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Abstract

Dynamic pricing algorithms typically assume continuous price variables, which
may not reflect real-world scenarios where prices are often discrete. This paper
demonstrates that leveraging discrete price information within a semi-parametric
model can substantially improve performance, depending on the size of the support
set of the price variable relative to the time horizon. Specifically, we propose a novel
semi-parametric contextual dynamic pricing algorithm, namely BayesCoxCP, based
on a Bayesian approach to the Cox proportional hazards model. Our theoretical
analysis establishes high-probability regret bounds that adapt to the sparsity level γ,
proving that our algorithm achieves a regret upper bound of Õ(T (1+γ)/2 +

√
dT )

for γ < 1/3 and Õ(T 2/3 +
√
dT ) for γ ≥ 1/3, where γ represents the sparsity

of the price grid relative to the time horizon T . Through numerical experiments,
we demonstrate that our proposed algorithm significantly outperforms an existing
method, particularly in scenarios with sparse discrete price points.

1 Introduction

Contextual dynamic pricing involves updating product prices over time based on contextual infor-
mation such as customer features, product attributes, and market conditions. Given its importance
and practical applications in revenue management, this topic has been extensively explored across
statistics, machine learning, and operations research [9, 43, 34]. The primary objective of contextual
dynamic pricing is to maximize the seller’s revenue through determining optimal prices that account
for both covariates and demand uncertainty. A key challenge in dynamic pricing is balancing explo-
ration, which focuses on learning the underlying demand, with exploitation, which leverages current
knowledge to set optimal prices. Striking this balance is essential for developing effective dynamic
pricing strategies.

A commonly studied framework in contextual dynamic pricing is the binary choice model, where the
seller receives binary purchase feedback based on the posted prices [2, 24, 37, 44, 3, 30, 7, 10, 31].
Specifically, at each time t = 1, . . . , T , the seller observes a covariate Xt ∈ Rd that captures customer
and product features. Based on the observed covariate and historical sales data, the seller determines
a price Pt for the product. The customer’s valuation of the product, denoted as a random variable
Vt ∈ R≥0, is unknown to the seller. Following the posted price, the seller receives binary feedback
Yt ∈ {0, 1}, indicating whether a purchase occurred. The customer purchases the product if and
only if their valuation Vt exceeds the offered price Pt, which can be expressed as Yt = 1{Vt > Pt}.
Notably, Vt is not directly observed, as it is censored by Pt. In the statistical literature, such data
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structures are called case 1 interval-censored data, also known as current status data [18]. Case 1
interval-censored data has been extensively studied in survival analysis [11, 13, 28, 38, 25, 20, 19].

We consider a contextual pricing problem under the binary choice model. Let F (v | Xt) = P(Vt ≤
v | Xt) and S(v | Xt) = 1 − F (v | Xt) be the cumulative distribution function (c.d.f.) and
complementary c.d.f. (or survival function) of Vt given Xt, respectively. The expected revenue from
a posted price p given the covariate Xt is given as E(p · Yt | Xt) = pP(Vt > p | Xt) = pS(p | Xt).
Then an optimal price P ∗

t at time t is defined as a price that maximizes the expected revenue:

P ∗
t ∈ argmax

p
pS(p | Xt). (1)

The regret at time t is the difference between the expected revenue generated by the optimal price P ∗
t

and that from the posted price Pt, given by r(t) = P ∗
t S(P

∗
t | Xt) − PtS(Pt | Xt). An important

objective is to design a pricing policy that minimizes the cumulative regret over a given time horizon
T , defined as R(T ) =

∑T
t=1 r(t).

As shown in (1), designing an effective pricing policy necessitates accurately estimating the comple-
mentary c.d.f. S(· | Xt). Thus, a wide range of contextual dynamic pricing algorithms have
been developed using various models for the conditional distribution of Vt given Xt. Linear
models [2, 36, 23, 17, 24, 3, 44, 6, 30, 33, 10, 31], where F (v | Xt) = F0(v − X⊤

t β), and
log-linear models [37], where F (v | Xt) = F0(v · exp(−X⊤

t β)), serve as key examples. Here,
F0(v) = P(Vt ≤ v | Xt = 0) represents the baseline c.d.f., and β ∈ Rd captures the contextual
effect. More recently, [7] proposed using the Cox proportional hazards (PH) model, in which the com-
plementary c.d.f. is modeled as S(v | Xt) = S0(v)

exp(X⊤
t β). Here, S0(v) = 1− F0(v) represents

the baseline complementary c.d.f. In particular, semi-parametric models, which assume that both
the nonparametric baseline function F0 (or S0) and the parametric coefficient β are unknown, have
gained considerable attention recently due to their flexibility and interpretability [37, 30, 7, 10, 31].

In real-world applications, it is crucial to note that offered prices are often observed only on a discrete
set. For instance, retailers commonly restrict prices to convenient values for ease of communication
and consumer familiarity, and businesses often adhere to predefined discount levels or promotional
price points [39, 22]. The significance of discrete price sets in revenue management has been
widely recognized [12, 4, 32]. Much of the existing dynamic pricing literature, however, focuses on
continuous price spaces [2, 36, 23, 17, 24, 37, 3, 44, 33, 6, 30, 7, 10, 31].

From a theoretical perspective, discrete price sets provide significant advantages for estimating model
parameters. In a simple survival analysis setup with i.i.d. case 1 interval-censored observations, [41]
demonstrated that the inferential performance of the underlying survival function can be improved
by leveraging the fact that the monitoring time (the offered price in the dynamic pricing setting) is
discretely supported. To be specific, if the monitoring time is continuous, the optimal convergence
rate for estimating the unknown survival function with case 1 interval-censored data is known as
n−1/3, where n is the sample size [21]. On the other hand, in [41], the monitoring times are assumed
to be supported on an equally spaced grid set. Then, they proved that the nonparametric maximum
likelihood estimator (NPMLE) achieves a convergence rate of n−(1−γ)/2 for γ < 1/3 and n−1/3 for
γ ≥ 1/3, where γ ∈ (0, 1] represents the sparsity level of the grid relative to the sample size n (a
rigorous definition is provided in Section 2). In other words, one can achieve much faster convergence
rates if the grid is sparse (γ < 1/3). Moreover, they developed an inferential procedure, such as
the construction of confidence intervals, that does not depend on the unknown quantity γ, often
referred to as an adaptive procedure. While the adaptive procedure in [41] is quite complicated, [5]
demonstrated that a much simpler and more practical Bayes procedure is also adaptive, and that the
corresponding Bayes estimator achieves the same convergence rate. Although these aforementioned
theoretical results are based on a non-contextual setup and i.i.d. data, they suggest that incorporating
the discrete support of the price may lead to a pricing policy with smaller cumulative regret compared
to one that ignores this information.

Motivated by these insights, we propose a novel semi-parametric contextual dynamic pricing algo-
rithm, BayesCoxCP, based on a Bayesian approach to the Cox PH model with case 1 interval-censored
data. The algorithm is specifically designed to exploit the discreteness of the offered price, leading to
improved performance. Our theoretical contributions are threefold:

• We derive the posterior convergence rate of the Bayes estimators of the semi-parametric Cox
PH model under the i.i.d. setup. We assume that the offered price is supported on an equally
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Table 1: Existing regret bounds for contextual dynamic pricing algorithms based on semi-parametric
models. Note that the optimal rates depend on the model and assumptions, such as the smoothness of
F0.

METHOD
MODEL
FOR Vt

REGRET
UPPER BOUND

OPTIMALITY
IN T

ADAPTATION TO
DISCRETE SUPPORT

[10] LINEAR Õ((Td)
2m+1
4m−1 ) × ×

[31] LINEAR Õ(T
2
3 + ∥β̂ − β∗∥1T ) × ×

[30] LINEAR Õ(T
2
3 d2) × ×

[30] LINEAR Õ(T
3
4 d) × ×

[37] LOG-LINEAR Õ(T
1
2 d

11
4 ) × ×

[7] PH Õ(T
2
3 d) ⃝ ×

OUR WORK PH Õ(T
1+γ
2 +

√
dT ) (γ < 1/3)

Õ(T
2
3 +

√
dT ) (γ ≥ 1/3)

⃝ ⃝

spaced grid set and prove that the posterior distribution converges at the optimal rate, which
adapts to the grid sparsity. This result generalizes the work of [5], who studied the survival
model without covariates, to the PH model. It is also worth noting that our prior for the
baseline cumulative hazard differs from that of [5] and can achieve computational benefits.

• We derive the regret upper bound of the proposed BayesCoxCP algorithm. Specifically,
our algorithm achieves a regret upper bound of order T

1+γ
2 + (dT )1/2 for γ < 1/3 and

T 2/3 +(dT )1/2 for γ ≥ 1/3, up to a logarithmic factor, where γ represents the grid sparsity
relative to the time horizon T . Notably, the BayesCoxCP algorithm does not rely on the value
of γ, i.e., our algorithm adapts to the sparsity level. A careful selection of the exploration
parameter ηl is crucial in the algorithm’s design; see Section 4 for further details.

• We also establish a non-contextual minimax lower bound for the cumulative regret in the
discrete pricing problem, as stated in Theorem 5.3. It turns out that our regret upper bound
for the BayesCoxCP algorithm is optimal up to a logarithmic factor in terms of T .

Through extensive numerical experiments, we empirically demonstrate that the proposed pricing
algorithm significantly outperforms the state-of-the-art method in [7] when prices are discretely
supported.

The remainder of this paper is organized as follows. In the following subsections, we introduce
the notations used throughout the paper and provide a brief summary of related works. Section 2
introduces the basic setup for case 1 interval-censored data on a grid and describes the Cox PH
model, along with the prior distributions employed. Section 3 establishes the convergence rate of
the posterior distribution under the i.i.d. setup. Section 4 introduces the BayesCoxCP algorithm and
Section 5 presents its regret analysis. Finally, Section 6 presents numerical experiments to evaluate
the effectiveness of our proposed algorithm.

1.1 Notation

For two real numbers a and b, a∨b and a∧b denote the maximum and minimum of a and b, respectively.
For two densities p and q with dominating measure ν, let DH(p, q) = (

∫
(p1/2 − q1/2)2dν)1/2 be

the Hellinger distance and K(p, q) =
∫
log(p/q)pdν be Kullback–Leibler divergence. For a metric

space (F ,D), the ϵ-covering and ϵ-bracketing numbers of F with respect to distance D are denoted
as N(ϵ,F ,D) and N[ ](ϵ,F ,D), respectively. We write a = O(b) or a ≲ b if a ≤ Cb for some
constant C > 0, where C is an absolute constant unless otherwise specified. In addition, we write
a = Ω(b) or a ≳ b if a ≥ Cb for some constant C > 0. The notation Õ(·) denotes the corresponding
bound that ignore logarithmic factors.

1.2 Related works

The problem of contextual dynamic pricing has been extensively studied in the literature. Many
recent works have focused on semi-parametric models where F0 is unknown and nonparametric.
For instance, [30, 31, 10] considered linear models with an unknown F0 under certain smoothness
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assumptions. In [10], F0 is assumed to be m(≥ 2)th-order smooth, achieving a regret upper bound
of Õ((Td)

2m+1
4m−1 ). [31] relaxed this assumption by assuming that F0 is Lipschitz continuous and

second-order smooth. They obtained a regret upper bound of Õ(T 2/3 + ∥β̂ − β∗∥1T ), where
∥β̂ − β∗∥1 represents the estimation error of β∗. Similarly, [30] considered the same setting and
achieved a regret upper bound of Õ(T 2/3d2) under the Lipschitz and second-order smoothness
assumptions on F0, while showing that under a weaker Lipschitz assumption alone, the regret upper
bound increases to Õ(T 3/4d). On the other hand, [37] used a log-linear model with a second-order
smoothness assumption on F0, achieving a regret upper bound of Õ(T 1/2d11/4) but with suboptimal
dependency on the dimension d. Similar to our approach, [7] used the Cox PH model, assuming that
F0 is Lipschitz continuous. They derived a regret upper bound of Õ(T 2/3d), which improves the
dimensional dependency compared to [37], but their analysis is limited to continuous pricing settings.
The overall comparison of regret bounds from these semi-parametric studies, along with our results,
is summarized in Table 1. In addition to these works, earlier studies often assumed that F0 is known
and log-concave. For instance, [24] and [44] both considered linear models under these assumptions.
[24] additionally analyzed the case where F0 is unknown but belongs to a parametric log-concave
family, deriving a regret upper bound of order T 1/2.

2 Preliminaries

2.1 Basic setup

In the current and next sections, we study the behavior of the posterior distribution from the PH
model for analyzing case 1 interval-censored data on a grid under the i.i.d. regime.

To set the scene, suppose that (Xt, Pt, Yt), t = 1, . . . , n, are i.i.d. copies of (X,P, Y ). In particular,
we assume that Pt’s are supported on the grid set G = {g1, . . . , gK} within the (fixed) interval
[pmin, pmax], whose cardinality may depend on the sample size n. The grid points are assumed to
be uniform in the sense that gk+1 = gk + δ for every k ≥ 0, where g0 = pmin, and K is the largest
integer such that gK ≤ pmax, that is, K = ⌊(pmax − pmin)/δ⌋. We further assume that the grid
resolution δ is controlled by two constants γ ∈ (0, 1] and κ > 0, according to the relation δ = κn−γ .
Note that generalizations to nonuniform grids are discussed in Appendix D.

Let Q(· | X) denote the conditional distribution of P given X , with q(· | X) denoting the corre-
sponding probability mass function. In addition, the marginal distribution of the price P is denoted
by Q(·), with its probability mass function given by q(·). Let PX and pX be the marginal distribution
and the corresponding density of X .

2.2 Proportional hazards model for Vt

We consider the Cox PH model for the conditional distribution of Vt given Xt. Formally, the
complementary c.d.f. v 7→ S(v | Xt) of Vt is modeled as

S(v | Xt) = S0(v)
exp(X⊤

t β),

where S0(·) is a baseline complementary c.d.f., and β ∈ Rd is a regression coefficient. We assume
that Vt is continuous. Let F0 = 1− S0, λ0 = F ′

0/S0 and Λ0(v) =
∫ v

0
λ0(u)du be the c.d.f., hazard

and cumulative hazard functions, respectively, corresponding to S0, where F ′
0 denotes the derivative

of F0.

We remark that the joint distribution of (Xt, Pt, Yt) depends on the unknown parameters
(S0, β, pX , q(· | ·)). Among these, While (S0, β) are the parameters of interest, while (pX , q(· | ·))
are treated as nuisance parameters (at least in the current and next sections). Since Pt is
supported on G, the joint distribution of (Xt, Pt, Yt) depends on S0 only through the vector
S0 = (S0,1, . . . , S0,K) ∈ [0, 1]K , where S0,k = S0(gk). Here, X represents the support of
the covariate X . The parameter space is defined as Θ = {θ = (S0, β) ∈ S0 × Rd}, where
S0 = {S0 = (S0,1, . . . , S0,K) : 1 > S0,1 ≥ · · · ≥ S0,K > 0}.
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2.3 Prior

We note that Vt is continuous while Pt is discrete with support G. To reflect this structure, we model
the baseline hazard function λ0(·) as a left-continuous step function, where the jump points are
located at grid points. Let λ0 = (λ0,1, . . . , λ0,K), Λ0 = (Λ0,1, . . . ,Λ0,K) and

λ0(p) =

K∑
k=1

λ0,k1{p ∈ (gk−1, gk]}, (2)

where Λ0,k = − logS0,k. Since there is a one-to-one correspondence between S0 and λ0, one can
impose a prior on S0 through λ0. We consider an independent prior for the unknown parameters λ0

and β, specified as Π = Πβ ×Πλ0
. Here, Πλ0

consists of independent gammas:

λ0,k ∼ Gamma(αk, ρ), k = 1, . . . ,K, (3)

where Gamma(αk, ρ) denotes the gamma distribution with mean αk/ρ and variance αk/ρ
2. Gamma

priors are commonly employed for λ0 in Bayesian analyses of the PH model, as seen in [27, 47, 35, 29].
We further impose the following conditions on the prior:

(P1) Πβ has a continuous and positive Lebesgue density on Rd.
(P2) There exist positive constants α < α, such that α ≤ αk ≤ α for k = 1, . . . ,K.

3 Posterior convergence rate under i.i.d. setup

To clarify notation, we use the superscript ∗ to denote the true parameter, e.g., Λ∗
0, β∗, and λ∗

0. Suppose
that there exists a true parameter θ∗ = (S∗

0, β
∗) generating the data Dn = {(Xt, Pt, Yt)}nt=1. (We

may regard pX and q(· | ·) as known parameters if we are only interested in inferring θ.) Given the
data Dn, let Π(· | Dn) be the joint posterior distribution of λ0 and β.

Assumptions We will prove that Π(· | Dn) concentrates around θ∗ under the following assump-
tions:

(A1) ∥β∗∥2 ≤ B for some constant B > 0.

(A2) PX(X ) = 1 and pX is bounded away from zero on X , where X = {x ∈ Rd : ∥x∥2 ≤ L}.

(A3) P(X⊤β1 ̸= X⊤β2) > 0 for β1 ̸= β2.

(A4) For x ∈ X and 1 ≤ k ≤ K, suppose Q(G | X = x) = 1, and q(gk | x) ≳ n− 1+γ
2 (log n)

1
2

if γ < 1/3, or q(gk | x) ≳ n−γ− 1
3 (log n)

1
2 otherwise.

(A5) The support of F ∗
0 is [vmin, vmax], vmin < pmin < pmax < vmax, and S∗

0 has a continuous
and strictly negative derivative on [vmin, vmax].

Assumptions (A1) and (A2) are commonly adopted in the stochastic contextual dynamic pricing
literature. Assumption (A3) ensures the identifiability of the regression coefficient. Assumption (A4)
requires that the conditional distribution Q(· | x) maintains a certain level of uniformity over the
grid set G. For instance, when Q(· | x) follows a uniform distribution over G, (A4) is satisfied for
any γ ∈ [0, 1]. In the contextual dynamic pricing problem, the function q(· | x) is parameterized
by the pricing policy. Therefore, constructing a policy that satisfies (A4) is crucial. In Section 4,
we explicitly design a policy that fulfills (A4). Assumption (A5) implies that S∗

0 is L0-Lipschitz on
[pmin, pmax] for some constant L0 > 0, and that S0,1 and S0,K are bounded away from 0 and 1.

We define the distance DQ on the parameter space Θ as

DQ(θ1, θ2) = ∥S0,1 − S0,2∥2,Q + ∥β1 − β2∥2,

for any θ1 = (S0,1, β1), θ2 = (S0,2, β2) ∈ Θ, where ∥ · ∥2,Q denotes the L2(Q) norm with respect to

a probability measure Q, that is, ∥S0∥2,Q =
(∑K

k=1(S0,k)
2q(gk)

)1/2
. For a given parameter θ, let

Pn
θ denote the law of Dn under θ, and let En

θ be the corresponding expectation. With these definitions
in place, we now state two theorems that establish the convergence rates of the posterior distribution
in two distinct cases: γ < 1/3 and γ ≥ 1/3.
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Theorem 3.1 (Case γ < 1/3). Suppose that γ < 1/3 and assumptions (A1)-(A5) hold. Let

ϵn = n− 1−γ
2

√
log n+

√
d
n

√
log(d ∨ n). Then, there exist positive constants C1, . . . , C4, depending

only on L,B, pmin, pmax, κ, α, α, ρ, such that for n ≥ C4,

Π(DQ(θ, θ
∗) ≥ C1ϵn | Dn) ≤ C2 exp(−C3nϵ

2
n),

with Pn
θ∗ -probability at least 1−

(
exp(−C3nϵ

2
n

)
+ 1/nϵ2n).

Theorem 3.2 (Case γ ≥ 1/3). Suppose that γ ≥ 1/3 and assumptions (A1)-(A5) hold. Let

ϵn =
(

logn
n

) 1
3

+
√

d
n

√
log(d ∨ n). Then, there exist positive constants C1, . . . , C4, depending only

on L,B, pmin, pmax, κ, α, α, ρ, such that

Π(DQ(θ, θ
∗) ≥ C1ϵn | Dn) ≤ C2ξn, n ≥ C4

with Pn
θ∗ -probability at least 1−

(
ξn + 1/nϵ2n

)
, where ξn =

{
exp(−C3nϵ

2
n) if γ < 2

3 ,

exp
(
−C3n

1
3

)
if γ ≥ 2

3 .

Theorems 3.1 and 3.2 show that the convergence rate of the posterior distribution adapts to the sparsity
level γ. Importantly, when γ ≥ 1/3, the posterior achieves the convergence rate of n−1/3, as in the
continuous observation setting. In contrast, for γ < 1/3, the posterior attains a faster rate of n− 1−γ

2 ,
highlighting the advantage of discrete observations in sparse grids. This result generalizes the work
of [5], which focused on the non-contextual case 1 interval-censored data, to the PH model.

4 Proposed BayesCoxCP algorithm

We now propose the contextual discrete pricing algorithm, namely BayesCoxCP, based on a Bayesian
approach to the semi-parametric Cox PH model. Consider the discrete pricing setting introduced
earlier. Assume that the support of Pt is G = {gk : k = 1, . . . ,K} for every t = 1, . . . , T , where T
denotes the time horizon. Here, gk = pmin + kδ for k = 1, . . . ,K, K = ⌊(pmax − pmin)/δ⌋, and
δ = κT−γ for two constants γ ∈ (0, 1] and κ > 0. Under the PH assumption with the true pair
(S∗

0 , β
∗), the optimal price P ∗

t at time t can be defined as P ∗
t ∈ argmaxp∈G

{
p · S∗

0 (p)
exp(X⊤

t β∗)
}

.
Let Q∗ denote the marginal distribution of P ∗

t , with its associated probability mass function denoted
by q∗.

We employ an epoch-based design that divides the given horizon T into multiple epochs and executes
identical pricing policies on a per-epoch basis. Such a design was widely adopted in the literature
[24, 44, 7]. Epochs are indexed by l, and the length of the epoch l is denoted by nl. The length
increases geometrically with l, given by nl = n12

l−1 for l ≥ 1. The set of time indices for epoch l is
given by El = {

∑l−1
s=0 ns + 1, . . . ,

∑l
s=0 ns}, with n0 = 0, ensuring a sequential partitioning of the

entire horizon.

