and Hybrid Flow-guided Spatial-aware
Token Merging (Sec. 3.3). We introduce diffusion models and video token merging (Sec. 3.1), then
detail our key components (Sec. 3.2-Sec. 3.4).

3.1 DIFFUSION MODELS FOR VIDEO EDITING

Diffusion models have been successfully applied to video editing tasks by extending image-based
models. These models typically operate as follows:

Diffusion Process. The forward process adds noise to a clean image x0 over T steps:
xt =

√
αtxt−1 +

√
1− αtϵt−1 ⇒ xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where t ∼ [1, T ], ϵt, ϵ ∼ N (0, I), and ᾱt =
∏t

s=1 αs. A UNet-based denoiser ϵθ is trained to
estimate and remove this noise. During inference, the inverse process gradually denoises xt to
produce x0 (Ho et al., 2020; Song et al., 2020a; 2023). These models can be enhanced with additional
guidance signals for controlled generation (Zhang et al., 2023; Kawar et al., 2022).

Video Token Merging. To maintain temporal consistency, techniques like Video Token Merging
(VidToMe) (Li et al., 2024) are employed. This process merges similar tokens within frame chunks
in attention blocks: Given a token chunk T ∈ RB×A×C , where A = w ∗ h, the algorithm first
separates the tokens into source tokens Tsrc ∈ RB×A−1×C and a target token Ttar ∈ RB×1×C . It
then calculates the cosine between each source and target token, determining their corresponding
similarity levels, denoted score ∈ R((B−1)∗A)×A. The algorithm then identifies the most similar
target token for each source token by taking the maximum value in the last column.

s(Tsrc,Ttar) =
Tsrc · Ttar

∥Tsrc∥ ∥Ttar∥
, c = max

{t∈Ttar}
(s(Tsrc, t)), (2)
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Step2: Latent Warping

Step 3: Token Merging with Optical Flow

Step 4: Token Merging with Similarity
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Attention

Step 1: Keyframe Latent Warping

Token

Unmerging

Cross
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Figure 4: An illustration of our key modules. With-
out requiring any training, these modules can achieve
coherence across frames by enforcing temporal stabil-
ity in both latent and token space. Hierarchical latent
warping provides global and local shape guidance; Hy-
brid spatial-aware token merging before the self-attention
layer improves temporal consistency by matching similar
tokens using optical flow in the down blocks and cosine
similarity in the up blocks of the UNet.

Step 40

Step 30

Step 10

Step 20

Figure 5: Token correspondences (cosine
similarity and optical flow) across de-
noising steps. Early on (e.g. step 10),
optical flow guides better due to noisy la-
tents. Later (e.g. steps 30-40), similarity
and flow focus on different regions, show-
casing the benefit of our hybrid approach
for effective token merging throughout de-
noising.

where s(·, ·) is the cosine similarity score and c indicates the correspondences. Next, the r most
similar paired source-target tokens are merged, and the remaining tokens are concatenated as the
output. Merged tokens are subsequently unmerged after self-attention to preserve the original shape
by simply assigning the merged source-target tokens the exact same value. The token merging and
unmerging are defined as follows:

Tmerge =M(Tsrc,Ttar, c, r) , Tunmerge = U(Tmerge, c) , (3)

whereM and U denote the merging and unmerging operations, respectively.

Latent Warping. Some methods (Zhou et al., 2023) perform warping in the latent space to maintain
consistency between frames. This is done by warping the latent representations of adjacent frames.

Limitations in video restoration. Existing video editing techniques face challenges in video
restoration, often prioritizing temporal consistency over detail preservation. Early-stage denoising
produces noisy latents, making traditional similarity measures unreliable, especially in UNet’s
downsample blocks (Fig. 5, top). Most methods focus on frame-to-frame consistency and missing
global-local coherence, while high merging ratios can lead to over-smoothing. Our approach combines
hierarchical latent warping with hybrid flow-guided spatial-aware token merging to address these
limitations. This combination provides multi-scale temporal consistency, balances detail preservation
with consistency, and adapts to various degradation types. Latent warping handles large-scale
inconsistencies in early stages, while token merging ensures fine detail consistency as features
become more meaningful. By leveraging both optical flow and similarity measures, our method aims
for superior zero-shot video restoration without task-specific training or computational resources.

