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Abstract

Dynamic pricing algorithms typically assume continuous price variables, which
may not reflect real-world scenarios where prices are often discrete. This paper
demonstrates that leveraging discrete price information within a semi-parametric
model can substantially improve performance, depending on the size of the support
set of the price variable relative to the time horizon. Specifically, we propose a novel
semi-parametric contextual dynamic pricing algorithm, namely BayesCoxCP, based
on a Bayesian approach to the Cox proportional hazards model. Our theoretical
analysis establishes high-probability regret bounds that adapt to the sparsity level -,

proving that our algorithm achieves a regret upper bound of 9] (T+N/2 1\/dT)

for v < 1/3 and O(T?/® + \/dT) for v > 1/3, where ~ represents the sparsity
of the price grid relative to the time horizon 7'. Through numerical experiments,
we demonstrate that our proposed algorithm significantly outperforms an existing
method, particularly in scenarios with sparse discrete price points.

1 Introduction

Contextual dynamic pricing involves updating product prices over time based on contextual infor-
mation such as customer features, product attributes, and market conditions. Given its importance
and practical applications in revenue management, this topic has been extensively explored across
statistics, machine learning, and operations research [9} 43} |34]. The primary objective of contextual
dynamic pricing is to maximize the seller’s revenue through determining optimal prices that account
for both covariates and demand uncertainty. A key challenge in dynamic pricing is balancing explo-
ration, which focuses on learning the underlying demand, with exploitation, which leverages current
knowledge to set optimal prices. Striking this balance is essential for developing effective dynamic
pricing strategies.

A commonly studied framework in contextual dynamic pricing is the binary choice model, where the
seller receives binary purchase feedback based on the posted prices [2} 24} 137, 144/ 3,130} [7, 10} 31]].
Specifically, at each time t = 1, ..., T, the seller observes a covariate X; € R¢ that captures customer
and product features. Based on the observed covariate and historical sales data, the seller determines
a price P, for the product. The customer’s valuation of the product, denoted as a random variable
Vi € R, is unknown to the seller. Following the posted price, the seller receives binary feedback
Y; € {0,1}, indicating whether a purchase occurred. The customer purchases the product if and
only if their valuation V; exceeds the offered price P;, which can be expressed as Y; = 1{V; > P;}.
Notably, V4 is not directly observed, as it is censored by P;. In the statistical literature, such data
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structures are called case 1 interval-censored data, also known as current status data [[18]]. Case 1
interval-censored data has been extensively studied in survival analysis [[11} 13} 28} 38} 25| 20, [19].

We consider a contextual pricing problem under the binary choice model. Let F'(v | X;) = P(V; <
v | X¢)and S(v | X¢) = 1 — F(v | X;) be the cumulative distribution function (c.d.f.) and
complementary c.d.f. (or survival function) of V; given X, respectively. The expected revenue from
a posted price p given the covariate X, is givenas E(p - Y; | Xy) = pP(V; > p | Xi) =pS(p | X4).
Then an optimal price P, at time ¢ is defined as a price that maximizes the expected revenue:

P} € argmaxpS(p | X¢). (1)
P

The regret at time ¢ is the difference between the expected revenue generated by the optimal price P;*
and that from the posted price P;, given by r(t) = P;S(P; | X¢) — P.S(P: | Xt). An important
objective is to design a pricing policy that minimizes the cumulative regret over a given time horizon
T, defined as R(T) = S, r(t).

As shown in (IJ), designing an effective pricing policy necessitates accurately estimating the comple-
mentary c.d.f. S(- | X;). Thus, a wide range of contextual dynamic pricing algorithms have
been developed using various models for the conditional distribution of V; given X;. Linear
models [2} 36 23| 17, 24 3 44} |6 30, 33| [10, 31], where F(v | X;) = Fy(v — X, B), and
log-linear models [37], where F(v | X;) = Fy(v - exp(—X,' 3)), serve as key examples. Here,
Fo(v) = P(V; < v | X; = 0) represents the baseline c.d.f., and 3 € R? captures the contextual
effect. More recently, [[7]] proposed using the Cox proportional hazards (PH) model, in which the com-

plementary c.d.f. is modeled as S(v | X;) = So(v)e"p(XtTm. Here, Sp(v) = 1 — Fy(v) represents
the baseline complementary c.d.f. In particular, semi-parametric models, which assume that both
the nonparametric baseline function Fj (or Sy) and the parametric coefficient 5 are unknown, have
gained considerable attention recently due to their flexibility and interpretability [37, 130, [7] [10} 31]].

In real-world applications, it is crucial to note that offered prices are often observed only on a discrete
set. For instance, retailers commonly restrict prices to convenient values for ease of communication
and consumer familiarity, and businesses often adhere to predefined discount levels or promotional
price points [39, 22]]. The significance of discrete price sets in revenue management has been
widely recognized [12} 4} 132]. Much of the existing dynamic pricing literature, however, focuses on
continuous price spaces [2} 136, 23} 117, 24} |37, 13} 144, 33} 16 130L (7, [1O} [31]].

From a theoretical perspective, discrete price sets provide significant advantages for estimating model
parameters. In a simple survival analysis setup with i.i.d. case 1 interval-censored observations, [41]
demonstrated that the inferential performance of the underlying survival function can be improved
by leveraging the fact that the monitoring time (the offered price in the dynamic pricing setting) is
discretely supported. To be specific, if the monitoring time is continuous, the optimal convergence
rate for estimating the unknown survival function with case 1 interval-censored data is known as
n~1/3, where n is the sample size [21]]. On the other hand, in [41], the monitoring times are assumed
to be supported on an equally spaced grid set. Then, they proved that the nonparametric maximum
likelihood estimator (NPMLE) achieves a convergence rate of n~(1=7)/2 for v < 1/3 and n=/3 for
v > 1/3, where v € (0, 1] represents the sparsity level of the grid relative to the sample size n (a
rigorous definition is provided in Section[2). In other words, one can achieve much faster convergence
rates if the grid is sparse (y < 1/3). Moreover, they developed an inferential procedure, such as
the construction of confidence intervals, that does not depend on the unknown quantity ~, often
referred to as an adaptive procedure. While the adaptive procedure in [41]] is quite complicated, [S]]
demonstrated that a much simpler and more practical Bayes procedure is also adaptive, and that the
corresponding Bayes estimator achieves the same convergence rate. Although these aforementioned
theoretical results are based on a non-contextual setup and i.i.d. data, they suggest that incorporating
the discrete support of the price may lead to a pricing policy with smaller cumulative regret compared
to one that ignores this information.

Motivated by these insights, we propose a novel semi-parametric contextual dynamic pricing algo-
rithm, BayesCoxCP, based on a Bayesian approach to the Cox PH model with case 1 interval-censored
data. The algorithm is specifically designed to exploit the discreteness of the offered price, leading to
improved performance. Our theoretical contributions are threefold:

* We derive the posterior convergence rate of the Bayes estimators of the semi-parametric Cox
PH model under the i.i.d. setup. We assume that the offered price is supported on an equally



Table 1: Existing regret bounds for contextual dynamic pricing algorithms based on semi-parametric
models. Note that the optimal rates depend on the model and assumptions, such as the smoothness of
Fy.

MODEL REGRET OPTIMALITY ADAPTATION TO
METHOD FOR V; UPPER BOUND INT DISCRETE SUPPORT
[10] LINEAR O((Td) i ) X X
31 LINEAR O(T% + ||B - B*|1T) X X
130] LINEAR O(T3d?) X X
[30] LINEAR 5(T%d) X X
137] LOG-LINEAR 5(T%d%) X X
] PH O(T3d) O X
ourwork | pi | O 2 +VAD)(<1/3) o o
o(Ts + \/(ﬁ) (y>1/3)

spaced grid set and prove that the posterior distribution converges at the optimal rate, which
adapts to the grid sparsity. This result generalizes the work of S]], who studied the survival
model without covariates, to the PH model. It is also worth noting that our prior for the
baseline cumulative hazard differs from that of [5] and can achieve computational benefits.

* We derive the regret upper bound of the proposed BayesCoxCP algorithm. Specifically,
our algorithm achieves a regret upper bound of order T 4+ (dT)'/? for v < 1/3 and
T2/3 4+ (dT)'/? for v > 1/3, up to a logarithmic factor, where + represents the grid sparsity
relative to the time horizon 7. Notably, the BayesCoxCP algorithm does not rely on the value
of v, i.e., our algorithm adapts to the sparsity level. A careful selection of the exploration
parameter 7; is crucial in the algorithm’s design; see Section 4] for further details.

* We also establish a non-contextual minimax lower bound for the cumulative regret in the
discrete pricing problem, as stated in Theorem|[5.3] It turns out that our regret upper bound
for the BayesCoxCP algorithm is optimal up to a logarithmic factor in terms of 7.

Through extensive numerical experiments, we empirically demonstrate that the proposed pricing
algorithm significantly outperforms the state-of-the-art method in [[7] when prices are discretely
supported.

The remainder of this paper is organized as follows. In the following subsections, we introduce
the notations used throughout the paper and provide a brief summary of related works. Section[2]
introduces the basic setup for case 1 interval-censored data on a grid and describes the Cox PH
model, along with the prior distributions employed. Section [3|establishes the convergence rate of
the posterior distribution under the i.i.d. setup. Section[d]introduces the BayesCoxCP algorithm and
Section [5] presents its regret analysis. Finally, Section [o| presents numerical experiments to evaluate
the effectiveness of our proposed algorithm.

1.1 Notation

For two real numbers a and b, Vb and aAb denote the maximum and minimum of @ and b, respectively.
For two densities p and ¢ with dominating measure v, let D (p, q) = ([(p'/? — ¢"/2)%dv)/? be
the Hellinger distance and K (p, q) = [ log(p/q)pdv be Kullback-Leibler divergence. For a metric
space (F, D), the e-covering and e-bracketing numbers of F with respect to distance D are denoted
as N(e, F,D) and Nji(e, F, D), respectively. We write a = O(b) or a < bif a < Cb for some
constant C' > 0, where C' is an absolute constant unless otherwise specified. In addition, we write
a=Q(b) ora 2 bif a > Cb for some constant C' > 0. The notation O(-) denotes the corresponding
bound that ignore logarithmic factors.

1.2 Related works

The problem of contextual dynamic pricing has been extensively studied in the literature. Many
recent works have focused on semi-parametric models where Fj is unknown and nonparametric.
For instance, 30,31} 10]] considered linear models with an unknown F{y under certain smoothness



assumptions. In [10], Fp is assumed to be m(> 2)th-order smooth, achieving a regret upper bound
of 6((T d)%) [31]] relaxed this assumption by assuming that Fj is Lipschitz continuous and
second-order smooth. They obtained a regret upper bound of O(T?/3 + |3 — *||,T"), where
HB — [*||1 represents the estimation error of 3*. Similarly, [30] considered the same setting and

achieved a regret upper bound of 5(T2/ 3d?) under the Lipschitz and second-order smoothness
assumptions on Fp, while showing that under a weaker Lipschitz assumption alone, the regret upper

bound increases to 5(T3/ “4d). On the other hand, [37] used a log-linear model with a second-order

smoothness assumption on Fy, achieving a regret upper bound of O(T''/2d''/*) but with suboptimal
dependency on the dimension d. Similar to our approach, [7]] used the Cox PH model, assuming that
Fy is Lipschitz continuous. They derived a regret upper bound of O(T?/3d), which improves the
dimensional dependency compared to [37], but their analysis is limited to continuous pricing settings.
The overall comparison of regret bounds from these semi-parametric studies, along with our results,
is summarized in Table|l] In addition to these works, earlier studies often assumed that Fj is known
and log-concave. For instance, [24] and [44]] both considered linear models under these assumptions.
[24]] additionally analyzed the case where F{ is unknown but belongs to a parametric log-concave
family, deriving a regret upper bound of order 7'/2.

2 Preliminaries

2.1 Basic setup

In the current and next sections, we study the behavior of the posterior distribution from the PH
model for analyzing case 1 interval-censored data on a grid under the i.i.d. regime.

To set the scene, suppose that (X, P, Y:), t = 1,...,n, are i.i.d. copies of (X, P,Y"). In particular,
we assume that P;’s are supported on the grid set G = {g1, ..., gk} within the (fixed) interval
[Prmins Pmax|, Whose cardinality may depend on the sample size n. The grid points are assumed to
be uniform in the sense that g; 11 = g + 0 for every k > 0, where go = Pmin, and K is the largest
integer such that g < pmax, thatis, K = |(Pmax — Pmin)/d]. We further assume that the grid
resolution § is controlled by two constants vy € (0, 1] and £ > 0, according to the relation 6 = xn 7.
Note that generalizations to nonuniform grids are discussed in Appendix

Let Q(- | X) denote the conditional distribution of P given X, with ¢(- | X) denoting the corre-
sponding probability mass function. In addition, the marginal distribution of the price P is denoted
by Q(-), with its probability mass function given by ¢(-). Let Px and px be the marginal distribution
and the corresponding density of X.

2.2 Proportional hazards model for V;

We consider the Cox PH model for the conditional distribution of V; given X,;. Formally, the
complementary c.d.f. v — S(v | X¢) of V; is modeled as

S(v | X)) = So(v)PX A,

where S (+) is a baseline complementary c.d.f., and 3 € R is a regression coefficient. We assume
that V; is continuous. Let Fy = 1 — Sp, A\g = F{/So and Ag(v) = fov Ao(u)du be the c.d.f., hazard
and cumulative hazard functions, respectively, corresponding to Sy, where F{ denotes the derivative
of FO.

We remark that the joint distribution of (X, P;,Y;) depends on the unknown parameters
(S0, B,px,4q(- | -)). Among these, While (Sp, ) are the parameters of interest, while (px, q(- | -))
are treated as nuisance parameters (at least in the current and next sections). Since FP; is
supported on G, the joint distribution of (X, P;,Y;) depends on Sy only through the vector
So = (S01,---,5.k) € [0,1]%, where Sp = So(gr). Here, X represents the support of
the covariate X. The parameter space is defined as © = {# = (So,8) € Sy x R?}, where
Sp = {So = (S071,...,SO7K) 1> 50,1 > 2> S07K >O}



2.3 Prior

We note that V; is continuous while P, is discrete with support G. To reflect this structure, we model
the baseline hazard function \o(-) as a left-continuous step function, where the jump points are
located at grid points. Let Xg = (o1, - .., Ao,kx), Ao = (Ao,1,. ., Ao, x) and

K
M) =Y Aox1{p € (gr-1, 98]}, ©)
k=1
where Ay, = —log Sy ;. Since there is a one-to-one correspondence between S and A, one can

impose a prior on Sy through Ag. We consider an independent prior for the unknown parameters Ag
and 3, specified as II = IIg x II,. Here, IT, consists of independent gammas:

Aok ~ Gamma(ag, p), k=1,..., K, 3)

where Gamma(ay, p) denotes the gamma distribution with mean «v, /p and variance oy, /p?. Gamma
priors are commonly employed for \g in Bayesian analyses of the PH model, as seen in [[27,147,135,129].
We further impose the following conditions on the prior:

(P1) Il has a continuous and positive Lebesgue density on R,

(P2) There exist positive constants & < @, suchthata < ap <afork=1,..., K.

3 Posterior convergence rate under i.i.d. setup

To clarify notation, we use the superscript * to denote the true parameter, e.g., A§, 8, and A§. Suppose
that there exists a true parameter 8* = (S§, 5*) generating the data D,, = {(Xy, P, Y3)} ;. (We
may regard px and ¢(- | -) as known parameters if we are only interested in inferring 6.) Given the
data D,,, let TI(- | D,,) be the joint posterior distribution of Ay and /3.

Assumptions We will prove that II(- | D,,) concentrates around 6* under the following assump-
tions:

(A1) ||8*||2 < B for some constant B > 0.

(A2) Px(X) = 1and px is bounded away from zero on X', where X = {x € R : ||z||» < L}.

(A3) P(X "1 # X T B) > 0 for 1 # fa.

(A4) Forx € Xand1 < k < K, suppose Q(G | X =) =1,and q(gx | ) = n_&%(logn)%
if v < 1/3,0rq(gr | ) = n"3(logn)? otherwise.

(A5) The support of F{ iS [Umin, Umax)> Umin < Pmin < Pmax < Umax, and S§ has a continuous
and strictly negative derivative on [Umin, Umax]-

Assumptions [(AT)] and [(AZ)] are commonly adopted in the stochastic contextual dynamic pricing
literature. Assumption [(A3)|ensures the identifiability of the regression coefficient. Assumption [(A4)|
requires that the conditional distribution Q(- | ) maintains a certain level of uniformity over the
grid set G. For instance, when Q(- | z) follows a uniform distribution over G, is satisfied for
any v € [0, 1]. In the contextual dynamic pricing problem, the function ¢(- | =) is parameterized
by the pricing policy. Therefore, constructing a policy that satisfies [(A4)]is crucial. In Section 4]
we explicitly design a policy that fulfills Assumption [(A5)|implies that S is Lo-Lipschitz on
[Pmin s Pmax| for some constant Lo > 0, and that Sy 1 and Sp_ are bounded away from 0 and 1.

We define the distance Dg on the parameter space O as
Dqo(01,02) = [So,1 — So.2ll2,0 + |81 — B2ll2,
for any 61 = (So,1, 51), 02 = (So,2, 52) € O, where || - ||2,o denotes the Lo(Q) norm with respect to
K 1/2 .
2.0 = (Zk:l(SO,k)2Q(gk)) . For a given parameter 0, let
[Py denote the law of D,, under 6, and let E} be the corresponding expectation. With these definitions

in place, we now state two theorems that establish the convergence rates of the posterior distribution
in two distinct cases: v < 1/3 and v > 1/3.

a probability measure Q, that is, ||Sq|



Theorem 3.1 (Case v < 1/3). Suppose that v < 1/3 and assumptions |(AI){(A5)| hold. Let

€n = n=a Vdiogn+ \/% log(d v n). Then, there exist positive constants C1, . .., Cy, depending
only on L, B, Piin, Pmax, K, &, @, p, such that for n > Cl,

II (Dg(8,0") > Crey | Dy) < Co eXp(—C'gnei),

with Py. -probability at least 1 — (exp(—Csne2) + 1/ne?).

Theorem 3.2 (Case v > 1/3). Suppose that v > 1/3 and assumptions [((AI){(AS5) hold. Let

1
€n = (%) s %\ /log(d V' n). Then, there exist positive constants C1, . . ., Cy, depending only
onL, Bapminvpmaxv K, Q, Q, p, such that

H(DQ(Q,Q*) > Ciey, | Dn) < C2§n7 n > Cy

exp(=Csnep)  ify < 3,
with Py. -probability at least 1 — (&, + 1/ne2), where &, = {exp (—0371;) ify > %

Theorems[3.1]and[3.2]show that the convergence rate of the posterior distribution adapts to the sparsity
level . Importantly, when v > 1/3, the posterior achieves the convergence rate of n~'/3, as in the

. . . . . 1—
continuous observation setting. In contrast, for v < 1/3, the posterior attains a faster rate of n~ TW,
highlighting the advantage of discrete observations in sparse grids. This result generalizes the work
of [5]], which focused on the non-contextual case 1 interval-censored data, to the PH model.

4 Proposed BayesCoxCP algorithm

We now propose the contextual discrete pricing algorithm, namely BayesCoxCP, based on a Bayesian
approach to the semi-parametric Cox PH model. Consider the discrete pricing setting introduced
earlier. Assume that the supportof P, is G = {gr: k=1,...,K} foreveryt =1,...,T, where T
denotes the time horizon. Here, gy = pmin + k0 fork = 1,..., K, K = | (Pmax — Pmin)/¢], and
d = KT~ for two constants v € (0,1] and x > 0. Under the PH assumption with the true pair
(55, 8%), the optimal price P;* at time ¢ can be defined as Py € argmax g {p - S (p)exP(Xi B7) }
Let Q* denote the marginal distribution of P;*, with its associated probability mass function denoted
by q*.