Posterior-based estimation Let Dl = {(Xt, Pt, Yt)}t∈El
denote the data collected during epoch

l ≥ 1. We employ a consistent prior across all epochs, denoted as Π = Πβ × Πλ0
, where Πλ0

consists of independent gamma distributions:

λ0,k ∼ Gamma(αk, ρ), k = 1, . . . ,K, (4)

with αk = α for k = 1, . . . ,K and a fixed constant α > 0. The prior Πβ on β has a density with
respect to the Lebesgue measure on Rd, bounded away from zero in a neighborhood of β∗. Common
choices for Πβ include multivariate distributions such as the normal distribution. For each epoch l, let
Π(· | Dl−1) denote the joint posterior distribution of λ0 and β based on the data from the previous
epoch, Dl−1. We denote the point estimator for the true parameter θ∗ as θ̂l−1 = (Ŝl−1

0 , β̂l−1),
derived from the observations Dl−1 in the previous epoch. Specifically, the estimator θ̂l−1 is obtained
as the mean of truncated posterior distribution Π̃(· | Dl−1) = Π(· | Dl−1)/Π(Θ̃ | Dl−1), where the
truncated parameter space is defined by Θ̃ = S0 × [a, b]d for fixed constants a and b.
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Algorithm 1 Bayes Cox Contextual Pricing Algorithm (BayesCoxCP)
Input: n1: the length of the first epoch; η1, η2: degree of exploration; Πλ0 ,Πβ : prior; a, b:
truncated range

1: For t = 1, . . . , n1, uniformly choose Pt from G, and get reward Yt;
2: for epoch l = 2, 3, . . . do
3: Obtain the estimator θ̂l−1 = (Ŝl−1

0 , β̂l−1) from Π(· | Dl−1).
4: for time t ∈ El do
5: Observe Xt and draw a binary number R from Bernoulli(1− ηl);
6: if R = 1 then Pt ∈ argmaxp∈G

{
p · Ŝl−1

0 (p)exp(X
⊤
t β̂l−1)

}
7: else Uniformly choose Pt from G
8: end if
9: Get reward Yt.

10: end for
11: end for

Pricing policy We denote the pricing policy for epoch l as πl : X → P(G), where P(G) denotes
the set of all probability distributions over the grid G. Specifically, given covariates Xt for t ∈ El, the
distribution πl(Xt) is defined as a mixture distribution given by

πl(Xt)(A) = (1− ηl) · δP̂ l−1
t

(A) + ηl · UG(A) (5)

for any A ⊂ G, where P̂ l−1
t is the myopic policy determined by the estimate θ̂l−1 = (Ŝl−1

0 , β̂l−1)

as P̂ l−1
t ∈ argmaxp∈G

{
p · Ŝl−1

0 (p)exp(X
⊤
t β̂l−1)

}
. Here, δP denotes the Dirac measure centered at

P , UG represents the discrete uniform distribution over G, and ηl is an epoch-specific exploration
parameter, defined as

ηl = min

{
η1

(
η2

√
|G|/2l−1 ∧ 2−

l−1
3

)√
log 2l−1, 1

}
, (6)

where η1 and η2 are global constants. The design in (6) reduces the need for uniform exploration when
the grid is sparse, while increasing it as the grid becomes denser, effectively balancing exploration
and exploitation across different epochs. The choice of ηl directly ensures that assumption (A4)
is satisfied, since ηl controls the degree of uniform exploration over the grid, which is reflected in
q(· | x). This connection is rigorously established in Lemma C.4. In our numerical experiments, η1
and η2 are tuned to optimize the degree of exploration.

in

The pseudo-code for the proposed policy is presented in Algorithm 1. In this algorithm, for each time
t ∈ El, the offered price Pt solely relies on the observed covariate Xt and the data from previous
epochs, D1, . . . ,Dl−1, while the distribution of Vt only depends on Xt. Thus, Algorithm 1 ensures
conditional independence between Vt and Pt given Xt, i.e., Vt ⊥ Pt|Xt for each t ∈ El. Moreover,
given the data from previous epochs 1, . . . , l − 1, {(Xt, Pt, Yt)}t∈El

are independent and identically
distributed observations, which facilitates separate estimation of θ∗ for each epoch.

For the computation of θ̂l−1 for each epoch l, we employ the variational Bayesian (VB) method
for the PH model with case 1 interval-censored data. The VB approach has recently emerged as a
computationally efficient alternative while maintaining estimation accuracy; see [29]. Alternatively,
one may employ Markov chain Monte Carlo (MCMC) methods [27, 47, 35], which facilitate inference,
such as constructing credible intervals for θ∗.

5 Regret analysis

In this section, we analyze the regret upper bound for the BayesCoxCP algorithm. Furthermore, we
prove the regret lower bound for the discrete pricing problem.

5.1 Regret upper bound

We first introduce several technical assumptions and a key lemma that establishes the estimation error
of the estimator θ̂l−1 for each epoch.
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We begin by assuming the following additional conditions:

(B1) For any x ∈ X , there exists a unique maximizer of the map p 7→ pS∗
0 (p)

exp(x⊤β∗) :
[pmin, pmax] → R.

(B2) The density of the unique maximizer of the map p 7→ pS∗
0 (p)

exp(X⊤β∗) : [pmin, pmax] → R
is bounded away from zero on [pmin, pmax].

The uniqueness condition in assumption (B1) is commonly adopted in the contextual dynamic pricing
literature [24, 44, 10]. Aditionally, assumption (B2) ensures that q∗(p) ≍ δ for all p ∈ G.

We remark that the grid G remains unchanged across epochs in our setup, so the grid sparsity relative
to the sample size nl differs for each epoch. For each l = 1, 2, . . . , define γl as the sparsity level in
epoch l, such that K =

⌊
(pmax − pmin)/(κn

−γl

l )
⌋
. Therefore, for all l = 1, 2, . . . , we have⌊

pmax − pmin

κ
nγl

l

⌋
=

⌊
pmax − pmin

κ
T γ

⌋
. (7)

Let Ql(· | X) and ql(· | X) denote the conditional distribution and corresponding probability mass
function of Pt given X (and D1, . . . ,Dl−1) during epoch l, respectively. The marginal distribution of
Pt during epoch l is denoted by Ql, with ql as its probability mass function. Then, ql(· | x) = πl(x)(·)
for x ∈ X .

The following lemma provides an upper bound on the estimation error of the point estimator θ̂l−1 at
epoch l.

Lemma 5.1. Let the prior Π and policy πl be as described above (see (4) and (5)). Suppose
that assumptions (A1)-(A3) and (A5) hold. Then, there exist positive constants C1, C2, C3 and C4

depending on L,B, pmin, pmax, κ, α, ρ, a, b and n1, such that for l ≥ C4,

DQl−1
(θ̂l−1, θ∗) ≤ C1ϵl−1

with probability at least 1− ζl−1 − 1/(nl−1ϵ
2
l−1), where

ϵl =


n
− 1−γl

2

l

√
log nl +

√
d
nl

√
log(d ∨ nl) if γl < 1

3(
lognl

nl

) 1
3

+
√

d
nl

√
log(d ∨ nl) if γl ≥ 1

3

and ζl =

{
exp(−C2nlϵ

2
l ) if γl < 1

3 ,

exp(−C3n
1
3

l ) if γl ≥ 1
3 .

Lemma 5.1 implies that θ̂l−1 achieves an error bound that is adaptive to the grid sparsity level γl in
epoch l. By leveraging the consistency of θ̂l−1 and Hoeffding’s inequality, the regret during epoch l
can be upper bounded by ∑

t∈El

r(t) ≤ C1nlDQl−1
(θ̂l−1, θ∗) + C2nlηl

with high probability, where C1 and C2 are positive constants which do not scale with nl and d (see
Lemma B.1 for details). This inequality shows how the estimation error of θ̂l−1 and the exploration
parameter ηl affect the regret upper bound. Combining Lemma 5.1 and (6), we now state the main
results regarding the regret upper bound for the BayesCoxCP algorithm.

Theorem 5.2. Under the same conditions as in Lemma 5.1, along with assumptions (B1) and (B2),
there exist positive constants C1, . . . , C7 depending on L, B, pmin, pmax, κ, α, ρ, a, b, η1, η2, γ and
n1 such that for T ≥ C1,

R(T ) ≤

{
C2

√
dT log(d ∨ T ) + C3T

γ+1
2

√
log T if γ < 1

3 ,

C4

√
dT log(d ∨ T ) + C5T

2
3

√
log T if γ ≥ 1

3 ,

with probability at least 1− ζ, where ζ =

{
C6 log(T/n1 + 1)/T γ if γ < 1

3 ,

C7 log(T/n1 + 1)/T 2/9 if γ ≥ 1
3 .

.

Theorem 5.2 shows that the BayesCoxCP algorithm achieves a regret upper bound that adapts to the
unknown sparsity level γ, ensuring efficient performance without prior knowledge of γ.
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(a) 1
2
U(1, 4) + 1

2
U(4, 10)

(b) 3
4
TN(3.25, 0.52, 1, 10) + 1

4
TN(7.75, 0.52, 1, 10)

Figure 1: The cumulative regret curves compare the proposed algorithm (BayesCoxCP) with other
method. Solid lines indicate averages, and bands show standard errors over replications.

Compared to existing work in continuous pricing settings, our results underscore the theoretical
advantage of utilizing the information that the price is discretely supported. For instance, [7] derived
a regret upper bound of Õ(T 2/3d) under similar assumptions. While this bound is comparable to
our result for γ ≥ 1/3, our algorithm achieves a strictly faster regret rate of O(T

1+γ
2 + (dT )1/2) for

γ < 1/3, which is a distinct advantage of the grid-based setting. For additional discussion on the
possibility of replacing the Bayes estimator with the NPMLE and its effect on exploration parameter
choice, please refer to Appendix G.

5.2 Regret lower bound

In this subsection, we establish a regret lower bound for the non-contextual pricing problem in the
discrete pricing setting. The proof carefully incorporates ideas from [26] and [14], widely used for
regret lower bounds in dynamic pricing and multi-armed bandit problems, with a focus on the discrete
price setting. Specifically, for dense grids where γ ≥ 1/3, we partition the grid set G into T 1/3

segments to derive the lower bound. Further details of the proof are provided in Appendix B.3.
Theorem 5.3. (Lower bound for non-contextual pricing) Consider a non-contextual pricing problem
where the valuations are sampled independently and identically from a fixed unknown distribution
satisfying the c.d.f. F (v) is bounded away from 0 and 1 for v ∈ [pmin, pmax] and at least one
maximizer of the revenue curve v · (1− F (v)) lies over G. Then, for any η > 0, no pricing policy
(algorithm) can achieve expected regret O(T

1+γ
2 −η) if γ < 1/3, and O(T

2
3−η) if γ ≥ 1/3.

As in Theorem 5.3, the regret lower bound depends on the grid sparsity level γ as well. Specifically,
for γ < 1/3, the regret lower bound scales as Ω(T

1+γ
2 ), while for γ ≥ 1/3, it scales as Ω(T 2/3).

Comparing these results with Theorems 3.1 and 3.2, the regret upper bounds achieved by BayesCoxCP
algorithm match the lower bounds in terms of T , up to a logarithmic factor. Note that the dependency
on the dimension d is not addressed in this work, leaving it as a direction for future research.

6 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of the BayesCoxCP
algorithm. Since our objective is to highlight the benefits of leveraging discrete support information,
we focus on a comparison with the algorithm proposed by [7]. For comparisons of the PH model-
based algorithm with other approaches, such as linear and log-linear model-based algorithms, we
refer to [7].

We consider the following experimental setup. The covariate Xt is drawn from a d-dimensional ball
with a radius of 1/2 under a uniform distribution, where d = 5. The true regression coefficient β∗ is
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set as β∗ = 4√
d
1d, where 1d denotes a d-dimensional vector of ones. For the true baseline distribution,

we consider two different mixture distributions. The first is a uniform mixture distribution given
by 1

2U(1, 4) + 1
2U(4, 10), where U(a, b) denotes the uniform distribution over [a, b]. The second is

a truncated normal mixture distribution given by 3
4TN(3.25, 0.52, 1, 10) + 1

4TN(7.75, 0.52, 1, 10),
where TN(µ, σ2, a, b) represents the truncated normal distribution with mean µ, variance σ2, and
support [a, b]. The grid set G = {g1, . . . , gK} is chosen from [1, 10] with four different values of
K ∈ {10, 100, 1000, 30000}. The total time horizon is set to T = 30000 for all experiments. To
conserve space, the detailed hyperparameter settings for all algorithms used in the experiments are
provided in Appendix H.

The cumulative regret results for different grid sizes, averaged over 20 replications, are shown in
Figure 1. BayesCoxCP consistently achieves lower cumulative regret compared to the method
proposed by [7], with the difference being particularly significant when K is small. Notably, the
performance gap gradually diminishes as K increases. These findings empirically demonstrate that
BayesCoxCP adapts effectively to varying grid resolutions, providing strong empirical support for its
theoretical guarantees.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation that regret lower bounds are drived only for the
non-contextual pricing, and the dependence on the dimension d is not addressed. The need
for future work in this direction is mentioned in Section 5.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions required for the theoretical results are explicitly stated in the
paper. Most proofs are provided in the appendix, while the main theorems, key lemmas and
insights are included in the main body.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details of the proposed algorithm are described in Section
4. The experimental setup and hyperparameters are provided in Section 6 and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All code necessary to reproduce the numerical experiments is included in the
supplemental material.
Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings including how cumulative regret
is computed and the hyperparameter configurations in Section 6 and Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are obtained via repeated trials, and error bars are
shown and explained in the figure and this caption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the computational resources used in our experiments in Appendix
I.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]
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our research does not violate any of its principles. All numerical experiments are conducted
using simulated data, and thus this work do not involve any human subjects or data-related
concerns.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on theoretical analysis of regret bounds in contextual
pricing, and does not have any direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is theoretical and conducts experiments solely on simulated data.
No high-risk models or real-world datasets are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We begin this appendix with a proof roadmap that outlines how the main lemmas and theorems
are logically connected. The roadmap provides a high-level overview of the argument structure,
highlighting the key intermediate steps and how they contribute to the main convergence and regret
results. This overview is intended to enhance clarity and to guide the reader through the subsequent
detailed proofs.

Figure 2: Proof roadmap summarizing the logical connections among lemmas and theorems leading
to the main results.

A Proofs for Section 3

In this section, we first establish the posterior consistency of the Cox PH model, which serves as a
foundation for proving the main theorems in Section 3.
Lemma A.1. (Posterior consistency) Suppose that the grid resolution satisfies δ = κn−γ for κ > 0
and γ ∈ (0, 1], and assumptions (A1)-(A5) hold. If γ < 2/3, then, for every ϵ > 0, there exist positive
constants C1, C2 and C3 depending on (L, B, pmin, pmax, κ, α, α, ρ, ϵ) such that

Π(U c | Dn) < C2 exp(−C3n), n ≥ C1, (8)

where

U =
{
θ ∈ Θ : ∥S0 − S∗

0∥∞ ∨ ∥β − β∗∥2 < ϵ
}

with Pn
θ∗ -probability at least 1− exp(−C3n).

If γ ≥ 2/3, then, for every ϵ > 0, there exist positive constants C4, C5 and C6 depending on (L, B,
pmin, pmax, κ, α, α, ρ, ϵ) such that

Π(U c | Dn) < C5 exp
(
−C6n

1
3

)
, n ≥ C4,

with Pn
θ∗ -probability at least 1− exp(−C6n

1/3).
Remark A.2. As discussed in Section 4, the conditional distribution of posted prices Q(· | X) is
parameterized by the policy. By allowing uniform sampling at a rate of ηl, defined in (6), the policy
constructed in (5) satisfies (A4). Strengthening assumption (A4) to the more restrictive condition
q(g | x) ≳ n−1(log n)1/2 for g ∈ G and x ∈ X when γ ≥ 1/3 yields the same results as in (8)
for all γ ∈ (0, 1]. In such a case, ηl can be adjusted accordingly to satisfy this restrictive condition.
However, increasing ηl leads to a higher regret due to increased exploration. Therefore, imposing a
weak condition, as in (A4), is essential for achieving a tight regret upper bound. For further details,
see the proof in Section B.2.

To begin with, for a given parameter θ = (S0, β), the joint density pθ of (Xt, Pt, Yt) is expressed as:

pθ(x, p, y) = {Sθ(p|x)}y {1− Sθ(p|x)}1−y
q(p|x)pX(x),

for x ∈ X , p ∈ G and y ∈ {0, 1}, where Sθ(p | x) = S0(p)
exp(x⊤β), and X denotes the support of

the covariate X . Here, we suppress the dependency of pθ on the nuisance parameters, as they do not
affect the inference of θ once an independent prior is used. The log-likelihood function corresponding
to θ ∈ Θ for the data Dn = {(Xt, Pt, Yt)}nt=1 is given by:

ℓn(θ) =

n∑
t=1

log pθ(Xt, Pt, Yt).
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A.1 Proof of Lemma A.1

Lemma A.3. Under the conditions of Lemma A.1, there is an exponentially consistent sequence of
tests for

H0 : θ = (S∗
0, β

∗),

H1 : θ ∈ {(S0, β) ∈ S0 × Rd : ∥β − β∗∥2 ≥ η}

for any η > 0.

Proof. Suppose that γ < 1/3. Let Tn denote the set of every disjoint pair of index sets I1 and I2 such
that I1 ∪ I2 = [K]. Given an index set I ⊆ [K], we denote the subset of G corresponding to I by
G(I) = {gk ∈ G : k ∈ I}. For each (I1, I2) ∈ Tn, define S0(I1, I2) := {S0 = (S0,1, . . . , S0,K) ∈
S0 : S0,i ≥ S∗

0,i, S0,j < S∗
0,j for i ∈ I1 and j ∈ I2}. We define the quadrant Qe = {z ∈

Rd : zjej > 0, ∀j = 1, . . . , d} for each e = (e1, . . . , ed) ∈ {−1, 1}d. For j = 1, . . . , d, let
ej,+, ej,− ∈ {−1, 1}d denote the vectors where j-th element is positive and negative, respectively.
Consider the following two groups of hypotheses for each (I1, I2) ∈ Tn and ej,+, ej,− ∈ {−1, 1}d
with j = 1, . . . , d,

H0 : θ = (S∗
0, β

∗), H1 : θ ∈ Θej,−,I1,I2 (9)
H0 : θ = (S∗

0, β
∗), H1 : θ ∈ Θej,+,I1,I2 (10)

where Θej,−,I1,I2 = S0(I1, I2) × {β ∈ Rd : β∗
j ≥ βj + ξ, β − β∗ ∈ Qej,−}, Θej,+,I1,I2 =

S0(I1, I2)× {β ∈ Rd : βj ≥ β∗
j + ξ, β − β∗ ∈ Qej,+} and ξ = η/

√
d.

Fix an arbitrary j = 1, . . . , d, ej,−, ej,+ ∈ {−1, 1}d and (I1, I2) ∈ Tn. By Lemma C.4, take a
constant ϵ > 0 such that P(|Xt,j | > ϵ) > 0 for all j = 1, . . . , d, given data Dt = (Xt, Pt, Yt).
For the first group of hypotheses (9), define a function ϕ1 = max{ϕ1,1, ϕ1,2}, where ϕ1,1(Dt) =
1{Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈ G(I1), Yt = 1} and ϕ1,2(Dt) = 1{Xt ∈ Qej,− , |Xt,j | >
ϵ, Pt ∈ G(I2), Yt = 0}. Under the event Ω1 = {Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈ G(I1)},
for any θ = (S0, β) ∈ Θej,−,I1,I2 , we have X⊤

t β < X⊤
t β∗ − ϵξ. This implies exp(X⊤

t β) <

exp(X⊤
t β∗) exp(−ϵξ). Then, on the event Ω1, we have

S0(Pt)
exp(X⊤

t β) ≥ S∗
0 (Pt)

exp(X⊤
t β) > S∗

0 (Pt)
exp(X⊤

t β∗) exp(−ϵξ) > S∗
0 (Pt)

exp(X⊤
t β∗) +∆1,

where the last inequality holds because of the mean value theorem and assumptions (A1),
(A2), and (A5), with a positive constant ∆1 depending on M1,M2, L,B, ϵ and ξ. Let qn =
n−(1+γ)/2(log n)1/2. By assumption (A4), we have q(p | x) ≳ qn for all x ∈ X and p ∈ G
when γ < 1/3. Then, for any θ = (S0, β) ∈ Θej,−,I1,I2 , we have

Eθ [ϕ1,1(Dt)] = EXt,Pt

[
S0(Pt)

exp(X⊤
t β)

1{Ω1}
]

> EXt,Pt

[
S∗
0 (Pt)

exp(X⊤
t β∗)

1{Ω1}
]
+ EXt,Pt [∆11{Ω1}]

≥ Eθ∗ [ϕ1,1(Dt)] + C1∆1|I1|qn,

where C1 be a positive constant depending on PX and ϵ. Similarly, under the event Ω2 = {Xt ∈
Qej,− , |Xt,j | > ϵ, Pt ∈ G(I2)}, for any θ = (S0, β) ∈ Θej,−,I1,I2 , we have exp(X⊤

t β) >

exp(X⊤
t β∗) exp(ϵξ). Then, on the event Ω2, we have S0(Pt)

exp(X⊤
t β) < S∗

0 (Pt)
exp(X⊤

t β) <

S∗
0 (Pt)

exp(X⊤
t β∗) exp(ϵξ) < S∗

0 (Pt)
exp(X⊤

t β∗) −∆2, where the last inequality holds because of the
mean value theorem and assumptions (A1), (A2), and (A5), with a positive constant ∆2 depending
on M1,M2, L,B, ϵ and ξ. Then, for any θ = (S0, β) ∈ Θej,−,I1,I2 , we have

Eθ [ϕ1,2(Dt)] = EXt,Pt

[(
1− S0(Pt)

exp(X⊤
t β)
)
1{Ω2}

]
> EXt,Pt

[(
1− S∗

0 (Pt)
exp(X⊤

t β∗)
)
1{Ω2}

]
+ EXt,Pt

[∆21{Ω2}]

≥ Eθ∗ [ϕ1,2(Dt)] + C2∆2|I2|qn,
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where C2 be a positive constant depending on PX and ϵ. Combining the last two displays, we have
Eθ [ϕ1(Dt)] = Eθ [ϕ1,1(Dt)] + Eθ [ϕ1,1(Dt)]

> Eθ∗ [ϕ1,1(Dt)] + Eθ∗ [ϕ1,2(Dt)] + min{C1∆1, C2∆2}(|I1|+ |I2|)qn
> Eθ∗ [ϕ1(Dt)] + C3n

γqn,

(11)

where C3 be a positive constant depending on C1, C2,∆1,∆2, pmin, pmax and κ. Define tests as
follows:

Φej,−,I1,I2(Dn) := 1

{
n∑

t=1

ϕ1(Dt) >

n∑
t=1

(Eθ∗ [ϕ1(Dt)] + Eθ [ϕ1(Dt)])/2

}
.