3.2 HIERARCHICAL LATENT WARPING

We introduce a hierarchical latent warping module operating in latent space, with a two-level approach:
(1) Global level: Warping between keyframes, and (2) Local level: Propagating warped latents within
each batch. As shown in Fig. 4 (upper part), this provides rough shape guidance on global and local
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scales. Let x̂i
t→0 be the predicted x̂0 latent for the ith keyframe at denoising step t. We first perform

global-level warping between keyframes:

x̂i
t→0 ←Mji · x̂i

t→0 + (1−Mji) · W(x̂j
t→0, fji), (4)

where j = i−1 and fji, Mji denotes the optical flow and the occlusion mask from lqj to lqi estimated
by GMFlow (Xu et al., 2022). We then perform local-level warping by propagating these latents to
remaining frames within each batch. This approach ensures corresponding points share similar latents
globally across keyframes and locally within batches from the start of denoising, providing a more
comprehensive approach to maintaining consistency compared to simple frame-to-frame warping.

3.3 HYBRID FLOW-GUIDED SPATIAL-AWARE TOKEN MERGING

While latent manipulation can achieve a certain degree of consistency, manipulating latents during the
later stages of the denoising process would result in blurry outcomes. Additionally, the token space is
highly semantically related to the image. Therefore, we propose hybrid flow-guided spatial-aware
token merging to achieve consistency in the token space.

Flow-guided. Our hybrid correspondence mechanism integrates spatial information, optical flow,
and feature-based similarity. In early denoising stages, latents are noisy, making cosine similarity
unreliable, especially in UNet’s downsample blocks (Fig. 5, top). However, optical flow from low-
resolution inputs provides better guidance. As denoising progresses (e.g., steps 30-40), flow-based
and similarity-based methods often identify different matches (Fig. 5, bottom), suggesting the benefit
of a hybrid approach. Even with low-quality video, we can identify correspondences between frames
based on color. We use flow for correspondences in UNet downsample blocks and employ forward-
backward consistency check as a criterion to determine r most similar paired source token Tsrc and
target token Ttar:

σ = exp(−∥fsrc→tar(X(Tsrc)) + ftar→src (X(Tsrc) + fsrc→tar(X(Tsrc)))∥22), (5)

where σ is the confidence, X(Tsrc) is the spatial location of Tsrc, and fsrc→tar, ftar→src denotes the
forward and backward flow between Tsrc and Ttar. The proposed flow-guided token merging is:

Tmerge =M(Tsrc, Ttar, fsrc→tar, σ, r). (6)

Fig. 4 provides a clearer illustration of our proposed component. While optical flow can be chal-
lenging in certain conditions (e.g., fast motion, textureless regions), our method incorporates several
safeguards. We use forward-backward consistency checks, merge only the r most similar token
pairs, and combine flow-based correspondence with spatial information and similarity matching.
This multi-faceted approach ensures robust performance in challenging conditions. Additionally, as
shown in Fig. 5 (bottom), flow and cosine similarity identify different correspondences, providing
comprehensive guidance. Tab. 1 demonstrates that using flow correspondence in downblocks and
similarity in upblocks yields the best visual quality and temporal consistency.

Spatial-awareness and Padding Removal. Directly finding correspondences using cosine simi-
larity can lead to mismatches in areas with uniform textures, especially in video backgrounds (e.g.,
sky, sand, grass; Fig. 5, bottom), resulting in blurrier outcomes. Given that corresponding points
in adjacent frames are typically spatially close, we leverage this information by weighting cosine
similarity scores with tokens’ spatial distances:

s′ij = sij · e−τ , with τ =
⌊[
∥X(i)−X(j)∥22

]
/R

⌋
, (7)

where X(i), X(j) are spatial locations of the ith source and jth target token; R is a hyperparameter
defining the radius of the uniform weight region.