We employ an epoch-based design that divides the given horizon 7" into multiple epochs and executes
identical pricing policies on a per-epoch basis. Such a design was widely adopted in the literature
[24. 144, [7]. Epochs are indexed by [, and the length of the epoch [ is denoted by n;. The length
increases geometrically with I, given by n; = n12'~! for [ > 1. The set of time indices for epoch [ is
given by & = {le_:% ns+1,..., le:() ns}, with ng = 0, ensuring a sequential partitioning of the
entire horizon.

Posterior-based estimation Let D; = {(X;, P;, Y;) }+ce, denote the data collected during epoch
[ > 1. We employ a consistent prior across all epochs, denoted as II = Ilg x II,,, where II,,
consists of independent gamma distributions:

Aok ~ Gamma(ag, p), k=1,..., K, 4

with o, = aofor k = 1,..., K and a fixed constant o > 0. The prior IIg on 3 has a density with
respect to the Lebesgue measure on R?, bounded away from zero in a neighborhood of 3*. Common
choices for II4 include multivariate distributions such as the normal distribution. For each epoch [, let
II(- | D;—1) denote the joint posterior distribution of Ay and /5 based on the data from the previous

epoch, D;_;. We denote the point estimator for the true parameter 0* as g1 = (§ffl, El_l),

derived from the observations D;_ in the previous epoch. Specifically, the estimator 6!~ is obtained
as the mean of truncated posterior distribution IT(- | D;_1) = II(- | D;—1)/II(© | D;_1), where the
truncated parameter space is defined by © = Sy x [a, b]¢ for fixed constants a and b.



Algorithm 1 Bayes Cox Contextual Pricing Algorithm (BayesCoxCP)

Input: nq: the length of the first epoch; 1, 72: degree of exploration; IIy,,Ilg: prior; a,b:
truncated range

1: Fort =1,...,n1, uniformly choose P; from G, and get reward Y;;

2: forepochl=2,3,... do

3:  Obtain the estimator §'~! = (S, B'=1) from II(- | D;_1).

4 for time ¢t € & do
5: Observe X; and draw a binary number R from Bernoulli(1 — 1);
6: if R = 1 then P, € argmax, ¢ {p . §é’1(p)exp(xfgl—1)}
7 else Uniformly choose P; from G
8: end if
9: Get reward Y;.
10: end for
11: end for

Pricing policy We denote the pricing policy for epoch [ as m; : X — P(G), where P(G) denotes
the set of all probability distributions over the grid G. Specifically, given covariates X, for ¢ € &, the
distribution 7;(X}) is defined as a mixture distribution given by

m(Xe)(A) = (L=m) - 6p— (A) +m - Ug(A) ®)
for any A C G, where IStZ ~1 is the myopic policy determined by the estimate g1 = (§f{17 El_l)
as ﬁtlfl € argmax,cg {p . §(l)*1(p)e"1[’(xtT ) } Here, p denotes the Dirac measure centered at

P, Ug represents the discrete uniform distribution over G, and 7; is an epoch-specific exploration
parameter, defined as

m= min{m (772\/ |G|/2!—1 /\2_131) longl,l} , 6)

where 71 and 7, are global constants. The design in (6) reduces the need for uniform exploration when
the grid is sparse, while increasing it as the grid becomes denser, effectively balancing exploration
and exploitation across different epochs. The choice of 7; directly ensures that assumption
is satisfied, since 17; controls the degree of uniform exploration over the grid, which is reflected in
q(- | ). This connection is rigorously established in Lemma In our numerical experiments, 71
and 7y are tuned to optimize the degree of exploration.

in

The pseudo-code for the proposed policy is presented in Algorithm[T] In this algorithm, for each time
t € &, the offered price P; solely relies on the observed covariate X; and the data from previous
epochs, Dy, ..., D;_1, while the distribution of V; only depends on X;. Thus, Algorithmﬂ]ensures
conditional independence between V; and P; given X4, i.e., V; L P;| X; for each ¢t € ;. Moreover,

given the data from previous epochs 1, ..., — 1, {(X¢, P, Y}) }+ce, are independent and identically
distributed observations, which facilitates separate estimation of 6* for each epoch.

For the computation of 9! for each epoch [, we employ the variational Bayesian (VB) method
for the PH model with case 1 interval-censored data. The VB approach has recently emerged as a
computationally efficient alternative while maintaining estimation accuracy; see [29]. Alternatively,
one may employ Markov chain Monte Carlo (MCMC) methods [27, 147,135, which facilitate inference,
such as constructing credible intervals for 6*.

5 Regret analysis

In this section, we analyze the regret upper bound for the BayesCoxCP algorithm. Furthermore, we
prove the regret lower bound for the discrete pricing problem.

5.1 Regret upper bound

We first introduce several technical assumptions and a key lemma that establishes the estimation error
of the estimator 6! for each epoch.



We begin by assuming the following additional conditions:

(B1) For any = € A&, there exists a unique maximizer of the map p — pSj; (p)eXp(“’Tﬁ A
[pmin;pmax] — R.

(B2) The density of the unique maximizer of the map p — pSg (p)e"p(X ). [Pmins Pmax] — R
is bounded away from zero on [Pmin, Pmax)-

The uniqueness condition in assumption [(BT)|is commonly adopted in the contextual dynamic pricing
literature [24} 44, [10]). Aditionally, assumption|(B2)|ensures that ¢*(p) < forall p € G.

We remark that the grid G remains unchanged across epochs in our setup, so the grid sparsity relative

to the sample size n; differs for each epoch. Foreachl =1, 2,.. ., define ; as the sparsity level in
epoch I, such that K = | (pmax — Pmin)/(kn; ") |. Therefore, forall i = 1,2,..., we have
\‘pmax — Pmin n?/ZJ — \\pmax — Pmin T’YJ ) (7)
K K

Let Q;(- | X) and ¢;(- | X) denote the conditional distribution and corresponding probability mass
function of P, given X (and Dy, ..., D;_1) during epoch [, respectively. The marginal distribution of
P, during epoch [ is denoted by Q;, with ¢; as its probability mass function. Then, ¢;(- | ) = m(x)(")
forz € X.

The following lemma provides an upper bound on the estimation error of the point estimator g1

epoch .

at

Lemma 5.1. Let the prior 11 and policy m; be as described above (see (@) and (). Suppose
that assumptions|(ATJH(A3)|and[(A3) hold. Then, there exist positive constants Cy,Cy, C3 and Cy
depending on L, B, pmin, Pmax, 1, Q, P, a, b and ny, such that for | > Cly,

Dy, _, (@717 6%) < Cre—a

with probability at least 1 — {;_1 — 1/(nl,1el2_1), where

_1-m

ny ? \/m+\/% log(d V) ify <
n % )

(lorgbilz) JF\/nzl log(d V n;) ify =

(M

and ¢ exp(—Conie?) ify < %,
1= TR
exp(—=Csn’)  ifn = 3.

W=

Lemma implies that 6!~ achieves an error bound that is adaptive to the grid sparsity level ; in

epoch [. By leveraging the consistency of 9! and Hoeffding’s inequality, the regret during epoch [
can be upper bounded by

Z T(t) < Clnﬂ)@,_l(él_l, 9*) + CQTL[’I]Z
te&;

with high probability, where C; and C5 are positive constants which do not scale with n; and d (see

Lemma for details). This inequality shows how the estimation error of 6'~1 and the exploration
parameter 7; affect the regret upper bound. Combining Lemma [5.1]and (€), we now state the main
results regarding the regret upper bound for the BayesCoxCP algorithm.

Theorem 5.2. Under the same conditions as in Lemma[3.1| along with assumptions|(BI)|and|(BZ)|
there exist positive constants C1, . . ., C7 depending on L, B, pyin, Pmax K> @, p, @, b, 01, 02, 7y and
ny such that for'T' > C1,

R(T) < Cor/dTlog(d V T) +C3T:%1\/logT ify < 1,
= | Can/dTlog(dV T) + C5T3/logT  ify > 3,

Cglog(T/ny +1)/T7 ify < %,

with probability at least 1 — (, where ( = {07 log(T /ny + 1)/T2/9 ify > %

Theorem [5.2] shows that the BayesCoxCP algorithm achieves a regret upper bound that adapts to the
unknown sparsity level ~, ensuring efficient performance without prior knowledge of ~.
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Figure 1: The cumulative regret curves compare the proposed algorithm (BayesCoxCP) with other
method. Solid lines indicate averages, and bands show standard errors over replications.

Compared to existing work in continuous pricing settings, our results underscore the theoretical
advantage of utilizing the information that the price is discretely supported. For instance, [7] derived

a regret upper bound of 6(T2/ 3d) under similar assumptions. While this bound is comparable to

our result for -y > 1/3, our algorithm achieves a strictly faster regret rate of O(TIJrTw + (dT)'/?) for
~ < 1/3, which is a distinct advantage of the grid-based setting. For additional discussion on the
possibility of replacing the Bayes estimator with the NPMLE and its effect on exploration parameter
choice, please refer to Appendix

5.2 Regret lower bound

In this subsection, we establish a regret lower bound for the non-contextual pricing problem in the
discrete pricing setting. The proof carefully incorporates ideas from [26] and [[14]], widely used for
regret lower bounds in dynamic pricing and multi-armed bandit problems, with a focus on the discrete
price setting. Specifically, for dense grids where v > 1/3, we partition the grid set G into T'*/3
segments to derive the lower bound. Further details of the proof are provided in Appendix

Theorem 5.3. (Lower bound for non-contextual pricing) Consider a non-contextual pricing problem
where the valuations are sampled independently and identically from a fixed unknown distribution
satisfying the c.d.f. F(v) is bounded away from 0 and I for v € [pmin, Pmax] and at least one
maximizer of the revenue curve v - (1 — F(v)) lies over G. Then, for any n > 0, no pricing policy

(algorithm) can achieve expected regret O(THTW*W) ify <1/3, and O(T37") if v > 1/3.

As in Theorem [5.3] the regret lower bound depends on the grid sparsity level ~ as well. Specifically,

for v < 1/3, the regret lower bound scales as Q(THTW), while for v > 1/3, it scales as Q(72%/?).
Comparing these results with Theorems[3.T]and[3.2] the regret upper bounds achieved by BayesCoxCP
algorithm match the lower bounds in terms of 7, up to a logarithmic factor. Note that the dependency
on the dimension d is not addressed in this work, leaving it as a direction for future research.

6 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of the BayesCoxCP
algorithm. Since our objective is to highlight the benefits of leveraging discrete support information,
we focus on a comparison with the algorithm proposed by [7]]. For comparisons of the PH model-
based algorithm with other approaches, such as linear and log-linear model-based algorithms, we
refer to [[7]].

We consider the following experimental setup. The covariate X is drawn from a d-dimensional ball
with a radius of 1/2 under a uniform distribution, where d = 5. The true regression coefficient 5* is



setas 3* = % 1,, where 14 denotes a d-dimensional vector of ones. For the true baseline distribution,

we consider two different mixture distributions. The first is a uniform mixture distribution given
by 2U(1,4) 4+ 2U(4, 10), where U(a, b) denotes the uniform distribution over [a, b]. The second is
a truncated normal mixture distribution given by 3TN(3.25,0.5%,1,10) + $TN(7.75,0.52,1,10),
where TN (11, 02, a, b) represents the truncated normal distribution with mean i, variance o2, and
support [a, b]. The grid set G = {g1, ..., gk } is chosen from [1, 10] with four different values of
K € {10,100, 1000, 30000}. The total time horizon is set to T" = 30000 for all experiments. To
conserve space, the detailed hyperparameter settings for all algorithms used in the experiments are
provided in Appendix [H]

The cumulative regret results for different grid sizes, averaged over 20 replications, are shown in
Figure BayesCoxCP consistently achieves lower cumulative regret compared to the method
proposed by [7]], with the difference being particularly significant when K is small. Notably, the
performance gap gradually diminishes as K increases. These findings empirically demonstrate that
BayesCoxCP adapts effectively to varying grid resolutions, providing strong empirical support for its
theoretical guarantees.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introdcution clearly state the contributions. These claims are
supported by both theoretical analysis and numerical experiments.

Guidelines:
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitation that regret lower bounds are drived only for the
non-contextual pricing, and the dependence on the dimension d is not addressed. The need
for future work in this direction is mentioned in Section[5.2]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions required for the theoretical results are explicitly stated in the
paper. Most proofs are provided in the appendix, while the main theorems, key lemmas and
insights are included in the main body.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details of the proposed algorithm are described in Section
[l The experimental setup and hyperparameters are provided in Section[6]and Appendix [H]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code necessary to reproduce the numerical experiments is included in the
supplemental material.

Guidelines:
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings including how cumulative regret
is computed and the hyperparameter configurations in Section [ and Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are obtained via repeated trials, and error bars are
shown and explained in the figure and this caption.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational resources used in our experiments in Appendix

0
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirmed that
our research does not violate any of its principles. All numerical experiments are conducted
using simulated data, and thus this work do not involve any human subjects or data-related
concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on theoretical analysis of regret bounds in contextual
pricing, and does not have any direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is theoretical and conducts experiments solely on simulated data.
No high-risk models or real-world datasets are released.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We begin this appendix with a proof roadmap that outlines how the main lemmas and theorems
are logically connected. The roadmap provides a high-level overview of the argument structure,
highlighting the key intermediate steps and how they contribute to the main convergence and regret
results. This overview is intended to enhance clarity and to guide the reader through the subsequent
detailed proofs.

| LemmaA.1, A.6 }—'{ Theorem 3.1

‘ LemmaA.1,A.7 }—'{ Theorem 3.2

| Lemma C.2, C.6, C.7 ——{ Lemma B.1

Lemma B.2 }—-{ Theorem 5.2

Figure 2: Proof roadmap summarizing the logical connections among lemmas and theorems leading
to the main results.

A Proofs for Section

In this section, we first establish the posterior consistency of the Cox PH model, which serves as a
foundation for proving the main theorems in Section 3]

Lemma A.1. (Posterior consistency) Suppose that the grid resolution satisfies 6 = kn~" for k > 0
and v € (0,1], and assumptions|(Al1)\(AS5) hold. If v < 2/3, then, for every e > 0, there exist positive
constants C1, Cy and C'3 depending on (L, B, pmin, Pmax, K» Q @, p, €) such that

(U | Dy) < Caexp(—=Csn), n > Ch, ®

where
U={0€0:]S—Sile V8- 812 <}
with Py. -probability at least 1 — exp(—Csn).

If v > 2/3, then, for every € > 0, there exist positive constants Cy, C5 and Cg depending on (L, B,
Pmins Pmax> K> & Q, P, 6) such that

I(U¢ | D,) < Cs exp (—C’Gn%) , n>Cy,

with . -probability at least 1 — exp(—Cgnl/?).

Remark A.2. As discussed in Section[d] the conditional distribution of posted prices Q(- | X) is
parameterized by the policy. By allowing uniform sampling at a rate of 1, defined in (), the policy
constructed in (3)) satisfies [(A4)] Strengthening assumption [(A4)|to the more restrictive condition
q(g | ) = n~'(logn)'/? for g € G and € X when v > 1/3 yields the same results as in (8]
for all v € (0, 1]. In such a case, 7; can be adjusted accordingly to satisfy this restrictive condition.
However, increasing 7; leads to a higher regret due to increased exploration. Therefore, imposing a
weak condition, as in[(A4)| is essential for achieving a tight regret upper bound. For further details,
see the proof in Section|B.7]

To begin with, for a given parameter § = (Sg, 3), the joint density py of (X, P;, ;) is expressed as:
po(@,py) = {Sa(pl2)}" {1 = Sa(pl2)}' ™" a(pla)px (),

forx € X,pe Gandy € {0,1}, where Sy(p | z) = So(p)e"p(””Tﬂ), and X denotes the support of
the covariate X . Here, we suppress the dependency of pg on the nuisance parameters, as they do not
affect the inference of 6 once an independent prior is used. The log-likelihood function corresponding
to § € © for the data D,, = {(X;, P, Y;)}}, is given by:

0n(8) = logpy(Xy, P, V).

t=1
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A.1 Proof of Lemmal[A.T]

Lemma A.3. Under the conditions of LemmalA.]| there is an exponentially consistent sequence of
tests for

Hy: 0 =(S§,5%),
Hi:0€{(So,B8) € So xR [|B—B*||2 > n}

forany n > 0.

Proof. Suppose that v < 1/3. Let 7,, denote the set of every disjoint pair of index sets I; and I5 such
that I; U I, = [K]. Given an index set I C [K], we denote the subset of G corresponding to I by
Q(I) = {gk €gG: ke I} For each (Il,IQ) € T,, define 80(11,12) = {SO = (50’1, . ~7SO,K) €
So : Soi > 854,50, < Sg,fori € I1andj € Ip}. We define the quadrant Qe = {z €
RY : zje; > 0, Vj = 1,...,d} foreache = (e1,...,eq) € {—1,1}4. Forj = 1,...,d, let
et el~ € {—1,1}¢ denote the vectors where j-th element is positive and negative, respectively.
Consider the following two groups of hypotheses for each (I3, I5) € T, and e/, e/~ € {—1,1}¢
withj =1,...,d,

HQ 10 = (Sé,ﬁ*), H1 10 e 667"7,11712 (9)
HQ 10 = (SS,B*), Hl 10 e @ej,+7[17[2 (10)

where Ogsi- 1, 1, = So(l1,12) x {B € R? : Bi > B +&B—8" € Qei-}s Ocivt 11, =
So(h, I) x {8 €R: 85 > 87 + €, — B € Qes+ } and £ = n/Vd.

Fix an arbitrary j = 1,...,d, e, e/t € {-1,1}% and (I1, ) € T,. By Lemma|C.4} take a
constant ¢ > 0 such that P(|X; ;| > €) > Oforall j = 1,...,d, given data D, = (X,, P,,Y;).
For the first group of hypotheses @), define a function ¢; = max{¢1 1, ¢1.2}, where ¢1,1(D;) =
WXy € Q ci—,|Xtj| > e, € G(1),Ys = 1} and ¢12(Dy) = H{X; € Qoi—, [ X5 >
e,P, € G(I3),Y; = 0}. Under the event Q; = {X; € Q_ei—,| Xt ;| > €, P € G(I1)},
for any § = (So,3) € Oei— 1, 1,» Wwe have X, 3 < X, 8* — e£. This implies exp(X,' 3) <
exp(X," B*) exp(—e). Then, on the event §2;, we have

SO(Pt)exP(XtTﬁ) > SS‘(Pt)eXP(XtTB) > SS(Pt)exp(X:B*)exp(fef) > SS(Pt)exp(XtTB*) + Al;

where the last inequality holds because of the mean value theorem and assumptions [(AT)]
@ and [(A5)] with a positive constant A; depending on My, M,,L, B,e and §. Let ¢, =
n~(40/2(logn) /2. By assumption [(A4)} we have q(p | ) 2 g, forallz € X and p € G
when v < 1/3. Then, for any 6 = (So, 8) € Oej.— 1,,1,» We have

.
Eg [61,1(D0)] = Ex,,p, [So(P)™ X O1{0}]

> Ex,.p, [S5(P)™ T L)) + Ex, o, (A1 1{)]

> Eg= [¢1,1(Dy)] + C1A1|11|gn,
where C; be a positive constant depending on Px and e. Similarly, under the event Q5 = {X; €
Qei—+ | Xt,j| > €, P, € G(I)}, for any 6 = (So,3) € Oei— 1,,1,» We have exp(XtTﬁ) >
exp(X,T %) exp(e€). Then, on the event 2y, we have So(P,)P(X: ) < Gx(p)exp(X/B) <
Sg (P,)exP(X[] B7) exp(e€) Sg (P,)exP(XB") _ A, where the last inequality holds because of the

mean value theorem and assumptions [(A1)] [(A2)], and [(A5)] with a positive constant Ay depending
on My, M,, L, B, e and &. Then, for any 6 = (So, ) € Oei.- 1, 1,» We have

Eg [¢12(00)] = Ex,,p, [(1 = S0(P)oPX7 ) 1{0,}]

> Ex,.r, [ (1= S5(P)™ X)) 1{Q0}] + Ex, o, [821{02)]
> By [¢1,2(Dy)] + C2A2|12|qn,

21



where C be a positive constant depending on Px and e. Combining the last two displays, we have
Eg [¢01(Dy¢)] = Eg [¢1,1(D¢)] + Eog [¢1,1(Dy)]
> Eo- [01,1(Dy)] + Eo- [¢1,2(Dy)] + min{C1A1, Cola }(| 1| + | I2)gn (1)
> Eg« [¢1(Dy)] + C3n"qy,

where C3 be a positive constant depending on Cy, Co, A1, A, Prmin, Pmax and k. Define tests as
follows:

D 1,1, (D) =1 {Z (D)) > (Bo- [61(D1)] +Eg [¢1(Dt)])/2}.
t=1 t=1
Then, we have
0+ [Pei— 1,1, (Dn)] (Z &1(Dy) — Eg- [91(Dy)]) > Z Eg [¢1(Dy)] — Eg- [¢1(Dt)])/2>
t=1 t=1

NE

< Pg. ( (@1(Ds) — Eg- [91(Dy)]) > n(anan)/2>

02 142+ .2
S exp (_ s I )

Il
—

2

where the first inequality holds by (1)) and the last inequality holds by Hoeffding’s inequality. On
the other hand, applying Hoeffding’s inequality to 1 — ¢1(D;),

sup  Ef[l — Pei- 1,,1,(Dn)]

0€O i~ 1,15

= sup Py (Z((l — ¢1(Dy)) — (1= Eg [$1(Dy)])) = > (Eg [¢1(Dr)] — Eop- [¢1(Dt)])/2>
=1

0€O i~ 1,15 t=1

< sup Py (Z((l = 01(Dy)) = (1 = Eg [$1(Dr)]) > n(C:»,n”qn)/?)