Then, we have

En
θ∗ [Φej,−,I1,I2(Dn)] = Pn

θ∗

(
n∑

t=1

(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) >

n∑
t=1

(Eθ [ϕ1(Dt)]− Eθ∗ [ϕ1(Dt)])/2

)

≤ Pn
θ∗

(
n∑

t=1

(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) > n(C3n
γqn)/2

)

≤ exp

(
−C2

3n
1+2γq2n
2

)
,

where the first inequality holds by (11) and the last inequality holds by Hoeffding’s inequality. On
the other hand, applying Hoeffding’s inequality to 1− ϕ1(Dt),

sup
θ∈Θej,−,I1,I2

En
θ [1− Φej,−,I1,I2(Dn)]

= sup
θ∈Θej,−,I1,I2

Pn
θ

(
n∑

t=1

((1− ϕ1(Dt))− (1− Eθ [ϕ1(Dt)])) ≥
n∑

t=1

(Eθ [ϕ1(Dt)]− Eθ∗ [ϕ1(Dt)])/2

)

≤ sup
θ∈Θej,−,I1,I2

Pn
θ

(
n∑

t=1

((1− ϕ1(Dt))− (1− Eθ [ϕ1(Dt)])) ≥ n(C3n
γqn)/2

)

≤ exp

(
−C2

3n
1+2γq2n
2

)
,

where the first inequality holds by (11).

The construction of tests for the second group of hypotheses (10) is similar. Define the tests as
follows:

Φej,+,I1,I2(Dn) := 1

{
n∑

t=1

ϕ2(Dt) >

n∑
t=1

(Eθ∗ [ϕ2(Dt)] + Eθ [ϕ2(Dt)])/2

}
,

where ϕ2 = max{ϕ2,1, ϕ2,2} is a function with ϕ2,1(Dt) = 1{Xt ∈ Q−ej,+ , |Xt,j | > ϵ, Pt ∈
G(I1), Yt = 1} and ϕ2,2(Dt) = 1{Xt ∈ Qej,+ , |Xt,j | > ϵ, Pt ∈ G(I2), Yt = 0}. Similarly, we see
that

En
θ∗ [Φej,+,I1,I2(Dn)] ≤ exp

(
−C2

4n
1+2γq2n
2

)
,

sup
θ∈Θej,−,I1,I2

En
θ [1− Φej,−,I1,I2(Dn)] ≤ exp

(
−C2

4n
1+2γq2n
2

)
,

where C4 be a positive constant.

Note that the union of the sets in the alternative hypotheses (9) and (10) for all (I1, I2) ∈ Tn and
ej,+, ej,− ∈ {−1, 1}d with j = 1, . . . , d contains Θη := {(S0, β) ∈ S0 × Rd : ∥β − β∗∥2 ≥ η}.
We set Φn := max(I1,I2)∈Tn,ej,−,ej,+∈{−1,1}d,j∈[d]{Φej,−,I1,I2 ∨ Φej,+,I1,I2}, then we have

En
θ∗ [Φn(Dn)] ≤ d2d2K exp

(
−C5n

1+2γq2n
)

≤ exp
(
C6d ∨ nγ − C5n

1+2γq2n
)
,

sup
θ∈Θη

En
θ [1− Φn(Dn)] ≤ exp

(
−C5n

1+2γq2n
)
,
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where C5 = min{C2
3/2, C

2
4/2} and C6 be a positive constant depending on pmin, pmax and κ. Then,

for fixed d, by the definition of qn, we have En
θ∗ [Φn(Dn)] → 0 and supθ∈Θη

En
θ [1− Φn(Dn)] → 0

as n → ∞. By Lemma D.11 of [16], there exist tests Ψn and a constant C7 > 0 such that
En
θ∗ [Ψn(Dn)] ≤ exp(−C7n) and supθ∈Θη

En
θ [1−Ψn(Dn)] ≤ exp(−C7n).

Suppose that γ ≥ 1/3. Recall the grid support G = {gk : k = 1, . . . ,K}, where each grid
point gk is defined as gk = pmin + kδ with δ = κn−γ for some constant κ > 0. Let ϵn =
n−1/3 and J = ⌈(pmax − pmin)/(κϵn)⌉. Define (k1, . . . , kJ) as a subsequence of [K] such that
pmin + (j − 1)κϵn < gkj

≤ pmin + (j − 1)κϵn + δ for j = 1, . . . , J − 1, and set kJ = K.

Let TJ denote the set of every disjoint pair of sets I ′1 and I ′2 such that I ′1 ∪ I ′2 = [J ]. For each
(I ′1, I

′
2) ∈ TJ , define

S0(I
′
1, I

′
2) = {S0 = (S0,1, . . . , S0,K) ∈ S0 : S0,ki ≥ S∗

0,ki
, S0,kj < S∗

0,kj
for i ∈ I ′1 and j ∈ I ′2}.

Consider the following two groups of hypotheses for each (I ′1, I
′
2) ∈ TJ and ej,+, ej,− ∈ {−1, 1}d

with j = 1, . . . , d,

H0 : θ = (S∗
0, β

∗), H1 : θ ∈ Θej,−,I′
1,I

′
2

(12)

H0 : θ = (S∗
0, β

∗), H1 : θ ∈ Θej,+,I′
1,I

′
2
, (13)

where Θej,−,I′
1,I

′
2
= S0(I

′
1, I

′
2) × {β ∈ Rd : β∗

j ≥ βj + ξ, β − β∗ ∈ Qej,−}, Θej,+,I′
1,I

′
2
=

S0(I
′
1, I

′
2)× {β ∈ Rd : βj ≥ β∗

j + ξ, β − β∗ ∈ Qej,+} and ξ = η/
√
d.

Fix j = 1, . . . , d, ej,−, ej,+ ∈ {−1, 1}d and (I ′1, I
′
2) ∈ TJ . Define the index set between ki and ki+1

as Ii = {k ∈ [K] : ki ≤ k ≤ ki+1} for i = 1, . . . , J − 1. We define partitions I1, I2, I3 and I4 of
set {I1, . . . , IJ−1} by

I1 = {Ii, i = 1, . . . , J − 1 : S0,ki
≥ S∗

0,ki
, S0,ki+1

≥ S∗
0,ki+1

},
I2 = {Ii, i = 1, . . . , J − 1 : S0,ki < S∗

0,ki
, S0,ki+1

< S∗
0,ki+1

},
I3 = {Ii, i = 1, . . . , J − 1 : S0,ki < S∗

0,ki
, S0,ki+1 ≥ S∗

0,ki+1
},

I4 = {Ii, i = 1, . . . , J − 1 : S0,ki ≥ S∗
0,ki

, S0,ki+1 < S∗
0,ki+1

}.

Note that for any I ∈ I4, there exists a unique k′ ∈ I such that S0,k′ ≥ S∗
0,k′ and S0,k′+1 < S∗

0,k′+1.
Thus, given I ∈ I4, we can define I = {k ∈ I : k ≤ k′} and I = {k ∈ I : k > k′}. For the first
group of hypotheses (12), we define a function ϕ3 = max{ϕ3,1, ϕ3,2, ϕ3,3, ϕ3,4, ϕ3,5}, where

ϕ3,1(Dt) = 1{Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈
⋃
I∈I1

G(I), Yt = 1},

ϕ3,2(Dt) = 1{Xt ∈ Qej,− , |Xt,j | > ϵ, Pt ∈
⋃
I∈I2

G(I), Yt = 0},

ϕ3,3(Dt) = 1{Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈
⋃
I∈I3

G(I), Yt = 1},

ϕ3,4(Dt) = 1{Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈
⋃
I∈I4

G(I), Yt = 1},

ϕ3,5(Dt) = 1{Xt ∈ Qej,− , |Xt,j | > ϵ, Pt ∈
⋃
I∈I4

G(I), Yt = 0}.

Note that under the event Ω3,1 := {Xt ∈ Q−ej,− , |Xt,j | > ϵ, Pt ∈
⋃

I∈I1
G(I)}, for θ = (S0, β) ∈

Θej,−,I′
1,I

′
2
, we have exp(X⊤

t β) < exp(X⊤
t β∗) exp(−ϵξ). For any Ii ∈ I1 and k ∈ Ii, we have

S0,k − S∗
0,k ≥ S0,ki+1

− S∗
0,ki+1

+ S∗
0,ki+1

− S∗
0,k

≥ −L0(κϵn + δ)

≥ −2L0κϵn,
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where the second inequality holds by the definition of I1 and Ii, and the last inequality holds because
δ ≤ ϵn for γ ≥ 1/3. Then, on the event Ω3,1, we have

S0(Pt)
exp(XT

t β) > S0(Pt)
exp(XT

t β∗) exp(−ϵξ)

≥ (S∗
0 (Pt)− 2L0κϵn)

exp(XT
t β∗) exp(−ϵξ)

> S∗
0 (Pt)

exp(XT
t β∗) exp(−ϵξ) − C8ϵn

> S∗
0 (Pt)

exp(XT
t β∗) +∆1 − C8ϵn

> S∗
0 (Pt)

exp(XT
t β∗) +∆1/2,

where the first inequality holds because exp(X⊤
t β) < exp(X⊤

t β∗) exp(−ϵξ), the second inequality
holds by the preceding display, the third and fourth inequality holds because of the mean value theorem
and assumptions (A1), (A2), and (A5), and the last inequality holds for sufficiently large n such that
ϵn < ∆1/(2C8). Let q′n = n−γ−1/3(log n)1/2. By assumption (A4), we have q(p | x) ≳ q′n for all
x ∈ X and p ∈ G when γ ≥ 1/3.

Then, for any θ = (S0, β) ∈ Θej,−,I′
1,I

′
2
, we have

Eθ[ϕ3,1(Dt)] = EXt,Pt

[
S0(Pt)

exp(XT
t β)

1{Ω3,1}
]

> EXt,Pt

[
S∗
0 (Pt)

exp(XT
t β∗)

1{Ω3,1}
]
+∆1/2 · EXt,Pt

[1{Ω3,1}]

≥ Eθ∗ [ϕ3,1(Dt)] + C9|I1|Kq′n/J,

where the second inequality holds by the preceding display, and the last inequality holds with a
positive constant C9 because |Ii| ≥ K/J for all i = 1, . . . , J − 1. Similarly, there exist positive
constants C10, C11, C12 and C13 such that

Eθ[ϕ3,2(Dt)] > Eθ∗ [ϕ3,2(Dt)] + C10|I2|Kq′n/J,

Eθ[ϕ3,3(Dt)] > Eθ∗ [ϕ3,3(Dt)] + C11|I3|Kq′n/J,

Eθ[ϕ3,4(Dt)] > Eθ∗ [ϕ3,4(Dt)] + C12

∑
I∈I4

|I|q′n,

Eθ[ϕ3,5(Dt)] > Eθ∗ [ϕ3,5(Dt)] + C13

∑
I∈I4

|I|q′n.

Combining the last two displays, we have

Eθ[ϕ3(Dt)] =

5∑
s=1

Eθ[ϕ3,s(Dt)]

>

5∑
s=1

Eθ∗ [ϕ3,s(Dt)] + C14

(
(|I1|+ |I2|+ |I3|)Kq′n/J +

∑
I∈I4

(|I|+ |I|)q′n

)

>

5∑
s=1

Eθ∗ [ϕ3,s(Dt)] + C14 (|I1|+ |I2|+ |I3|+ |I4|)Kq′n/J

> Eθ∗ [ϕ3(Dt)] + C15n
γq′n, (14)

where the second inequality holds because |I| + |I| = |I| ≥ K/J for all I ∈ I4, and the last
inequality holds because |I1|+ |I2|+ |I3|+ |I4| = J . Define tests as follows:

Φej,−,I′
1,I

′
2
(Dn) := 1

{
n∑

t=1

ϕ3(Dt) >

n∑
t=1

(Eθ∗ [ϕ3(Dt)] + Eθ [ϕ3(Dt)])/2

}
.
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By Hoeffding’s inequality and (14), we have

En
θ∗ [Φej,−,I′

1,I
′
2
(Dn)] ≤ Pn

θ∗

(
n∑

t=1

(ϕ3(Dt)− Eθ∗ [ϕ3(Dt)]) > n(C15n
γq′n)/2

)

≤ exp

(
−C2

15n
1+2γq′2n
2

)
,

sup
θ∈Θej,−,I′1,I′2

En
θ∗ [1− Φej,−,I′

1,I
′
2
(Dn)] ≤ exp

(
−C2

15n
1+2γq′2n
2

)
.

The construction of tests for the second group of hypotheses (13) is similar. Define the tests as
follows:

Φej,+,I′
1,I

′
2
(Dn) := 1

{
n∑

t=1

ϕ4(Dt) >

n∑
t=1

(Eθ∗ [ϕ4(Dt)] + Eθ [ϕ4(Dt)])/2

}
,

where ϕ4 = max{ϕ4,1, ϕ4,2, ϕ4,3, ϕ4,4, ϕ4,5} is a function with

ϕ4,1(Dt) = 1{Xt ∈ Q−ej,+ , |Xt,j | > ϵ, Pt ∈
⋃
I∈I1

G(I), Yt = 1},

ϕ4,2(Dt) = 1{Xt ∈ Qej,+ , |Xt,j | > ϵ, Pt ∈
⋃
I∈I2

G(I), Yt = 0},

ϕ4,3(Dt) = 1{Xt ∈ Q−ej,+ , |Xt,j | > ϵ, Pt ∈
⋃
I∈I3

G(I), Yt = 1},

ϕ4,4(Dt) = 1{Xt ∈ Q−ej,+ , |Xt,j | > ϵ, Pt ∈
⋃
I∈I4

G(I), Yt = 1},

ϕ4,5(Dt) = 1{Xt ∈ Qej,+ , |Xt,j | > ϵ, Pt ∈
⋃
I∈I4

G(I), Yt = 0}.

Similarly, we see that

En
θ∗ [Φej,+,I′

1,I
′
2
(Dn)] ≤ exp

(
−C2

16n
1+2γq′2n
2

)
,

sup
θ∈Θej,+,I′1,I′2

En
θ [1− Φej,+,I′

1,I
′
2
(Dn)] ≤ exp

(
−C2

16n
1+2γq′2n
2

)
,

where C16 be a positive constant.

Note that the union of the sets in the alternative hypotheses (12) and (13) for all (I ′1, I
′
2) ∈ TJ and

ej,+, ej,− ∈ {−1, 1}d with j = 1, . . . , d contains Θη := {(S0, β) ∈ S0 × Rd : ∥β − β∗∥2 ≥ η}.
We set Φ′

n := max(I′
1,I

′
2)∈TJ ,ej,−,ej,+∈{−1,1}d,j∈[d]{Φej,−,I′

1,I
′
2
∨ Φej,+,I′

1,I
′
2
}, then we have

En
θ∗ [Φ′

n(Dn)] ≤ d2d2J exp
(
−C17n

1+2γq′2n
)

≤ exp
(
C18d ∨ n

1
3 − C17n

1+2γq′2n

)
,

sup
θ∈Θη

En
θ [1− Φ′

n(Dn)] ≤ exp
(
−C17n

1+2γq′2n
)
,

where C17 = min{C2
15/2, C

2
16/2} and C18 be a positive constant depending on pmin, pmax and

κ. Then, for fixed d, by the definition of q′n, we have En
θ∗ [Φ′

n(Dn)] → 0 and supθ∈Θη
En
θ [1 −

Φ′
n(Dn)] → 0 as n → ∞. By Lemma D.11 of [16], there exist tests Ψ′

n and a constant C19 > 0
such that En

θ∗ [Ψ′
n(Dn)] ≤ exp(−C19n) and supθ∈Θη

En
θ [1−Ψ′

n(Dn)] ≤ exp(−C19n). The proof
is then complete.
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Lemma A.4. Suppose that the grid resolution satisfies δ = κn−γ for κ > 0 and γ ∈ (0, 2/3), and
assumptions (A1)-(A5) hold. Then, there is an exponentially consistent sequence of tests for

H0 : θ = (S∗
0, β

∗),

H1 : θ ∈ {(S0, β) ∈ S0 × Rd : ∥S0 − S∗
0∥∞ ≥ η1, ∥β − β∗∥2 < η2}

for any η1 > 0 and sufficiently small η2 > 0.

Proof. There exist constants M1,M2 ∈ (0, 1) such that M1 ≤ S∗
0 (v) ≤ M2 for any v ∈ [pmin, pmax]

under assumption (A5). We choose η1 to be less than min{1−M2,M1} to ensure that {S0 ∈ S0 :
∥S0 − S∗

0∥∞ ≥ η1} ≠ ∅. Consider the following two groups of hypotheses for each k ∈ [K],

H0 : θ = (S∗
0, β

∗), H1 : θ ∈ Θk,1 (15)
H0 : θ = (S∗

0, β
∗), H1 : θ ∈ Θk,2 (16)

where Θk,1 = {(S0, β) ∈ S0 × Rd : S0,k ≥ S∗
0,k + η1, ∥β − β∗∥2 < η2} and Θk,2 = {(S0, β) ∈

S0 × Rd : S0,k ≤ S∗
0,k − η1, ∥β − β∗∥2 < η2}.

Fix an arbitrary k ∈ [K]. For the first group of hypotheses (15), define a function ϕ1(Dt) =
1{Pt = gk, Yt = 1}. For any β such that ∥β − β∗∥2 < η2, by the Cauchy-Schwartz inequality
and the assumption (A2), |X⊤

t (β − β∗)| ≤ ∥Xt∥2∥β − β∗∥2 < Lη2 almost surely. This implies
exp(X⊤

t β) < exp(X⊤
t β∗) exp(Lη2). Then, for any θ = (S0, β) ∈ Θk,1, we have

S0,k
exp(X⊤

t β) > (S∗
0,k + η1)

exp(Lη2) exp(X
⊤
t β∗).

It is easy to show that there exists a positive constant C1 depending on M1, M2, L and η1 such that
C1 ≤ log log((S∗

0,k + η1/2)
−1)− log log((S∗

0,k + η1)
−1) for any S∗

0,k ∈ [M1,M2]. If we choose a
sufficiently small η2 such that Lη2 ≤ C1, we have (S∗

0,k + η1)
exp(Lη2) ≥ S∗

0,k + η1/2. Combining
this with the previous display,

S0,k
exp(X⊤

t β) >
(
S∗
0,k +

η1
2

)exp(X⊤
t β∗)

≥ S∗
0,k

exp(X⊤
t β∗) + C2,

where the last inequality holds with a positive constant C2 depending on M1, M2, L, B and η1 by
assumptions (A1), (A2), (A5) and the mean value theorem. Then, for any θ = (S0, β) ∈ Θk,1, we
have

Eθ [ϕ1(Dt)] = EXt,Pt

[
S0(Pt)

exp(X⊤
t β)

1{Pt = gk}
]

> EXt,Pt

[
S∗
0 (Pt)

exp(X⊤
t β∗)

1{Pt = gk}
]
+ C2q(gk)

= Eθ∗ [ϕ1(Dt)] + C2q(gk).

(17)

In addition, for either θ ∈ Θk,1 or θ = θ∗, we have

Varθ(ϕ1(Dt)− Eθ(ϕ1(Dt)) = Eθ [ϕ1(Dt)] (1− Eθ [ϕ1(Dt)])

≤ Eθ [ϕ1(Dt)]

= EXt,Pt

[
S0(Pt)

exp(X⊤
t β)

1{Pt = gk}
]

< q(gk),

(18)

where Varθ is the variance with respect to the distribution Pθ. Define tests as follows:

Φk,1(Dn) := 1

{
n∑

t=1

ϕ1(Dt) >

n∑
t=1

(Eθ∗ [ϕ1(Dt)] + Eθ [ϕ1(Dt)])/2

}
.
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Then, we have

En
θ∗ [Φk,1(Dn)] = Pn

θ∗

(
n∑

t=1

(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) >

n∑
t=1

(Eθ [ϕ1(Dt)]− Eθ∗ [ϕ1(Dt)])/2

)

≤ Pn
θ∗

(
n∑

t=1

(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) >
C2

2
nq(gk)

)

≤ exp

(
− (C2

2/8)n
2q(gk)

2∑n
t=1 Varθ∗(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) + (C2/6)nq(gk)

)
≤ exp (−C3nq(gk))

≤ exp (−C4nqn) ,
(19)

where the first inequality holds by (17), the second inequality holds by Bernstein inequality, the third
inequality holds by (18) with a positive constant C3 = C2

2/(8(1 + C2/6)), and the last inequality
holds because q(p) ≳ qn with

qn =

{
n− 1+γ

2 (log n)
1
2 if γ < 1

3 ,

n−γ− 1
3 (log n)

1
2 if γ ≥ 1

3 ,

under the assumption (A4). On the other hand, applying (17), (18) and Bernstein inequality to
1− ϕ1(Dt), we have

sup
θ∈Θk,1

En
θ [1− Φk,1(Dn)]

= sup
θ∈Θk,1

Pn
θ

(
n∑

t=1

((1− ϕ1(Dt))− (1− Eθ [ϕ1(Dt)])) ≥
n∑

t=1

(Eθ [ϕ1(Dt)]− Eθ∗ [ϕ1(Dt)])/2

)

≤ sup
θ∈Θk,1

Pn
θ

(
n∑

t=1

((1− ϕ1(Dt))− (1− Eθ [ϕ1(Dt)])) ≥
C2

2
nq(gk)

)

≤ sup
θ∈Θk,1

exp

(
− (C2

2/8)n
2q(gk)

2∑n
t=1 Varθ(Eθ [ϕ1(Dt)]− ϕ1(Dt)) + (C2/6)nq(gk)

)
≤ exp (−C3nq(gk))

≤ exp (−C4nqn) .
(20)

The construction of tests for the second group of hypotheses (16) is similar. Define the tests as
follows:

Φk,2(Dn) := 1

{
n∑

t=1

ϕ2(Dt) >

n∑
t=1

(Eθ∗ [ϕ2(Dt)] + Eθ [ϕ2(Dt)])/2

}
,

where ϕ2(Dt) = 1{Pt = gk, Yt = 0} is a function. Similarly, we see that there exists a positive
constant C5 depending on M1,M2, L,B, η1 such that

En
θ∗ [Φk,2(Dn)] ≤ exp(−C5nqn), sup

θ∈Θk,2

En
θ [1− Φk,2(Dn)] ≤ exp(−C5nqn). (21)

Note that the union of the sets in the alternative hypotheses (15) and (16) for all k = 1, . . . ,K
contains Θη1,η2

:= {(S0, β) ∈ S0 × Rd : ∥S0 − S∗
0∥∞ ≥ η1, ∥β − β∗∥2 < η2}. We set Φn :=

maxk∈[K]{Φk,1 ∨ Φk,2}. Combining (19), (20) and (21), we have

En
θ∗ [Φn(Dn)] ≤ K exp (−C6nqn)

= exp (logK − C6nqn) ,

sup
θ∈Θη1,η2

En
θ [1− Φn(Dn)] ≤ exp (−C6nqn) ,

where C6 = min{C4, C5}. By the definition of qn, we have En
θ∗ [Φn(Dn)] → 0 and

supθ∈Θη1,η2
En
θ [1 − Φn(Dn)] → 0 as n → ∞ when γ < 2/3. By Lemma D.11 of [16],

there exist tests Ψn and a constant C7 > 0 such that En
θ∗ [Ψn(Dn)] ≤ exp(−C7n) and

supθ∈Θη1,η2
En
θ [1−Ψn(Dn)] ≤ exp(−C7n). The proof is then complete.
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Lemma A.5. Suppose that the grid resolution satisfies δ = κn−γ for κ > 0 and γ ∈ [1/3, 1], and
assumptions (A1)-(A5) hold. Let ϵ = n−1/3 and J = ⌈(pmax − pmin)/(κϵ)⌉. Define (k1, . . . , kJ) as
a subsequence of [K] such that pmin+(j−1)κϵ < gkj

≤ pmin+(j−1)κϵ+ δ for j = 1, . . . , J −1,
and set kJ = K. Then, there is an exponentially consistent sequence of tests for

H0 : θ = (S∗
0, β

∗),

H1 : θ ∈ {(S0, β) ∈ S0 × Rd : max
2≤j≤J−1

|S0,kj
− S∗

0,kj
| ≥ η1, ∥β − β∗∥2 < η2}

for any η1 > 0 and sufficiently small η2 > 0.