This spatial awareness primarily applies to cosine similarity correspondences in UNet upsample
blocks. For flow correspondences in downsample blocks, we rely on forward-backward consistency
checks as described in Eq. (5), since optical flow models inherently consider spatial information.
This combination ensures effective utilization of spatial information throughout our token merging
process. Another point to consider is that images are often padded to pass through the UNet, which
can significantly impact token correspondences by causing cosine similarity to mistakenly align
padding with actual content, even in later denoising stages. To mitigate this, we remove padding
before merging and reapply it after unmerging. See the appendix for visual ablation results.
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Figure 6: Qualitative comparisons on 4× video super-resolution. As shown in the first row, the
low-quality input lacks almost all details. In the zoomed-in patches, our method produces clearer and
more consistent results.

Input Ours Upscale-A-Video Input Ours Upscale-A-Video
Figure 7: Qualitative comparisons with Upscale-A-Video (Zhou et al., 2023) on 4× video SR.

Token Unmerging. After the self-attention operation, tokens need to be unmerged to restore the
original shape. We adopt a replacement-based unmerging process where tokens are restored to their
original shape using the identified correspondences. This approach is similar to VidToMe (Li et al.,
2024), but our method’s primary innovation lies in enhancing the correspondence identification
process during the merging stage, which leads to more accurate and effective token matching.

Merging Ratio Annealing. To prevent over-smoothing in later denoising stages, we employ ratio
annealing to gradually reduce the merging ratio. The merging ratio of the ith denoising step is:

ri = r · cos
(
π

2
·max

(
min

(
δ ·

i− ibeg

iend − ibeg
, 1

)
, 0

))
, (8)

where ibeg, iend are predefined steps indicating the beginning and end of the merging process, and δ
controls annealing speed. This technique balances smoothness and temporal consistency, achieving
a compromise between regression-based methods (temporally consistent but overly smooth) and
per-frame inferencing (detailed but inconsistent). As shown in Fig. 2 and Fig. 6, our approach
preserves fine details while maintaining temporal coherence, proving effective in severe degradation
scenarios. Visual comparisons for 8× super-resolution are provided in supplementary materials.

3.4 SCHEDULING

As depicted in Fig. 3, at the initial stage of the diffusion denoising process, hierarchical latent warping
offers rough shape guidance on a global scale by warping latents between keyframes and on a local
scale by propagating these latents within the batch. During the majority of the denoising process,
tokens are processed with our hybrid spatial-aware token merging before entering the attention layer.
This component further improves temporal consistency by matching similar tokens, utilizing both
flow and spatial information.

4 EXPERIMENTS

Testing Dataset. For video super-resolution, we evaluate on REDS4 (Nah et al., 2019), Vid4 (Liu
& Sun, 2013) and DAVIS (Perazzi et al., 2016a) testing sets, with downsample scales ×4 and ×8,

7
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Table 1: Quantitative comparisons. (Left) Video super-resolution on the DAVIS (Perazzi et al.,
2016b), Vid4 (Liu & Sun, 2013) and REDS4 (Nah et al., 2019) datasets. (Right) video denoising
of various noise levels on the REDS30 and Set8 (Tassano et al., 2019) dataset. The best and second
performances are marked in red and blue, respectively. E∗

warp denotes Ewarp(×10−3) and Einter,
LPIPSinter denotes interpolation error and LPIPS. - indicates out-of-memory.

SD ×4 DiffBIR

Metrics VidToMe FMA-Net Frame Ours Frame Ours

D
AV

IS
×

4

PSNR ↑ 23.014 25.215 23.504 23.843 23.780 24.182
SSIM ↑ 0.566 0.727 0.584 0.618 0.601 0.621

LPIPS ↓ 0.405 0.347 0.277 0.272 0.264 0.262
E∗

warp ↓ 0.520 0.186 0.912 0.745 0.654 0.474
Einter ↓ 13.676 11.558 18.125 17.431 16.529 14.666