0€o P

O2npl+27,2
< exp (_3qn ,

el = ,Iy,Io

2
where the first inequality holds by (TT).

The construction of tests for the second group of hypotheses (I0) is similar. Define the tests as
follows:

Dot 1,,1,(Dp) =1 {Z¢2<Dt > Z Eg- [¢2(Dy)] + Eg [</>2(Dt)])/2} ;
t=1 t=1

where ¢y = max{¢o 1, ¢22} is a function with ¢o1(D;) = 1{X; € Q_ei+,|Xs ;| > €, P, €
G(I1),Y; =1} and ¢o 2(Dy) = I{X} € Qeir, | Xy | > €, P € G(12),Y; = 0}. Similarly, we see

that
C2n1+2742
B w11, (D)) < exp (- S5 ),
C2n1+2742
sup Eg[l - (I)ej»*,ll,IQ (Dn)] S exXp (_42n )
geeej,—,zl,fz

where C} be a positive constant.

Note that the union of the sets in the alternative hypotheses (E[) and for all (I1,15) € T, and
et el € {~1,1}? with j = 1,...,d contains ©,, := {(So,3) € So x R?: || — B*|l2 > n}.
We set @, := max(;, 1,)e7, ei—eitc{—1,1}4,je[d]1 Pei— 11,15 V Peit+ 1,1, }» then we have

g* [(I)n (Dn)] < d2d2K exp (_CSnl-‘rQ'quQL)
< exp (Cd V" — 05n1+27q72L) 7

sup Ef[l — ®,(D,)] < exp (—C5n'™7¢2) ,
0€O,
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where C5 = min{C?% /2, C%/2} and Cj be a positive constant depending on pyin, Pmax and . Then,
for fixed d, by the definition of ¢;,, we have Ef. [, (Dy)] — 0 and supycg, Ef[1 — @, (Dy)] — 0
as n — oo. By Lemma D.11 of [16]], there exist tests ¥,, and a constant C'; > 0 such that
Ej. [¥5(Dn)] < exp(—Crn) and supgee, Ej[l — ¥, (Dy)] < exp(—Crn).

Suppose that v > 1/3. Recall the grid support G = {gx : k = 1,..., K}, where each grid
point g is defined as gy = pupin + k0 with § = xkn™" for some constant x > 0. Let ¢, =
n~3 and J = [(Pmax — Pmin)/(k€n)]. Define (k1,..., k) as a subsequence of [K] such that
Pmin + (J — 1)ken < gr; < Pmin + (J — L)ke, +dforj=1,...,J —1,and setk; = K.

Let 7 denote the set of every disjoint pair of sets I and I such that I{ U I5 = [J]. For each
(I1, 1) € T;, define

S()(ILI&) = {So = (50’1, ey S()’K) €Sy SO,k:I- > Sg,ki>SO,kj < Sg,kj fori € I{ andj S Ié}

Consider the following two groups of hypotheses for each (11, I5) € T; and e/, e/~ € {—1,1}¢
withj=1,....,d,
Ho:0=(Sy,B%), Hi:0€0u- 11 (12)
HO : 0 = (SS,B*), H1 :9€@ej,+71171é, (13)

where Oci- 11 1y = So({1,13) x {8 € R? : 5> B+ 68— 8" € Qei-}s Oeit 1)1, =
So(I{, I) x {BER?: B; > B5 +&,8— B* € Qe+ } and € = n/Vd.

Fixj=1,...,d,e5", e/t € {—~1,1}? and (I, I}) € T;. Define the index set between k; and k; 1
asl; ={ke[K]:k; <k<kj}fori=1,...,J — 1. We define partitions Z;, Z5, Z3 and Z, of
set {Il, R ,IJ_l} by

Ty ={liyi=1,....,d = 1: Sok, > S5 4. Sokiss = Sokir}s
Ty ={l;yi=1,....,J = 1: Sok, < Six.»Sokiss < Sokrir s
Ty ={Liyi=1,....,J = 1: So, < Sy s Sokiss = Siprs b

> Sp ks Soeiss < Sokiis )

i

I4:{Ii,i:1,...,J712S0k.

2 Rg

Note that for any I € Z, there exists a unique k" € I such that So » > S ., and So /11 < S§ 1

Thus, given I € Z,, we candefine I = {k € [ : k < k’}and I = {k € I : k > k'}. For the first
group of hypotheses (12), we define a function ¢35 = max{¢s 1, ¢s2, ¢33, $3.4, $35}, Where

¢31(Dy) = 1{X; € Q_es—, | X1 5| > e, Pre | (1), Vi =1},
IeZ;

¢32(Dy) = 1{X; € Qes—, | Xej| > ¢, P, € | 6(I),Y; =0},
IeZ,

¢33(Dy) = 1{X; € Q_es—, | X1 | > e, Pre | (1), Vs =1},
IeZs

¢34(Dy) = 1{X; € Q_es—, | X1 | > e, P e | 9(I), s =1},
I€eZy

¢35(Dy) = 1{X; € Qos—, | Xej| > €, P € | 6(1),Y; =0}
IeZy

Note that under the event Q3 1 := {X; € Q_cs—, [ Xy,5| > €, P € Ujez, G(I)}, for 6 = (S, B) €
Ocis.— 11,15, We have exp(X,' B) < exp(X,' 8*) exp(—€£). Forany I; € Z; and k € I;, we have

SO,k - S(y)ﬁ,k > So7ki+1 - Sg,k

> —Lo(lﬁén + (5)
> —2Loken,

+ S0 ki0a — S0k

i+1 i+1
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where the second inequality holds by the definition of Z; and I;, and the last inequality holds because
d < €, for v > 1/3. Then, on the event {23 1, we have
SO(Pt)cxp(XtTﬁ) > S (Pt)CXp(XtTﬁ*) exp(—ef)

> (S(P,) — 2Lokey, ) PXE 87 exp(=e0)

> Sg(pt)exp(X,,Tﬁ*)exp(—E?E) — Cxe,

> S5(P) XA 4 Ay — Csey

> S(»)k(Pt)exp(X?ﬁ*) + A1/2,
where the first inequality holds because exp(X," 8) < exp(X, 3*) exp(—e£), the second inequality
holds by the preceding display, the third and fourth inequality holds because of the mean value theorem
and assumptions [(AT)| [(A2)} and [[A3)] and the last inequality holds for sufficiently large n such that

en < A1/(2C%). Let ¢/, = n=7~1/3(logn)'/2. By assumption (A4), we have ¢(p | ) > ¢, for all
x € Xandp € G when~y > 1/3.

Then, for any 6 = (S, 8) € Oci.~ 17,15, we have

Eo[6s,1(D0)] = Ex,,p, |So(P)™ 7 91{0y,1}]

T g%*
> Ex,.p, [So(P)™ X 01{Qq1}] + A1/2 - Ex, p,[1{2.1}]
> Eo-[¢3,1(Dy)] + Col 1| K g,/ J,
where the second inequality holds by the preceding display, and the last inequality holds with a

positive constant Cy because |I;| > K/J forall ¢ = 1,...,J — 1. Similarly, there exist positive
constants C1, C11, C12 and Cq3 such that

Eg[¢3,2(Dy)] > Eg= [¢3,2(D¢)] + Crol|L2| K g,/ J,
Eg[¢3,3(Dy)] > Eg-[¢3,3(D¢)] + C11|Z3| K q,, / J,
Eg(¢3.4(Dy)] > Eo- [¢3.4(Dy)] + Cr2 Y [Tlg,,

IeZy
Eg(¢3.5(De)] > B [¢3,5(Dy)] + C1s > |Llg),.
IeZy
Combining the last two displays, we have
5
Eolp3(Dy)] = Y Eoldss(Dy)]
s=1
5 p—
> Ep-[¢s,5(Dy)] + Cua ((ILI +|To| + |Ts|) Ky / T+ Y (1T] + II)QL>
s=1 I1€Zy
5
> Eo-[¢s.4(D0)] + Cra (ITa| + [ To| + [ Ts| + |Tul) K g,/ T
s=1
> Eg-[¢3(Dy)] + Cisn"qy,, (14)

where the second inequality holds because |I| + |I| = |I| > K/J for all I € I, and the last
inequality holds because |Z; | + |Z2| + |Z3| + |Z4| = J. Define tests as follows:

NE

Dej 17,15(Dn) i =1 {Z ¢3(Di) > ) (Eg- [¢3(D1)] + Eg [¢3(Dt)])/2} :

t=1
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By Hoeffding’s inequality and (T4)), we have

Eg-[Pei- 17,1,(Dn)] < Py (Z ¢3(Dt) — Eo- [¢3(Dy)]) > n(C15n7q7’1)/2>

t=1
02 1+2’yq/2
< exp ( fn ;
C2p1+27 g2
sup  Ej.[1 - @esi- 1y 1, (Dy)] < exp (—152" :
0€9.,— 11 1y

The construction of tests for the second group of hypotheses (I3)) is similar. Define the tests as
follows:

Post 1,15 =1 {Z¢4 Dy) > > (Eg- [a(Dy)] + Eq [¢4(Dt)])/2},
= t=1

where ¢4 = max{q§4,1, (b4)2, (Z)4’3, ¢4747 ¢475} is a function with

$a1(Dy) = 1{X; € Qs+, | X1 5| > e, P | GU), Yy =1},
IeZ;

¢a2(Dy) = 1{X; € Qest, [ Xej| > e, P e | G(I),Y: =0},
IeZy

Ga3(Dy) = I{Xs € Q_cii+,| X1 j| > €, P € U g(I),Y; =1},
1€y

¢474(Dt) = IL{Xt € Q—e-7=+7 ‘Xt,J| > evpt S U g(T);}/;f = 1}a
1€y

$a5(Dt) = H{Xy € Qs+, | Xt j| > €, P € U G(I),Y; = 0}.
I€I4

Similarly, we see that

02 14272
B [ 15(D)] < exp (- S )

C 142 ;12
sup Eg[1 - Peii+ 17,15 (Dy)] < exp (_16(]) ,

0€Oi+ 11 11 2

where C4 be a positive constant.

Note that the union of the sets in the alternative hypotheses and (13) for all (I{,15) € T and
et el e {~1,1}? with j = 1,...,d contains ©,, := {(So,8) € So x R?: || — B*|l2 > n}.
We set q)/n = maX(I{Jé)Eijej,—7ej,+e{_171}d7je[d]{@ej,—’ji,jé V q)eJ)*,I{,Ié} then we have

e (@], (Dy,)] < d2727 exp (—=Ci7n'T27¢?)
< exp (Clgd Vni — 017711*27%2) ’

sup Ej[1 — ®,(D,)] < exp (—=Ci7n'tq)?)
0eo,

where C17 = min{C%;/2,C%,/2} and Cig be a positive constant depending on prin, Pmax and
r. Then, for fixed d, by the definition of gj,, we have Ej.[®],(D,)] — 0 and supyce, Ef[1 —

! (D,,)] — 0 as n — oo. By Lemma D.11 of [16], there exist tests ¥/, and a constant Cg > 0
such that E. [V, (D, )] < exp(—Cign) and supyee, Eg[1 — U5 (Dy)] < exp(—Cign). The proof
is then complete. O
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Lemma A.4. Suppose that the grid resolution satisfies 6 = kn~" for k > 0 and v € (0,2/3), and
assumptions|(AT){(AS)| hold. Then, there is an exponentially consistent sequence of tests for

Hy: 0= (S§,5%),
Hy:0€{(So,B) € So xR : [|Sg — S§|loc = m1, B — B*||2 < m2}

for any m1 > 0 and sufficiently small o > 0.

Proof. There exist constants My, My € (0, 1) such that M; < S§(v) < M forany v € [Pmin, Pmax)
under assumption [(A5)l We choose 7; to be less than min{1 — My, M; } to ensure that {Sy € Sy :
ISo — S§llec = m1} # 0. Consider the following two groups of hypotheses for each k € [K],

H() 10 = (Ss,ﬁ*), H1 10 e Gk-,l (15)
Hy : 0= (SSVﬁ*)ﬂ H 0 e 9]@_’2 (16)

where Oy 1 = {(So,ﬂ) € Sy x R? So.x > SO P ||['3 - 5*H2 < 7]2} and @k,g = {(So,ﬂ) €
So X RY: SO,k < S&k — M1, ||ﬂ - B*HQ < 772}'

Fix an arbitrary k € [K]. For the first group of hypotheses (15), define a function ¢1(Dy) =

1{P; = gg,Y; = 1}. For any (3 such that || — §*|l2 < 72, by the Cauchy-Schwartz inequality

and the assumption [(A2)| | X, (8 — 8%)| < || X¢||2]l8 — B*||l2 < Lnq almost surely. This implies
B

exp(X;' B) < exp(X, B*)exp(Lng2). Then, for any 6 = (Sp, 3) € Oy.1, we have

SO kexp(XtTB) > (SS L + nl)exp(an)exp(XtTB*).

It is easy to show that there exists a positive constant C; depending on M7, Ms, L and 7; such that
C1 <loglog((Sg, +m/2)~") —loglog((S ; +m1)~") forany Sj . € [My, My]. If we choose a
sufficiently small 7, such that L, < Cy, we have (S, 4 m1)*P(52) > S5 |+ 1 /2. Combining
this with the previous display,

>exp<XI )

5042079 5 (53,4 11

> S&kCXP(Xt ) 4 0,

where the last inequality holds with a positive constant C'y depending on M, M, L, B and 7, by
assumptions|(A D)} [(A2)] [(A5)|and the mean value theorem. Then, for any 6 = (S, §) € Oy 1, we
have

Eo [61(D2)] = Ex,.p, [So(P)™ X DUP, = .}
> Ex,.p, [S5(P)™ X OUP, = i} ] + Caalon) a7
= Eo- [¢1(Dr)] + C2q(gx)-

In addition, for either § € Oy 1 or 6 = 6*, we have

Varg (¢1(D¢) — Eg(¢1(Dr)) = Eg [¢1(De)] (1 — Eg [¢1(Dy)])
< Eg [¢1(Dy)]
=Ex, p, [So(Pt)CXp(X‘Tﬁ)]l{Pt = gk}} (18)
< Q(gk)7

where Vary is the variance with respect to the distribution Py. Define tests as follows:

Oy ( =1 {Z $1(Ds) > > (B [¢1(De)] + Eo [¢1(Dt)])/2}-
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Then, we have

n

> (61(Dy) = Eg- [2(Dy)]) >

t=1

NE

E§- [®r1(Dp)] = Pg- (Eg [¢1(D¢)] — Eo- [¢1(Dt)])/2>

~
Il

1

I~ T~
NIE

< Pg. (¢1(Dy) — Eg- [¢1(Dy)]) > % Q(gk)>

<exp (- (C2/8)n*q(gr)? >
- > iy Varg-(¢1(Dy) — Eg- [61(Dy)]) + (C2/6)ng(gr)
< exp (—Csnq(gr))

<e ( C4nqn) s

19)
where the first 1nequalat holds by (]T_7|) the second 1nequahty holds by Bernstein inequality, the third

inequality holds by (18) with a positive constant C3 = C3 /(8(1 + C5/6)), and the last inequality
holds because ¢(p) 2 g, with

_ n="z" (logn)? ify <3
i n 7’%(logn)% if v > %
under the assumption [[A4)] On the other hand, applying (T7), (I8) and Bernstein inequality to
1 — ¢1(Dy), we have

sup Ef[l — @y 1(Dy,)]
0€O 1

3

9€Ok 1

= sup Py (Z (1 =01(D1)) = (L =Eg [91(De)])) = D _(Bo [61(D1)] — Eo- [¢1(Dt)])/2>

< sup Py (Z 1—¢1(Dy)) — (1 =Eg [01(Dy)])) > C;”Q(%))

0€O 1
B (C3/8)n*q(gx)?
= poer, P ( S Varg(Eq [61(D)] — 61(Dy)) + <02/6>nq<gk>>
< exp (—Csnq(gr))
< exp (—Cyngy,) .

(20)

The construction of tests for the second group of hypotheses (I6) is similar. Define the tests as
follows:

n n
Py 2(Dy) =1 {Z $2(D) > Y (Eg- [62(Dr)] + Eo [sz(Dt)])/?} :
t=1 t=1
where ¢o(D;) = 1{P; = g, Y; = 0} is a function. Similarly, we see that there exists a positive
constant C5 depending on My, Ms, L, B, 17 such that

Eg- [®r,2(Dy)] < exp(—Csngn), ,up Eg[1 — @1 2(Dy,)] < exp(—=Csngn). (21)

€0Ok,2

Note that the union of the sets in the alternatlve hypotheses (13) and (16) for all k = 1,..., K

contains O, 5, = {(So, ) € So x Rd o > 1018 — B2 < 72} We set @, =
maxyc K]{<I>k 1V @ 2}. Combining (19), (20 i and D we have

o [@n(Dy)] < Kexp( Congy)
= exp (log K — Cengy) ,
sup Ef[l —2,(D,)] < exp(—Csngy),
0€On; ny
where Cg = min{Cy,C5}. By the definition of ¢,, we have E}.[®,(D,)] — 0 and
supgpce, . Bg[l — ®n(Dn)] — 0 asn — oo when y < 2/3. By Lemma D.11 of [16l,
there exist tests ¥,, and a constant C7 > 0 such that E}.[¥,(D,)] < exp(—C7n) and
SUPgeg Ej[1 — ¥, (D,)] < exp(—C7n). The proof is then complete. O

m1,M2
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Lemma A.5. Suppose that the grid resolution satisfies § = kn~" for k > 0 and v € [1/3,1], and

assumptions|(A1)\(AS)| hold. Let e = n="/% and J = [(pmax — Pmin)/(r€)]. Define (ki,...,ky) as
a subsequence of [K | such that pmin + (j — 1)ke < gr; < Pmin+(J —1)ke+dforj=1,...,J—1,
and set kj = K. Then, there is an exponentially consistent sequence of tests for

HO:GZ(SS7B*)7
Hy : 0 €{(So,B) € So xR : , 0[S0, = Si k| 2 m, 18— 87|z < e}

for any 1 > 0 and sufficiently small ns > 0.