Proof. We consider the following two groups of hypotheses for each j = 2, . . . , J − 1,

H0 : θ = (S∗
0, β

∗), H1 : θ ∈ Θj,1 (22)
H0 : θ = (S∗

0, β
∗), H1 : θ ∈ Θj,2 (23)

where Θj,1 = {(S0, β) ∈ S0 × Rd : S0,kj
≥ S∗

0,kj
+ η1, ∥β − β∗∥2 < η2} and Θj,2 = {(S0, β) ∈

S0 × Rd : S0,kj
≤ S∗

0,kj
− η1, ∥β − β∗∥2 < η2}. Define the index set between kj and kj+1 as

Ij = {k ∈ [K] : kj ≤ k ≤ kj+1} for j = 1, . . . , J − 1. Given an index set I ⊆ [K], we denote the
subset of G corresponding to I by G(I) = {gk ∈ G : k ∈ I}.

Fix j = 2, . . . , J − 1. For the first group of hypotheses (22), define a function ϕ1(Dt) = 1{Pt ∈
G(Ij−1), Yt = 1}. For any θ ∈ Θj,1 and k ∈ Ij−1, we have

S0,k − S∗
0,k ≥ S0,kj

− S∗
0,kj

+ S∗
0,kj

− S∗
0,k

≥ η1 − L0|gkj
− gk|

≥ η1 − L0(κϵ+ δ)

≥ η1 − 2L0κϵ

≥ η1
2
,

where the second inequality holds because θ ∈ Θj,1 and S∗
0 is L0-Lipschitz continuous under the

assumption (A5), the third inequality holds by the definition of (k1, . . . , kJ), the fourth inequality
holds because δ ≤ κϵ when γ ≥ 1/3, and the last inequality holds for sufficiently large n such that
ϵ ≤ η1/(4L0κ). By a similar argument as the proof in Lemma A.4, for a sufficiently small η2, there
exists a positive constant C1 depending on M1, M2, L, B and η1 such that for θ = (S0, β) ∈ Θj,1

and k ∈ Ij−1,

S0,k
exp(X⊤

t β) > S∗
0,k

exp(X⊤
t β∗) + C1.

Then, for any θ = (S0, β) ∈ Θj,1, we have

Eθ [ϕ1(Dt)] = EXt,Pt

[
S0(Pt)

exp(X⊤
t β)

1{Pt ∈ G(Ij−1)}
]

> EXt,Pt

[
S∗
0 (Pt)

exp(X⊤
t β∗)

1{Pt ∈ G(Ij−1)}
]
+ C1

∑
k∈Ij−1

q(gk)

= Eθ∗ [ϕ1(Dt)] + C1

∑
k∈Ij−1

q(gk),

In addition, for either θ ∈ Θj,1 or θ = θ∗, we have

Varθ(ϕ1(Dt)− Eθ(ϕ1(Dt)) = Eθ [ϕ1(Dt)] (1− Eθ [ϕ1(Dt)])

≤ Eθ [ϕ1(Dt)]

= EXt,Pt

[
S0(Pt)

exp(X⊤
t β)

1{Pt ∈ G(Ij−1)}
]

<
∑

k∈Ij−1

q(gk).

Define tests as follows:

Φj,1(Dn) := 1

{
n∑

t=1

ϕ1(Dt) >

n∑
t=1

(Eθ∗ [ϕ1(Dt)] + Eθ [ϕ1(Dt)])/2

}
.
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Combining the last three displays, by Bernstein inequality, we have

En
θ∗ [Φj,1(Dn)] ≤ Pn

θ∗

 n∑
t=1

(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) >
C1

2
n
∑

k∈Ij−1

q(gk)


≤ exp

(
−

(C2
1/8)n

2(
∑

k∈Ij−1
q(gk))

2∑n
t=1 Varθ∗(ϕ1(Dt)− Eθ∗ [ϕ1(Dt)]) + (C1/6)n

∑
k∈Ij−1

q(gk)

)

≤ exp

−C2n
∑

k∈Ij−1

q(gk)


≤ exp (−C3n|Ij−1|qn)

≤ exp
(
−C3n

γ+ 2
3 qn

)
, (24)

where C2 = C2
1/(8(1+C1/6)) be a positive constant, the fourth inequalith holds with a positive con-

stant C3 depending on C2 and q(·) because q(p) ≳ qn for any p ∈ G with qn = n−γ−1/3(log n)1/2

under the assumption (A4), and the last inequality holds because |Ij | ≥ K/J ≥ nγ−1/3 for any
j = 1, . . . , J − 1. Similarly, we have

sup
θ∈Θj,1

En
θ [1− Φj,1(Dn)] ≤ exp

(
−C3n

γ+ 2
3 qn

)
, (25)

The construction of tests for the second group of hypotheses (23) is similar. Define the tests as
follows:

Φj,2(Dn) := 1

{
n∑

t=1

ϕ2(Dt) >

n∑
t=1

(Eθ∗ [ϕ2(Dt)] + Eθ [ϕ2(Dt)])/2

}
, (26)

where ϕ2(Dt) = 1{Pt ∈ G(Ij), Yt = 0} is a function. By a similar argument as the preceding, for
any θ ∈ Θj,2, k ∈ Ij , and for sufficiently large n such that ϵ ≤ η1/(4L0κ), we have

S∗
0,k − S0,k ≥ S∗

0,k − S∗
0,kj

+ S∗
0,kj

− S0,kj
≥ −L0|gk − gkj

|+ η1 ≥ η1
2
.

By a similar argument as the proof in Lemma A.4, for a sufficiently small η2, there exists a positive
constant C4 depending on M1, M2, L, B and η1 such that for any θ ∈ Θj,2,

Eθ [ϕ2(Dt)] > Eθ∗ [ϕ2(Dt)] + C4

∑
k∈Ij

q(gk).

In addition, for either θ ∈ Θj,2 or θ ∈ θ∗, we have
Varθ(ϕ2(Dt)− Eθ(ϕ2(Dt)) ≤ Eθ [ϕ2(Dt)]

= EXt,Pt

[(
1− S0(Pt)

exp(X⊤
t β)
)
1{Pt ∈ G(Ij)}

]
<
∑
k∈Ij

q(gk).

Combining the last two displays, by Bernstein inequality, there exists a positive constant C5 depending
on C4 and q(·) such that

En
θ∗ [Φj,2(Dn)] ≤ exp

(
−C5n

γ+ 2
3 qn

)
, sup

θ∈Θj,2

En
θ [1− Φj,2(Dn)] ≤ exp

(
−C5n

γ+ 2
3 qn

)
. (27)

Note that the union of the sets in the alternative hypotheses (22) and (23) for all j = 2, . . . , J − 1
contains Θη1,η2

:= {(S0, β) ∈ S0 ×Rd : max2≤j≤J−1 |S0,kj
−S∗

0,kj
| ≥ η1, ∥β− β∗∥2 < η2}. We

set Φn := max2≤j≤J−1{Φj,1 ∨ Φj,2}. Combining (24), (25) and (27), we have

En
θ∗ [Φn(Dn)] ≤ J exp

(
−C6n

γ+ 2
3 qn

)
= exp

(
log J − C6n

γ+ 2
3 qn

)
,

sup
θ∈Θη1,η2

En
θ [1− Φn(Dn)] ≤ exp

(
−C6n

γ+ 2
3 qn

)
,
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where C6 = min{C3, C5}. By the definition of qn, we have En
θ∗ [Φn(Dn)] → 0 and

supθ∈Θη1,η2
En
θ [1 − Φn(Dn)] → 0 as n → ∞ when γ ≥ 1/3. By Lemma D.11 of [16],

there exist tests Ψn and a constant C7 > 0 such that En
θ∗ [Ψn(Dn)] ≤ exp(−C7n) and

supθ∈Θη1,η2
En
θ [1−Ψn(Dn)] ≤ exp(−C7n). The proof is then complete.

Proof of Lemma A.1. We proceed with the proof by considering two separate cases: γ < 2/3 and
γ ≥ 2/3. First, we suppose that γ < 2/3. Let ϵ0 > 0 be a constant to be chosen later, and define
Θϵ0 = {(S0, β) ∈ Θ : ∥Λ0 − Λ∗

0∥∞ ∨ ∥β − β∗∥2 ≤ ϵ0}. Here, Λ0 = (Λ0,1, . . . ,Λ0,K) and
Λ∗

0 = (Λ∗
0,1, . . . ,Λ

∗
0,K) are K-dimensional vectors corresponding to S0 and S∗

0, respectively, such
that Λ0,k = − logS0,k and Λ∗

0,k = − logS∗
0,k for k = 1, . . . ,K. The log-likelihood ratio satisfies

log
pθ∗

pθ
(x, p, y) = y log

Hθ∗(x, p)

Hθ(x, p)
+ (1− y) log

1−Hθ∗(x, p)

1−Hθ(x, p)

≤ max

{
log

Hθ∗(x, p)

Hθ(x, p)
, log

1−Hθ∗(x, p)

1−Hθ(x, p)

}
.

By assumption (A5), there exist constants M1 and M2 such that 0 < M1 ≤ S∗
0 (pmax) < S∗

0 (pmin) ≤
M2 < 1. Note that for θ ∈ Θϵ0 , where ϵ0 ≤ (M1 ∧ (1 − M2)/2) ∧ B, we have S0(v) ∈
[M1/2, (1 + M2)/2] for any v ∈ [pmin, pmax], and ∥β∥ ≤ 2B under assumptions (A1) and (A5).
Furthermore, by assumption (A2), both Hθ∗(x, p) and Hθ(x, p) are bounded away from 0 and 1 for
any x ∈ X , p ∈ G and θ ∈ Θϵ0 . Since | log p− log q| ≤ |p−q|max{p−1, q−1} for any 0 < p, q < 1,
we have ∥∥∥∥log pθ∗

pθ

∥∥∥∥
∞

≤ C0∥Hθ∗ −Hθ∥∞, (28)

where C0 is a positive constant depending on M1,M2, L and B. In addition, by Lemma C.2, there
exist positive constants c1 and c2, depending on M1, M2, L and B, such that for any x ∈ X and
p ∈ G,

|Hθ∗(x, p)−Hθ(x, p)| ≤ c1∥S0 − S∗
0∥∞ + c2∥β − β∗∥2

≤ c1∥Λ0 −Λ∗
0∥∞ + c2∥β − β∗∥2,

where the last inequality holds because ∥S0 − S∗
0∥∞ ≤ ∥Λ0 − Λ∗

0∥∞. Combining the last two
displays, for θ ∈ Θϵ0 , we have K(pθ∗ , pθ) ≤ ∥log(pθ∗/pθ)∥∞ < C1ϵ0, where C1 = C0(c1 + c2) is
a positive constant. Then, we obtain

Θϵ0 ⊆ {θ ∈ Θ : K(pθ∗ , pθ) < C1ϵ0}. (29)

We denote the renormalized restriction of Π to Θϵ0 by Πϵ0 . We note that∫
Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) ≥ Π(Θϵ0)

∫
Θϵ0

n∏
t=1

pθ
pθ∗

(Dt)dΠϵ0(θ)

≥ Π(Θϵ0) exp

(
−
∫
Θϵ0

n∑
t=1

log

(
pθ∗

pθ

)
(Dt)dΠϵ0(θ)

)
,

(30)

where the last inequality holds by Jensen’s inequality. Since the log-likelihood ratio is bounded from
(28), by Hoeffding’s inequality, we have

Pn
θ∗

(
n∑

t=1

log

(
pθ∗

pθ

)
(Dt)− nK(pθ∗ , pθ) < ϵ0n

)
> 1− exp

(
− ϵ20
2C2

0

n

)
. (31)

Let Ω1 be the event in the left-hand side of the last display. Thus, on the event Ω1, we have

−
∫
Θϵ0

n∑
t=1

log

(
pθ∗

pθ

)
(Dt)dΠϵ0(θ) > −

∫
Θϵ0

nK(pθ∗ , pθ)dΠϵ0(θ)− ϵ0n

> −(C1 + 1)ϵ0n,
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where the last inequality holds by (29). Combining this with (30), on the event Ω1, we have∫
Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) > Π(Θϵ0) exp (−(C1 + 1)ϵ0n) . (32)

Let ϵ1 = ϵ0n
−γ . By Lemma C.3, with the specified prior (3) and the hyperparameter condition (P2),

there exist positive constants c3, c4 and c5 depending on pmin, pmax, M1, M2, α, α, ρ and ϵ0, such
that

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ1) ≥ c3 exp(−c4K − c5K log− ϵ1).

In addition, under the prior condition (P1), we have Π(∥β − β∗∥2 ≤ ϵ0) ≥ C2, where C2 is a postive
constant depending on d, ϵ0 and the lower bound of the prior on a neighborhood of β∗. Then, we
have

Π(Θϵ0) ≥ Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ0) ·Π(∥β − β∗∥2 ≤ ϵ0)

≥ C2c3 exp(−c4K − c5 log− ϵ1K),

where the last inequality follows from the previous display and the fact that ϵ1 ≤ ϵ0 for n ≥ 1.
Combining this with (32), on the event Ω1, we have∫

Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) > C2c3 exp
(
−c4K − c5 log− ϵ1K − (C1 + 1)ϵ0n

)
> C2c3 exp (−C3K log n− (C1 + 1)ϵ0n) , (33)

where the last inequality holds by C3 = c4 + c5(log− ϵ0 + 1) because log− ϵ1 < log− ϵ0 + log n.
By Lemma A.3 and A.4, there exist tests Φn such that

En
θ∗ [Φn] ≤ exp(−C4n), sup

θ∈Uc

En
θ [1− Φn] ≤ exp(−C4n), (34)

where C4 is a positive constant depending on M1, M2, L, B, pmin, pmax, κ and ϵ. Then, we have
En
θ∗ [Π(U c|Dn)] ≤ En

θ∗ [Φn] + En
θ∗ [(1− Φn)Π(U c|Dn)1{Ω1}] + Pn

θ∗(Ωc
1)

≤ En
θ∗ [Φn] + (C2c3)

−1 exp (C3K log n+ (C1 + 1)ϵ0n) sup
θ∈Uc

En
θ [1− Φn] + exp

(
− ϵ20
2C2

0

n

)
≤ exp(−C4n) + C5 exp

(
C3Cpn

2
3 log n− (C4 − (C1 + 1)ϵ0)n

)
+ exp (−C6n) ,

where the second inequality holds by (31) and (33), and the last inequality follows from (34), with
C5 = (C2c3)

−1 and C6 = ϵ20/(2C
2
0 ), and K ≤ Cpn

2/3 for γ < 2/3, where Cp is a positive constant
depending on pmin, pmax and κ. We choose ϵ0 = (C4/(3(C1 + 1))) ∧ ((M1 ∧ (1 − M2)/2) ∧
B) to ensure that the second term on the right-hand side of the previous display is bounded by
C5 exp(−(C4/3)n), provided that n1/3(log n)−1 ≥ 3C3Cp/C4. Then, we have

En
θ∗ [Π(U c|Dn)] ≤ exp(−C4n) + C5 exp(−(C4/3)n) + exp (−C6n)

≤ C7 exp(−C8n),

where C7 = C5 + 2 and C8 = (C4/3) ∧ C6. By the Markov inequality, for n ≥ (3C3Cp/C4)
3,

Pn
θ∗ (Π(U c|Dn) ≥ C7 exp(−C9n)) < exp(−C9n),

where C9 = C8/2. This concludes the proof for the case where γ < 2/3.

Now, we suppose that γ ≥ 2/3. Let ϵ2 = n−1/3 and J = ⌈(pmax − pmin)/(κϵ2)⌉. Define
(k1, . . . , kJ) as a subsequence of [K] such that pmin + (j − 1)κϵ2 < gkj ≤ pmin + (j − 1)κϵ2 + δ
for j = 1, . . . , J − 1, and set kJ = K.

Suppose that |S0,kj
− S∗

0,kj
| < ϵ/2 for every j = 1, . . . , J . Then, for any k ∈ [K] with kj ≤ k <

kj+1 for j = 1, . . . , J − 2, we have
S∗
0,k − S0,k ≤ S∗

0,k − S0,kj+1

≤ |S∗
0,kj+1

− S0,kj+1 |+ |S∗
0,k − S∗

0,kj+1
|

< ϵ/2 + L0|gk − gkj+1
|

≤ ϵ/2 + L0(κϵ2 + δ)

≤ ϵ/2 + 2L0κϵ2
≤ ϵ,
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where the third inequality holds by our assumption and L0-Lipschitz continuity of S∗
0 , with L0 being

a positive constant because (A5) is assumed, the fourth inequality holds by the definition of kj , the
fifth inequality holds because δ ≤ κϵ2 for γ ≥ 2/3, and the last inequality holds for sufficiently
large n so that ϵ2 ≤ ϵ/(4L0κ). Note that |gkJ−1

− gkJ
| < 2κϵ2 by the definition of J . Then, for any

k ∈ [K] with kJ−1 ≤ k ≤ kJ , we have

S∗
0,k − S0,k < ϵ.

Combining the preceding two displays, we have S∗
0,k − S0,k < ϵ for any k ∈ [K]. Similarly, for any

k ∈ [K], we have S0,k − S∗
0,k < ϵ. Therefore, for n ≥ (4L0κ/ϵ)

3, we have

{S0 ∈ S0 : ∥S0 − S∗
0∥∞ ≥ ϵ} ⊂ {S0 ∈ S0 : ∥S0 − S∗

0∥∞,J ≥ ϵ/2}. (35)

Then, we can decompose

En
θ∗ [Π(U c | Dn)] ≤ En

θ∗ [Π({θ ∈ Θ : ∥S0 − S∗
0∥∞,J ≥ ϵ/2 or ∥β − β∗∥2 ≥ ϵ} | Dn)]

≤ En
θ∗ [Π(U1 | Dn)]︸ ︷︷ ︸

(i)

+En
θ∗ [Π(U2 | Dn)]︸ ︷︷ ︸

(ii)

+En
θ∗ [Π(U3 | Dn)]︸ ︷︷ ︸

(iii)

, (36)

where

U1 = {θ ∈ Θ : max
2≤j≤J−1

|S0,kj
− S∗

0,kj
| ≥ ϵ/4 or ∥β − β∗∥2 ≥ ϵ},

U2 = {θ ∈ Θ : |S0,k1
− S∗

0,k1
| ≥ ϵ/2, max

2≤j≤J−1
|S0,kj

− S∗
0,kj

| < ϵ/4},

U3 = {θ ∈ Θ : |S0,kJ
− S∗

0,kJ
| ≥ ϵ/2, max

2≤j≤J−1
|S0,kj

− S∗
0,kj

| < ϵ/4}.