LPIPSinter ↓ 0.329 0.078 0.292 0.274 0.266 0.232

D
AV

IS
×

8

PSNR ↑ 22.097 22.690 20.268 20.519 21.964 22.331
SSIM ↑ 0.513 0.594 0.446 0.424 0.502 0.519

LPIPS ↓ 0.554 0.528 0.470 0.434 0.362 0.367
E∗

warp ↓ 0.440 0.351 2.199 1.759 0.964 0.699
Einter ↓ 12.624 13.978 24.496 21.746 17.981 15.853

LPIPSinter ↓ 0.388 0.132 0.457 0.442 0.372 0.333

R
E

D
S4
×

4 PSNR ↑ 23.134 25.829 24.189 24.226 24.679 25.118
SSIM ↑ 0.589 0.761 0.638 0.641 0.657 0.683

LPIPS ↓ 0.357 0.327 0.247 0.242 0.211 0.222
E∗

warp ↓ 0.579 0.392 0.817 0.811 0.704 0.499
Einter ↓ 17.869 19.014 22.906 22.889 22.305 20.130

LPIPSinter ↓ 0.356 0.133 0.295 0.281 0.271 0.221

R
E

D
S4
×

8 PSNR ↑ 21.894 22.842 - - 22.479 22.961
SSIM ↑ 0.532 0.644 - - 0.559 0.59

LPIPS ↓ 0.538 0.423 - - 0.311 0.306
E∗

warp ↓ 0.423 0.753 - - 0.828 0.551
Einter ↓ 15.502 21.519 - - 21.76 19.382

LPIPSinter ↓ 0.412 0.159 - - 0.351 0.287

R
E

D
S4
×

16

PSNR ↑ 20.520 21.569 18.706 18.858 20.124 20.712
SSIM ↑ 0.483 0.570 0.461 0.410 0.461 0.509

LPIPS ↓ 0.697 0.565 0.612 0.562 0.446 0.438
E∗

warp ↓ 0.296 0.619 2.664 2.030 1.168 0.665
Einter ↓ 12.945 18.758 28.478 24.000 21.33 17.731

LPIPSinter ↓ 0.417 0.139 0.559 0.493 0.444 0.358

V
id

4
×

4

PSNR ↑ 19.622 23.209 20.047 20.134 20.687 21.226
SSIM ↑ 0.425 0.679 0.478 0.473 0.497 0.525

LPIPS ↓ 0.491 0.375 0.343 0.331 0.329 0.326
E∗

warp ↓ 0.687 0.203 1.502 1.397 1.156 0.677
Einter ↓ 11.754 4.442 17.234 16.921 15.478 11.316

LPIPSinter ↓ 0.337 0.026 0.275 0.271 0.265 0.198

V
id

4
×

8

PSNR ↑ 18.811 21.033 17.813 17.992 18.636 19.304
SSIM ↑ 0.372 0.521 0.345 0.307 0.367 0.406

LPIPS ↓ 0.654 0.514 0.507 0.484 0.440 0.435
E∗

warp ↓ 0.477 0.221 2.523 1.972 1.524 0.767
Einter ↓ 9.942 5.269 22.881 19.970 18.112 12.281