Proof. We consider the following two groups of hypotheses foreach j = 2,...,J — 1,
Hy: 0= (Ss,ﬁ*), Hy:0¢€ @j71 (22)
HO 10 = (Ss,ﬁ*), H1 = @j72 (23)
where @j71 = {(So,ﬂ) e Sy x R? . SO,kj > Sg,kj + 1, ||5 — ﬂ*HQ < 172} and @j72 = {(So,ﬂ) S
Sy x R? : Sok; < S(}ikj — 1, |8 — B*|]2 < n2}. Define the index set between k; and k;; as
I;={ke[K|:kj <k<kjp}forj=1,...,J — 1. Given an index set I C [K], we denote the
subset of G corresponding to I by G(I) = {gx, € G : k € I}.
Fix j = 2,...,J — 1. For the first group of hypotheses (22), define a function ¢1(D;) = 1{P; €
G(Ij—1),Y; =1} . Forany 6§ € ©;, and k € I,_;, we have
So,k = Sok = Sok; — S0k, + S0k, — S0k
>m — Lolgk, — gk
2 m — Lo(lié + 5)
> m — 2L0/€6
>

-2’
where the second inequality holds because 6§ € ©; 1 and S is Lo-Lipschitz continuous under the
assumption the third inequality holds by the definition of (k1, ..., k), the fourth inequality
holds because 0 < ke when v > 1/3, and the last inequality holds for sufficiently large n such that
e <n1/(4Lok). By a similar argument as the proof in Lemma for a sufficiently small 7)o, there
exists a positive constant C; depending on M, Ms, L, B and 1, such that for § = (So, 5) € ©,1
and k € 1 j—1s

So’keXP(X:ﬂ) > ngkexp(XtTB*) + 0.
Then, for any 6 = (S, 8) € ©,.1, we have
Eo [61(D0)] = Exp, [So(P)™ X 1P, € G(1;-1)} |
> Ex,.r, [S5P)™ TP € 010} +C1 Y alan)
kEijl

=Eo- [1(D)] +C1 Y algn),

kGIj_l
In addition, for either § € ©;; or § = 6%, we have

Varg(¢1(Dt) — Eg(¢1(D1)) = Eg [¢1(D1)] (1 — Eg [¢1(Dy)])
< Eg [¢1(Dy)

)
)

= Ex,.p, [So(P)™ X P1{P; € 6(1;-1)}
)

<Z q(gr

kel;_

Define tests as follows:

®;1(D,) =1 {Z é1(Dy) > Z(Ee* [¢1(Dy)] + Eq [¢1(Dt)])/2} .

t=1
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Combining the last three displays, by Bernstein inequality, we have

n

B 2,(D)] < B | 3 (01(D) ~Eo- (D) > S Y alon)
t=1 kel
<o - (CF/8)n*(Xer, , algn))’
=P\ TS Varo- (1D~ Eg- (91 (D)) + (G/6)n ey, (o)

<exp | —Con > qlgr)

kGijl

< exp (=Csn|lj-1lqn)
< exp (—03n7+%qn) , (24)

where Cy = C7/(8(1+ C1/6)) be a positive constant, the fourth inequalith holds with a positive con-
stant C'3 depending on Cs and ¢(-) because ¢(p) > ¢, for any p € G with ¢, = n=7~'/3(logn)'/?
under the assumption and the last inequality holds because |I;| > K/J > n7~'/3 for any
7 =1,...,J — 1. Similarly, we have

sup E[1 - @;1(D,)] < exp (~Can* g, ). 25)
0€0; 1

The construction of tests for the second group of hypotheses (23)) is similar. Define the tests as
follows:

Pj2(Dyn) =1 {Z $2(Di) > D (Eg- [62(Dy)] + Eq [¢2(Dt)])/2} ; (26)

where ¢9(D;) = 1{P; € G(I;),Y; = 0} is a function. By a similar argument as the preceding, for
any 0 € O 5, k € I;, and for sufficiently large n such that € < 1, /(4Lk), we have

m

5

By a similar argument as the proof in Lemma[A-4] for a sufficiently small 7, there exists a positive
constant C'y depending on My, My, L, B and n; such that for any 6 € ©; o,

Eg [¢2(Dy)] > Eg- [$2(Dy)] + Ca > qlgr)-

kel

So = S0k = S0k — S0k, + S0k, — Sok; = —Lolgr — gk, | +m =

In addition, for either € ©; 2 or 6 € 0%, we have
Varg(¢2(Dy) — Eg(p2(Dy)) < Eg [p2(Dy)]

= Ex,.p, [(1=So(P)"? D) 1P, € 6(1;)}]

< Z a(gr)-

kel;

Combining the last two displays, by Bernstein inequality, there exists a positive constant C's depending
on Cy and ¢(-) such that

g+ [P 2(Dy)] < exp (—C5n7+§qn) . sup Ef[1—®,.(D,)] <exp (—C5n"’+%qn) .27
0€0; 2

Note that the union of the sets in the alternative hypotheses (22)) and 23) forall j =2,...,J —1
contains ©,;, ,,, := {(So,3) € So x R? : maxa<j<yj_1 1So,k; = S0k | = M [|1B—B"|l2 < m2}. We

set &, := maxo<j<j_1{®;1 V ®,2}. Combining , and , we have
Ep. [®,(Dy)] < Jexp <—an7+%qn>
= exp (logJ - C’anr%qn) ,
sup Ep[l —P,(D,)] <exp (—an7+%qn) ,

96@7}1,7]2
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where Cs = min{C5,C5}. By the definition of ¢,, we have Ej.[®,(D,)] — 0 and
SUDgce,, . Ej[1 — ®,(D,)] — 0asn — oo when v > 1/3. By Lemma D.11 of [L6],
there exist tests ¥,, and a constant C7 > 0 such that E}.[¥,(D,)] < exp(—C7n) and
SUPgeo Ey[1 — ¥, (D,)] < exp(—C7n). The proof is then complete.

n1-M2

O

Proof of Lemma[A-]] We proceed with the proof by considering two separate cases: v < 2/3 and
~ > 2/3. First, we suppose that v < 2/3. Let ¢y > 0 be a constant to be chosen later, and define
O = {(S0,8) € O : ||[Ag — Aflloo V |8 — 5*|l2 < €o}. Here, Ag = (Ag1,..., Mo k) and

A5 = (A, -, Af i) are K-dimensional vectors corresponding to So and S, respectively, such
that Ao = —log So , and Ag , = —log Sg , for k = 1,..., K. The log-likelihood ratio satisfies
Do~ H@*(xap) 1 _HO*(‘r?p)
log —(z,p,y) = ylog ——~ + (1 —y)log ———F—
By PPV VI8 gy T T )

H@* (l’,p) 1—- H@*(xap)
< 1 1 .
= max{ ® Hy(w,p) " ° 1= Hy(z,p)

By assumption[(AS)] there exist constants My and My such that 0 < My < S (pmax) < 5§ (Pmin) <
M, < 1. Note that for § € O, where ¢¢ < (M; A (1 — M3)/2) A B, we have Sp(v) €
[M1/2, (1 + My)/2] for any v € [Pmin, Pmax)> and ||| < 2B under assumptions and
Furthermore, by assumption [(A2)] both Hy«(z,p) and Hy(x, p) are bounded away from 0 and T for
anyr € X,p € Gandd € O,. Since | logp—logq| < |p—q| max{p~t, ¢ '} forany 0 < p,q < 1,
we have

log Po-

< Col|Hp+ — Ho|[ oo, (28)
Do

o0

where Cj is a positive constant depending on M, M», L and B. In addition, by Lemma|C.2] there
exist positive constants c; and cg, depending on M;, M, L and B, such that for any z € X and
pEQG,

|Hp- (2,p) = Ho(2,p)| < c1]|So = Sgllec + c2[|3 = 57l
< Ao — Aglles + 2B = 872,

where the last inequality holds because ||Sg — S§llcc < [|Ag — Af|lcc- Combining the last two
displays, for 6 € ©,, we have K (pg-,ps) < |[log(pe-/ps)| ., < C1€0, Where C1 = Co(c1 + ¢2) is
a positive constant. Then, we obtain

O € {0 €O : K(por,pg) < Creo}. (29)

We denote the renormalized restriction of II to ©, by II,. We note that

/ TT 2 (poane) = nee.,) / TT 22 (b, (0
o

11 Po~ Oy 11 PO*

> T1(@.,) exp <— [ S () (Dart, <0>> ,

€ t=1

(30)

where the last inequality holds by Jensen’s inequality. Since the log-likelihood ratio is bounded from
([28), by Hoeffding’s inequality, we have

- 2
n Do~ 60
9 (tzzl log <p(9) (D) — nK(pe+,pg) < qm) >1—exp <2002 > . (31)

Let 27 be the event in the left-hand side of the last display. Thus, on the event 2, we have

-/ Zlg(’;@) (DO 0) >~ [ K (e po (6) — o

€ t=1 O¢p

> —(Cl + 1)6071,
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where the last inequality holds by (29). Combining this with (30), on the event 2, we have

“r Do

| T2 (Da) > (6., exp (~(C1 + Deon). (32)
© ;1 Po-

Lete; = ¢on™ 7. By Lemma with the specified prior (3]) and the hyperparameter condition [(P2)]

there exist positive constants cs, ¢4 and c; depending on pmins Pmax> M1, Ma, @, @, p and €y, such

that

IT(|Ao — Adlloo < €1) > czexp(—cya K — c5 K log_ €7).
In addition, under the prior condition [(P1)} we have II(|| 8 — 5*||2 < &) > C3, where Cs is a postive
constant depending on d, ¢ and the lower bound of the prior on a neighborhood of 8*. Then, we
have
I1(0) = H([|A0 — Aglloc < €0) - II(J|3 = 8|2 < €0)
> Cocgexp(—cs K — c5log_ 1K),

where the last inequality follows from the previous display and the fact that e; < ¢y forn > 1.
Combining this with (32), on the event 2, we have

/ H 50 (Dy)dII(8) > Caezexp (—caK — cslog_ e K — (Cy + 1)eon)
© ;. bo-

> Cocgexp (—CsKlogn — (C1 + 1)egn) (33)

where the last inequality holds by C3 = ¢4 + ¢5(log_ €g + 1) because log_ €1 < log_ ¢y + logn.
By Lemma[A3]and [A-4] there exist tests ®,, such that

Ef. [®,] < exp(—Cyn), sup Ef[1— ®,] < exp(—Cyn), (34)
feUc

where (Y is a positive constant depending on M, My, L, B, pmin, Pmax, * and €. Then, we have
o« LL({U°[Dy)] < Ef. [@,] + Eg. [(1 — @,)IL(U|Dy) {1 }] + Pg. (27)
2

< Ep. [®@,] + (Cac3) texp (C3K logn + (Cy + 1)egn) sup Ef [1 — ®,,] + exp <—266012n>
oeUe 0

< exp(—Cyn) + Cs exp (CBOpn% logn — (Cy — (C1 + 1)%)”) +exp (—Cen)

where the second inequality holds by (3T)) and (33), and the last inequality follows from (34)), with
Cs = (Cacz)~tand C = €2/(2C2), and K < Cpn?/3 for vy < 2/3, where C,, is a positive constant
depending on puin, Pmax and k. We choose g = (Cy/(3(Cy + 1)) A (M1 A (1 — My)/2) A
B) to ensure that the second term on the right-hand side of the previous display is bounded by
Cs exp(—(Cy/3)n), provided that n'/3(logn)~! > 3C3C,/Cy. Then, we have
g« [IL(U¢|D,,)] < exp(—Cyn) + Cs exp(—(Cy/3)n) + exp (—Cen)
< C7 eXP(*CSH)v
where C7 = C5 + 2 and Cg = (C4/3) A Cs. By the Markov inequality, for n > (3C5C,/C4)3,
- (I(U°|D,,) > Crexp(—Con)) < exp(—Cqn),
where C9 = Cg/2. This concludes the proof for the case where v < 2/3.
Now, we suppose that v > 2/3. Let e = n~'/3 and J = [(Pmax — Pmin)/(ke2)]. Define
(k1,...,ky) as a subsequence of [K| such that pyin + (j — 1)ke2 < gr; < Pmin + (J — 1)Kez +6
forj=1,...,J—1,andsetk; = K.
Suppose that | So,x, — 57 ;.| < €/2forevery j =1,...,J. Then, for any k € [K] with k; < k <
kjpiforj=1,...,J — 2, we have
S0k — S0k < S0k — S0,k;41

S |Sa<,k’j+1 - So,kj+1| + ‘Sg,k‘ - Sf)k,k

< €/2+ Lolgr — gr;.. |

< €/2+ Lo(keg +9)

< 6/2 + 2Lgkes

<e

il
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where the third inequality holds by our assumption and Lg-Lipschitz continuity of S, with Lo being
a positive constant because @is assumed, the fourth inequality holds by the definition of k;, the
fifth inequality holds because § < keq for v > 2/3, and the last inequality holds for sufficiently
large n so that €3 < €¢/(4Lok). Note that |gx,_, — gk, | < 2rez by the definition of J. Then, for any
ke [K] with k;_1 < k < k;, we have

Sé,k - SO,]{) < €.

Combining the preceding two displays, we have Sg , — 5o, < eforany k € [K]. Similarly, for any
k € [K], we have So » — S§;;, < €. Therefore, for n > (4Lok/€)3, we have

{SO S SO : HSO — SS”OO > 6} C {SO S So : ||SO — SSHOO,J > 6/2} 35)

Then, we can decompose
g+ (U [ Dy)] < Eg. [II({0 € © : |[So = Sple,s > €/2 01 [|3 = 57[|2 > €} | Dy)]
< Ep. [II(U; | Dy,)] +E§. [II(Uz | Dy,)] +Eg. [II(Us | D), (36)
® (i) (iii)

where
U1={0€0: o Lo 1S0,k; — So ;| = €/40r||B—B"[l2 > €},
Us={0. €0+ 1S0u, = i, | = /2 max [So, = S| < ¢/}
Us={0€0©:[Sor, —Sor,|> 6/2 Jmax. |So ky — Sok,| < €/4}.

The proof for (i) is similar to that of v < 2/3. Let €3 > 0 be a constant to be chosen later. Similarly
as in (33)), we have

{So S 80 : ||A0 — AS”OO > 637747%} C {So S So : ||A0 — AS”OO,J > 01063’/17%}, 37

where C1 is a positive constant depending on Lg and . Then, we have
[I(O¢,) = II([[Ag — Agllec < €3) - TI([| B — B7[[2 < €3)
> Onll(|Ao — Afllc.s < Croean™ ?)
> Chyce exp <707J — cglog_ (C10637’L7%)J) ,
where the second inequality holds by a positive constant C; depending on d, €3 and the prior’s lower
bound near 5*, and the last inequality follows from constants cg, ¢7 and cg in Lemma|[C.3] depending

oN Prin, Pmax> M1, Ma, a, @, p, C1g and €3. Similarly as in @) there exists the event (5 such that
P2, (925) < exp(—€3/(2C3)n), and on the event 22, we have

/ H ;99 Dt)dH(Q) > 01106 exp (—C7J — C8 1Og7 (Cloegn_%)J — (Cl + 1)63,71)
© j=1 10"

> Cicgexp (—Cr2J logn — (Cr + 1)e3n)
> Cicg exp (—Clngn% logn — (C1 + 1)6371) ,
where the second inequality holds by C12 = ¢7 4 cs(log_(Cipes) + 1), and the last inequality holds
because J < Cpnl/ 3 by the definition of J. By Lemma there exist tests ®,, 1 such that
Ef. [Pn1] < exp(—Cisn), 05;15) Eg [1 — ®,,1] < exp(—Cisn),
1
where C3 is a positive constant depending on My, Ms, L, B, Pmin, Pmax, & and €. We choose

e3 = (C13/(3(C1 + 1)) A (M1 A (1 — Ms)/2) A B). Combining the last two displays, for
n Z (30120p/013)3/2, we have

Eg. [II(U1 | Dy)] < Craexp(=Cisn), (38)
where C14 = (Cr106) ™! + 2 and C15 = (C13/3) A (€2/(2C8)) are positive constants.
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‘We now consider the term (ii). We split Us in Us _ and Us ., where
~={0€0: S0k —Sok < —6/2,2<Ijnax |So,k; — S, | < €/4},

Uy ={0€0O:Sok, — S5k, = 6/2 Jax |So ky — So,| < €/4}.

Note that U, C Uy _ U U3 _, where

Uzl,_ ={0€0:|B-p5"22n},
:{966'5(]k1 —SSkl < _5/2 ”B_B*”2 <77}

for some sufﬁ01ently small positive constant 1 depending on e. By Lemma[AZ3] there exist exponen-
tially consistent tests ®,, o 1 for testing Hy : 0 = 0", H; : 0 € U2 . Similarly as in the proof of

Lemma|A.5| we construct the tests W, 5 5 for U3 _ by

Upo2=1 {Z 2(Di) > > (Ege [62(Dy)] + Eq [¢>2(Dt)])/2} ;

t=1 t=1

where ¢2(D;) = 1{P; € {gk,,.--, 9k, },Y: = 0}. By a similar argument as the proof in Lemma
| we can show that E}, [¥), 5 o(D,,)] — 0 and supgerz  Ej 1—-9,22(D,)] — 0asn — occ.
By Lemma D.11 of [16], there exist exponentially consistent tests ®,, 20 fortesting Hy : 0 = 0%, H; :

0 e U2’7 Let @, 0 = @21 V @, 2,2. Then, there exists a positive constant C'; depending on M,
My, L, B, pin» Pmax. # and € such that

Ef. [®n2] < exp(—Cign), esgp Ey [1 — @, 2] < exp(—Cign).
cUsz, —

Then, by a similar argument as the preceding, for n > (3C12C,/ 016)3/ 2 it holds that
o= [[L(Uz,— | D,,)] < Craexp(—Ci7n), (39
where C17 = (C16/3) A (€2/(2C%)) is a positive constant.
We restrict ourselves to vectors So such that maxa<;j<y—1[So,k; — S5, < €/4. Suppose that
So,k, — So,k, < €/4. Then, we have
So,kl - Sg,kl = 507161 - SOJC2 + 507162 - Sg,kl
< S0k1 = S0,ks + So.ks — S,
<efd+e/d
=€/2,

where the first inequality holds by the monotonicity of S, and the last inequality follows from our
assumption and the fact that [So,k, — S ,| < €/4. Thus, it holds that

UQ’J'» C {9 €06: SO,kl So ko > 6/4 max |S() k; Sg,kj| < 6/4}

C {9 €0O: SO,kl — SO,k2 > 6/4}.

Then, it is sufficient to show that Ef., [IL(U3 , | D,)] — 0 asn — oo, where Uj , = {# € O :

S0k, — Sok, > €/4}. Let ey = esn~ /3, where e5 > 0 is a sufficiently small constant to be chosen
later. Similarly as in , there exists the event (23 such that P%. (Q5) < exp(—e3/(2C2)n), and on
the event (23, we have

/9 H ]f;* Dy)dII(0) > II(O., ) exp (—(C1 + 1)eqn) .

Furthermore, we have
I(©¢,) > H([[Ao — Agllec < €2) - II([|B = B7l2 < €a)
> cgexp (—crJ — cglog_(Chroeq)J) - TI(|| B — B* |2 < €4)
> Ciscgexp (—erd — cglog_(Cro€s)J) - €f
= C1s¢g exp (—C7J — cglog_(Chpeq)J + dlog 64) ,
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where the second inequality holds by (37) and Lemma|[C.3] and the last inequality holds because
(||8 — B*]l2 < €4) > Ciged with a positive constant C1g depending on d and the prior’s lower
bound near 5*. Combining the last two displays, on the event {23, we have

/ H ;De (Dy)dII(0) > Chgcg exp (—c7J — cslog_(Cioes)J + dlog ey — (C1 + 1)eqn)
© =1 1o

> (Cgcg €xp (—01971% logn — (Cl + 1)65’/1%) ,

where the last inequality holds by a positive constant C19 = C),(c7+cs(log_(Coes)+1))+dlog_ €.
This implies that

5. (U3, | D)) < B (U3, | D,)1{Qs}] + . ()

2
(40)

2 2 1
< (Cigce) texp (Clgn§ logn + (C1 + 1)e5n§) H(U§7+) + exp (— ECE’QnS) )
0

We now prove that the prior mass of U is exponentially small. Note that

Sovkl - S()sz = exp(iAO,/ﬁ) - exp(iAO,ké)
< Aok, — Aok,

ko
=0 > ok

k=ki+1
Let A = ZZikl 410k By , )\ is gamma distributed with parameters aq and p, where oy =
ZZikH_l ay. Then, we have

m(U5,) <1 (x> )

— €
<II{AN>—K
<113z 75 )

o pe
< 2% - K
= eXp( 8C, )

< exp (CQO log 2 - n’Ts — CQ]TL’Y)
S exp (—021/2 . n”) s

where the second inequality holds because K < C,6~*, the third inequality follows from Chernoff
bounds. Here, the fourth inequality holds because K > C/n” and g < K/J - @ < Cyp - nY—1/3
underwith positive constants Coo depending on @, pmin, Pmax and &, and Cyy = peC]'D /(8Cp).
The last inequality holds for n > (205 log 2/C41)3. Combining this with , we have

Co1 2 fg 1
5 n3>+exp(zcgn3 R

where the inequality holds because v > 2/3 with a positive constant Cyy = (Cmce)_l- We choose
€5 = (021/(6(01+1)))/\((M1/\(17M2)/2)/\B) Then, forn > (3019/021)3\/(2020 log 2/021)3,
we have

g [II(U3 1 | Dy)] < Cozexp <019n;’ logn + (C1 + 1)esnt —

2
Ef. [TI(Us 4 | Dy)] < Cozexp _Cz1n§ + exp _6752”%
» 3 202
< Oy exp (—CM%) : 41)

where the last inequality holds by postive constants Co3 = Caz +1 and Cag = (Ca1/3) A(€2/(2C3)).
Combining and , forn > (30126’,,/016)3/2 V (3C19/Ca1)3 V (2C50 log 2/Ca1 )3, we have

o [H(UZ | Dn)} < Cryexp(—Cirn) + Cazexp (—CQMZ%)

< Casexp (~Caen' ), 42)

34



where Co5 = C14 + Cas and Cog = C17 A Cay are positive constants.