The proof for (i) is similar to that of γ < 2/3. Let ϵ3 > 0 be a constant to be chosen later. Similarly
as in (35), we have

{S0 ∈ S0 : ∥Λ0 −Λ∗
0∥∞ ≥ ϵ3n

− 1
3 } ⊂ {S0 ∈ S0 : ∥Λ0 −Λ∗

0∥∞,J ≥ C10ϵ3n
− 1

3 }, (37)

where C10 is a positive constant depending on L0 and κ. Then, we have

Π(Θϵ3) ≥ Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ3) ·Π(∥β − β∗∥2 ≤ ϵ3)

≥ C11Π(∥Λ0 −Λ∗
0∥∞,J ≤ C10ϵ3n

− 1
3 )

≥ C11c6 exp
(
−c7J − c8 log−(C10ϵ3n

− 1
3 )J
)
,

where the second inequality holds by a positive constant C11 depending on d, ϵ3 and the prior’s lower
bound near β∗, and the last inequality follows from constants c6, c7 and c8 in Lemma C.3, depending
on pmin, pmax, M1, M2, α, α, ρ, C10 and ϵ3. Similarly as in (33), there exists the event Ω2 such that
Pn
θ∗(Ωc

2) ≤ exp(−ϵ23/(2C
2
0 )n), and on the event Ω2, we have∫

Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) > C11c6 exp
(
−c7J − c8 log−(C10ϵ3n

− 1
3 )J − (C1 + 1)ϵ3n

)
> C11c6 exp (−C12J log n− (C1 + 1)ϵ3n)

≥ C11c6 exp
(
−C12Cpn

1
3 log n− (C1 + 1)ϵ3n

)
,

where the second inequality holds by C12 = c7 + c8(log−(C10ϵ3) + 1), and the last inequality holds
because J ≤ Cpn

1/3 by the definition of J . By Lemma A.5, there exist tests Φn,1 such that

En
θ∗ [Φn,1] ≤ exp(−C13n), sup

θ∈U1

En
θ [1− Φn,1] ≤ exp(−C13n),

where C13 is a positive constant depending on M1, M2, L, B, pmin, pmax, κ and ϵ. We choose
ϵ3 = (C13/(3(C1 + 1))) ∧ ((M1 ∧ (1 − M2)/2) ∧ B). Combining the last two displays, for
n ≥ (3C12Cp/C13)

3/2, we have

En
θ∗ [Π(U1 | Dn)] ≤ C14 exp(−C15n), (38)

where C14 = (C11c6)
−1 + 2 and C15 = (C13/3) ∧ (ϵ23/(2C

2
0 )) are positive constants.
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We now consider the term (ii). We split U2 in U2,− and U2,+, where

U2,− = {θ ∈ Θ : S0,k1
− S∗

0,k1
≤ −ϵ/2, max

2≤j≤J−1
|S0,kj

− S∗
0,kj

| < ϵ/4},

U2,+ = {θ ∈ Θ : S0,k1 − S∗
0,k1

≥ ϵ/2, max
2≤j≤J−1

|S0,kj − S∗
0,kj

| < ϵ/4}.

Note that U2,− ⊂ U1
2,− ∪ U2

2,−, where

U1
2,− = {θ ∈ Θ : ∥β − β∗∥2 ≥ η},

U2
2,− = {θ ∈ Θ : S0,k1

− S∗
0,k1

≤ −ϵ/2, ∥β − β∗∥2 < η},
for some sufficiently small positive constant η depending on ϵ. By Lemma A.3, there exist exponen-
tially consistent tests Φn,2,1 for testing H0 : θ = θ∗, H1 : θ ∈ U1

2,−. Similarly as (26) in the proof of
Lemma A.5, we construct the tests Ψn,2,2 for U2

2,− by

Ψn,2,2 = 1

{
n∑

t=1

ϕ2(Dt) >

n∑
t=1

(Eθ∗ [ϕ2(Dt)] + Eθ [ϕ2(Dt)])/2

}
,

where ϕ2(Dt) = 1{Pt ∈ {gk1
, . . . , gk2

}, Yt = 0}. By a similar argument as the proof in Lemma
A.5, we can show that En

θ∗ [Ψn,2,2(Dn)] → 0 and supθ∈U2
2,−

En
θ [1−Ψn,2,2(Dn)] → 0 as n → ∞.

By Lemma D.11 of [16], there exist exponentially consistent tests Φn,2,2 for testing H0 : θ = θ∗, H1 :
θ ∈ U2

2,−. Let Φn,2 = Φn,2,1 ∨ Φn,2,2. Then, there exists a positive constant C16 depending on M1,
M2, L, B, pmin, pmax, κ and ϵ such that

En
θ∗ [Φn,2] ≤ exp(−C16n), sup

θ∈U2,−

En
θ [1− Φn,2] ≤ exp(−C16n).

Then, by a similar argument as the preceding, for n ≥ (3C12Cp/C16)
3/2, it holds that

En
θ∗ [Π(U2,− | Dn)] ≤ C14 exp(−C17n), (39)

where C17 = (C16/3) ∧ (ϵ23/(2C
2
0 )) is a positive constant.

We restrict ourselves to vectors S0 such that max2≤j≤J−1 |S0,kj
− S∗

0,kj
| < ϵ/4. Suppose that

S0,k1 − S0,k2 < ϵ/4. Then, we have

S0,k1
− S∗

0,k1
= S0,k1

− S0,k2
+ S0,k2

− S∗
0,k1

≤ S0,k1 − S0,k2 + S0,k2 − S∗
0,k2

< ϵ/4 + ϵ/4

= ϵ/2,

where the first inequality holds by the monotonicity of S∗
0 , and the last inequality follows from our

assumption and the fact that |S0,k2
− S∗

0,k2
| < ϵ/4. Thus, it holds that

U2,+ ⊂ {θ ∈ Θ : S0,k1
− S0,k2

≥ ϵ/4, max
2≤j≤J−1

|S0,kj
− S∗

0,kj
| < ϵ/4}

⊂ {θ ∈ Θ : S0,k1
− S0,k2

≥ ϵ/4}.

Then, it is sufficient to show that En
θ∗

[
Π(U ′

2,+ | Dn)
]
→ 0 as n → ∞, where U ′

2,+ = {θ ∈ Θ :

S0,k1
− S0,k2

≥ ϵ/4}. Let ϵ4 = ϵ5n
−1/3, where ϵ5 > 0 is a sufficiently small constant to be chosen

later. Similarly as in (32), there exists the event Ω3 such that Pn
θ∗(Ωc

3) ≤ exp(−ϵ24/(2C
2
0 )n), and on

the event Ω3, we have∫
Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) > Π(Θϵ4) exp (−(C1 + 1)ϵ4n) .

Furthermore, we have

Π(Θϵ4) ≥ Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ4) ·Π(∥β − β∗∥2 ≤ ϵ4)

≥ c6 exp
(
−c7J − c8 log−(C10ϵ4)J

)
·Π(∥β − β∗∥2 ≤ ϵ4)

≥ C18c6 exp
(
−c7J − c8 log−(C10ϵ4)J

)
· ϵd4

= C18c6 exp
(
−c7J − c8 log−(C10ϵ4)J + d log ϵ4

)
,
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where the second inequality holds by (37) and Lemma C.3, and the last inequality holds because
Π(∥β − β∗∥2 ≤ ϵ4) ≥ C18ϵ

d
4 with a positive constant C18 depending on d and the prior’s lower

bound near β∗. Combining the last two displays, on the event Ω3, we have∫
Θ

n∏
t=1

pθ
pθ∗

(Dt)dΠ(θ) > C18c6 exp
(
−c7J − c8 log−(C10ϵ4)J + d log ϵ4 − (C1 + 1)ϵ4n

)
≥ C18c6 exp

(
−C19n

1
3 log n− (C1 + 1)ϵ5n

2
3

)
,

where the last inequality holds by a positive constant C19 = Cp(c7+c8(log−(C10ϵ5)+1))+d log− ϵ5.
This implies that
En
θ∗

[
Π(U ′

2,+ | Dn)
]
≤ En

θ∗

[
Π(U ′

2,+ | Dn)1{Ω3}
]
+ Pn

θ∗ (Ωc
3)

≤ (C18c6)
−1 exp

(
C19n

1
3 log n+ (C1 + 1)ϵ5n

2
3

)
Π(U ′

2,+) + exp

(
− ϵ25
2C2

0

n
1
3

)
.

(40)

We now prove that the prior mass of U ′
2,+ is exponentially small. Note that

S0,k1 − S0,k2 = exp(−Λ0,k1)− exp(−Λ0,k2)

≤ Λ0,k2
− Λ0,k1

= δ

k2∑
k=k1+1

λ0,k.

Let λ =
∑k2

k=k1+1 λ0,k. By (3), λ is gamma distributed with parameters α0 and ρ, where α0 =∑k2

k=k1+1 αk. Then, we have

Π
(
U ′
2,+

)
≤ Π

(
δλ ≥ ϵ

4

)
≤ Π

(
λ ≥ ϵ

4Cp
K

)
≤ 2α0 exp

(
− ρϵ

8Cp
K

)
≤ exp

(
C20 log 2 · nγ− 1

3 − C21n
γ
)

≤ exp (−C21/2 · nγ) ,

where the second inequality holds because K ≤ Cpδ
−1, the third inequality follows from Chernoff

bounds. Here, the fourth inequality holds because K ≥ C ′
pn

γ and α0 ≤ K/J · α ≤ C20 · nγ−1/3

under (P2) with positive constants C20 depending on α, pmin, pmax and κ, and C21 = ρϵC ′
p/(8Cp).

The last inequality holds for n ≥ (2C20 log 2/C21)
3. Combining this with (40), we have

En
θ∗

[
Π(U ′

2,+ | Dn)
]
≤ C22 exp

(
C19n

1
3 log n+ (C1 + 1)ϵ5n

2
3 − C21

2
n

2
3

)
+ exp

(
− ϵ25
2C2

0

n
1
3

)
,

where the inequality holds because γ ≥ 2/3 with a positive constant C22 = (C18c6)
−1. We choose

ϵ5 = (C21/(6(C1+1)))∧((M1∧(1−M2)/2)∧B). Then, for n ≥ (3C19/C21)
3∨(2C20 log 2/C21)

3,
we have

En
θ∗

[
Π(U ′

2,+ | Dn)
]
≤ C22 exp

(
−C21

3
n

2
3

)
+ exp

(
− ϵ25
2C2

0

n
1
3

)
≤ C23 exp

(
−C24n

1
3

)
, (41)

where the last inequality holds by postive constants C23 = C22+1 and C24 = (C21/3)∧(ϵ25/(2C
2
0 )).

Combining (39) and (41), for n ≥ (3C12Cp/C16)
3/2 ∨ (3C19/C21)

3 ∨ (2C20 log 2/C21)
3, we have

En
θ∗ [Π(U2 | Dn)] ≤ C14 exp(−C17n) + C23 exp

(
−C24n

1
3

)
≤ C25 exp

(
−C26n

1
3

)
, (42)

34



where C25 = C14 + C23 and C26 = C17 ∧ C24 are positive constants.

By a similar argument as (ii), there exist positive constants C27 and C28 such that

(iii) ≤ C27 exp
(
−C28n

1
3

)
. (43)

Combining (36), (38), (42) and (43), we have

En
θ∗ [Π(U c | Dn)] ≤ C29 exp

(
−C30n

1
3

)
,

where C29 = C14 + C25 + C27 and C30 = C15 ∧ C26 ∧ C28 are positive constants. By the Markov
inequality, we have

Pn
θ∗

(
Π(U c | Dn) ≥ C29 exp

(
−C31n

1
3

))
< exp

(
−C31n

1
3

)
,

where C31 = C30/2. This concludes the proof for the case where γ ≥ 2/3.

A.2 Proof of Theorem 3.1

Lemma A.6. Let Θ′ = {(S0, β) ∈ Θ : S0,K ≥ M1, S0,1 ≤ M2, ∥β∥2 ≤ D}, where M1, M2 and
D are some positve constants such that 0 < M1 < M2 < 1, and let P ′ = {pθ : θ ∈ Θ′}. Under the
assumption (A2), there exist positive constants C1 and C2 depending only on M1,M2, L and D such
that for every ϵ > 0, it holds that

N(ϵ,P ′,DH) ≤ (C1/ϵ+K)K(C2/ϵ)
d.

Proof. Let S ′
0 = {S0 = (S0,1, . . . , S0,K) : M2 ≥ S0,1 ≥ · · · ≥ S0,K ≥ M1} and H′

0 = {Λ0 =
(Λ0,1, . . . ,Λ0,K) : λ2 ≤ Λ0,1 ≤ · · · ≤ Λ0,K ≤ λ1}, where λ2 = − logM2 and λ1 = − logM1.
Then, for any Λ0 corresponding to the vector S0 ∈ S ′

0, Λ0 belongs to H′
0 since Λ0,k = − logS0,k ∈

[λ2, λ1] for any k = 1, . . . ,K. For ϵ > 0, let
H′

0,ϵ = {Λ0 ∈ H′
0 : (Λ0,1, . . . ,Λ0,K) = (m1ϵ, . . . ,mKϵ)

for some positive integers m1, . . . ,mK satisfying m1 ≤ · · · ≤ mK} .
Then, it is not difficult to show that H′

0,ϵ is an ϵ-cover of H′
0 with respect to ∥ · ∥∞. Note that the

cardinality of H′
0,ϵ is the number of K-tuples of integers (m1, . . . ,mK) satisfying ⌊λ1/ϵ⌋ ≤ m1 ≤

· · · ≤ mK ≤ ⌊λ2/ϵ⌋, which is given as
(⌊λ2/ϵ⌋−⌊λ1/ϵ⌋+K

K

)
based on simple combinatorics. Hence,

we have N(ϵ,H′
0, ∥ · ∥∞) ≤

(⌊λ2/ϵ⌋+K
K

)
≤ (λ2/ϵ+K)K . Therefore, we have

N(ϵ,H′
0, ∥ · ∥∞) ≤ (λ2/ϵ+K)K . (44)

Take any two parameters θ = (S0, β), θ
′ = (S′

0, β
′) ∈ Θ′. By Lemma C.1 and C.2, there exist

positive constants c1, c2 and c3, depending on M1, M2, L and D, such that for any x ∈ X and p ∈ G,
DH(pθ, pθ′) ≤ c1∥Hθ −Hθ′∥∞

≤ C1∥Λ0 −Λ′
0∥∞ + C2∥β − β′∥2, (45)

where C1 = c1c2 and C2 = c1c3.

Let m := N(ϵ/(2C1),H′
0, ∥ · ∥∞) and l := N(ϵ/(2C2),B′, ∥ · ∥2), where B′ = {β ∈ Rd : ∥β∥2 ≤

D}. This definition implies that there exist Λ0,1, . . . ,Λ0,m ∈ H′
0 such that for every Λ0 ∈ H′

0,
the inequality ∥Λ0 − Λ0,i∥∞ < ϵ/(2C1) holds for some 1 ≤ i ≤ m. Similarly, there exist
β1, . . . , βl ∈ B′ such that for every β ∈ B′, ∥β − βj∥2 < ϵ/(2C2) holds for some 1 ≤ j ≤ l.
Let θij = (S0,i, βj) ∈ Θ′, where S0,i be the vector corresponding to Λ0,i for i = 1, . . . ,m and
j = 1, . . . , l. By (45), for any θ = (S0, β) ∈ Θ′, there exists θij for some 1 ≤ i ≤ m and 1 ≤ j ≤ l
such that

DH(pθ, pθij ) ≤ C1∥Λ0 −Λ0,i∥∞ + C2∥β − βj∥2 ≤ ϵ.

Consequently, the covering number N(ϵ,P ′,DH) is of order ml. Note that m ≤ (2C1λ2/ϵ+K)K

by (44). Furthermore, by Proposition C.2 of [16], l ≤ (6DC2/ϵ)
d. Therefore, we have

N(ϵ,P ′,DH) ≤ (C3/ϵ+K)K(C4/ϵ)
d,

where C3 = 2C1λ2 and C4 = 6DC2 are positive constants depending only on M1, M2, L and D.
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Proof of Theorem 3.1. First, we define the square Kullback-Leibler variation as V0(p, q) =∫
(log(p/q)−K(p/q))2dP . For every ϵ > 0, we define neighborhoods of θ∗ by

B(θ∗, ϵ) = {θ ∈ Θ : K(pθ∗ , pθ) ≤ ϵ2, V0(pθ∗ , pθ) ≤ ϵ2}.

We begin by checking the prior mass condition. Note that there exist constants M1 and M2 such that
0 < M1 ≤ S∗

0 (v) ≤ M2 < 1 for any v ∈ [pmin, pmax] by assumption (A5). Let U = {(S0, β) ∈ Θ :
∥S0 − S∗

0∥∞ ∨ ∥β − β∗∥2 < ϵ0} be a neighborhood of θ∗, where ϵ0 is a positive constant that can
be chosen as ϵ0 = ((M1 ∧ (1−M2))/2) ∧B to ensure that U ⊆ Θ. By (28) in the proof of Lemma
A.1, there exists a positive constant C0 depending on M1, M2, L and B such that for any θ ∈ U ,∥∥∥∥log pθ∗

pθ

∥∥∥∥
∞

≤ C0.

By Lemma B.2 in [16], the uniformly bounded likelihood ratio implies that

K(pθ∗ , pθ) ≤ c1D2
H(pθ∗ , pθ)

∥∥∥∥pθ∗

pθ

∥∥∥∥
∞

≤ C1D2
H(pθ∗ , pθ),

V0(pθ∗ , pθ) ≤ c2D2
H(pθ∗ , pθ)

∥∥∥∥pθ∗

pθ

∥∥∥∥
∞

≤ C2D2
H(pθ∗ , pθ),

(46)

where C1 = c1 exp(C0) and C2 = c2 exp(C0) for universal constants c1 and c2. By Lemma C.1 and
Lemma C.2, there exist postive constants c3, c4 and c5, depending on M1, M2, L and B such that for
any θ ∈ U ,

DH(pθ∗ , pθ) ≤ c3∥Hθ∗ −Hθ∥∞
≤ C3∥Λ0 −Λ∗

0∥∞ + C4∥β − β∗∥2,

where C3 = c3c4 and C4 = c3c5. Let Θn = {θ ∈ Θ : ∥Λ0 −Λ∗
0∥∞ ≤ C5ϵn, ∥β − β∗∥2 ≤ C6ϵn},

where C5 = 1/(2C3

√
C1 ∨ C2) and C6 = 1/(2C4

√
C1 ∨ C2). Combining the last two displays, we

have

Θn ∩ U ⊆ B(θ∗, ϵn) ∩ U.

Since ∥S0 − S∗
0∥∞ ≤ ∥Λ0 −Λ∗

0∥∞, for sufficiently large n such that ϵn < ϵ0/(C5 ∨C6), it follows
that Θn ⊂ U , implying Θn ∩ U = Θn. Thus, we see that

Π(B(θ∗, ϵn)) ≥ Π(B(θ∗, ϵn) ∩ U)

≥ Π(∥Λ0 −Λ∗
0∥∞ ≤ C5ϵn) ·Π(∥β − β∗∥2 ≤ C6ϵn) . (47)

By Lemma C.3 with the specified prior (3), the first term in the right side of the last display is
bounded below by C7 exp(−C8K −C9K log−(C5ϵn)), where C7, C8 and C9 are positive constants
depending on pmin, pmax, M1, M2, α, α and ρ. Let Vd(R) denote the volume of a d-dimensional
L2 norm ball of radius R > 0. The closed form of Vd(R) is given by Vd(R) = πd/2/Γ(d2 + 1) ·Rd

where Γ is the gamma function. Note that Γ(d2 + 1) ≤ Γ(d + 1) = d! ≤ dd for d ≥ 1. Then, the
second term in the right side of the last display is bounded below by C10(

√
π/d)d(C6ϵn)

d where
C10 is the lower bound of the prior on a neighborhood of β∗. Therefore, we have

Π(B(θ∗, ϵn)) ≥ C7C10 exp(−C8K − C9K log−(C5ϵn)) · (
√
π/d)d(C6ϵn)

d

≥ C7C10 exp(−C8K − C9K log−(C5ϵn)− d log d− d log−(C6ϵn))

≥ C7C10 exp(−C8Cpn
γ − C9Cpn

γ log−(C5ϵn)− d log d− d log−(C6ϵn))

≥ exp(−C11nϵ
2
n),

where the third inequality holds because K ≥ Cpn
γ with a positive constant Cp depending on

pmin, pmax and κ as defined by K, and the last inequality holds by a positive constant C11 =
| log(C7C10)|+C8Cp +C9Cp(| logC5|+1)+ | logC6|+2 because log−(Cϵn) ≤ | logC|+ log n
holds for any C > 0 and nγ log n ≤ nϵ2n. Thus, by Lemma 10 of [15], there exists an event Ωn such
that Pn

θ∗(Ωn) ≥ 1− 1/(nϵ2n), and in Ωn,∫
exp(ℓn(θ)− ℓn(θ

∗))dΠ(θ) ≥ exp(−(C11 + 2)nϵ2n). (48)
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By the Kullback-Leibler inequality, note that Eθ∗ [ℓ(θ)] is maximized at θ = θ∗, meaning its first
derivative at θ∗ is equal to 0. Additionally, for θ = (S0, β) ∈ U , note that S0 is uniformly bounded
away from 0 and 1, and β is bounded by assumptions (A1) and (A5). Since the covariate has bounded
support by assumption (A2), by a Taylor expansion, there exists a postive constant c0 depending on
M1, M2, L and B such that for any θ ∈ U , we have

c0D2
Q(θ, θ

∗) ≤ Eθ∗ [ℓ(θ∗)]− Eθ∗ [ℓ(θ)] = K(pθ∗ , pθ).

Combining this with (46), we have

CHDQ(θ, θ
∗) ≤ DH(pθ∗ , pθ), (49)

where CH =
√

c0/C1. Then, we have

En
θ∗ [Π(DQ(θ, θ

∗) ≥ MJϵn | Dn)1{Ωn}]
≤ En

θ∗ [Π({DQ(θ, θ
∗) ≥ MJϵn} ∩ U | Dn)1{Ωn}] + En

θ∗ [Π(U c | Dn)]

≤ En
θ∗ [Π(Γn | Dn)1{Ωn}] + c7 exp(−c8n), (50)

where Γn = {θ ∈ U : DH(pθ∗ , pθ) ≥ CHMJϵn} for large constants M and J to be chosen
later, and the last inequality holds for n ≥ c6 by Lemma A.1 with positive constants c6, c7 and c8
depending on M1, M2, L, B, pmin, pmax, α, α, ρ and κ.

Define PU = {pθ : θ ∈ U} and N∗
n = supϵ>ϵn N (ϵ/36, {pθ ∈ PU : θ ∈ Γn},DH). By Lemma

A.6, there exist positive constants C12 and C13 depending on M1, M2, L, and B such that

N∗
n ≤ N

(
ϵn/36,PSieve

n ,DH

)
≤ (36C12/ϵn +K)

K
(36C13/ϵn)

d

≤ exp(K · log(36C12/ϵn +K) + d · log(36C13/ϵn))

≤ exp(C14nϵ
2
n), (51)

where the last inequality holds by a positive constant C14 depending on C12, C13, pmin, pmax and κ.
In addition, by Lemma 2 of [15] and Lemma 9 of [15], applied with ϵ = CHMϵn, where CHM ≥ 2,
there exist tests ϕn that satisfy

En
θ∗ϕn ≤ N∗

n exp

(
−1

2
C2

HM2nϵ2n

)
1

1− exp
(
− 1

2C
2
HM2nϵ2n

) ,
sup
θ∈Γn

En
θ (1− ϕn) ≤ exp

(
−1

2
C2

HM2J2nϵ2n

)
,

(52)

for any J ≥ 1. Then, by (48), the first term of (50) is upper bounded by

En
θ∗ [Π(Γn | Dn)1{Ωn}] ≤ En

θ∗ϕn + exp((C11 + 2)nϵ2n) sup
θ∈Γn

En
θ (1− ϕn). (53)

If M is sufficiently large to ensure that C2
HM2/2 − C14 > C2

HM2/4, by combining (51) and the
first line of (52), we have

En
θ∗ϕn ≤ exp

((
C14 −

1

2
C2

HM2

)
nϵ2n

)
1

1− exp
(
− 1

2C
2
HM2nϵ2n

)
≤ C15 exp

(
−1

4
C2

HM2nϵ2n

)
,

where C15 = (1 − exp(−2C14))
−1 is a positive constant. If we set J = 1 and choose M to be

sufficiently large such that C2
HM2/2− (C11+2) > C2

HM2/4, by the second line of (52), the second
term in the right hand side of (53) is bounded by

exp

(
−1

4
C2

HM2nϵ2n

)
.