LPIPSinter ↓ 0.393 0.032 0.423 0.419 0.395 0.294

DiffBIR

σ Metrics VidToMe Shift-Net Frame Ours

R
E

D
S3

0
75

PSNR ↑ 22.671 21.033 24.585 24.520
SSIM ↑ 0.559 0.381 0.649 0.649

LPIPS ↓ 0.397 0.735 0.276 0.275
E∗

warp ↓ 0.727 0.765 0.751 0.706
Einter ↓ 18.440 21.751 21.798 21.166

LPIPSinter ↓ 0.375 0.501 0.275 0.264

R
E

D
S3

0
10

0 PSNR ↑ 22.588 22.573 24.524 24.534
SSIM ↑ 0.557 0.484 0.648 0.652

LPIPS ↓ 0.404 0.518 0.275 0.271
E∗

warp ↓ 0.733 1.126 0.763 0.696
Einter ↓ 18.370 23.424 21.835 20.639

LPIPSinter ↓ 0.380 0.375 0.281 0.267

R
E

D
S3

0
ra

nd
om PSNR ↑ 22.348 21.113 24.579 24.508

SSIM ↑ 0.546 0.386 0.650 0.649
LPIPS ↓ 0.429 0.728 0.276 0.270
E∗

warp ↓ 0.681 1.896 0.755 0.713
Einter ↓ 17.608 27.565 21.743 21.140

LPIPSinter ↓ 0.384 0.542 0.282 0.272

Se
t8

50

PSNR ↑ 21.531 23.433 23.197 23.713
SSIM ↑ 0.501 0.482 0.594 0.63

LPIPS ↓ 0.415 0.574 0.261 0.245
E∗

warp ↓ 0.911 1.358 1.078 0.747
Einter ↓ 17.217 19.845 19.732 16.814

LPIPSinter ↓ 0.406 0.432 0.332 0.255

Se
t8

10
0

PSNR ↑ 21.226 18.198 22.519 22.955
SSIM ↑ 0.484 0.281 0.553 0.591

LPIPS ↓ 0.472 0.733 0.338 0.323
E∗

warp ↓ 0.918 2.229 1.13 0.802
Einter ↓ 17.367 24.661 20.18 17.444

LPIPSinter ↓ 0.421 0.619 0.372 0.286

Se
t8

15
0

PSNR ↑ 20.209 16.136 21.005 21.418
SSIM ↑ 0.443 0.291 0.486 0.544

LPIPS ↓ 0.554 0.729 0.449 0.402
E∗

warp ↓ 0.972 4.279 1.207 0.832
Einter ↓ 17.872 22.343 20.729 17.616

LPIPSinter ↓ 0.470 0.646 0.450 0.331

Table 2: Ablation studies for 8× VSR on DAVIS (Perazzi et al., 2016a) test sets. (Left) different
correspondence matching methods. (Right) the proposed components applied at different stages of
the denoising process. We apply our two proposed components, hierarchical latent warping (HLW)
and hybrid spatial-aware token merging (HS-ToMe), at the early, mid, and late denoising stages.

Down
blocks

Up
blocks

Spatial-
aware LPIPS ↓ E∗

warp ↓ LPIPSinter ↓

Flow Flow – 0.518 1.214 0.563
Cos Cos – 0.390 0.736 0.350
Cos Flow – 0.507 1.049 0.545
Flow Cos – 0.375 0.677 0.347
Flow Cos ✓ 0.367 0.699 0.333

HLW (Sec. 3.2) HS-ToMe (Sec. 3.3)

Early Mid Late Early Mid Late LPIPS ↓ E∗
warp ↓ LPIPSinter ↓

– – – – – – 0.362 0.964 0.372
✓ – – ✓ – – 0.368 0.887 0.369
✓ ✓ – ✓ ✓ ✓ 0.43 0.804 0.383
✓ ✓ ✓ ✓ ✓ ✓ 0.411 0.704 0.339
✓ – – ✓ ✓ ✓ 0.367 0.699 0.333

following the degradation pipeline of RealBasicVSR (Chan et al., 2022b). For video denoising, we
evaluate on REDS30 (Nah et al., 2019) and Set8 (Tassano et al., 2020) with different noise levels (std.
= 50, 75, 100, 150 and randomly sampled from the range [50, 100]).

Evaluation Metrics. We assess (1) image quality via LPIPS, SSIM, and PSNR; (2) temporal
consistency, using warping error Ewarp, interpolation error, and interpolation LPIPS. Since LPIPS
better reflects visual quality, we propose interpolation LPIPS, based on the interpolation error used in a
previous study (Li et al., 2024), to more accurately measure video continuity from a visual perspective.
This involves interpolating a target frame from its previous and next frames and computing the LPIPS
between the estimated and target frames.

Implementation Details. The experiment is conducted on an NVIDIA RTX 4090 GPU. We apply
our method to DiffBIR (Lin et al., 2024) and SDx4 upscaler (sdx, 2023), both image-based diffusion
models, to demonstrate the proposed method’s compatibility with different models. Note that for
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Figure 8: Video denoising comparisons on the REDS30 (Nah et al., 2019) dataset. Our method
effectively denoises and generates detailed results while maintaining temporal coherence.

models that are restricted to a super-resolution scale of 4×, we will apply the process twice and then
use bicubic downsampling to achieve 8× results. However, this will can lead to out-of-memory issues
for SDx4 upscaler in REDS.