By a similar argument as (ii), there exist positive constants C7 and Csg such that
(iii) < Carexp (ngsn%) . 43)
Combining (36), (38)., (#2) and [@3)), we have
b (U | D)) < Cagexp (—Coont ) |

where Cyg = C14 + Co5 + Cyr and C39 = C15 A Cag A Cag are positive constants. By the Markov
inequality, we have

g* (H(UC ‘ Dn) 2 029 exp (—031711%)) < exp (—Cgln%> 5
where C3; = C30/2. This concludes the proof for the case where v > 2/3.

A.2 Proof of Theorem 3.1]

Lemma A.6. Let © = {(8076) €0: S()J( > M1750,1 < M, ||ﬁ||2 < D}, where My, My and
D are some positve constants such that 0 < My < My < 1, and let P' = {pg : 6 € ©’}. Under the
assumption[(A2)] there exist positive constants Cy and Co depending only on My, Mo, L and D such
that for every € > 0, it holds that

N(e, P, Dy) < (Cy/e + K)5(Cy/e)?.

P}”O()f: Let S(/) = {SO S (50,1,...,50’[() : M2 > SO,l > e > SO,K > Ml} and IHB S {AO =
(A071,...,A07K) : )\2 < AO,l <... < A07K < )\1}, where )\2 = —logMg and )\1 = —long.
Then, for any A corresponding to the vector Sy € Sf, Ao belongs to Hy, since Ay, = —log S, €
[A2, A1) forany k =1,..., K. Fore > 0, let

Hée {AoeHO (AOl,...,AoyK):(mle,...,mKe)
for some positive integers my, . .., my satisfyingm; < --- <mg}.
Then, it is not difficult to show that H;, . is an e-cover of H{, with respect to || - ||oo. Note that the
cardinality of 7—{’ . is the number of K-tuples of integers (my, ..., mxg) satisfying [ A1 /€| < my <
- <mg < | A2 / |, which is given as (p‘2/ EJ*%?“/ EHK) based on simple combinatorics. Hence,
we have N (e, 1, || - [loo) < (P2/75) < (Aa/e + K)¥. Therefore, we have
N(e, Ho, || lloo) < (Na/e + K)¥. (44)
Take any two parameters § = (S, 8),0' = (S{, ) € ©’. By Lemma|[C.1|and[C.2] there exist
positive constants ¢, ¢o and c3, depending on My, M5, L and D, such that forany x € X and p € G,
Dy (po,por) < c1||Hg — Hor || oo
< C1l|Ao — Aplloe + C2||B8 — B2, (45)
where Cl = C1C2 and CQ = C1C3.
Letm := N(¢/(2C1), Hy, || - ||oo) and I := N(e/(2C2), B, || - ||2), where B’ = {8 € R : || B]|2 <
D}. This definition implies that there exist Ag 1,...,Agm € 7—[0 such that for every Ay € Hy,
the inequality |[Ag — Ag;llec < €/(2C1) holds for some 1 < i < m. Similarly, there exist
B1,...,01 € B’ such that for every 5 € B', || — Bjl|2 < €/(2C>2) holds for some 1 < j < [.
Let 6,; = (So,i; % € ©’, where Sy ; be the vector corresponding to Ay, for¢ = 1,...,m and

j=1,...,1. By , for any 6 = (Sy, §) € ©’, there exists 0;; forsome 1 <7 <mand1 < j <l
such that

Dr(pe;po,;) < C1l|Ao — Agilleo + CallB = Bjll2 < e

Consequently, the covering number N (e, P’, Dyr) is of order ml. Note that m < (203 Ay /e + K)¥
by (44). Furthermore, by Proposition C.2 of [16], I < (6DC3/¢)?. Therefore, we have

N(e,P',Dy) < (Cs3/e + K) (C4/€)d,
where C3 = 2C1 A\ and Cy = 6 DC}, are positive constants depending only on My, My, L and D.
O
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Proof of Theorem[3.1] First, we define the square Kullback-Leibler variation as Vy(p,q) =
J(log(p/q) — K (p/q))*dP. For every € > 0, we define neighborhoods of §* by

B(6*,€) = {0 € © : K(pp-,po) < €, Vo(po~,pe) < €}

We begin by checking the prior mass condition. Note that there exist constants M/; and M5 such that
0 < M; < Sj(v) < My < 1forany v € [Pmin, Pmax] by assumption[(A5)] Let U = {(So,3) € © :
[ISo — S§lloo V |15 — B*|l2 < €0} be a neighborhood of 6%, where ¢, is a positive constant that can
be chosen as €9 = (M7 A (1 — M3))/2) A B to ensure that U C ©. By in the proof of Lemma
there exists a positive constant Cy depending on M, Mo, L and B such that for any 6 € U,

Do~
log —
Po

< Cp.

oo

By Lemma B.2 in [16], the uniformly bounded likelihood ratio implies that
‘ po-
Do

Po~+
‘H S OQD?-I(pG*7p9)a
Po ||

K (po-,po) < c1D%(po-, o)

< C1D% (po+, o),
o (46)
Vo(pe~,po) < c2D3(po~, o)

where C = ¢1 exp(Cp) and Cy = ¢5 exp(Cy) for universal constants ¢; and co. By Lemmaand
Lemma@ there exist postive constants cs, ¢4 and c5, depending on M7, M,, L and B such that for
any 0 € U,

Dy (po-,po) < cs||[Ho — Holloo
< Csl[Ao — Agllos + Cul|B — B7 |2,
where 03 = C3C4 and C4 = C3Cs. Let @n = {9 €0: HAO - ASHOO S C5En, ||ﬂ — [3*”2 S Cﬁén},
where C5 = 1/(2C5y/C1 V C3) and Cg = 1/(2C4+/C V C2). Combining the last two displays, we
have
©,NU C B0, e,)NU.

Since ||So — S§llco < ||Ao — Af|oo, for sufficiently large n such that €, < €y/(C5 V Cpg), it follows
that ©,, C U, implying ©,, " U = ©,,. Thus, we see that
II(B(8%€,)) > (B0, e,) NU)
> T1(J A — Ajlloe < Csen) - TL(I18 = B°l2 < Coen). 7)
By Lemma [C.3] with the specified prior (3)), the first term in the right side of the last display is

bounded below by C7 exp(—CsK — CoK log_ (Cse,,)), where C7, Cs and Cg are positive constants
depending on puin, Pmax> M1, Ma, o, @ and p. Let Vy(R) denote the volume of a d-dimensional

L? norm ball of radius R > 0. The closed form of V(R) is given by V4(R) = 7%/2/I'(4 + 1) - R¢
where T is the gamma function. Note that 1"(% +1) <T(d+1) =d! < d?ford > 1. Then, the

second term in the right side of the last display is bounded below by Cy¢(v/7/d)%(Cee,, )¢ where
C1o is the lower bound of the prior on a neighborhood of 5*. Therefore, we have

II (B(Q*, 671)) > C7Cho exP(_CSK - CQKIng (C5€n)) : (ﬁ/d)d(cﬁen)d
> C7Cpexp(—Cs K — CyK log_(Csep,) — dlogd — dlog_(Ceey))
> C7C1p exp(—CsCpn” — CyCpn log_(Cse,) — dlogd — dlog_(Csey))
> exp(—Ciine,),
where the third inequality holds because K > C,n” with a positive constant C,, depending on
Pmin> Pmax and & as defined by K, and the last inequality holds by a positive constant C7; =
[1og(C7Cho0)| + CsCp 4+ CoCyp(|log Cs| + 1) + | log Cg| + 2 because log_ (Ce,,) < |log C| +logn

holds for any C' > 0 and n” logn < ne%. Thus, by Lemma 10 of [15], there exists an event €2,, such
that P2, (Q,,) > 1 —1/(ne2), and in Q,,,

[ exp(6(6) ~ £,(67)d(0) = exp(~(Crr + 2)ned). (48)
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By the Kullback-Leibler inequality, note that Eg« [£(6)] is maximized at # = 0*, meaning its first
derivative at 6* is equal to 0. Additionally, for § = (Sg, 8) € U, note that Sy is uniformly bounded
away from 0 and 1, and $3 is bounded by assumptions[(AT)|and[(A5)] Since the covariate has bounded
support by assumption [(A2)] by a Taylor expansion, there exists a postive constant ¢, depending on
M, Ms, L and B such that for any 6 € U, we have

coD(0,0") < Eg- [£(6%)] — Eg- [€(0)] = K (po- , po)-
Combining this with (46), we have
CuDq(0,0") < Du(po+,po), (49)
where Cy = \/co/C1. Then, we have
o- [I(Dg(0,0") > MJe, | Dyn)1{2}]
< Ep. II({Dg(0,0") > MJe, } NU | D,)1{Q,}] + Eg. IL(U* | D,)]
< E§. [II(T'y [ Dy)1{Q2}] + c7 exp(—csn), (50)

where T';, = {0 € U : Dy (po~,ps) > CyMJe,} for large constants M and J to be chosen
later, and the last inequality holds for n > cg by Lemma@ with positive constants cg, c¢7 and cg
depending on M;, My, L, B, Prins Pmax, &, &, p and k.

Define Py = {pp : 6 € U} and N;; = sup... N (¢/36,{pg € Py : 0 € ',},Dy). By Lemma
@ there exist positive constants C5 and C43 depending on M7, Ms, L, and B such that

N} < N (0/36, P53, Dy)
< (36C12/en + K)* (36C15/€n)"
< exp(K -1og(36C12/e, + K) + d - log(36C13/€r))
< exp(Cryne?), (51D

where the last inequality holds by a positive constant C4 depending on C12, C13, Pmins Pmax and k.
In addition, by Lemma 2 of [[15]] and Lemma 9 of [15]], applied with e = C'y Me¢,,, where Cy M > 2,
there exist tests ¢,, that satisfy

1 1
Y n<N*e **C2M2 2> ’
b = N X ( 2 T ) T exp (503 MPned) (52)
1
sup Ep (1 — ¢) < exp (C?{MQJznei) ,
0eT,, 2
for any J > 1. Then, by (@8), the first term of (50) is upper bounded by
Ef. [I(T,, | D,)1{Q,}] < Ef. ¢, + exp((C11 + 2)ne2) sup Ej (1 — ¢y,). (53)

oer,,

If M is sufficiently large to ensure that C%M?/2 — Cy4 > C% M? /4, by combining and the
first line of (52), we have

Ej. 6, < oxp (<014 - ;czW) n2) !

1 —exp (—3C% M?ne?)

1
< Cisexp <40121M2”53L> )

where C15 = (1 — exp(—2C14))~ ! is a positive constant. If we set J = 1 and choose M to be
sufficiently large such that C% M? /2 — (C'y +2) > C% M? /4, by the second line of (52), the second
term in the right hand side of (53) is bounded by

1
exp (—4CzM2nei> .

Therefore, if we choose M to be sufficiently large such that M > 2,/(C1; +2) V C14/Ch, by
combining the preceding two displays, (50) and (53), we have
5-[II(Dg(0,0%) > Me, | D,)1{,}] < (C15 + 1) exp (—Cignes) + cr exp(—cgn)
< Cirexp (_(016 A Cg)nei) s
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where C17 = C15 + ¢7 + 1 and C16 = (Cy1 + 2) V C4 are positive constants. An application of the
Markov inequality yields that

i (H(D@(G, 0*) > Me,, | D,)1{Q,} > Ci7exp (fclgne%)) < exp (fclgnei) ,
where C15 = (C16 A cg)/2 be a positive constant. Note that it is easy to show that
i ({H(D@(H,H*) > Me, | D,,) > Cyrexp (—Clgnei)} N Qn)
< P, (H(D@(Q, 0*) > Me,, | D,,)1{Q,} > Ci7exp (—Clgnei)) .

Combining the last two displays and @8], we have

G ({H(DQ(H, 0*) > Me,|D,,) > Cy7exp (—Clgnﬁi)})

< Py ({H(D@(G, 0*) > Me,|D,,) > Cyrexp (—Clgnei)} n Qn) + Py ()

< Py (H(D@(Q,Q*) > Me,|D,)1{Q,} > Cy7exp (—Clgnei)) + Py ()

1
< exp (—Clgnei) + 2

n

Thus, we have that with probability at least 1 — (exp(—Cisne?) + 1/ne2),
H(DQ(@,Q*) > M€n|Dn) < Cy7 exp (—Clg’l’lfi) .
If we fix M = [24/(C11 + 2) V C14/Cp], then the proof is complete. O

A.3 Proof of Theorem

Lemma A.7. Let © = {(So,8) € © : So.x > M1,S0,1 < Ma, ||B|l2 < D}, where My, My and
D are some positve constants such that 0 < My < My < 1, and let P’ = {py : 0 € ©’}. Under the
assumption[(A2)] there exist positive constants Cy and Cy depending only on My, M, L and D such
that for every € > 0, it holds that

N(e,P', Dy) < exp(C1/€)(Ca/e)?.

Proof. Let Fy be the collection of monotone functions f : (Pmin, Pmax) — [A2, A1], where A\ =
—log M and Ay = —log M>. Additionally, let Ay denote the cumulative hazard functions with
respect to the baseline complementary c.d.f. Sy. Then, for any Sy corresponding to the vector
So € {So €8y 507[( > My, SO,l < Mg}, Ay = —log So belongs to Fy.

Take any two parameters 6 = (So, 3) and 6’ = (S{, 3') € ©'. By Lemma|C.T]and Lemma[C.2] we
have
571/2
Dit(po,pr) < Co |Exp | Ho(X, P) — Hy (X, P)’|

< C1lSo = Spll2.0 + Ca||B = B'll2

< Ci|[ Ao = Agllz.q + CallB = B2, (54
where Ex p denotes the expectation with respect to the covariate X and the price P, and Cp, C; and
(5 are positive constants depending on My, M5, L and D.

Letm := N(e/(2C1), Fo, || - |l2.0) and I := N(e/(2C2),B', || - ||2), where B’ = {3 € R : ||8]|2 <
D}. This definition implies that there exist Ag 1,..., Ao, € Fo such that for every Ay € Fo,
the inequality |[Ag — Agll2.0 < €/(2C1) holds for some 1 < ¢ < m. Similarly, there exist
B1,...,0 € B such that for every 5 € B/, || — Bjll2 < €/(2C2) holds for some 1 < j < I.
Let SO’Z‘ = (5071‘(91)7 .. ~,SO7i(gK)) where SO,i = eXp(—AQ’Z‘) and Hij = (SOJ,B]’) € © for
t=1,....,mand j = 1,...,l. By , for any § = (Sp,) € ©’, there exists ;; for some
ie{l,...,m}andj € {1,...,1} such that
D (po,po,;) < Cil|Ao — Aoill2,0 + Col| 8 — Bjll2 < e

Consequently, the covering number N (e, P’, D) is of order ml. By Proposition C.8 of [16], note that
m < Npj(e/(2C1), Fo, || - ll2,0) < exp(2C1C3A1/¢€), where Cs is a universal constant. Furthermore,
by Proposition C.2 of [16], I < (6DC5/¢)?. Therefore, we have

N(e,P',Dp) < exp(Cy/€)(Cs/€)?,
where Cy = 2C1C3)\; and C5 = 6 DC5 are positive constants depending only on M7y, M, L and D.
O
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Proof of Theorem[3.2] Recall the grid support G = {gx, : k = 1,..., K}, where each grid point g, is
defined as gx, = pmin + k0 with 6 = kn~7 for some constant k > 0. Let J = [(Pmax — Pmin )/ (K€n)]
and define (K1, ..., k) as a subsequence of [K] such that prin + (j — 1)k€n < gr; < Pmin + (J —
ke, +0forj =1,...,J —1,and set k; = K. Suppose that |Sox;, — Sg,kj| < €, for every
j=1,...,J. Then, forany k € [K| withk; <k < kjiiforj=1,...,J —2, we have
Sa:k - SOJC < Sg,k - So,kj+1

< |Sg,k - So7kj+1| + ‘Sg,k - Sg,k

< én+ Lolgr — gr;.1 |

S €n + LO|ng - gkj+1|

< en + Lo(ken + 0)

< (2Lok + 1)en,

1 _7+1|

where the third inequality holds by our assumption and Lg-Lipschitz continuity of S, with Lo being
a positive constant becauseis assumed, the fifth inequality holds by the definition of k;, and the
last inequality holds because § < ke,,. Note that |gx,_, — gk,| < 2ke, by the definition of .J. Then,
for any k € [K] with ky_1 < k < kj, we have

So.k — Sok < (2Lok + 1)ep.
Combining the preceding two displays, there exists a positive constant Cy = 2Lgk + 1 such that

Sox — Sok < Coey, forany k € [K]. Similarly, for any k € [K], we have Sp, — Sox < Coen.
Therefore, we have

IL(|ISo — Spllee < Coen) = TL([|So = Spllcc,s < €n), (55)

where [|So — S§co,s = maxj=1,.__.s[So.k; — S5k, |-

Note that there exist constants M; and M, such that 0 < M; < Si(v) < My < 1 for any

U € [Pmin, Pmax] by assumption[(A5)] Let U = {(So,8) € © : [|So — S§lloc V |18 — B*[|2 < €0}
be a neighborhood of 6*, where ¢ is a positive constant that can be chosen as ¢g = ((M; A (1 —
M3))/2) A B to ensure that U C ©. Given in (7)) of Theorem[3.1] there exist postive constants C;
and Cy depending on M7, My, L and B such that for sufficiently large n with e,, < ¢9/(C1 V C2),

(B0, en)) 2 T ([[Ag = Aglloc < Cren) - TL([|B = 57[|2 < Caen).