Therefore, if we choose M to be sufficiently large such that M ≥ 2
√
(C11 + 2) ∨ C14/CH , by

combining the preceding two displays, (50) and (53), we have

En
θ∗ [Π(DQ(θ, θ

∗) ≥ Mϵn | Dn)1{Ωn}] ≤ (C15 + 1) exp
(
−C16nϵ

2
n

)
+ c7 exp(−c8n)

≤ C17 exp
(
−(C16 ∧ c8)nϵ

2
n

)
,
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where C17 = C15 + c7 + 1 and C16 = (C11 + 2) ∨C14 are positive constants. An application of the
Markov inequality yields that

Pn
θ∗

(
Π(DQ(θ, θ

∗) ≥ Mϵn | Dn)1{Ωn} ≥ C17 exp
(
−C18nϵ

2
n

))
≤ exp

(
−C18nϵ

2
n

)
,

where C18 = (C16 ∧ c8)/2 be a positive constant. Note that it is easy to show that

Pn
θ∗

({
Π(DQ(θ, θ

∗) ≥ Mϵn | Dn) ≥ C17 exp
(
−C18nϵ

2
n

)}
∩ Ωn

)
≤ Pn

θ∗

(
Π(DQ(θ, θ

∗) ≥ Mϵn | Dn)1{Ωn} ≥ C17 exp
(
−C18nϵ

2
n

))
.

Combining the last two displays and (48), we have
Pn
θ∗

({
Π(DQ(θ, θ

∗) ≥ Mϵn|Dn) ≥ C17 exp
(
−C18nϵ

2
n

)})
≤ Pn

θ∗

({
Π(DQ(θ, θ

∗) ≥ Mϵn|Dn) ≥ C17 exp
(
−C18nϵ

2
n

)}
∩ Ωn

)
+ Pn

θ∗ (Ωn)

≤ Pn
θ∗

(
Π(DQ(θ, θ

∗) ≥ Mϵn|Dn)1{Ωn} ≥ C17 exp
(
−C18nϵ

2
n

))
+ Pn

θ∗ (Ωn)

≤ exp
(
−C18nϵ

2
n

)
+

1

nϵ2n
.

Thus, we have that with probability at least 1−
(
exp(−C18nϵ

2
n) + 1/nϵ2n

)
,

Π(DQ(θ, θ
∗) ≥ Mϵn|Dn) < C17 exp

(
−C18nϵ

2
n

)
.

If we fix M = ⌈2
√
(C11 + 2) ∨ C14/CH⌉, then the proof is complete.

A.3 Proof of Theorem 3.2

Lemma A.7. Let Θ′ = {(S0, β) ∈ Θ : S0,K ≥ M1, S0,1 ≤ M2, ∥β∥2 ≤ D}, where M1, M2 and
D are some positve constants such that 0 < M1 < M2 < 1, and let P ′ = {pθ : θ ∈ Θ′}. Under the
assumption (A2), there exist positive constants C1 and C2 depending only on M1,M2, L and D such
that for every ϵ > 0, it holds that

N(ϵ,P ′,DH) ≤ exp(C1/ϵ)(C2/ϵ)
d.

Proof. Let F0 be the collection of monotone functions f : (pmin, pmax) → [λ2, λ1], where λ1 =
− logM1 and λ2 = − logM2. Additionally, let Λ0 denote the cumulative hazard functions with
respect to the baseline complementary c.d.f. S0. Then, for any S0 corresponding to the vector
S0 ∈ {S0 ∈ S0 : S0,K ≥ M1, S0,1 ≤ M2}, Λ0 = − logS0 belongs to F0.

Take any two parameters θ = (S0, β) and θ′ = (S′
0, β

′) ∈ Θ′. By Lemma C.1 and Lemma C.2, we
have

DH(pθ, pθ′) ≤ C0

[
EX,P |Hθ(X,P )−Hθ′(X,P )|2

]1/2
≤ C1∥S0 − S′

0∥2,Q + C2∥β − β′∥2
≤ C1∥Λ0 −Λ′

0∥2,Q + C2∥β − β′∥2, (54)
where EX,P denotes the expectation with respect to the covariate X and the price P , and C0, C1 and
C2 are positive constants depending on M1,M2, L and D.

Let m := N(ϵ/(2C1),F0, ∥ · ∥2,Q) and l := N(ϵ/(2C2),B′, ∥ · ∥2), where B′ = {β ∈ Rd : ∥β∥2 ≤
D}. This definition implies that there exist Λ0,1, . . . ,Λ0,m ∈ F0 such that for every Λ0 ∈ F0,
the inequality ∥Λ0 − Λ0,i∥2,Q < ϵ/(2C1) holds for some 1 ≤ i ≤ m. Similarly, there exist
β1, . . . , βl ∈ B′ such that for every β ∈ B′, ∥β − βj∥2 < ϵ/(2C2) holds for some 1 ≤ j ≤ l.
Let S0,i = (S0,i(g1), . . . , S0,i(gK)) where S0,i = exp(−Λ0,i) and θij = (S0,i, βj) ∈ Θ′ for
i = 1, . . . ,m and j = 1, . . . , l. By (54), for any θ = (S0, β) ∈ Θ′, there exists θij for some
i ∈ {1, . . . ,m} and j ∈ {1, . . . , l} such that

DH(pθ, pθij ) ≤ C1∥Λ0 − Λ0,i∥2,Q + C2∥β − βj∥2 ≤ ϵ.

Consequently, the covering number N(ϵ,P ′,DH) is of order ml. By Proposition C.8 of [16], note that
m ≤ N[ ](ϵ/(2C1),F0, ∥ · ∥2,Q) ≤ exp(2C1C3λ1/ϵ), where C3 is a universal constant. Furthermore,
by Proposition C.2 of [16], l ≤ (6DC2/ϵ)

d. Therefore, we have

N(ϵ,P ′,DH) ≤ exp(C4/ϵ)(C5/ϵ)
d,

where C4 = 2C1C3λ1 and C5 = 6DC2 are positive constants depending only on M1,M2, L and D.

38



Proof of Theorem 3.2. Recall the grid support G = {gk : k = 1, . . . ,K}, where each grid point gk is
defined as gk = pmin+kδ with δ = κn−γ for some constant κ > 0. Let J = ⌈(pmax−pmin)/(κϵn)⌉
and define (k1, . . . , kJ) as a subsequence of [K] such that pmin + (j − 1)κϵn < gkj ≤ pmin + (j −
1)κϵn + δ for j = 1, . . . , J − 1, and set kJ = K. Suppose that |S0,kj

− S∗
0,kj

| < ϵn for every
j = 1, . . . , J . Then, for any k ∈ [K] with kj ≤ k < kj+1 for j = 1, . . . , J − 2, we have

S∗
0,k − S0,k ≤ S∗

0,k − S0,kj+1

≤ |S∗
0,kj+1

− S0,kj+1
|+ |S∗

0,k − S∗
0,kj+1

|
< ϵn + L0|gk − gkj+1

|
≤ ϵn + L0|gkj − gkj+1 |
≤ ϵn + L0(κϵn + δ)

≤ (2L0κ+ 1)ϵn,

where the third inequality holds by our assumption and L0-Lipschitz continuity of S∗
0 , with L0 being

a positive constant because (A5) is assumed, the fifth inequality holds by the definition of kj , and the
last inequality holds because δ ≤ κϵn. Note that |gkJ−1

− gkJ
| < 2κϵn by the definition of J . Then,

for any k ∈ [K] with kJ−1 ≤ k ≤ kJ , we have

S∗
0,k − S0,k < (2L0κ+ 1)ϵn.

Combining the preceding two displays, there exists a positive constant C0 = 2L0κ + 1 such that
S∗
0,k − S0,k < C0ϵn for any k ∈ [K]. Similarly, for any k ∈ [K], we have S0,k − S∗

0,k < C0ϵn.
Therefore, we have

Π(∥S0 − S∗
0∥∞ ≤ C0ϵn) ≥ Π(∥S0 − S∗

0∥∞,J ≤ ϵn) , (55)

where ∥S0 − S∗
0∥∞,J = maxj=1,...,J |S0,kj − S∗

0,kj
|.

Note that there exist constants M1 and M2 such that 0 < M1 ≤ S∗
0 (v) ≤ M2 < 1 for any

v ∈ [pmin, pmax] by assumption (A5). Let U = {(S0, β) ∈ Θ : ∥S0 − S∗
0∥∞ ∨ ∥β − β∗∥2 < ϵ0}

be a neighborhood of θ∗, where ϵ0 is a positive constant that can be chosen as ϵ0 = ((M1 ∧ (1 −
M2))/2) ∧B to ensure that U ⊆ Θ. Given in (47) of Theorem 3.1, there exist postive constants C1

and C2 depending on M1,M2, L and B such that for sufficiently large n with ϵn < ϵ0/(C1 ∨ C2),

Π(B(θ∗, ϵn)) ≥ Π(∥Λ0 −Λ∗
0∥∞ ≤ C1ϵn) ·Π(∥β − β∗∥2 ≤ C2ϵn) .

Note that for θ ∈ U , ∥S0 − S∗
0∥∞ ≍ ∥Λ0 −Λ∗

0∥∞ and ∥S0 − S∗
0∥∞,J ≍ ∥Λ0 −Λ∗

0∥∞,J , where
constants in ≍ depend on M1,M2, L and B. Thus, the inequality (55) implies that

Π(∥Λ0 −Λ∗
0∥∞ ≤ C ′

0C0ϵn) ≥ Π(∥Λ0 −Λ∗
0∥∞,J ≤ ϵn) ,

where C ′
0 is a positive constants depending on M1,M2, L and B. Combining the preceding two

displays, for sufficiently large n such that ϵn < ϵ0/(C1 ∨ C2) and δ ≤ κ(C ′
0C0)

−1C1ϵn, we have

Π(B(θ∗, ϵn)) ≥ Π
(
∥Λ0 −Λ∗

0∥∞,J ≤ (C ′
0C0)

−1C1ϵn
)
·Π(∥β − β∗∥2 ≤ C2ϵn) .

Therefore, we have

Π(B(θ∗, ϵn)) ≥ C3C6 exp(−C4J − C5J log−((C
′
0C0)

−1C1ϵn)− d log d− d log−(C2ϵn))

≥ C3C6 exp(−C4C7ϵ
−1
n − C5C7ϵ

−1
n log−((C

′
0C0)

−1C1ϵn)− d log d− d log−(C2ϵn))

≥ exp(−C8nϵ
2
n),

where the first inequality holds by Lemma C.3 with positive constants C3, C4, C5 depending on
pmin, pmax, M1, M2, α, α and ρ, and C6 serving as the lower bound of the prior on a neighborhood
of β∗, the second inequality holds because J ≤ C7ϵ

−1
n holds by the definition of J with a positive

constant C7 depending on pmin, pmax and κ, and the third inequality holds by a positive constant
C8 = | log(C3C6)|+C4C7+C5C7(| log((C ′

0C0)
−1C1)|+1)+| logC2|+2 because ϵ−1

n log−(ϵn) ≤
nϵ2n and d log−(ϵn) ≤ nϵ2n. Thus, by Lemma 10 of [15], there exists an event Ωn such that
Pn
θ∗(Ωn) ≥ 1− 1/nϵ2n, and in Ωn,∫

exp(ℓn(θ)− ℓn(θ
∗))dΠ(θ) ≥ exp(−(C8 + 2)nϵ2n). (56)
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By (49) in the proof of Theorem 3.1, there exists a positive constant CH depending on M1, M2, L
and B such that CHDQ(θ, θ

∗) ≤ DH(pθ∗ , pθ) for θ ∈ U . Then, we have

En
θ∗ [Π(DQ(θ, θ

∗) ≥ MJϵn | Dn)1{Ωn}]
≤ En

θ∗ [Π({DQ(θ, θ
∗) ≥ MJϵn} ∩ U | Dn)1{Ωn}] + En

θ∗ [Π(U c | Dn)]

≤ En
θ∗ [Π(Γn | Dn)1{Ωn}] + En

θ∗ [Π(U c | Dn)] , (57)

where Γn = {θ ∈ U : DH(pθ∗ , pθ) ≥ CHMJϵn} for large constants M and J to be chosen later.

Define PU = {pθ : θ ∈ U} and N∗
n = supϵ>ϵn N (ϵ/36, {pθ ∈ PU : θ ∈ Γn},DH). By Lemma

A.7, there exist positive constants C9 and C10 depending on M1, M2, L and B such that

N∗
n ≤ N

(
ϵn/36,PSieve

n ,DH

)
≤ exp(36C9ϵ

−1
n )(36C10ϵ

−1
n )d

≤ exp(36C9nϵ
2
n + d log(36C10nϵ

2
n))

≤ exp(C11nϵ
2
n), (58)

where the third inequality holds because ϵ−1
n ≤ nϵ2n, and the last inequality holds by C11 =

36C9 + | log(36C10)|+ 2 because d log(nϵ2n) ≤ 2nϵ2n. In addition, by Lemma 2 of [15] and Lemma
9 of [15], applied with ϵ = CHMϵn, where CHM ≥ 2, there exist tests ϕn that satisfy

En
θ∗ϕn ≤ N∗

n exp

(
−1

2
C2

HM2nϵ2n

)
1

1− exp
(
− 1

2C
2
HM2nϵ2n

) ,
sup
θ∈Γn

En
θ (1− ϕn) ≤ exp

(
−1

2
C2

HM2J2nϵ2n

)
,

(59)

for any J ≥ 1. Then, by (56), the first term of (57) is upper bounded by

En
θ∗ [Π(Γn | Dn)1{Ωn}] ≤ En

θ∗ϕn + exp((C8 + 2)nϵ2n) sup
θ∈Γn

En
θ (1− ϕn). (60)

If M is sufficiently large to ensure that C2
HM2/2 − C11 > C2

HM2/4, by combining (58) and the
first line of (59), we have

En
θ∗ϕn ≤ exp

((
C11 −

1

2
C2

HM2

)
nϵ2n

)
1

1− exp
(
− 1

2C
2
HM2nϵ2n

)
≤ C12 exp

(
−1

4
C2

HM2nϵ2n

)
,

where C12 = (1 − exp(−2C11))
−1 is a positive constant. If we set J = 1 and choose M to be

sufficiently large such that C2
HM2/2− (2+C8) > C2

HM2/4, by the second line of (59), the second
term in the right hand side of (60) is bounded by

exp

(
−1

4
C2

HM2nϵ2n

)
.

Therefore, if we choose M to be sufficiently large such that M ≥ 2
√

(2 + C8) ∨ C11/CH , by
combining the preceding two displays, (57) and (60), we have

En
θ∗ [Π(DQ(θ, θ

∗) ≥ Mϵn | Dn)1{Ωn}] ≤ (C12 + 1) exp
(
−C13nϵ

2
n

)
+ En

θ∗ [Π(U c | Dn)] ,

where C13 = (C8 + 2) ∨ C11 is a positive constant. By Lemma A.1, if γ < 2/3, the second term on
the right-hand side of the last display is bounded by c2 exp(−c3n) for n ≥ c1, and if γ ≥ 2/3, it is
bounded by c5 exp(−c6n

1/3) for n ≥ c4, where c1, . . . , c6 are positive constants depending on M1,
M2, L, B, pmin, pmax, κ, α, α and ρ. Then, we have

En
θ∗ [Π(DQ(θ, θ

∗) ≥ Mϵn | Dn)1{Ωn}] ≤

{
C14 exp

(
−C15nϵ

2
n

)
, if γ < 2

3 ,

C16 exp
(
−C17n

1
3

)
, if γ ≥ 2

3 ,

where C14 = C12 + 1 + c2, C15 = C13 ∧ c3, C16 = C12 + 1 + c5 and C17 = C13 ∧ c6. By the
Markov inequality and (56), we have that if γ < 2/3,

Π(DQ(θ, θ
∗) ≥ Mϵn | Dn) ≤ C14 exp

(
−C18nϵ

2
n

)
,
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with probability at least 1− (exp(−C18nϵ
2
n) + 1/nϵ2n), where C18 = C15/2, and if γ ≥ 2/3,

Π(DQ(θ, θ
∗) ≥ Mϵn | Dn) ≤ C16 exp

(
−C19n

1
3

)
,

with probability at least 1 − (exp(−C19n
1/3) + 1/nϵ2n), where C19 = C17/2. If we fix M =

⌈2
√
(C8 + 2) ∨ C11/CH⌉, then the proof is complete.

B Proofs for Section 5

B.1 Proof of Lemma 5.1

Proof. We first consider the epoch l − 1 under the condition γl−1 < 1/3. Let ql(· | x) be the
conditional probability mass function of Pt given Xt = x for t ∈ El in epoch l. By Lemma C.5,
ql(· | x) satisfies the assumption (A4) for every epoch l. Then, by Theorem 3.1, there exist positive
constants c1, c2, c3 and c4 depending on L,B, pmin, pmax, κ, α, ρ such that for l ≥ ⌈log2(c4/n1)⌉+1,

Π(DQl−1
(θ, θ∗) ≥ c1ϵl−1 | Dl−1) ≤ c2 exp(−c3nl−1ϵ

2
l−1) (61)

with probability at least 1− exp(−c3nl−1ϵ
2
l−1)− 1/(nl−1ϵ

2
l−1). We partition the parameter space

Θ̃ into two subsets Θ̃l−1,1 = {θ ∈ Θ̃ : DQl−1
(θ, θ∗) < c1ϵl−1} and Θ̃l−1,2 = {θ ∈ Θ̃ :

DQl−1
(θ, θ∗) ≥ c1ϵl−1}. Then, we can decompose θ̂l−1 as

θ̂l−1 =

∫
Θ̃

θ dΠ̃(θ | Dl−1)

=

∫
Θ̃l−1,1

θ dΠ̃(θ | Dl−1) +

∫
Θ̃l−1,2

θ dΠ̃(θ | Dl−1)

= (1− τl−1)θ̂
l−1
1 + τl−1θ̂

l−1
2 , (62)

where τl−1 = Π̃(Θ̃l−1,2 | Dl−1). Here, θ̂l−1
1 and θ̂l−1

2 are the mean estimates of the probability
measures resulting from the restriction and normalization of the truncated posterior distribution on
the sets Θ̃l−1,1 and Θ̃l−1,2, respectively. It is easy to check that the function θ 7→ DQl−1

(θ, θ∗) is
convex and bounded over the domain Θ̃. By Jensen’s inequality, we have

DQl−1
(θ̂l−1

1 , θ∗) ≤
∫
Θ̃l−1,1

DQl−1
(θ, θ∗) dΠ̃1(θ | Dl−1)

< c1ϵl−1, (63)

where Π̃1(· | Dl−1) be the probability measure obtained by restricting and renormalizing Π̃(· | Dl−1)

to Θ̃l−1,1, and the last inequality holds by the definition of Θ̃l−1,1. On the event that the inequality
(61) holds, we have that with probability at least 1 − exp(−c3nl−1ϵ

2
l−1) − 1/(nl−1ϵ

2
l−1), for l ≥

⌈log2(c4/n1)⌉+ 1, it follows that

DQl−1
(θ̂l−1, θ∗) ≤ (1− τl−1)DQl−1

(θ̂l−1
1 , θ∗) + τl−1DQl−1

(θ̂l−1
2 , θ∗)

< c1ϵl−1 +
Π(Θ̃l−1,2 | Dl−1)

Π(Θ̃ | Dl−1)
DQl−1

(θ̂l−1
2 , θ∗)

≤ c1ϵl−1 +
c2 exp(−c3nl−1ϵ

2
l−1)

1− c2 exp(−c3nl−1ϵ2l−1)
· (1 +

√
d(a ∨ b) +B)

≤ C1ϵl−1,

where the first inequality holds because of the convexity of the function θ 7→ DQl−1
(θ, θ∗) and (62),

and the second inequality holds by (63) and the definition of τl−1. The third inequality follows from
Π(Θ̃ | Dl−1) ≥ 1−Π(Θ̃l−1,2 | Dl−1), combined with inequality (61) and the boundedness of DQl−1

over Θ̃ under the assumption (A1). The last inequality holds with a positive constant C1 depending
on c1, c2, c3, a, b and B, since

√
d exp(−c3nl−1ϵ

2
l−1)/(1− c2 exp(−c3nl−1ϵ

2
l−1)) ≲ ϵl−1.
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By similar arguments as before, for the epoch l− 1 under the condition γl−1 ≥ 1/3, by Theorem 3.2,
there exist positive constants c5, c6, c7 and c8 depending on L,B, pmin, pmax, κ, α and ρ such that
for l ≥ ⌈log2(c8/n1)⌉+ 1,

Π(DQl−1
(θ, θ∗) ≥ c5ϵl−1 | Dl−1) ≤ c6ξk−1,

where

ξk−1 =

{
exp(−c7nl−1ϵ

2
l−1) if 1

3 ≤ γl−1 < 2
3 ,

exp(−c7n
1/3
l−1) if γl−1 ≥ 2

3 ,

with probability at least 1− ξk−1 − 1/(nl−1ϵ
2
l−1). Since exp(−c7nl−1ϵ

2
l−1) ≤ exp(−c7n

1/3
l−1), we

unify the cases where γl−1 is either greater than or less than 2/3 and obtain the bound

Π(DQl−1
(θ, θ∗) ≥ c5ϵl−1 | Dl−1) ≤ c6 exp(−c7n

1/3
l−1), (64)

with probability at least 1− exp(−c7n
1/3
l−1)− 1/(nl−1ϵ

2
l−1). Similarly, for l ≥ ⌈log2(c8/n1)⌉+ 1,

we have

DQl−1
(θ̂l−1, θ∗) ≤ C2ϵl−1,

with probability at least 1−exp(−c7n
1/3
l−1)−1/(nl−1ϵ

2
l−1), where C2 is a positive constant depending

on c5, c6, c7, a, b and B. The proof is then complete.