4.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

To verify the effectiveness of our approach, we compare it with several state-of-the-art methods,
including BasicVSR++ (Chan et al., 2022a), RVRT (Liang et al., 2022), and FMA-Net (Youk et al.,
2024) for video super-resolution, and Shift-Net (Li et al., 2023) for video denoising. We also compare
our method to per-frame restoration and the application of VidToMe (Li et al., 2024), a zero-shot video
editing method, onto the same model as ours. We also try to compare with Upscale-A-Video (Zhou
et al., 2023), which is a diffusion-based video restoration model fine-tuned from an image-based
diffusion model. However, we are unable to run their inference code on our available hardware (one
A6000 GPU, 48GB memory) due to persistent out-of-memory (OOM) issues, even with their default
configuration. Therefore, we conduct experiments on the same test cases used in their paper.

Our zero-shot video restoration framework is designed to be highly adaptable and capable of leverag-
ing a wide range of pre-trained image diffusion models. This flexibility allows easy adaptation from
image to video models without extensive retraining, enabling the application of various restoration
tasks by simply switching the underlying image diffusion model.

Video Super-resolution. As shown in Tab. 1, regression-based methods like FMA-Net (Youk et al.,
2024) struggle with large motion or severe degradation. VidToMe (Li et al., 2024) can generate highly
consistent results, but they are often very blurry, leading to poor visual quality. In contrast, our method
enhances temporal consistency while maintaining the generation quality of the original diffusion
model, making it the most competitive approach. Fig. 6 provides visualizations of two challenging
VSR cases. FMA-Net fails to produce sharp results due to domain gaps between training and testing.
Diffusion-based image restoration method DiffBIR (Lin et al., 2024) and SD×4 upscaler (sdx, 2023)
can generate sharp results with details, while per-frame processing makes the result video temporal
inconsistent and jitters across frames. On the contrary, our zero-shot video restoration framework
restores a low-quality input video into a temporally consistent high-quality video. The qualitative
comparisons with Upscale-A-Video are provided in Fig. 7. The results demonstrate that our method
produces more detailed outputs that better preserve the content of input frames. This advantage
stems from our approach of leveraging pre-trained diffusion priors and zero-shot adaptation to video,
compared to their fine-tuning strategy.

Video Denoising. Video denoising, compared to VSR, is a simpler task for regression models,
as they can often find the correct pixel value given a sufficiently large batch size. However, our
method consistently outperforms others in terms of visual quality (LPIPS) and remains highly robust
even as degradation becomes severe. Fig. 8 visualizes the denoising results on the REDS30 dataset.
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Figure 9: Applying our techniques to consistent video depth. Integrating our proposed framework
into Marigold (Ke et al., 2024) helps improve the temporal consistency of video depth estimation.

Shift-Net (Li et al., 2023) fails to remove all noise, likely due to the out-of-domain noise level;
VidToMe (Li et al., 2024) produces smooth results but lacks fine details. Although DiffBIR (Lin
et al., 2024) generates highly detailed images, it suffers from poor temporal consistency, as evident in
the changes to the pedestrian’s head and the statue’s face. In contrast, our method preserves both fine
details and temporal consistency, effectively balancing these two aspects.

Other Video Tasks: Consistent Video Depth. Our zero-shot framework is applicable to any pre-
trained image-based diffusion models and could improve the predicted video consistency. Therefore,
we integrate our proposed zero-shot framework into a state-of-the-art latent diffusion-based monocular
depth estimator: Marigold (Ke et al., 2024). Fig. 9 shows that integrating our proposed framework
into Marigold helps improve the temporal consistency of video depth estimation. We provide more
visual comparisons in the supplementary materials.

This adaptability to various tasks (super-resolution, denoising, depth estimation) showcases the
broad applicability of our approach. As more powerful or specialized image models emerge, our
framework can quickly adapt to leverage these improvements for video restoration tasks. We provide
computational complexity evaluations in the supplementary materials.