Note that for 8 € U, ||Sg — S§llco < [[Ao — Aflloc and ||So — S§llco,s =< [|[Ao — Afl|so, s, Where
constants in < depend on My, Mo, L and B. Thus, the inequality (55) implies that

H(HAO - ASHOO < C(/)COen) > H(HAO - ASHOOJ <en),

where C}) is a positive constants depending on M7, M, L and B. Combining the preceding two
displays, for sufficiently large n such that €, < ¢o/(Cy V C3) and 6 < 1(C§{Co)~*C1e,,, we have
IT (B(G*, fn)) >1I (HAO - AS”OO,J < (0600)7101671) 1T (HB - /6*||2 < O2€n) .
Therefore, we have
1I (B(G*, Gn)) > 0306 exp(—C'4J — O5J10g_((0600)71016n) — dlogd — leg_(CQEn))
> O30 exp(—CyCre, ' — C5Cre, log_((CHCo) ™' Chey,) — dlogd — dlog_(Caey))
> exp(—Cyne;,),
where the first inequality holds by Lemma [C.3] with positive constants C'3, C4, C5 depending on
Pmins Pmax> M1, Ma, o, @ and p, and Cy serving as the lower bound of the prior on a neighborhood
of 3*, the second inequality holds because J < C+e,,! holds by the definition of J with a positive
constant C7 depending on pmin, Pmax and «, and the third inequality holds by a positive constant
Cs = |log(C3C6)|+CsCr+C5C7(| log((CHCo) 1 C1)|+1)+| log Ca|+2 because €, * log_(e,,) <
ne2 and dlog_ (en) < ne2. Thus, by Lemma 10 of [15], there exists an event {2, such that

n n*

P2 (Q,) > 1—1/ne2, and in Q,,,

[ exp(t(6) — £,(67))d(0) = exp(~(C + 2)ned). (56)
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By (@9) in the proof of Theorem [3.1] there exists a positive constant Cy depending on My, Mo, L
and B such that CyDg(6,0*) < Dy (pg~,pg) for 6 € U. Then, we have

. [M(Dg(6,0") > MJe, | D,)1{R,)]
< Eg. II({Dg(0,0") > MJe, } NU | D,)1{Q,}] + Eg. IL(U€ | D,,)]
< Ep. [Ty, | D,)1{Q,}] + Eg. [II(U° | D,,)], (57)
where I';, = {0 € U : Dy (po~,po) > CuyM Je, } for large constants M and J to be chosen later.

Define Py = {ps : 0 € U} and N}; = sup.... N (¢/36,{py € Py : 0 € T',}, D). By Lemma
@ there exist positive constants Cy and C¢ depending on M7, Ms, L and B such that

Ny < N (en/36, Py, Dpy)

exp(36Coe;, 1) (36C10e, 1)?

exp(36Cone? + dlog(36C one?))

exp(Cyine?), (58)

IN N IA

where the third inequality holds because ¢! < ne2, and the last inequality holds by C;; =

= ne

36Cy + |log(36C10)| + 2 because dlog(ne2) < 2ne2. In addition, by Lemma 2 of [15] and Lemma
9 of [15], applied with ¢ = C'y Me,,, where Cy M > 2, there exist tests ¢,, that satisfy

1
1—exp (—3C%M?ne2)’

1
b-én < N; exp (2C%M2nei>

1 (59)
sup ]Eg(l - (rb’ﬂ) < exp (C’?{M2J2nei> )
fer, 2
for any J > 1. Then, by (56), the first term of (57) is upper bounded by
2T, | DR)1{Q,}] < ER. 6, + exp((Cs + 2)ne?) sup Ep (1 — ). (60)

If M is sufficiently large to ensure that C3M?/2 — Cy1 > C% M? /4, by combining and the
first line of (39), we have

1 1
E§- ¢ < exp (<C11 — 2012{M2> nei)

1 —exp (—3C% M?ne2)

1
< Ciaexp (—40,2{M2n6i> ,

where C12 = (1 — exp(—2C1;)) 7! is a positive constant. If we set J = 1 and choose M to be
sufficiently large such that C%,M?/2 — (24 Cg) > C% M? /4, by the second line of , the second
term in the right hand side of (60) is bounded by

1
exp (—4C%IM2nei> .
Therefore, if we choose M to be sufficiently large such that M > 2./(2+ Cs) vV C11/Cp, by
combining the preceding two displays, (57) and (60), we have
Ej.[II(Dg(0,0%) > Me, | D,)1{Q,}] < (Ci2 + 1) exp (—Ciznes) + Ef. [I(U° | D,,)],
where C3 = (Cs + 2) V Cy; is a positive constant. By LemmalA.1} if v < 2/3, the second term on
the right-hand side of the last display is bounded by ¢3 exp(—csn) for n > ¢q, and if v > 2/3, it is

bounded by c5 exp(—cﬁnl/ 3) for n > ¢4, where cy, . . ., cg are positive constants depending on M,
Moy, L, B, Pmin, Pmax, K, @&, & and p. Then, we have
C1a exp (—015716%) s if v < %,

1

Cisexp (~Crmi),  ify >3,

where C1y = C12 + 1+ ¢, C15 = Ci3 Acg, Cig = Cr2 + 1+ ¢5 and C7 = Ci3 A cg. By the
Markov inequality and (56), we have that if v < 2/3,

I(Dg (0, 6*) > Me, | D,,) < Cryexp (—Cisnes),

Ej. [I(Dg(6,6%) > Me, | D,)1{R,}] < {
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with probability at least 1 — (exp(—Cigne2) + 1/ne2), where C15 = C15/2, and if v > 2/3,
M(Dg(0,0) = Me, | D) < Crgexp (~Cagn? ).

with probability at least 1 — (exp(—C1on'/?) + 1/ne?), where C19 = Ci7/2. If we fix M =
[24/(Cs + 2) V C11/CH], then the proof is complete.

O

B Proofs for Section 3

B.1 Proof of Lemmal5.1]

Proof. We first consider the epoch [ — 1 under the condition v;—; < 1/3. Let ¢;(- | «) be the
conditional probability mass function of P; given X; = z for ¢ € & in epoch I. By Lemma[C.5]
qi(+ | x) satisfies the assumptionfor every epoch [. Then, by Theorem there exist positive
constants c1, c2, c3 and ¢4 depending on L, B, puin, Pmax, &, @, p such that for [ > [log,(cs/n1)]4+1,

(Dg,_,(0,0%) > cre—1 | Di—1) < caexp(—cani_1€i_;) (61)
with probability at least 1 — exp(—czn;_ 161 1) — 1/(ny—1€?_,). We partition the parameter space

O into two subsets @l 11 = {0 € o : Do,_,(0,0%) < cie_1} and 0, 12 = {0 € e
Dg, ,(6,60%) > c1€;—1}. Then, we can decompose 01 as

—1:[9dﬁ(9|Dl,1)
©

:/~ 9dﬁ(9|DH)+/~ 0dIl(6 | D;_y)
@1 1,1 ®l 1,2
=(1—7_)0 " 1657, (62)

where 7,_1 = ﬁ(él_u | D;—1). Here, 91_1 and 012_1 are the mean estimates of the probability
measures resulting from the restriction and normalization of the truncated posterior distribution on
the sets ©;_1 1 and O;_1 o, respectively. It is easy to check that the function § — Dg, , (6, 6*) is

convex and bounded over the domain ©. By Jensen’s inequality, we have
Do (@70 < [ Do (6.0)d0a(6| Diy)
©1-1,1

< C1€]-1, (63)

where IT; (- | D;_1) be the probability measure obtained by restricting and renormalizing (- | D;_y)

to @l 1,1, and the last inequality holds by the definition of 91 1,1 On the event that the inequality
(61) holds, we have that with probability at least 1 — exp(—csn_1€7_,) — 1/(nj—1€_,), for I >
logy(ca/m1)] + 1, it follows that
D@l—l (@_17 6*) < (1 - Tl—l)DQl—l (‘/9\11_17 9*) + Tl—lp@zq (%_17 6*)
(6, 1 | D;_
<ci€e-1+ ( l~1’2 ‘ l 1)ID@1_1(§ZQ*179*)
(e | D;—4)
co exp(—csn_1€; ;)

1 — coexp(—cani_1€; ;)

<cig-1+

(14 Vd(aVb)+ B)

< Cre-a,

where the first inequality holds because of the convexity of the function # — Dq,_, (#,6*) and (62] .
and the second 1nequahty holds by (63)) and the definition of 7;_1. The third inequality follows from

(G) | D; 1) >1-1I 91 1,2 | Dy_1), combined with inequality (61) and the boundedness of D, _,
over © under the assumptlon The last inequality holds with a positive constant C'; depending
on ¢y, ca, c3,a,b and B, since vd exp(—czni_1€? ;)/(1 — caexp(—czn_1e7_;)) S e—1.
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By similar arguments as before, for the epoch I — 1 under the condition ;_1 > 1/3, by Theorem
there exist positive constants cs, cg, ¢y and cg depending on L, B, pin, Pmax, K, @ and p such that
forl > [logy(cs/m1)] + 1,

I(Dg,_, (0,6") = cse1—1 | Di—1) < c6€i—1,
where
€t = exp(—crny_1€7_;) if £ <1< 2,
k—1 = 1/3 .
exp(—C7nl11) if -1 > 2,
with probability at least 1 — &1 — 1/(nj_1€;_,). Since exp(—crni_1€i_;) < exp(—cmllﬁ), we
unify the cases where ;1 is either greater than or less than 2/3 and obtain the bound

I(Dg, ,(0,67) > cser1 | Di_y) < cg exp(—crn’?), (64)

with probability at least 1 — exp(707nl1ﬁ) —1/(n—1€;_;). Similarly, for I > [log,(cs/n1)] + 1,
we have

DQl—l(@_17 0*) S CQ€l—17

with probability at least 1 — exp(—cmllf 31) —1/(ni—1€7_,), where C5 is a positive constant depending
on ¢y, ¢, c7,a,b and B. The proof is then complete. O

B.2 Proof of Theorem[5.2]

Lemma B.1. Suppose that assumptions [[ATJH(A3) [(A3) and[[BI){(B2)| hold. Suppose that the prior
distribution 11 is specified as in (), and the policy m; for each epoch [ is defined by (3)). Then, there

exist positive constants C, Co, C3 and Cy depending on L, B, pmin, Pmax, K> @, p, @, b, 11, 12 and
ny such that forl > C4,

Ee/ 2 1
Z r(t) < C’gﬂﬂ)@kl(@fl, ")+ Cs (nl A nf’) (logn;)2
te&

with probability at least 1 — (eXp(—C4nl1/3) +3/n?).

Proof. The regret in epoch [ is decomposed and upper bounded by

S r(t) = (PfHo- (Xy, P) — PiHy (X, P))

te& teg
= Z {(Pt*Hg*(Xt,Pt*) — Pt*Hgl,l(Xt,Pt*)) + (Pt*H@,l(Xt,Pt*) — PtHgl,l(Xt,Pt))
teé
+ (PtHgl—l(Xta P;) — P Hop- (Xt,Pt))}

< Z (Pt*H§l71(Xt7 Pt*) - PtHé\l—l(Xta Pt)) +Pmax Z ’H(§171(Xt7 Pt*) — Hp- (Xt7 Pt*)‘
te&; tes&;
(M) (ii)
+ Pmax P, |Hz1 (Xe, Pr) — Ho- (X1, Pr), (65)
te&;

(iii)
where the last inequality holds because any P; and P;" lie in G C [Pmin, Pmax) almost surely. Note
that {( Xy, P;, P;*) }tce, is an i.i.d. sample of joint distribution which satisfies P; ~ Q;, P ~ Q* and
Xy ~Px. Since Py Hp_, (X, P;) — PyHp_ . (X¢, P;) € [~Pmax> Pmax). by Hoeffding’s inequality,
it holds that

(i) < 2pmaxnf (logny)? + E > (PrHp (X4, PY) — PiHy 1 (X1, Py)) |, (66)
te&;
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with probability at least 1 — 1/n?. Let 13t € argmax, g pHg_, (X¢,p), and let U denote a uniform

random variable over G. By the design of Algorithm , we have P, = RP, + (1 = R)U, where R is
a Bernoulli random variable with success probability 1 — 7;. By the law of total expectation, we have

E [PHy \(X:, P)] = (1—m)E [PtH@ 1(Xt,13t)} +mE [UHg_, (X3, U)] .

By substituting this in (66)), the second term of (66) is bounded by

E|> (P Hy(Xe, ) — PuHz o (X1, Pr))
te&;

= (1=m) Y B [P Hy o (Xe, ) = Pl (X0, )|
te&;
+m > B[P Hp (X4, PY) = UHg (X, U)]
te&;

<m Z Pmax

te&;

1+,
< Cy (nl T /\n§> (logn;)

Nl

where the first inequality holds because P} Hy,_, (X;, P{") — 13tH ai-1 (X, 131&) < 0 by the definition

of Pt, and the last inequality holds by the definition of 7; l@i and ' with a positive constant C|y
depending on pyin, Pmaxs K> 71 and 7. Combining this with (66), we have

14+

(i) < Cy <nl A n§> (logmny)?, (67)

with probability at least 1 — 1/ n%, where C7 = 2pnax + Cp is a positive constant.

For (ii) and (iii), by Lemma[C.6 for every e > 0, there exist positive constants ¢; and ¢, depending
on L, B, pmin, Pmax, K, @, P, a, b, nq and € such that for large [ > ¢;, we have

IS5 = Sglleo + 1871 = B*||2 < e,

with probability at least 1 — exp(—cznllf ?i) Note that there exist constants M; and M5 such
that 0 < M; < S§(Pmax) < S§(Pmin) < Mz < 1 by assumption |(A5)l Take ¢ = Co, where
Cy = (M1 A (1 — Ms))/2 A B). On the event that the preceding inequality holds, we have

IS5~ = S§lloc + 18" = B*ll2 < Ch.
This implies that S§ ;' > M1/2 > 0, Sj % < (1+ M)/2 < 1 and ||[3"~'||2 < 2B. Then, by
Lemma forany p € G and [ > ¢, with probability at least 1 — exp(—cznlli ?) we have

| Hyioo (X4, p) = Ho- (X, p)| < C5IS5 () = S5 ()| + Call B = 87 o, (68)
where C'5 and Cy are positive constants depending on My, Mo, L and B.
Let 27 be the event that (]@) holds. For (ii), under the event 21, we have

(i) < C5 > |SEHP) = Sg(P) +Ca Y 1B = B

te&g; teg;
=C5 ) ISEHPY) = S5(PH)] + Cana|| B = B2
te&;

Since |Sl YPr) — Sg P*)\ < 1, by Hoeffding’s inequality, there exists an event 22 such that
P(Q2) > 1 —1/n?, and in Qo,

oISy - So(P*)I<mE[\Sé YPy) = 5P|+ (logm)®.

te&;

I\)‘H

Recall the definition of P. from . It easy to see that if P = p for some p € G, then P. €
(p — 0,p + 6). Thus, we have P(P. € (p — d,p + 6)) > P(P} = p). Let P, be a random
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variable distributed from @Q; in epoch
limy oo P(P; € (p — d,p + 9)

P
E (IS5 P = Sa(P)I] = 2 1867 () = Si(p)la” ()

. By Lemma [C.7] and Portmanteau theorem, we obtain
€ (p — 0,p + 9¢)). Combining these results, we have
PF = p) = ¢*(p). Then, for sufficiently large I, we have

peEG
= 318 0) - S50 L))
<5187 ) — S5 ()lar—1 (p)
peG

<Cs | ST185 ) — S5 (@) Par—1(p)

peEG
e
= C’5”80 - SSHQan—l’

where the last inequality holds by Jensen’s inequality, and C'5 be a positive constant. Combining the
last three displays, under the event £2; N )5, we have

(i) < Comu (IS5 = Sillaiaus + 18~ = 8"ll2) + Can (log mi) ¥
— ComiDg,_, (85,8, (85,8)) + Coni (log )

where Cg = C3C5 Vv Cy be a positive constant.

Nl

(69)

Similarly, for (iii), under the event {21, we have
(i) < Cs Y IS5 (P) = S§(P)| + Cam |1 = 7]
te&g;
By Hoeffding’s inequality, there exists an event (3 such that P(23) > 1 — 1/ n?, and in Q3,
~ A~ 1
> ISP = Sa(P)] < mE IS5 (P) = Sa(P)I| +n7 (log ).
teE;

Note that if P. € (p — d,p + J) for some p € G, then P € {p — d,p,p + §}. By Lemma
and Portmanteau theorem, we have lim;_, o q;(p) = lim;_o  P(P, € (p — §,p+9)) = P(P. €
(p—6,p+9)) <P(P; =p—0)+P(Pf =p)+P(P =p+3J) S, where the last inequality
holds by Assumption Then, for sufficiently large [, we have

E[IS5 () = S (P)I] = D2 1857 (0) — Si 0)lau(p)

peEG
N Gl asgn () q*(p)
—pezyso 0) = S50 25— 1)
< Cr Y185 p) — S5 () ai—1(p)

peEG

N

<7 [ Y1567 ) — Ss )P ak-1(p)

pPEG
=CrlSg" = Sz
Combining the last three displays, under the event 2; N Q3, we have
~ ~ 1
(i) < ComDo,_, (85,571, (85,87 + Cani (log ), (70)

where Cs = C3C7 Vv Cy be a positive constant.
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From , , and , for sufficiently large I, with probability at least 1 — (exp(—cy/2/3 -
ny"®) + 3/n2), it holds that
1t 2 ~ ~ 1
Z T(t) S Cl <nl 2N 77,;’) (IOg nl>% + Pmax <06nlDQz71 ((Sé_la 5l71)7 (537 ﬂ*)) + C3n12 (1Og nl)%)
te&;
~ ~ 1 1
+ punax (CsmDa,, (871,871, (S5, 8)) + Cany (logm)* )

14+ 2

= ConyDy,_, ((glo_lﬁl_l), (S(’Sﬂ*)) + Cio (nl 2 Anf’) (logmny)Z,

where Cg = pmax(Cs + Cg) and C1g = C1 + 2pmaxCs are positive constants. Then, the proof is
complete.

O

Lemma B.2. Suppose that assumptions[(ATA3)) [(AS5)|and (BT )(B2)| hold. Suppose that the prior
distribution 11 is specified as in (), and the policy , for each epoch | is defined by (3)). Then, there

exist positive constants C, . . ., Cs depending on L, B, pin, Pmax, K @, p, @, b, 11, N2 and ny such
that for 1 > C1,

1 4 1 /4 1
> ort) < {CZde (log(d v 1))® + Cam, * (logni)?  if 1 < 3
= 1 2
teg C’Qd%nf (log(d V n;))2 + Csn} (logn;)? ify-1 >3,

with probability at least 1 — (;, where

R 04/?12'_'_11 ifyio1 <
1= 1 X
Cs/nf if v 2

W= Wl

Proof. By Lemma [B.]] there exist positive constants ¢y, c2, ¢g and ¢4 depending on L, B, Pmin,
Pmax, ks O, P, @, b, N1, M2 and ny such that for [ > ¢y,

-1 p* L 3 1
Z r(t) < comiDg,_, (0 7,0") +c3|n, 2 Anf | (logn)? 1)
te&;

with probability at least 1 — exp(—C4nll/ 3) — 3/n?. In addition, by Lemma , there exist positive
constants cs, cg, ¢7 and cg depending on L, B, Pmins Pmax» Ks @, p, a, b and n; such that for [ > ¢,

D@zfl(é\l_lae*) < ce€1-1 (72)

with probability at least 1 — (;_1 — 1/(nj_1€7_,), where

_1l=m .
) ,/n%\/log(d\/m) +n, 2 logmn ify < 3,
1= 1
\ 10g(d\/nl)+(bme)3 ify > 3.

and

1

exp(—crn€e}) if y, < %,
= = .
exp(—csn}) ify > %

Consider the epoch [ — 1 satisfying 7;_1 < 1/3. On the event both and hold, for epoch
[ > ¢1 V cs, we have

14+ 2
Z r(t) < cocgnie—1 + c3 (nl A nf) (logny)
teE;

[N

1tv—1 1+

< 2¢yc6 <\/nl_1d\/log(d\/nl_1) +n,_ 7 \/1ognl_1> + c3 <nl 2 /\n?’) (lognl)%

1+

< C’ld%n% (log(d vV m))? + Con, 2 (logmy)?,
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where the second inequality holds by substituting n; = 2n;_; and ¢;_1, and the last inequality holds
with positive constants C = 2cacg and Cy = 2cacec,, + c3 because it holds that n;”_‘ll = n?’ due to
(7), where c,, is a positive constant depending on Pyin, Pmax and x. Similarly, for epoch { > ¢; V ¢

satisfying y;—1 > 1/3, we have

1+v 2 1
Z r(t) < cocgnie—1 + c3 (nl 2 A nf’) (logmy)z
tee

1+ 2
3

< 2¢ac6 (\/nl_ld\/log(d Vng—1) +n}(log m_l)%) + c3 (nl > Anj

) (logm)*

[

< Cld%nl (log(d vV ny))? + anl% (logny)?.