B.2 Proof of Theorem 5.2

Lemma B.1. Suppose that assumptions (A1)-(A3), (A5) and (B1)-(B2) hold. Suppose that the prior
distribution Π is specified as in (4), and the policy πl for each epoch l is defined by (5). Then, there
exist positive constants C1, C2, C3 and C4 depending on L, B, pmin, pmax, κ, α, ρ, a, b, η1, η2 and
n1 such that for l ≥ C1,∑

t∈El

r(t) ≤ C2nlDQl−1
(θ̂l−1, θ∗) + C3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

with probability at least 1− (exp(−C4n
1/3
l ) + 3/n2

l ).

Proof. The regret in epoch l is decomposed and upper bounded by∑
t∈El

r(t) =
∑
t∈El

(P ∗
t Hθ∗(Xt, P

∗
t )− PtHθ∗(Xt, Pt))

=
∑
t∈El

{(
P ∗
t Hθ∗(Xt, P

∗
t )− P ∗

t Hθ̂l−1(Xt, P
∗
t )
)
+
(
P ∗
t Hθ̂l−1(Xt, P

∗
t )− PtHθ̂l−1(Xt, Pt)

)
+
(
PtHθ̂l−1(Xt, Pt)− PtHθ∗(Xt, Pt)

)}
≤
∑
t∈El

(
P ∗
t Hθ̂l−1(Xt, P

∗
t )− PtHθ̂l−1(Xt, Pt)

)
︸ ︷︷ ︸

(i)

+pmax

∑
t∈El

∣∣Hθ̂l−1(Xt, P
∗
t )−Hθ∗(Xt, P

∗
t )
∣∣

︸ ︷︷ ︸
(ii)

+ pmax

∑
t∈El

∣∣Hθ̂l−1(Xt, Pt)−Hθ∗(Xt, Pt)
∣∣

︸ ︷︷ ︸
(iii)

, (65)

where the last inequality holds because any Pt and P ∗
t lie in G ⊂ [pmin, pmax] almost surely. Note

that {(Xt, Pt, P
∗
t )}t∈El

is an i.i.d. sample of joint distribution which satisfies Pt ∼ Ql, P
∗
t ∼ Q∗ and

Xt ∼ PX . Since P ∗
t Hθ̂l−1(Xt, P

∗
t )−PtHθ̂l−1(Xt, Pt) ∈ [−pmax, pmax], by Hoeffding’s inequality,

it holds that

(i) < 2pmaxn
1
2

l (log nl)
1
2 + E

[∑
t∈El

(
P ∗
t Hθ̂l−1(Xt, P

∗
t )− PtHθ̂l−1(Xt, Pt)

)]
, (66)
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with probability at least 1− 1/n2
l . Let P̂t ∈ argmaxp∈G pHθ̂l−1(Xt, p), and let U denote a uniform

random variable over G. By the design of Algorithm 1, we have Pt = RP̂t + (1−R)U , where R is
a Bernoulli random variable with success probability 1− ηl. By the law of total expectation, we have

E
[
PtHθ̂l−1(Xt, Pt)

]
= (1− ηl)E

[
P̂tHθ̂l−1(Xt, P̂t)

]
+ ηlE

[
UHθ̂l−1(Xt, U)

]
.

By substituting this in (66), the second term of (66) is bounded by

E

[∑
t∈El

(
P ∗
t Hθ̂l−1(Xt, P

∗
t )− PtHθ̂l−1(Xt, Pt)

)]
= (1− ηl)

∑
t∈El

E
[
P ∗
t Hθ̂l−1(Xt, P

∗
t )− P̂tHθ̂l−1(Xt, P̂t)

]
+ ηl

∑
t∈El

E
[
P ∗
t Hθ̂l−1(Xt, P

∗
t )− UHθ̂l−1(Xt, U)

]
≤ ηl

∑
t∈El

pmax

≤ C0

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

where the first inequality holds because P ∗
t Hθ̂l−1(Xt, P

∗
t )− P̂tHθ̂l−1(Xt, P̂t) ≤ 0 by the definition

of P̂t, and the last inequality holds by the definition of ηl (6) and (7) with a positive constant C0

depending on pmin, pmax, κ, η1 and η2. Combining this with (66), we have

(i) < C1

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2 , (67)

with probability at least 1− 1/n2
l , where C1 = 2pmax + C0 is a positive constant.

For (ii) and (iii), by Lemma C.6, for every ϵ > 0, there exist positive constants c1 and c2 depending
on L,B, pmin, pmax, κ, α, ρ, a, b, n1 and ϵ such that for large l ≥ c1, we have

∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2 < ϵ,

with probability at least 1 − exp(−c2n
1/3
l−1). Note that there exist constants M1 and M2 such

that 0 < M1 ≤ S∗
0 (pmax) < S∗

0 (pmin) ≤ M2 < 1 by assumption (A5). Take ϵ = C2, where
C2 = ((M1 ∧ (1−M2))/2 ∧B). On the event that the preceding inequality holds, we have

∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2 < C2.

This implies that Ŝl−1
0,1 > M1/2 > 0, Ŝl−1

0,K < (1 + M2)/2 < 1 and ∥β̂l−1∥2 < 2B. Then, by

Lemma C.2, for any p ∈ G and l ≥ c1, with probability at least 1− exp(−c2n
1/3
l−1), we have

|Hθ̂l−1(Xt, p)−Hθ∗(Xt, p)| ≤ C3|Ŝl−1
0 (p)− S∗

0 (p)|+ C4∥β̂l−1 − β∗∥2, (68)

where C3 and C4 are positive constants depending on M1, M2, L and B.

Let Ω1 be the event that (68) holds. For (ii), under the event Ω1, we have

(ii) < C3

∑
t∈El

|Ŝl−1
0 (P ∗

t )− S∗
0 (P

∗
t )|+ C4

∑
t∈El

∥β̂l−1 − β∗∥2

= C3

∑
t∈El

|Ŝl−1
0 (P ∗

t )− S∗
0 (P

∗
t )|+ C4nl∥β̂l−1 − β∗∥2.

Since |Ŝl−1
0 (P ∗

t ) − S∗
0 (P

∗
t )| ≤ 1, by Hoeffding’s inequality, there exists an event Ω2 such that

P(Ω2) ≥ 1− 1/n2
l , and in Ω2,∑

t∈El

|Ŝl−1
0 (P ∗

t )− S∗
0 (P

∗
t )| ≤ nlE

[
|Ŝl−1

0 (P ∗
t )− S∗

0 (P
∗
t )|
]
+ n

1
2

l (log nl)
1
2 .

Recall the definition of Pc from (87). It easy to see that if P ∗
t = p for some p ∈ G, then Pc ∈

(p − δ, p + δ). Thus, we have P(Pc ∈ (p − δ, p + δ)) ≥ P(P ∗
t = p). Let Pl be a random
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variable distributed from Ql in epoch l. By Lemma C.7 and Portmanteau theorem, we obtain
liml→∞ P(Pl ∈ (p − δ, p + δ)) = P(Pc ∈ (p − δ, p + δ)). Combining these results, we have
liml→∞ ql(p) = liml→∞ P(Pl = p) ≥ P(P ∗

t = p) = q∗(p). Then, for sufficiently large l, we have

E
[
|Ŝl−1

0 (P ∗
t )− S∗

0 (P
∗
t )|
]
=
∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|q∗(p)

=
∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|
q∗(p)

qk−1(p)
qk−1(p)

≤ C5

∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|qk−1(p)

≤ C5

∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|2qk−1(p)

 1
2

= C5∥Ŝl−1
0 − S∗

0∥2,Ql−1
,

where the last inequality holds by Jensen’s inequality, and C5 be a positive constant. Combining the
last three displays, under the event Ω1 ∩ Ω2, we have

(ii) < C6nl

(
∥Ŝl−1

0 − S∗
0∥2,Ql−1

+ ∥β̂l−1 − β∗∥2
)
+ C3n

1
2

l (log nl)
1
2

= C6nlDQl−1

(
(Ŝl−1

0 , β̂l−1), (S∗
0, β

∗)
)
+ C3n

1
2

l (log nl)
1
2 (69)

where C6 = C3C5 ∨ C4 be a positive constant.

Similarly, for (iii), under the event Ω1, we have

(iii) < C3

∑
t∈El

|Ŝl−1
0 (Pt)− S∗

0 (Pt)|+ C4nl∥β̂l−1 − β∗∥2.

By Hoeffding’s inequality, there exists an event Ω3 such that P(Ω3) ≥ 1− 1/n2
l , and in Ω3,∑

t∈El

|Ŝl−1
0 (Pt)− S∗

0 (Pt)| ≤ nlE
[
|Ŝl−1

0 (Pt)− S∗
0 (Pt)|

]
+ n

1
2

l (log nl)
1
2 .

Note that if Pc ∈ (p − δ, p + δ) for some p ∈ G, then P ∗
t ∈ {p − δ, p, p + δ}. By Lemma C.7

and Portmanteau theorem, we have liml→∞ ql(p) = liml→∞ P(Pl ∈ (p − δ, p + δ)) = P(Pc ∈
(p − δ, p + δ)) ≤ P(P ∗

t = p − δ) + P(P ∗
t = p) + P(P ∗

t = p + δ) ≲ δ, where the last inequality
holds by Assumption (B2). Then, for sufficiently large l, we have

E
[
|Ŝl−1

0 (Pt)− S∗
0 (Pt)|

]
=
∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|ql(p)

=
∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|
ql(p)

q∗(p)

q∗(p)

qk−1(p)
qk−1(p)

≤ C7

∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|qk−1(p)

≤ C7

∑
p∈G

|Ŝl−1
0 (p)− S∗

0 (p)|2qk−1(p)

 1
2

= C7∥Ŝl−1
0 − S∗

0∥2,Ql−1
.

Combining the last three displays, under the event Ω1 ∩ Ω3, we have

(iii) < C8nlDQl−1

(
(Ŝl−1

0 , β̂l−1), (S∗
0, β

∗)
)
+ C3n

1
2

l (log nl)
1
2 , (70)

where C8 = C3C7 ∨ C4 be a positive constant.
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From (65), (67), (69) and (70), for sufficiently large l, with probability at least 1− (exp(−c2/2
1/3 ·

n
1/3
l ) + 3/n2

l ), it holds that∑
t∈El

r(t) ≤ C1

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2 + pmax

(
C6nlDQl−1

(
(Ŝl−1

0 , β̂l−1), (S∗
0, β

∗)
)
+ C3n

1
2

l (log nl)
1
2

)
+ pmax

(
C8nlDQl−1

(
(Ŝl−1

0 , β̂l−1), (S∗
0, β

∗)
)
+ C3n

1
2

l (log nl)
1
2

)
= C9nlDQl−1

(
(Ŝl−1

0 , β̂l−1), (S∗
0, β

∗)
)
+ C10

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2 ,

where C9 = pmax(C6 + C8) and C10 = C1 + 2pmaxC3 are positive constants. Then, the proof is
complete.

Lemma B.2. Suppose that assumptions (A1)-(A3), (A5) and (B1)-(B2) hold. Suppose that the prior
distribution Π is specified as in (4), and the policy πl for each epoch l is defined by (5). Then, there
exist positive constants C1, . . . , C5 depending on L, B, pmin, pmax, κ, α, ρ, a, b, η1, η2 and n1 such
that for l ≥ C1,∑

t∈El

r(t) ≤

{
C2d

1
2n

1
2

l (log(d ∨ nl))
1
2 + C3n

1+γl
2

l (log nl)
1
2 if γl−1 < 1

3

C2d
1
2n

1
2

l (log(d ∨ nl))
1
2 + C3n

2
3

l (log nl)
1
2 if γl−1 ≥ 1

3 ,

with probability at least 1− ζl, where

ζl =

{
C4/n

γl−1

l−1 if γl−1 < 1
3

C5/n
1
3

l−1 if γl−1 ≥ 1
3 .

Proof. By Lemma B.1, there exist positive constants c1, c2, c3 and c4 depending on L, B, pmin,
pmax, κ, α, ρ, a, b, η1, η2 and n1 such that for l ≥ c1,∑

t∈El

r(t) ≤ c2nlDQl−1
(θ̂l−1, θ∗) + c3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2 (71)

with probability at least 1− exp(−c4n
1/3
l )− 3/n2

l . In addition, by Lemma 5.1, there exist positive
constants c5, c6, c7 and c8 depending on L, B, pmin, pmax, κ, α, ρ, a, b and n1 such that for l ≥ c5,

DQl−1
(θ̂l−1, θ∗) ≤ c6ϵl−1 (72)

with probability at least 1− ζl−1 − 1/(nl−1ϵ
2
l−1), where

ϵl =


√

d
nl

√
log(d ∨ nl) + n

− 1−γl
2

l

√
log nl if γl < 1

3 ,√
d
nl

√
log(d ∨ nl) +

(
lognl

nl

) 1
3

if γl ≥ 1
3 .

and

ζl =

{
exp(−c7nlϵ

2
l ) if γl < 1

3 ,

exp(−c8n
1
3

l ) if γl ≥ 1
3 .

Consider the epoch l − 1 satisfying γl−1 < 1/3. On the event both (71) and (72) hold, for epoch
l ≥ c1 ∨ c5, we have∑
t∈El

r(t) ≤ c2c6nlϵl−1 + c3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

≤ 2c2c6

(√
nl−1d

√
log(d ∨ nl−1) + n

1+γl−1
2

l−1

√
log nl−1

)
+ c3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

≤ C1d
1
2n

1
2

l (log(d ∨ nl))
1
2 + C2n

1+γl
2

l (log nl)
1
2 ,
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where the second inequality holds by substituting nl = 2nl−1 and ϵl−1, and the last inequality holds
with positive constants C1 = 2c2c6 and C2 = 2c2c6cp + c3 because it holds that nγl−1

l−1 ≍ nγl

l due to
(7), where cp is a positive constant depending on pmin, pmax and κ. Similarly, for epoch l ≥ c1 ∨ c5
satisfying γl−1 ≥ 1/3, we have∑
t∈El

r(t) ≤ c2c6nlϵl−1 + c3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

≤ 2c2c6

(√
nl−1d

√
log(d ∨ nl−1) + n

2
3

l−1(log nl−1)
1
3

)
+ c3

(
n

1+γl
2

l ∧ n
2
3

l

)
(log nl)

1
2

≤ C1d
1
2n

1
2

l (log(d ∨ nl))
1
2 + C2n

2
3

l (log nl)
1
2 .

Let Ω1 and Ω2 denote the events where inequalities (71) and (72) hold, respectively. Then, for epoch
l − 1 satisfying γl−1 < 1/3, we obtain

P(Ωc
1 ∪ Ωc

2) ≤ exp(−c4n
1/3
l ) + 3/n2

l + exp(−c7nl−1ϵ
2
l−1) + 1/(nl−1ϵ

2
l−1)

≤ 1/(21/3c4n
1/3
l−1) + 3/(4n2

l−1) + 1/(c7n
γl−1

l−1 ) + 1/n
γl−1

l−1

≤ C3/n
γl−1

l−1 ,

where the second inequality holds because exp(−x) ≤ 1/x for any x > 0 and nlϵ
2
l ≥ nγl

l ,
and the last inequality holds since γl−1 < 1/3, and C3 is a positive constant defined as C3 =
1/(21/3c4) + 1/c7 + 7/4. Similarly, for epoch l − 1 satisfying γl−1 ≥ 1/3, we have

P(Ωc
1 ∪ Ωc

2) ≤ exp(−c4n
1/3
l ) + 3/n2

l + exp(−c8n
1/3
l−1) + 1/(nl−1ϵ

2
l−1)

≤ 1/(21/3c4n
1/3
l−1) + 3/(4n2

l−1) + 1/(c8n
1/3
l−1) + 1/n

1/3
l−1

≤ C4/n
1/3
l−1,

where the second inequality holds because nlϵ
2
l ≥ n

1/3
l , and the last inequality holds by a positive

constant C4 = 1/(21/3c4) + 1/c8 + 7/4. Then, the proof is complete.

Proof of Theorem 5.2. Before proceeding, we may without loss of generality assume that the last
epoch is complete (i.e., T = n1(2

N − 1) for some integer N ≥ 1). If not (i.e., n1(2
N−1 − 1) <

T < n1(2
N − 1)), the regret associated with the incomplete last epoch will be no greater than if

it were completed. Thus, the number of epochs N and T satisfies T = n1(2
N − 1), equivalently

N = log2(T/n1 + 1).

We first consider the case where γ < 1/3. We define Nγ0
:= ⌊log2(T γ0/n1)⌋+2, where γ0 ∈ (0, 1)

is a constant to be chosen later. Note that Nγ0 < N for a sufficiently large T ≥ 22/(1−γ0). For epoch
l ≤ Nγ0 , we have

l ≤ ⌊log2(T γ0/n1)⌋+ 2 ≤ log2(T
γ0/n1) + 2,

and hence nl−1 = n12
l−2 ≤ T γ0 . Therefore, by the equation (7), we have

Kk−1 =

⌊
pmax − pmin

κ
T γ

⌋
≥
⌊
pmax − pmin

κ
nl−1

γ/γ0

⌋
,

for all l ≤ Nγ0
. If we set γ0 = 3γ, then we have⌊

pmax − pmin

κ
nl−1

γl−1

⌋
≥
⌊
pmax − pmin

κ
nl−1

1/3

⌋
.

Then, the condition γl−1 ≥ 1/3 is sufficient to hold the preceding inequality. On the other hand, for
epoch l > Nγ0

, since l is an integer value, we have l ≥ ⌊log2(T γ0/n1)⌋+ 3 > log2(T
γ0/n1) + 2,

and hence nl−1 = n12
l−2 > T γ0 . Therefore, by the equation (7) and setting γ0 = 3γ, we have⌊
pmax − pmin

κ
nl−1

γl−1

⌋
<

⌊
pmax − pmin

κ
nl−1

1/3

⌋
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for all l > Nγ0 , and the condition γl−1 < 1/3 is sufficient to hold this inequality. By Lemma B.2,
there exit positive constants c1, . . . , c5 depending on L, B, pmin, pmax, κ, α, ρ, a, b, η1, η2 and n1

such that for l ≥ c1,∑
t∈El

r(t) ≤

{
c2d

1
2n

1
2

l (log(d ∨ nl))
1
2 + c3n

1+γl
2

l (log nl)
1
2 if l > N3γ

c2d
1
2n

1
2

l (log(d ∨ nl))
1
2 + c3n

2
3

l (log nl)
1
2 if l ≤ N3γ ,

(73)

with probability at least 1− ζl, where

ζl =

{
c4/n

γl−1

l−1 if l > N3γ

c5/n
1
3

l−1 if l ≤ N3γ .

For unity of notation, we denote N0 := ⌈c1⌉ − 1. Note that N0 < N3γ for sufficiently large
T ≥ (2N0+1n1)

1/(3γ). Let Ω1,l and Ω2,l denote the events where the first and second inequalities in
(73) are satisfied for each epoch l, respectively. Then, we have

P


N3γ⋂

l=N0+1

Ω1,l

 ∩


N⋂

l=N3γ+1

Ω2,l


 ≥ 1−

N3γ∑
l=N0+1

c5n
− 1

3

l−1 −
N∑

l=N3γ+1

c4n
−γl−1

l−1

> 1− c4 ∨ c5 ·
N∑

l=N0+1

n
−γl−1

l−1

≥ 1− (c4 ∨ c5)c
−1
p · log(T/n1 + 1)T−γ , (74)

where the second inequality holds because γl−1 < 1/3 for l > N3γ , and the last inequality follows
from n

γl−1

l−1 ≥ cpT
γ by (7). Here, cp is a positive constant depending on pmin, pmax and κ.

Now, we decompose the cumulative regret as

R(T ) =

N0∑
l=1

∑
t∈El

r(t)︸ ︷︷ ︸
(i)

+

N3γ∑
l=N0+1

∑
t∈El

r(t)︸ ︷︷ ︸
(ii)

+

N∑
l=N3γ+1

∑
t∈El

r(t)

︸ ︷︷ ︸
(iii)

.

For (i), note that pS∗
0 (p)

exp(x⊤β∗) is upper bounded by a positive constant C1 := max{pS∗
0 (p)

exp(v) :
p ∈ [pmin, pmax], v ∈ [−BL,BL]} depending on pmin, pmax, B and L. Then, we have

(i) ≤
N0∑
l=1

∑
t∈El

C1 = C2,

where C2 = n1(2
N0 − 1)C1 be a constant and does not depend on T . Let Ω be the event in the

probability notation in the display (74). For (ii), under the event Ω, by (73), we have

(ii) ≤
N3γ∑

l=N0+1

{
c2d

1
2n

1
2

l (log(d ∨ nl))
1
2 + c3n

2
3

l (log nl)
1
2

}
≤ C3 · d

1
2T

3
2γ(log(d ∨ T ))

1
2 + C4 · T 2γ(log T )

1
2 ,

where C3 = 2
5
2 c2 and C4 = 23c3 are positive constants. Similarly, for (iii), under the event Ω, we

obtain

(iii) ≤
N∑

l=N3γ+1

{
c2d

1
2n

1
2

l (log(d ∨ nl))
1
2 + c3n

1+γl
2

l (log nl)
1
2

}

≤ C5 · d
1
2T

1
2 (log(d ∨ T ))

1
2 + c3

N∑
l=1

n
γl
2

l n
1
2

l (log nl)
1
2

≤ C5 · d
1
2T

1
2 (log(d ∨ T ))

1
2 + c3C

1
2
p · T

γ
2

N∑
l=1

n
1
2

l (log nl)
1
2

≤ C5 · d
1
2T

1
2 (log(d ∨ T ))

1
2 + C6 · T

γ+1
2 (log T )

1
2 ,
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where the first inequality follows from (73), the second inequality holds for a positive constant
C5 = 22c2, the third inequality holds because nγl

l ≤ CpT
γ for any l = 1, . . . , N by (7) with a

positive constant Cp depending on pmin, pmax and κ, and the last inequality holds for a positive

constant C6 = 22c3C
1
2
p . Combining the last five displays, for sufficiently large T ≥ C7, it holds that

R(T ) ≤ C2 + (C3 + C5) · d
1
2T

1
2 (log(d ∨ T ))

1
2 + C4 · T 2γ(log T )

1
2 + C6 · T

γ+1
2 (log T )

1
2

≤ C8d
1
2T

1
2 (log(d ∨ T ))

1
2 + C9T

γ+1
2 (log T )

1
2 ,

with probability at least 1− C10 log(T/n1 + 1)/T γ , where C7 = (22/(1−3γ)) ∨ ((2N0+1n1)
1/(3γ)),

C8 = C2 + C3 + C5, C9 = C4 + C6 and C10 = (c4 ∨ c5)c
−1
p are positive constants, and the last

inequality holds because T 2γ ≤ T
γ+1
2 for γ < 1/3.