4.2 ABLATION STUDY

Ways of Identifying Correspondence. Tab. 2 presents an ablation study comparing different
approaches (optical flow and cosine similarity) for finding correspondences and their order in the
UNet. As detailed in Sec. 3.3, the hybrid approach of using optical flow at the downsample blocks and
cosine similarity at the upsample blocks achieves the best performance. Additionally, our proposed
spatial-aware token merging further enhances performance by utilizing spatial information to guide
correspondences. See supplementary materials for temporal profile comparisons.

Applied Stages in the Denoising Process. Tab. 2 presents an ablation study evaluating the ap-
plication of our two proposed components, hierarchical latent warping (HLW, Sec. 3.2) and hybrid
spatial-aware token merging (HS-ToMe, Sec. 3.3), at the early, mid, and late stages of the denoising
process. The results indicate that applying latent warping in the mid or late stages can significantly
degrade the generated outcomes. Furthermore, ensuring consistency in the token space is crucial for
achieving coherent and high-quality results.

5 CONCLUSION

We introduce a novel zero-shot video restoration framework utilizing pre-trained image-based dif-
fusion models, eliminating the need for extensive retraining. Our approach integrates hierarchical
latent warping and hybrid flow-guided, spatial-aware token merging, significantly enhancing temporal
consistency and video quality under various degradation conditions. Experimental results demonstrate
that our framework surpasses existing methods both in quality and consistency.

Limitations. Our framework has two main limitations: (1) LDM decoder sensitivity can cause
flickering in dynamic scenes. (2) Extreme degradation may yield unsatisfactory results. Future work
will address these issues by stabilizing decoder output, and enhancing extreme degradation handling.
Our framework’s adaptability allows for the integration of future, more powerful diffusion models.
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A APPENDIX / SUPPLEMENTAL MATERIAL

In this supplementary material, we first provide additional details on the testing datasets and evaluation
metrics. Subsequently, we present more visual comparisons of various methods.

A.1 ABLATION STUDIES ON CORRESPONDENCES IDENTIFIED BY COSINE SIMILARITY

Fig. 10 The figure shows the correspondences at denoising step 40 for three scenarios: without spatial
awareness and padding removal, without spatial awareness, and with both spatial awareness and
padding removal (ours). It is evident that padding values significantly affect the matching quality.
However, even after removing padding, many mismatched diagonal lines remain, leading to blurry
results. In contrast, our method effectively finds accurate correspondences by leveraging spatial
information from the video.

A.2 SEVERE DEGRADATION SCENARIOS.

Our balanced approach proves particularly effective in severe degradation scenarios. For instance,
in 8× super-resolution tasks, our method not only avoids artifacts but can even improve visual
quality compared to per-frame approaches (Fig. 11). Additionally, in the 4× video face super-
resolution dataset (Chen et al., 2024), our results contain more details compared to FMA-Net and are
temporally more consistent than per-frame method DiffBIR as shown in Fig. 14. This underscores
the effectiveness of our ratio annealing technique in addressing the over-smoothing tendency while
maintaining the benefits of our token merging approach. Additional comparisons on video super-
resolution can be found at Fig. 12 and Fig. 13.

Other Video Tasks: Consistent Video Depth. Our zero-shot framework is applicable to any pre-
trained image-based diffusion models and could improve the predicted video consistency. Therefore,
we integrate our proposed zero-shot framework into a state-of-the-art latent diffusion-based monocular
depth estimator: Marigold (Ke et al., 2024). Fig. 15 shows that integrating our proposed framework
into Marigold helps improve the temporal consistency of video depth estimation.

A.3 COMPUTATIONAL COMPLEXITY

While our method focuses on zero-shot video restoration without additional training, it’s important
to consider the computational requirements in comparison to other approaches. Tab. 3 provides an
overview of the training time and GPU specifications for different methods, including ours.