Let 1 and €2 denote the events where inequalities and hold, respectively. Then, for epoch
[ — 1 satisfying ;1 < 1/3, we obtain
P(Qf UQS) < exp(—camy’) + 3/nf + exp(—crni_ic} ;) + 1/ (m-16f )
<1/(2Y3ean,’) +3/(And_)) + 1/(en]' 1) + 1/n)' 5
§ CB/n?/i_lla

where the second inequality holds because exp(—z) < 1/z for any z > 0 and njef > n}",

and the last inequality holds since 7,1 < 1/3, and Cj is a positive constant defined as C3 =
1/(2'/3¢4) 4 1/cy + 7/4. Similarly, for epoch I — 1 satisfying ;1 > 1/3, we have
P(Q5 UQ5) < exp(—can)’®) + 3/n? + exp(—csny/D) + 1/ (mi—1ey)
<1/@Pen’3) +3/(4nf_) + 1/ (esny/3) + 1/m
< C4/n11£?ia

where the second inequality holds because ne7 > nll/ %, and the last inequality holds by a positive
constant Cy = 1/(2'/3¢,4) + 1/cg + 7/4. Then, the proof is complete. O

Proof of Theorem[5.2] Before proceeding, we may without loss of generality assume that the last
epoch is complete (i.e., T = ny(2V — 1) for some integer N > 1). If not (i.e., n 2V~ — 1) <
T < ny (2N — 1)), the regret associated with the incomplete last epoch will be no greater than if
it were completed. Thus, the number of epochs N and 7 satisfies T = n1 (2" — 1), equivalently
N =logy(T/n1 + 1).

We first consider the case where v < 1/3. We define N, := |logy(T7° /n1)| + 2, where o € (0, 1)
is a constant to be chosen later. Note that V.., < N for a sufficiently large T" > 22/(1=70)  For epoch
I < N,,, we have

1< logo(T7 /na)] + 2 < logy (T7° /) + 2,

and hence n;_; = n;2!=2 < T Therefore, by the equation , we have
Kk—l — \‘pmax — Pmin TWJ Z \‘pmax — Pmin nl—1FY/’YOJ ’
K I
foralll < N,,. If we set g = 3+, then we have
\\pmax — Pmin m_l’”lJ Z \\pmax — Pmin nl_ll/gJ )
K K

Then, the condition ;1 > 1/3 is sufficient to hold the preceding inequality. On the other hand, for
epoch ! > N, , since [ is an integer value, we have [ > [log,(T7° /n1)] + 3 > logy(T7° /n1) + 2,
and hence n;_; = n;2!=2 > T70. Therefore, by the equation (7) and setting vy = 3+, we have

\‘pmax — Pmin nl—lﬂﬂlJ < \‘pmax — Pmin nl—ll/gJ
K K
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for alll > N,,, and the condition y;_; < 1/3 is sufficient to hold this inequality. By Lemma
there exit positive constants cy, . . ., ¢5 depending on L, B, pmin, Pmax, K> &, P, G, b, 1, 2 and ng
such that for [ > ¢y,

L 1 .
Z r(t) < {02d2 nl Z (log(d V n;))? + cany (logm)z if I > N3, 73)
hy=rs Cad? n/ (log(d v n))? + can} % (logny)? if 1 < N3,

with probability at least 1 — (;, where
C _ C4/TL’W ! if I > N3’Y
"T\es/ni, ifl< Ny,

For unity of notation, we denote Ny := [c1] — 1. Note that Ny < Nz, for sufficiently large

T > (2N °+1n1)1/ B, Let Q1 and Q9 ; denote the events where the first and second inequalities in
are satisfied for each epoch [, respectively. Then, we have

N3'y N N.}'y . N
P (N Qugn (N Q. - > -y an
I=No+1 I=N3-+1 I=No+1 =N, +1
>1—c4Ves- E n, 47
I= N0+1

>1—(csVes)ey - log(T/ny + DT, (74)

where the second inequality holds because y;_; < 1/3 for I > N3, and the last inequality follows

from n?l t> cp T by . Here, ¢, is a positive constant depending on ppin, Pmax and &.

Now, we decompose the cumulative regret as

Ny N3~ N
T):ZZr(t)—i- Z Zr(t)—F Z Zrt
1=1te& I=No+1t€& I=Ns, +1t€&

) (i) (i)

For (i), note that pS;} (p)c"p(xTﬁ ") is upper bounded by a positive constant C; := max{pSg (p)=<P(*) :
P € [Pmin;s Pmax), ¥ € [—BL, BL]} depending on pin, Pmax, B and L. Then, we have

No
I)SZZCH:Cm

I=1 te&
where Cy = n1(2N © — 1) be a constant and does not depend on 7. Let ) be the event in the
probability notation in the display (74). For (ii), under the event , by (73), we have
Nay 1 2
(i) < Z {CQd%nlE (log(d vV ) + can} (log nl)%}
I=No+1
< Cs-d?T3(log(dV T))? + Cy - T (log T)?,

where C3 = 2302 and Cy = 23c3 are positive constants. Similarly, for (iii), under the event Q, we
obtain
N

1+,
(iii) < Z {czd%nlé (log(d vV m))? + c3n, £ (log nl)é}
I=N3,+1
11 1 N 'Vl 1 1
< C5-d2T2(log(dVvT))= Z ng (logn;)?

1 1
ni (logn)?

Mz

< Cs-d*TH(log(d vV T))} +esCf - T3

~

1
(logT)2,

'v+1

N

< Cs-d2T?(log(dVT))? +Cq-T
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where the first inequality follows from (73)), the second inequality holds for a positive constant
Cs = 2%cy, the third inequality holds because n}' < C,T7 forany ! = 1,..., N by with a
positive constant C}, depending on pmin, Pmax and x, and the last inequality holds for a positive

constant Cg = 220301)% . Combining the last five displays, for sufficiently large T" > C7, it holds that
R(T) < Cy + (C3 +C5) - d*T? (log(d V T))? + Cy - T*(log T)? + Cg - T (log T)?
< Csd* T (log(d V T))* + CoT ™% (log T)?,
with probability at least 1 — C'g log(T/ny + 1)/T7, where C7 = (22/(1=37)) v/ ((2No+1p )1/ B)),
Cs=Co+C35+Cs5,Cyg=Cy+ Cgand Cip = (ca V c5)c;1 are positive constants, and the last
inequality holds because 727 < T7% for v <1/3.

Next, we consider the case where v > 1/3. For any epoch | < N, we have 202 <9l 1< T/n,
and hence n;_1 = n12!~2 < T. Therefore, by the equation , we have

\‘pmax — Pmin nll’ﬂlJ — \‘pmax — Pmin T»YJ 2 \‘pmax — Pmin nll’yJ )
K K K
Then, the condition ;1 > 7 > 1/3 is sufficient to hold the last display. By Lemma the event
Qg in holds for all [ > Ny, and we have
1
P(Qg)l) >1- C5/’I7/l371 for [ > Np.

We define Ny := |log,(T?/3/n1)] + 1. Note that Ny < N; for sufficiently large 7' > (2Non,)3/2,
Then, by the preceding display, we obtain

N
oo
I=N:1+1

P

N
>1— Z c5nl__%1
I=N;+1
N
>1-2ic; Y T75
I=N1+1
>1—23cs - log(T/ny + 1)T3,

where the second inequality holds because n;_, > 2-'72/3 for | > Ny + 1. Let €’ be the event in
the probability notation in the preceding display.

Now, we decompose the cumulative regret as

R(T) = Z drt)y+ > > ().

I=1te& I=N,+1te&
) ()
For (I), we have
N1 Nl
MDY D i<y m<20,-Ts
I=1te& 1=1

For (IT), under the event ', we obtain
N

() < Z {ng%n? (log(d vV m))* + can} (log nl)%}
I=N;+1

< Ciy - d2T3(log(d v T))% + Caz - T3 (log T),

where C;; = 22¢ and Cy = 2%03 are positive constants. Combining the last four displays, for
sufficiently large T > ('3, it holds that

R(T) < C11d*T% (log(d V T))% + C14T5 (log T) %,

with probability at least 1 —Cy5 log(T/ny+1)/T?/9, where Cy3 = (2Von;)3/24-1, Oy = 2C1+C1o
and Cy5 = 2'/3¢5 are positive constants. This completes the proof. O
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B.3 Proof of Theorem[5.3|

Proof. Recall the grid support G = {g; : i = 1,..., K}, where g; = pmin + @6, 6 = sT 7 for some
k> 0,and K = |(Pmax — Pmin)/d]. Let py, 7 and y; be the offered price, the revenue and the
feedback at time ¢, respectively. Let hy = (p1, 71, P2, 72, - - -, D¢, 7+) be a history over ¢ times. Note
that h; can be induced by (p1,y1, - - -, Pt, Yt) since 7y = pyy;. Define a policy 7 = (m;)1_;, where
m; is a conditional distribution of price p; given h;_1 supported on G. We denote the conditional
distribution of revenue r; given p; with respect to the complementary cdf. S(p) =1— F(p) by
PS With abuse of notation we view 7, : G — [0, 1] and P : {0, pt} — [0, 1] as probability mass
functlon In addition, we abuse notation by writing P{° = PS if p; = g; for some g; € G. For given
S(+), note that r; = py: where y; ~ Bin(1, S(p;)). Then, we have

Pzi(’f"t) = S(pt)%(l _ S(pt))l_r%

= S(p)" (1= S(po))' . (75)
For given S, let vg = (P, Py, ..., Py) be the reward distributions associated with a K-armed
bandit. For given policy 7 and bandit vg, we denote the joint distribution of (p1,71,...,pr,r1) by

P, .. Then, the probability of obtaining a fixed configuration (p1,71,...,pr, r7) is given by

T
P’Usﬂ'(p17r17-"7pT7rT H ptlht 1 (rt) (76)
Based on this, we define the expected regret by
T
R(T,S) : er S)—r(p, )|,
t=1
where r(p,S) := pS(p) be the expected revenue with respect to S for p € G, p* =

argmaxpeg{pS (p)} be the optimal price and E,,, denotes the expectation under P,.,. Further,
we define the suboptimality gap of index i by A¥ := r(p*,S) — r(g;,S) fori = 1,..., K. For the
simplicity of notation we use Ps and Eg in place of P, . and E,, ., respectively, for a fixed policy
.

Now, we first construct two bandits vs, and vg for S1,57 € S :={S:G = [0,1] [ 1 > M >

S(g1) > - > S(gr) > M; > 0forsome 0 < My < M, < 1} in the following description. Fix
a policy 7 and suppose that v < 1/3. Let ¢ > 0 be some constant to be chosen later. We define a

bandit vg, = (Plsl, ce P;gl) such that for some j; € [K],
Si(gi) = (c+e)-g; ! ifi =73 a7
Si(gi)=c-g;! otherwise,

where ¢ > 0 be a constant so that S; € S. Note that ¢ only depends on M7, Mo, prin and pmax. For
i=1,...,K,let N;i(t) := 22:1 1{ps = g} be the number of times price g; was chosen by the
policy over ¢ times, and jj = argmin, ;, Eg, [N;(T)]. Since Zfil Eg, [N;(T)] = T, it holds that

Es, [N (T)] < %5

The second bandit vg, = (Pls 1, el P}gi) is defined by
Si(gi)=(c+e)-g ifi=ji
Si(gi) = (e + 2(-:) if i = jj (78)
Si(gi)=c-g;! otherwise.
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Therefore, 7(g;, S1) = r(gi, S7) except at index j; and the optimal price in vg, is gj,, while in v,
gj; 1s the optimal price. Then, we have

R(T,S;) =Eg,

T
Z 7(95,:51) — (Pt Sl)‘|

— 3" A )
Y. € Es [N(T)]

i€[K],i#j1

=¢(T' —Esg, [N;,(T)])
Te T
2 PSI (NJI (T) < 2) )

where the second equality holds by the regret decomposition and the third equality holds because
Aisl = (c+¢€) —c=efori # j;. Similarly, we have

I \/

R(T,S}) ZASHES/ (T)]

> €- ESi [le (T)]

Te T
2 Psl (NJI(T) > 2) .

Combining the last two displays and Lemma 2.6 in [42]], we have

R(T,Sy) + R(T, S}) > % (PS1 (le(T) < g) + Pg; (le(T) > Z))

T
> ZE exp (—K(PSI,PSQ) .

By Lemma 1 in [14], the KL divergence K (Ps,, Ps; ) is bounded by

PSlaPS' ZEsl (PSI Pi)
S/
= ESI [NJ{ (T)] K(PJS{'I ) Pjil)
T S1 pSi
< K — 1K(Pj1 ’Pji ):
where the first equality holds by , the second equality holds by the definition of S; and S, and

the first inequality holds by the definition of index ;7. Note that lb implies that Pil and Pjé:1

are distributions of Bernoulli random variables with parameters Sy (g;;) and S (g;; ), respectively.
Therefore, by Corollary 3.1 in [40], we have

(S1(g5,) — Silg;))”

K Pffl,P
(PP < e S50
(269]-1 )?
< [
M M,
4 2

< ——F—¢€
P?ninM1M2 ’

where the second inequality holds by the definition of .S7 and .S}, and the last inequality holds because
9i € [pmimpmax] forany ¢ € [K]

Now, it remains to choose e. Due to the monotonicity of the distribution functions S and S}, there
are additional constraints in choosing e. Specifically, by the definition of S; (77), the following
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condition must hold: (¢ + ¢) - 95, <e gJ1 1- By the direct calculations, we obtain € <

,1 :
Since ¢; € [Pmin, Pmax] for any ¢ € [K], it is sufficient to choose € <
Similarly, we consider the monotonicity of S}, but before doing so, we divide it into two cases: (a)
J1 < ji and (b) j1 > j;. For the case (a), it is necessary that S7(g;:) < 57(g;,) < S1(gj, - 1) holds,
and for the case (b), S1(g;;) < S1(gj;—1) must hold. By the simple calculations, € < 5§ is
sufficient to satisfy the above conditions. Since /K /T < § if v < 1/3, it is sufficient to choose

e = C/K/T for a small enough constant C' > 0. Combining this with the three preceding displays,
there exists a constant C; > 0 such that

R(T,S1) + R(T,Sy) > C1VKT
1+~
T =2

vV

It completes the proof for the case v < 1/3.

In the second case that v > 1/3, we construct another pair of bandits vs, and vg; for Sz, S5 € Sin the
following description. Let €5 = kT -3 and i1, .. .,1  be positive integers such that p,;, + jeo — 0 <
9i; < Pmin +jeaforj =1,...,J, where J = | (Pmax — Pmin)/€2]. We define partitions I; of index
set [K]byI; ={i€[K]:ij_1 <i<i;j}forj=1,...,J, whereig = 0 with gg = pmin. Then,

we define a bandit vs, = (P{2, ..., P2?) such that for some js € [J],
Salgi) =(cte) gi)  ifiel, (79)
Sz(gi):c-g,;l ifi € I, for j € [J] except at jo.

Let M;(t) = > p, Ni(t) for j = 1,...,J, and j; = argmin;; Eg,[M;(T)]. Since

J#J2
T)] = T, it holds that Eg,[M,(T)] < +%5. Then, the second bandit vg; =

Z E52 [M]( 71
(PS .., P 2) is defined by
Sy(gi) = (c+e)-g;)  ificl,
S5(9:) = (c+2e2) g ifi€ Iy (80)
2
S5(9:) :C~gi;1 ifi € I; for j € [J] except at j, and j5.

Therefore, 7(gi, S2) = r(gi, S3) except at index i € I;; and the optimal price in vg, is g;;,, while
invgy, gi,, is the optimal price. For j = 1,...,J except at j2, note that Afz > € fori € I; since
iy
7"(91-1.2 ,S2) = ¢+ €3 and r(g;, S2) < ¢ by the definition of Sy. Then, we have
K
R(T,S5) = 3 AP Es, [N,(T)

i=1

Yo D APEs, [Ni(T))
JE[I],i#72 €1,

> e Es,[M;(T)]
JE[I],i#72
2 (T — Es, [M;,(T)])
T T
2 76 'PSQ (sz(T> < 2) ’

Y

where the first inequality holds by the definition of M;(T'). Similarly, we have
S,
R(T,Sy) = > > APEg [Ni(T)]
JEL #3161
> € - Egy [M;,(T)]

T62 T
Py (M (T)>2>.
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Combining the two preceding displays and Lemma 2.6 in [42], we have

ro| N

R(T, S) + R(T, 83) > % <PSZ <Mj2(T) = g) M <Mj2(T) ] )> (81)

T
> % exp (—K(Ps,, Ps;)) -

By Lemma 1 in [14], we can decompose the KL divergence K (Ps,, Ps; ) as

S/
PSQ7PS' ZZESZ (PiSQaPi 2)
Jj=li€l;
_ S2 S
= Z Es, [Ni(T)]K(Pi By ).
iEIjé

By Corollary 3.1 in [40] and the definition of Sy, 5%, we have
(S2(g:) — S5(94))?

K(PS, P%) <
S5(9:)(1 — S5(9:))
(2529%)
< M, My
< 4 o
o ])12nin‘]\41]\42 ©

for any i € I;;.Then, by combining the two preceding displays, we have

S/
K (Ps,, Ps;) = § Es, [N, K(P%2 P™).
'LEI ’
2

< €5 - g, [Myy (T)] (82)

2
€a,

=271

where co = . It is easy to check that e = xT~3 is sufficient to satisfy the monotonicity

JWM

pmm

constraints of Sy and S. Therefore, by combining (81, (82) and .J =< e, ', there exists a constant
C5 > 0 such that

w\»—A

R(T,S;) + R(T, S5) = C,T
T

w\m

vV

It completes the proof for the case v > 1/3.

C Technical Lemmas

Lemma C.1. Let © = {(So,8) € © : So.x > M1,50,1 < Ma,||B|l2 < D}, where My, My and
D are some positve constants such that 0 < My < My < 1. Suppose that the assumption|(A2) holds.
Then, it holds that for any 61,0, € ©’,

D p917p92 / Z|H91(I7p) —ng(x,p)|2q(p|x)px(:z:)dx )
reX pcG

where constants in < depend only on My, Ms, D and L.
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Proof. By the assumption [(A2)] there exist positive constants H; and H», depending on My, Mo,
D and L, such that 0 < Hy < Hy(z,p) < Hy < 1forallz € X,p € G and 6 € ©’. Then, for any
01,0, € ©, we have

2
D P(h,PGQ / XZ Z \/p01 .’E DY) — \/p92($,p,y)) dx
pAS

pEG Y= 01

(\/1 — Hy, (x,p) — /1 — Ho,(x, p))z] q(p|z)px (z)dx
- /eX > |Ho, (@,p) — Ho, (2. ) a(pla)px (2)dz,

peG

where the third identity holds because the derivative of the map ¢ ~— +/ is bounded below and above
by positive constants on the interval [Hy, Hs].

O

Lemma C.2. Let © = {(So,ﬁ) €0O: S()’K > M1750,1 < MQ, ||ﬁ||2 < D}, where My, My and
D are some positve constants such that 0 < My < My < 1. Suppose that the assumption[(AZ)| holds.
Then, there exist positive constants Cy and Cq depending on My, My, D and L such that for any
0, = (8071,51), 0y = (5072,,32) € and p € G, it holds that

|Ho, (X,p) — Ho,(X,p)| < C1]S0,1(p) — So,2(p)| + Ca2l|81 — B2|l2

almost surely.

Proof. We decompose the term |Hy, (X, p) — Hy, (X, p)| as

|Ho, (X,p) — Ho, (X, p)| = |SO’1(p)eXP(XTﬂ1) _ 50’2(p)exp(XT,62)|
< |SO,1(p)eXp(XTﬁl) _ 5072(p)exp(XTﬁ1)| + |Soyg(p)exp(XTﬁ1) _ 5072(p)exp(x‘rﬁ2)|.
(83)

For the first term of the preceding display, the mean value theorem on a map ¢ — ¢ (¢ > 0 a constant)
yields

|So,1(p)CXP(XT51) - 50,2(p)CXp(XT61)| = eXP(XTﬂl)go(p)CXp(XTﬁl)_l|50,1(p) — So,2(p)|s

for some So(p) in (So.1(p), So.2(p)). Under the assumption by the Cauchy-Schwart inequality
and the boundedness of 31, we have | X T 31| < || X|2||81]2 < LD almost surely. Furthermore,
So(p) is bounded away from 0 and 1. Then, there exists a positive constant C', depending on M 1
My, D and L, such that exp(X T 31)So(p )eXp(X P1)=1 « (. Therefore, the first term of (83) is
bounded by C]S0,1(p) — So,2(p)|- Similarly, for the second term of (83), applying the mean value
theorem to the map ¢ — ¢/ *P() (¢ > 0 a constant) gives

1S0.2(p) P B — Gy o (p)™PXTB2)| = |1og S 2(p)[S0.2(p) P D exp(XTB)XT (B — Ba)l,

for some /3 between 3; and [3;. Note that by the Cauchy-Schwartz inequality, |X (3, —
B2)| < [ X|2llB1 — Pall2- By assumption [(A2)| and the boundedness of Sp» and

B, there exists a positive constant C5, depending on M;, M, D and L, such that

10g S0.2(p)|S0,2(p)™PX A exp(X T B)|| X||2 < C, almost surely. Combining these results with
, we have

|He, (X, p) — Ho, (X, p)| < C1[So,1(p) — So2(p)| + Cal|f1 — Bal|2
almost surely for any p € G.
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Lemma C.3. Suppose that the assumption|(A5) holds. If X 1. ~ Gamma(ay, p) are independent for
k=1,...,K, where Ac® < ay, < M, and Ke < N for some positive constants A, e,b, M, N and
p, then there exist positive constants Cy, Cy and C3 depending only on pmin, Pmax, A, b, M, N and p
such that

(A0 — Ajlloc < ) > Cyexp (~CoK — CyK log_ ).

Proof. First, we assume that M = 1,sothat o, < 1forallk=1,..., K. Fixke {1,...,K}. In
the model , we can represent Ag(gx) as 0 25:1 Ao,s. Similarly, A§(gr) is given by ¢ Zle AV

where Af | = Ag(g1)/0 and Af = (Aj(gs) — Af(gs—1))/0 for s = 2,..., K. By combining this
and the preceding display, we have

nm—mmzﬁywww 83w

12}%)([(62 |Ao,s — A |

K
= 52 Aok — Af k-
k=1

Therefore, the probability on the left side of the lemma is bounded below by

IN

K
([ A0 = Aglle <€) =TI (52 Mok — Af ] < e)

k=1

A4
=

H(|)\07]€— 8,k| SCp€)7

where C), := (K 5)’1 be a postive constant depending only on pmin and pmax. Since Ag 1, ..., Ao,k
are independent variables with g, ~ Gamma(ay, p), we have

I([[A0 = Agllee <€)

Zk 1 Ok AS,K+C}7€ AF‘),lJFCp6 K
P / / Hu‘“ 1exp(*PZu1c)dU1mduK-
Hk 1 ( ) max k=1

(Aaxfcpe,O) max(AO 1—Chpe, O k 1
By assumption[(A5)] there exist constants My and My such that 0 < My < S (pmax) < S§(Pmin) <
M5 < 1, and it holds that Ny < Ag(v) < N for all v € [Pmin, Pmax), where Ny = —log M7 and

Ny = —log M. Note that within the interval of integration, Zszl up < Af(gr)/0 + CpKe <
N1C,K + C,Ke. Furthermore, for any 0 < oy < 1, it holds that o, I'(ay;) = T'(a +1) < 1
Therefore, the right side of the preceding display is bounded below by

K
K
pi=1 2% exp(—pCp K (N1 + €)) [[ {(A5 .4 + Cpe)®* — (max(Af ), — Cpe,0))* } .
k=1
By the mean value theorem, the terms of the product in the preceding display is bounded below by
an(Bg 1) L Cpe for some Ag ;. € (max(Af , — Cpe,0), A, + Cpe). Since A, < N1CpK +
Cpeand oy, — 1 < Oforallk =1,..., K, by combining the last two displays, we have
IL([[Ao = Agllec <€)
K K K
> poei=r Ok exp(—pCpN1K)) exp(—pCpKe) - (OPG)K(NlcpK + Cpe)ZkZI ok H k-
k=1
Note that NiCp,K + Cpe = 1/e - (N1CpKe + Cpe?) < 1/(C’¢) where C' := 1/(N1NC,, +
Cp(AZ/ )=1) is a positive constant, as Ke < N and Ae® < 1 by assumption. Therefore, we have
(Ao — Ajlls <€)

> p2Zi1 @ exp(—pCy N1 K)) exp(—pCpN) (Cpe) ¥ (1/(C"e)) Zk=r o6 =K (Ach) K
> Chexp(—Co K — C5K log_ €),
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for positive constants C; := exp(—pCpN), Cy := pCp, N1 +log_ p+log_ A+log_ Cp, +log_ C’
and C'5 := b+ 2, where the first inequality holds because Ke < N and Aeb < ap, <1 by assumption,
the second inequality holds because logz > —log_ x for any = > 0, where log_ denotes the
negative parts of logarithm. This concludes the proof in the case that M = 1.

We may assume without loss of generality that a M is an positive integer. Foreach k = 1,... K,
we can represent the A 5, as the sum of independent random variables (Ao gm : m = 1,..., M),
where Ao k. is distributed from Gamma distribution with parameters oy ., = ay/M and p for
m =1,..., M. Then, it satisfies the conditions of the lemma in the case of M = 1, with K and A
being adjusted to M K and A/M, respectively. The proof is then complete.

O

Lemma C.4. Under the assumption|(A3)| for a random sample X, = (X;1,...,Xq), there is a
constant € > 0 such that P(| X, ;| > €) > 0forallj =1,...,d

Proof. Suppose that for any ¢ > 0, there exists j/ € {1,...,d} such that P(|X; ;| > ¢) = 0.
It follows that P(|| X¢||c > €) = 0. Since ¢ > 0 is an arbitrary number, we have P(||X}|cc =
0) = 1. Take j* = argmax,_; _,|X; ;| and 1, B> such that B j« # B2 ;- and B ; = [z ; for
j S [d] \ {]*} Note that Xt—r(ﬁl — 52) = Xt,j* (517]‘* — 517]‘*). Since P(lXt,j* = 0) = 1, we
have P(X, (81 — B2) = 0) = 1. This contradicts the fact that P(X,” (81 — 82) # 0) > 0 from the
assumption [(A3)] and therefore the proof is complete.

O

Lemma C.5. If the pricing policy m, for each epoch l is specified as in (9], then the assumption|(A4)
is satisfied.

Proof. Let q;( | =) be the conditional probability mass function of P; given X; = z for ¢t € &;. Note
that for any z € X and p € G, we have

a(p | x) = m(z)({p})

>m/K
Zmeng "
_ 14 1 . 1
S m 1(10g”l)§ ify <3,
~ —y =1 1 .
n, "3 (logny)? if v, > %,

where the first inequality holds by (), the second inequality holds by (7), and the last inequality
holds by (@) Thus, the conditional probability mass function ¢;(- | ), parameterized by the policy
, satisfies the assumption [(A4)]

O

Lemma C.6. Suppose that the prior distribution 11 is specified as in (), and the policy 7 for each
epoch | is defined by (). Suppose that assumptions|(AT) (A5) hold. Then, for every € > 0, there

exist positive constants C and Cy depending on L, B, pyin, Pmax, K, &, p, a, b, nq and €, such that
forl 2 Cl;

ql-1 al—1

1So " = Sollee + 187" = B*[l2 <€

with probability at least 1 — exp(—C’inlﬁ).

Proof. We define the distance D (61, 02) between 61 = (S, 1, 51) and 62 = (S¢,2, f2) on © as
Do (01,02) = [|So,1 — So,2/lee + |51 — B2]|2-
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Let ¢;(- | x) be the conditional probability mass function of P; given X; = z for t € & in epoch
[. By Lemma q(- | x) satisfies the assumption m ((A4)| for every epoch [. Then, by Lemma
- A.1] for every € > 0 and y;—1 € (0, 1], there exist positive constants cj, c2 and c¢3 depending on
L, B, Pmin, Pmax; K, @, p and € such that for I > [log,(c1/n1)] + 1,

(Do (6,6%) > ¢/2 | Dy 1)<CQexp( esn ) (84)

with probability at least 1 — exp(fc;;nlli ?i)
We partition the parameter space O into two subsets

O1={0€6:D(0,0%) < ¢/2},
Oy = {0 € 0 :D(6,6%) > ¢/2}.

Then, we can decompose 297*1 as

9*1:/~9dﬁ(0|Dl_1)
€]

:/ 9dH9|Dl 1 +/ 9dH¢9|Dl 1)
=h O,

=(1-7_ 1)9 + 7 1@2 (85)

where 7;,_1 = ﬁ(éz | D;—1). Here, @1 and 9 ! are the mean estimates of the probability measures
resulting from the restriction and normalization of the truncated posterior distribution on the sets 6,
and O, respectively. It is easy to check that the function 6 +— D, (0, 6*) is convex and bounded
over the domain ©. By Jensen’s inequality, we have

Doo(071,0%) < [ Doo(6,07)dIT, (0| Dy_y)
6,
<e€/2, (86)

where IT; (- | D;_1) be the probability measure obtained by restricting and renormalizing ﬁ( | D;_

to @1, and the last inequality holds by the definition of @1 On the event that the inequality li
holds, for [ > [log,(c1/n1)] + 1, we have

Doo(071,0) < (1 — m_1)Dec (0171, 0%) + -1 Do (6571, 60%)

e (Co 1 Dl*l)Dm(@*l,e*)
2 IO |D-1)

1/3
€ ca exp(—can, ')
<5+ 1/3 -(1++Vd(aVb)+ B),
1 — coexp(—can, ')

where the first inequality holds because of the convexity of the function § — D (6, 6*) and (85| .,
and the second 1nequahty holds by (86)) and the definition of 7;_;. The last 1nequal1ty follows from

(G) | D, 1)>1- (Gl 12| D 1) combined with inequality (84) and the boundedness of D,
over © under the assumption )} Note that the second term on the right of the preceding display is
upper bounded by €/2 forn;_1 > (log(02(1 +C1)/C1)/c3)?, where Cy = ¢/(2(1++/d(aVb)+B)).
Combining this result with the preceding display, we conclude that for I > ([logy(c1/n1)] +1) V

([logy(C2/n1)] + 1),
Doo(é\l_l,e*) <€

with probability at least 1 — exp(fc;;nllg), where Cy = (log(ca(1 + C1)/C1)/c3)3. The proof is
then complete. O
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Lemma C.7. Suppose that assumptions [(AI{(A3)| [(A3)] and [[BI) hold. Let observations D; =
{(Xt, Py, Y2) }reg, be iid. copies of (X, P, YY), where P, is a random variable distributed from Q; as
specified in Algorithm[I} We consider the collection of random variables {M(p) : p € (Pmin, Pmax)}»

where M(p) := pS;; (p)exP(XTﬁ*). Let P, denote the points of maximum of Ml(p) over (Pmin, Pmax)
such that

P.e argmax M(p). (87)
PE (Pmin;Pmax)

Then, P, converges to P, in distribution as | — oo.

Proof. We consider the collection {M(p) : p € (Pmin, Pmax) } of random variables, where My (p) :=
Sy (p) (X "B For each I, define the point of maximum of M (p) over p € G by

]Sl € argmax My (p).
pEG

We first show that P, converges weakly to P,. To see this, we need to verify the conditions of
Theorem 1 of [8]]. We say that G Painlevé-Kuratowski (PK) converges to (Pmin, Pmax) if

{P € (Pmin, Pmax) : liminf inf [p — g| = 0} = {p € (Pmin, Pmax) : limsup inf |[p — g| = 0} = (Pmin, Pmax)-
n—oo geg n—oo 9€EG

Let N be the number of epochs for a given horizon T, satisfying N = logy(T/n; + 1). Asl — oo
implies T — oo, it is easy to see that the grid set G PK converges to the continuous interval

(pmin> pmax)~

We denote the conditional distribution of P; given X by Q;(- | X), where Q;(- | X) = m(X)()
as defined in Algorithm[I] By the design of Algorithm [I]and the definition of 7, the conditional
distribution Q;(- | X) satisfies the assumption|(A4)|for all {. Then, by Lemma[A.1|and Theorem 6.8
of [[16], for € > 0, there exist positive constants ¢y, co and c3 such that for sufficiently large [ with
nj—1 > c; and for any v, we have

~ - 1
186 = Sillow + 17" = 8712 < €+ caexp (—eani, ). (88)
with probability at least 1 — exp(—cP,nllf ?{) Note that there exist constants M; and M» such that 0 <
My < S8 (Pmax) < S§(Pmin) < Ma < 1 by assumption|[(A5)| Let Cy := ((M;1 A (1 — Ms))/2 A B)
and take ¢ < C/2. For large I such that n;_1 > ¢; V (5 log(2¢2/Co))?, by (88), we have
IS5 = Sglloe + 18" = ¥l < Co,

with probability at least 1 — exp(—%n?ﬁ). This implies that §(l)7—11 > M;/2 > 0, §é}§ < (1+

Ms)/2 < 1and ||,§l’1 l2 < 2B. Then, by Lemma for any p € (Pmin, Pmax ), We can decompose
as

My, (p) — M(p)| = p| S (p)"PX B _ gz ()X 787
< C1185 7 (p) — S5 (p)] + Col| B = B, (89)

where C; and Cj are positive constants depending on M;, My, L, B and py,.x, and the inequality
holds almost surely. For each p € (Pmin, Pmax ), there exists s € {2, ..., K} such that p € [gs—1, gs]-
Then, we have

So H(p) = S5(p) < Sty = Sgs—1 + 5551 — S5 (D)
< |§(le31—1 - S(x):sfl| + L067

where the first inequality holds by the monotonicity of §(l)_1, and the last inequality holds by L-
Lipschitz continuity of S under the assumption |(A5) Similarly, we have Sg(p) — S5 (p) <
|S(l);1 — 55 | + Lod. By combining this with ,

[Mi(p) = M(p)| < C3(ISG" = Silloc + 18" = 5%[l2) + C1 Lo,
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where C3 = Cy V C; is a positive constant. Combining this with (88), for sufficiently large [ and T,
we have

IM(p) — M(p)| < (C3 + 1),

with probability at least 1 — exp(—cw}fi). Thus, for each p € (Pmin, Pmax)> Mk(p) — M(p) as

I — oo in probability, implying convergence in distribution. Since p is arbitrary, M, converges
weakly M in £°°(A) for every compact A C (Pmin, Pmax)» Where £>°(A) denote the space of real-
valued bounded functions on A. By the assumption|(B1){and Theorem 1 of [8]], we conclude that P,
converges weekly to P..

By the design of policy 7; in Algorithrn the random variable P, is defined as P, = RI?’Z +(1-R)U,
where R is Bernoulli distributed with success probability 1 — ;. The variable U is uniformly
distributed on G. Let f : (Pmin, Pmax) — R be any bounded L;-Lipschitz continuous function for
some positive constant L;. Then, we have

[E[f(P)] - E[f(P.)]| = [E[f(P)] — E[f(P)] + E[f(P)] - E[f(P.)]]
< E[Li[(R-1)P, + (1 - R)U|| + [E[f(P)] — E[f(P.)]

< 2Ly mpmax + [E[f ()] — E[f(F)]l,
where the first inequality holds because f is Li-Lipschitz function, and the last inequality holds
because ]31 and U are less than pp,,x almost surely. By the definition of 77; and Portmanteau theorem,
the right-hand side of the preceding display converges to 0 as n — oo. Then, we apply the
Portmanteau theorem to conclude that P, converges weekly to P..

O

D Extension to nonuniform grids

The assumption of equally spaced prices is made solely for technical convenience in developing the
theory. However, with some additional technical work, our results can be readily extended to more
general discrete price sets. For instance, one may consider a nonuniform grid G = {¢1,...,9x}
satisfying

ad < |gr+1 —gr| < b5 forallk=1,... K,

where § < T~ and a,b > 0 are constants. This more general setting implies that our theoretical
findings can be extended to more practical settings.

Importantly, since the regret rate in our analysis depends on the discrete set only through the sparsity
level ~, this generalization does not fundamentally change the regret behavior. Therefore, while such
an extension increases technical complexity, it does not yield additional theoretical insights.

E Discussion on the Cox PH model assumption

We here provide additional discussion on our choice of the Cox PH model, addressing both its
suitability and potential concerns about model misspecification.

The key distinction between the Cox PH model and standard linear demand models lies in the use
of the hazard function, which is a central concept in survival analysis. Unlike linear models, which
model the conditional mean of a random variable, the Cox PH model focuses on modeling the hazard
rate, a quantity that fully characterizes the survival distribution and is particularly well-suited to
censored data settings. A key advantage of the Cox PH model is that it permits separate analysis of
Ao and 3, enabling theoretical development under minimal assumptions on the functional form of A.
This makes the Cox PH model an appropriate and principled choice for contextual dynamic pricing.

At the same time, we note that every model carries some risk of misspecification. Models that directly
target the mean (e.g., linear or log-linear) are often highly sensitive to tail behavior and thus more
vulnerable to misspecification. By contrast, models focusing on the hazard rate, such as the Cox PH
model, tend to be more robust in these settings. A fully distribution-free approach might be preferable
in order to avoid the risk of model misspecification. However, such an approach does not appear
to be suitable in our context, as interval-censored data contains very limited information about the
valuation distribution.

58



F Discussion on the variational Bayes estimator

In our theoretical analysis, the regret bounds are derived under the assumption that the estimator i1
corresponds to the posterior mean of the true Bayesian posterior, which contracts to the ground truth
at the rates established in Theorems [3.1]and [3.2] In practice, we employ a variational Bayes (VB)
approximation to obtain this estimator due to its computational efficiency in high-dimensional and
nonparametric settings. The variational family used in our implementation is sufficiently expressive so
that the VB posterior mean closely approximates the true posterior mean. As empirically demonstrated
in [29]], the considered VB approach performs comparably to, or better than, traditional MCMC in
terms of estimation accuracy.

From a theoretical perspective, the regret bound depends directly on the convergence rate of g1,
Therefore, if the VB posterior attains the same contraction rate as the true posterior, the regret
guarantees remain valid. Recent advances in the theoretical study of VB methods (e.g., [46} (1} 145]])
provide sufficient conditions under which the VB posterior achieves the same contraction rate as the
full posterior. Although a rigorous regret analysis for VB-based estimation in our specific setting
remains open, these results indicate that our regret guarantees continue to hold under appropriate
contraction assumptions.

G Additional discussion on estimator replacement

Although we do not provide a formal proof, the Bayes estimator in our proposed algorithm could
potentially be replaced by the NPMLE. However, even if so, careful selection of the exploration
parameter 7; is crucial for designing an optimal pricing policy. As empirically demonstrated in
Section [6} our choice of the exploration parameter (6) substantially improves cumulative regret
compared to the parameter choice in [[7] (denoted as «y, in their notation), which employed the
NPMLE.

H Details of the experimental setup

We use a Gamma prior with oy = --- = ax = p = 1072, For a prior of 3, we use a multivariate nor-
mal distribution, N (0, 1), where I; denotes the d x d identity matrix. The truncated point estimator
is computed within a parameter space of /3 truncated to [—10, 10]¢. The proposed algorithm involves
three hyperparameters: the first-epoch size n1, the exploration parameters 1; and 72. These are tuned
through grid search over the ranges n; € {64, 128,256}, 7, € {27%/3,273/3,272/3 9=1/3 201 and
Ny € {2712/2 2711/2 9-10/2 9=9/2} with an initial period of T = 3000 for each combination.
For a fair comparison, the hyperparameters of [7]] are also tuned using the grid search procedure.
We use the CoxCP algorithm with the e-greedy heuristic, as described in their experiments. This
algorithm involves two hyperparameters: the first-epoch size 7; and the degree of exploration
parameter 7. The hyperparameters are tuned over the ranges 71 € {64, 128,256,512,1024} and
T€{274,273,272 271 20} following the procedure outlined in their work.

I Computational resources used

All experiments in this paper were conducted using a machine equipped with an Intel(R) Core(TM)
19-10900X CPU. No GPU was used.
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