As shown in the table, our method stands out by not requiring any training or fine-tuning, which
significantly reduces the computational resources needed. This is in stark contrast to other methods
that require multiple high-end GPUs and several days of training time. For inference, our method
introduces some computational overhead due to the hierarchical latent warping and hybrid token
merging processes. However, this overhead is relatively small compared to the resources required for
training or fine-tuning video models. Specifically, our method adds only approximately 6 seconds to
the inference time of the base image diffusion model per frame.

A.4 ADDITIONAL ABLATION STUDIES

Comparison of temporal profiles. The comparisons in Fig. 16 also indicate that our results are
smoother, demonstrating better temporal stability.
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(a) Correspondences without spatial-awareness and padding removal

(b) Correspondences without spatial-awareness

(c) Correspondences with spatial-awareness and padding removal (ours)

Figure 10: Correspondences at denoising step 40 for different settings.
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Figure 11: Applying our method on DiffBIR and SD ×4 upscaler for 8×SR task. In this case
of severe degradation, our method avoids artifacts and outperforms per-frame inference in terms of
visual quality.

Token Unmerging Strategies. We experimented with two unmerging strategies: averaging paired
tokens and direct replacement with keyframe tokens. Tab. 4 shows the results of these experiments
on the Vid4 x4 SR task. As shown in the table, the replacement method outperforms averaging
in terms of LPIPS, indicating better perceptual quality. Our experiments consistently showed that
averaging tends to produce blurrier outputs in restoration tasks. Based on these results, we adopted
the replacement-based unmerging process in our final model, as it preserves more details and leads to
sharper outputs.
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Input frames FMA-Net DiffBIR (per-frame) Ours

Input frames FMA-Net DiffBIR (per-frame) Ours

Figure 12: Additional qualitative comparisons on 4× video super-resolution. In the zoomed-in
patches, our method produces clearer and more consistent results.
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Figure 13: Additional qualitative comparisons on 8× video super-resolution. As shown in the first
row, the low-quality input lacks almost all details. In the zoomed-in patches, our method produces
clearer and more consistent results.
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Figure 14: Additional qualitative comparisons on 4× video face super-resolution.

Table 3: Training time and used devices for different methods.

Method Training time GPU specs

Shift-Net (Yan et al., 2018) Not reported 8 NVIDIA A100-32G GPUs
FMA-Net (Youk et al., 2024) Not reported Not reported
Upscale-A-Video (Zhou et al., 2023) Not reported 32 NVIDIA A100-80G GPUs
Ours No training needed -

Limitations: Extreme Degradation Extreme degradation (e.g., 32× super-resolution) or overly
detailed facial features may yield unsatisfactory results (Fig. 17). However, our framework’s adapt-
ability allows the incorporation of future, more powerful image-based diffusion models. Future
improvements will focus on refining keyframe selection, stabilizing decoder output across LDM ar-
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Figure 15: Applying our techniques to consistent video depth. Integrating our proposed framework
into Marigold (Ke et al., 2024) helps improve the temporal consistency of video depth estimation.

chitectures, and enhancing extreme degradation handling. These aim to improve practical application
and mitigate flickering issues inherent in LDM decoders.
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Input Video

Flow + Cosine

Flow + Flow

Cosine + Cosine

Cosine + Flow

Ours

𝑥
𝑡

𝑡

𝑥

Figure 16: Comparison of temporal profile. We examine a row of pixels and track changes over
time. The profiles from Flow + Flow and Cosine + Flow methods exhibit noise, indicating flickering
artifacts. The Cosine + Cosine method shows smoother profiles but contains some discontinuities.
Flow + Cosine demonstrates improved consistency but retains some distortions. Utilizing flow, cosine,
and spatial-aware techniques, our method achieves the most seamless and consistent transitions,
effectively minimizing artifacts.

Table 4: Quantitative comparisons of different unmerging methods on Vid4 x4 SR task.

Unmerging Method LPIPS ↓
Averaging 0.337
Replacement 0.329

(a) DDNM (b) FMA-Net (c) Ours

Figure 17: Failure case under 32x SR. Most methods fail under this extreme degradation. However,
if more powerful image-based diffusion models emerge in the future, our method can be easily
adapted, offering greater potential to achieve this task.
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