Next, we consider the case where γ ≥ 1/3. For any epoch l ≤ N , we have 2l−2 < 2l − 1 ≤ T/n1,
and hence nl−1 = n12

l−2 < T . Therefore, by the equation (7), we have⌊
pmax − pmin

κ
nl−1

γl−1

⌋
=

⌊
pmax − pmin

κ
T γ

⌋
≥
⌊
pmax − pmin

κ
nl−1

γ

⌋
.

Then, the condition γl−1 ≥ γ ≥ 1/3 is sufficient to hold the last display. By Lemma B.2, the event
Ω2,l in (73) holds for all l > N0, and we have

P(Ω2,l) ≥ 1− c5/n
1
3

l−1 for l > N0.

We define N1 := ⌊log2(T 2/3/n1)⌋+ 1. Note that N0 < N1 for sufficiently large T > (2N0n1)
3/2.

Then, by the preceding display, we obtain

P

[{
N⋂

l=N1+1

Ω2,l

}]
≥ 1−

N∑
l=N1+1

c5n
− 1

3

l−1

> 1− 2
1
3 c5

N∑
l=N1+1

T− 2
9

≥ 1− 2
1
3 c5 · log(T/n1 + 1)T− 2

9 ,

where the second inequality holds because nl−1 > 2−1T 2/3 for l ≥ N1 + 1. Let Ω′ be the event in
the probability notation in the preceding display.

Now, we decompose the cumulative regret as

R(T ) =

N1∑
l=1

∑
t∈El

r(t)︸ ︷︷ ︸
(I)

+

N∑
l=N1+1

∑
t∈El

r(t)︸ ︷︷ ︸
(II)

.

For (I), we have

(I) ≤
N1∑
l=1

∑
t∈El

C1 ≤ C1

N1∑
l=1

nl ≤ 2C1 · T
2
3 .

For (II), under the event Ω′, we obtain

(II) ≤
N∑

l=N1+1

{
c2d

1
2n

1
2

l (log(d ∨ nl))
1
2 + c3n

2
3

l (log nl)
1
2

}
≤ C11 · d

1
2T

1
2 (log(d ∨ T ))

1
2 + C12 · T

2
3 (log T )

1
2 ,

where C11 = 22c2 and C12 = 2
7
3 c3 are positive constants. Combining the last four displays, for

sufficiently large T ≥ C13, it holds that

R(T ) ≤ C11d
1
2T

1
2 (log(d ∨ T ))

1
2 + C14T

2
3 (log T )

1
2 ,

with probability at least 1−C15 log(T/n1+1)/T 2/9, where C13 = (2N0n1)
3/2+1, C14 = 2C1+C12

and C15 = 21/3c5 are positive constants. This completes the proof.
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B.3 Proof of Theorem 5.3

Proof. Recall the grid support G = {gi : i = 1, . . . ,K}, where gi = pmin + iδ, δ = κT−γ for some
κ > 0, and K = ⌊(pmax − pmin)/δ⌋. Let pt, rt and yt be the offered price, the revenue and the
feedback at time t, respectively. Let ht = (p1, r1, p2, r2, . . . , pt, rt) be a history over t times. Note
that ht can be induced by (p1, y1, . . . , pt, yt) since rt = ptyt. Define a policy π = (πt)

T
t=1, where

πt is a conditional distribution of price pt given ht−1 supported on G. We denote the conditional
distribution of revenue rt given pt with respect to the complementary c.d.f. S(p) = 1 − F (p) by
PS
pt

. With abuse of notation we view πt : G → [0, 1] and PS
pt

: {0, pt} → [0, 1] as probability mass
function. In addition, we abuse notation by writing PS

i = PS
pt

if pt = gi for some gi ∈ G. For given
S(·), note that rt = ptyt where yt ∼ Bin(1, S(pt)). Then, we have

PS
pt
(rt) = S(pt)

rt
pt (1− S(pt))

1− rt
pt

= S(pt)
yt(1− S(pt))

1−yt . (75)

For given S, let vS = (PS
1 , PS

2 , . . . , PS
K) be the reward distributions associated with a K-armed

bandit. For given policy π and bandit vS , we denote the joint distribution of (p1, r1, . . . , pT , rT ) by
PvSπ . Then, the probability of obtaining a fixed configuration (p1, r1, . . . , pT , rT ) is given by

PvSπ(p1, r1, . . . , pT , rT ) =

T∏
t=1

πt(pt|ht−1)P
S
pt
(rt). (76)

Based on this, we define the expected regret by

R(T, S) := EvSπ

[
T∑

t=1

r(p∗, S)− r(pt, S)

]
,

where r(p, S) := pS(p) be the expected revenue with respect to S for p ∈ G, p∗ =
argmaxp∈G{pS(p)} be the optimal price and EvSπ denotes the expectation under PvSπ. Further,
we define the suboptimality gap of index i by ∆S

i := r(p∗, S)− r(gi, S) for i = 1, . . . ,K. For the
simplicity of notation we use PS and ES in place of PvSπ and EvSπ , respectively, for a fixed policy
π.

Now, we first construct two bandits vS1
and vS′

1
for S1, S

′
1 ∈ S := {S : G → [0, 1] | 1 > M2 >

S(g1) ≥ · · · ≥ S(gK) > M1 > 0 for some 0 < M1 < M2 < 1} in the following description. Fix
a policy π and suppose that γ < 1/3. Let ϵ > 0 be some constant to be chosen later. We define a
bandit vS1 = (PS1

1 , . . . , PS1

K ) such that for some j1 ∈ [K],

{
S1(gi) = (c+ ϵ) · g−1

i if i = j1
S1(gi) = c · g−1

i otherwise,
(77)

where c > 0 be a constant so that S1 ∈ S . Note that c only depends on M1,M2, pmin and pmax. For
i = 1, . . . ,K, let Ni(t) :=

∑t
s=1 1{ps = gi} be the number of times price gi was chosen by the

policy over t times, and j′1 = argmini ̸=j1 ES1
[Ni(T )]. Since

∑K
i=1 ES1

[Ni(T )] = T , it holds that
ES1

[Nj′1
(T )] ≤ T

K−1 .

The second bandit vS′
1
= (P

S′
1

1 , . . . , P
S′
1

K ) is defined by


S′
1(gi) = (c+ ϵ) · g−1

i if i = j1
S′
1(gi) = (c+ 2ϵ) · g−1

i if i = j′1
S′
1(gi) = c · g−1

i otherwise.
(78)
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Therefore, r(gi, S1) = r(gi, S
′
1) except at index j′1 and the optimal price in vS1 is gj1 , while in vS′

1
,

gj′1 is the optimal price. Then, we have

R(T, S1) = ES1

[
T∑

t=1

r(gj1 , S1)− r(pt, S1)

]

=

K∑
i=1

∆S1
i ES1

[Ni(T )]

=
∑

i∈[K],i̸=j1

ϵ · ES1
[Ni(T )]

= ϵ (T − ES1
[Nj1(T )])

≥ Tϵ

2
· PS1

(
Nj1(T ) ≤

T

2

)
,

where the second equality holds by the regret decomposition and the third equality holds because
∆S1

i = (c+ ϵ)− c = ϵ for i ̸= j1. Similarly, we have

R(T, S′
1) =

K∑
i=1

∆
S′
1

i ES′
1
[Ni(T )]

> ϵ · ES′
1
[Nj1(T )]

>
Tϵ

2
· PS′

1

(
Nj1(T ) >

T

2

)
.

Combining the last two displays and Lemma 2.6 in [42], we have

R(T, S1) +R(T, S′
1) >

Tϵ

2

(
PS1

(
Nj1(T ) ≤

T

2

)
+ PS′

1

(
Nj1(T ) >

T

2

))
≥ Tϵ

4
exp

(
−K(PS1 , PS′

1
)
)
.

By Lemma 1 in [14], the KL divergence K(PS1 , PS′
1
) is bounded by

K(PS1
, PS′

1
) =

K∑
i=1

ES1
[Ni(T )]K(PS1

i , P
S′
1

i )

= ES1

[
Nj′1

(T )
]
K(PS1

j′1
, P

S′
1

j′1
)

≤ T

K − 1
K(PS1

j′1
, P

S′
1

j′1
),

where the first equality holds by (76), the second equality holds by the definition of S1 and S′
1, and

the first inequality holds by the definition of index j′1. Note that (75) implies that PS1

j′1
and P

S′
1

j′1
are distributions of Bernoulli random variables with parameters S1(gj′1) and S′

1(gj′1), respectively.
Therefore, by Corollary 3.1 in [40], we have

K(PS1

j′1
, P

S′
1

j′1
) ≤

(S1(gj′1)− S′
1(gj′1))

2

S′
1(gj′1)(1− S′

1(gj′1))

<
(2ϵg−1

j′1
)2

M1M2

≤ 4

p2minM1M2
ϵ2,

where the second inequality holds by the definition of S1 and S′
1, and the last inequality holds because

gi ∈ [pmin, pmax] for any i ∈ [K].

Now, it remains to choose ϵ. Due to the monotonicity of the distribution functions S1 and S′
1, there

are additional constraints in choosing ϵ. Specifically, by the definition of S1 (77), the following
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condition must hold: (c + ϵ) · g−1
j1

≤ c · g−1
j1−1. By the direct calculations, we obtain ϵ ≤ c

gj1−1
δ.

Since gi ∈ [pmin, pmax] for any i ∈ [K], it is sufficient to choose ϵ ≤ c
pmax

δ to satisfy this condition.
Similarly, we consider the monotonicity of S′

1, but before doing so, we divide it into two cases: (a)
j1 < j′1 and (b) j1 > j′1. For the case (a), it is necessary that S′

1(gj′1) ≤ S′
1(gj1) ≤ S′

1(gj1−1) holds,
and for the case (b), S′

1(gj′1) ≤ S′
1(gj′1−1) must hold. By the simple calculations, ϵ ≤ c

2pmax
δ is

sufficient to satisfy the above conditions. Since
√
K/T ≪ δ if γ < 1/3, it is sufficient to choose

ϵ = C
√
K/T for a small enough constant C > 0. Combining this with the three preceding displays,

there exists a constant C1 > 0 such that

R(T, S1) +R(T, S′
1) ≥ C1

√
KT

≳ T
1+γ
2 .

It completes the proof for the case γ < 1/3.

In the second case that γ ≥ 1/3, we construct another pair of bandits vS2 and vS′
2

for S2, S
′
2 ∈ S in the

following description. Let ϵ2 = κT− 1
3 and i1, . . . , iJ be positive integers such that pmin + jϵ2 − δ <

gij ≤ pmin + jϵ2 for j = 1, . . . , J , where J = ⌊(pmax − pmin)/ϵ2⌋. We define partitions Ij of index
set [K] by Ij = {i ∈ [K] : ij−1 < i ≤ ij} for j = 1, . . . , J , where i0 = 0 with g0 = pmin. Then,
we define a bandit vS2

= (PS2
1 , . . . , PS2

K ) such that for some j2 ∈ [J ],{
S2(gi) = (c+ ϵ2) · g−1

ij2
if i ∈ Ij2

S2(gi) = c · g−1
ij

if i ∈ Ij for j ∈ [J ] except at j2.
(79)

Let Mj(t) :=
∑

i∈Ij
Ni(t) for j = 1, . . . , J , and j′2 = argminj ̸=j2 ES2 [Mj(T )]. Since∑J

j=1 ES2
[Mj(T )] = T , it holds that ES2

[Mj′2
(T )] ≤ T

J−1 . Then, the second bandit vS′
2
=

(P
S′
2

1 , . . . , P
S′
2

K ) is defined by
S′
2(gi) = (c+ ϵ2) · g−1

ij2
if i ∈ Ij2

S′
2(gi) = (c+ 2ϵ2) · g−1

ij′2
if i ∈ Ij′2

S′
2(gi) = c · g−1

ij
if i ∈ Ij for j ∈ [J ] except at j2 and j′2.

(80)

Therefore, r(gi, S2) = r(gi, S
′
2) except at index i ∈ Ij′2 and the optimal price in vS2

is gij2 , while
in vS′

2
, gij′2

is the optimal price. For j = 1, . . . , J except at j2, note that ∆S2
i ≥ ϵ2 for i ∈ Ij since

r(gij2 , S2) = c+ ϵ2 and r(gi, S2) ≤ c by the definition of S2. Then, we have

R(T, S2) =

K∑
i=1

∆S2
i ES2

[Ni(T )]

=
∑

j∈[J],j ̸=j2

∑
i∈Ij

∆S2
i ES2 [Ni(T )]

≥
∑

j∈[J],j ̸=j2

ϵ2 · ES2 [Mj(T )]

= ϵ2 (T − ES2
[Mj2(T )])

≥ Tϵ

2
· PS2

(
Mj2(T ) ≤

T

2

)
,

where the first inequality holds by the definition of Mj(T ). Similarly, we have

R(T, S′
2) =

∑
j∈[J],j ̸=j′2

∑
i∈Ij

∆
S′
2

i ES′
2
[Ni(T )]

> ϵ2 · ES′
2
[Mj2(T )]

>
Tϵ2
2

· PS′
2

(
Mj2(T ) >

T

2

)
.
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Combining the two preceding displays and Lemma 2.6 in [42], we have

R(T, S2) +R(T, S′
2) >

Tϵ2
2

(
PS2

(
Mj2(T ) ≤

T

2

)
+ PS′

2

(
Mj2(T ) >

T

2

))
≥ Tϵ2

4
exp

(
−K(PS2 , PS′

2
)
)
.

(81)

By Lemma 1 in [14], we can decompose the KL divergence K(PS2
, PS′

2
) as

K(PS2
, PS′

2
) =

J∑
j=1

∑
i∈Ij

ES2
[Ni(T )]K(PS2

i , P
S′
2

i )

=
∑
i∈Ij′2

ES2 [Ni(T )]K(PS2
i , P

S′
2

i ).

By Corollary 3.1 in [40] and the definition of S2, S
′
2, we have

K(PS2
i , P

S′
2

i ) ≤ (S2(gi)− S′
2(gi))

2

S′
2(gi)(1− S′

2(gi))

<
(2ϵ2g

−1
ij′2

)2

M1M2

≤ 4

p2minM1M2
ϵ22

for any i ∈ Ij′2 .Then, by combining the two preceding displays, we have

K(PS2
, PS′

2
) =

∑
i∈Ij′2

ES2
[Ni(T )]K(PS2

i , P
S′
2

i ).

< c2ϵ
2
2 · ES2 [Mj′2

(T )]

≤ c2
T

J − 1
ϵ22,

(82)

where c2 = 4
p2
minM1M2

. It is easy to check that ϵ2 = κT− 1
3 is sufficient to satisfy the monotonicity

constraints of S2 and S′
2. Therefore, by combining (81), (82) and J ≍ ϵ−1

2 , there exists a constant
C2 > 0 such that

R(T, S2) +R(T, S′
2) ≥ C2T · T− 1

3

≳ T
2
3 .

It completes the proof for the case γ ≥ 1/3.

C Technical Lemmas

Lemma C.1. Let Θ′ = {(S0, β) ∈ Θ : S0,K ≥ M1, S0,1 ≤ M2, ∥β∥2 ≤ D}, where M1, M2 and
D are some positve constants such that 0 < M1 < M2 < 1. Suppose that the assumption (A2) holds.
Then, it holds that for any θ1, θ2 ∈ Θ′,

DH(pθ1 , pθ2) ≍

∫
x∈X

∑
p∈G

|Hθ1(x, p)−Hθ2(x, p)|
2
q(p|x)pX(x)dx

 1
2

,

where constants in ≍ depend only on M1, M2, D and L.
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Proof. By the assumption (A2), there exist positive constants H1 and H2, depending on M1, M2,
D and L, such that 0 < H1 < Hθ(x, p) < H2 < 1 for all x ∈ X , p ∈ G and θ ∈ Θ′. Then, for any
θ1, θ2 ∈ Θ′, we have

D2
H(pθ1 , pθ2) =

∫
x∈X

∑
p∈G

∑
y=0,1

(√
pθ1(x, p, y)−

√
pθ2(x, p, y)

)2
dx

=

∫
x∈X

∑
p∈G

[(√
Hθ1(x, p)−

√
Hθ2(x, p)

)2
+
(√

1−Hθ1(x, p)−
√
1−Hθ2(x, p)

)2]
q(p|x)pX(x)dx

≍
∫
x∈X

∑
p∈G

|Hθ1(x, p)−Hθ2(x, p)|
2
q(p|x)pX(x)dx,

where the third identity holds because the derivative of the map t 7→
√
t is bounded below and above

by positive constants on the interval [H1, H2].

Lemma C.2. Let Θ′ = {(S0, β) ∈ Θ : S0,K ≥ M1, S0,1 ≤ M2, ∥β∥2 ≤ D}, where M1, M2 and
D are some positve constants such that 0 < M1 < M2 < 1. Suppose that the assumption (A2) holds.
Then, there exist positive constants C1 and C2 depending on M1,M2, D and L such that for any
θ1 = (S0,1, β1), θ2 = (S0,2, β2) ∈ Θ′ and p ∈ G, it holds that

|Hθ1(X, p)−Hθ2(X, p)| ≤ C1|S0,1(p)− S0,2(p)|+ C2∥β1 − β2∥2
almost surely.

Proof. We decompose the term |Hθ1(X, p)−Hθ2(X, p)| as

|Hθ1(X, p)−Hθ2(X, p)| = |S0,1(p)
exp(X⊤β1) − S0,2(p)

exp(X⊤β2)|

≤ |S0,1(p)
exp(X⊤β1) − S0,2(p)

exp(X⊤β1)|+ |S0,2(p)
exp(X⊤β1) − S0,2(p)

exp(X⊤β2)|.
(83)

For the first term of the preceding display, the mean value theorem on a map t 7→ tc (c > 0 a constant)
yields

|S0,1(p)
exp(X⊤β1) − S0,2(p)

exp(X⊤β1)| = exp(X⊤β1)S0(p)
exp(X⊤β1)−1|S0,1(p)− S0,2(p)|,

for some S0(p) in (S0,1(p), S0,2(p)). Under the assumption (A2), by the Cauchy-Schwart inequality
and the boundedness of β1, we have |X⊤β1| ≤ ∥X∥2∥β1∥2 ≤ LD almost surely. Furthermore,
S0(p) is bounded away from 0 and 1. Then, there exists a positive constant C1, depending on M1,
M2, D and L, such that exp(X⊤β1)S0(p)

exp(X⊤β1)−1 < C1. Therefore, the first term of (83) is
bounded by C1|S0,1(p)− S0,2(p)|. Similarly, for the second term of (83), applying the mean value
theorem to the map t 7→ c′ exp(t) (c′ > 0 a constant) gives

|S0,2(p)
exp(X⊤β1) − S0,2(p)

exp(X⊤β2)| = | logS0,2(p)|S0,2(p)
exp(X⊤β̄) exp(X⊤β̄)|X⊤(β1 − β2)|,

for some β̄ between β1 and β2. Note that by the Cauchy-Schwartz inequality, |X⊤(β1 −
β2)| ≤ ∥X∥2∥β1 − β2∥2. By assumption (A2) and the boundedness of S0,2 and
β̄, there exists a positive constant C2, depending on M1, M2, D and L, such that
| logS0,2(p)|S0,2(p)

exp(X⊤β̄) exp(X⊤β̄)∥X∥2 < C2 almost surely. Combining these results with
(83), we have

|Hθ1(X, p)−Hθ2(X, p)| < C1|S0,1(p)− S0,2(p)|+ C2∥β1 − β2∥2
almost surely for any p ∈ G.
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Lemma C.3. Suppose that the assumption (A5) holds. If λ0,k ∼ Gamma(αk, ρ) are independent for
k = 1, . . . ,K, where Aϵb ≤ αk ≤ M , and Kϵ ≤ N for some positive constants A, ϵ, b,M,N and
ρ, then there exist positive constants C1, C2 and C3 depending only on pmin, pmax, A, b,M,N and ρ
such that

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ) ≥ C1 exp

(
−C2K − C3K log− ϵ

)
.

Proof. First, we assume that M = 1, so that αk ≤ 1 for all k = 1, . . . ,K. Fix k ∈ {1, . . . ,K}. In
the model (2), we can represent Λ0(gk) as δ

∑k
s=1 λ0,s. Similarly, Λ∗

0(gk) is given by δ
∑k

s=1 ∆
∗
0,s,

where ∆∗
0,1 = Λ∗

0(g1)/δ and ∆∗
0,s = (Λ∗

0(gs)− Λ∗
0(gs−1))/δ for s = 2, . . . ,K. By combining this

and the preceding display, we have

∥Λ0 −Λ∗
0∥∞ = max

1≤k≤K
|Λ0(gk)− Λ∗

0(gk)|

≤ max
1≤k≤K

δ

k∑
s=1

∣∣λ0,s −∆∗
0,s

∣∣
= δ

K∑
k=1

∣∣λ0,k −∆∗
0,k

∣∣ .
Therefore, the probability on the left side of the lemma is bounded below by

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ) ≥ Π

(
δ

K∑
k=1

∣∣λ0,k −∆∗
0,k

∣∣ ≤ ϵ

)

≥
K∏

k=1

Π
(∣∣λ0,k −∆∗

0,k

∣∣ ≤ Cpϵ
)
,

where Cp := (Kδ)−1 be a postive constant depending only on pmin and pmax. Since λ0,1, . . . , λ0,K

are independent variables with λ0,k ∼ Gamma(αk, ρ), we have

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ)

≥ ρ
∑K

k=1 αk∏K
k=1 Γ(αk)

∫ ∆∗
0,K+Cpϵ

max(∆∗
0,K−Cpϵ,0)

· · ·
∫ ∆∗

0,1+Cpϵ

max(∆∗
0,1−Cpϵ,0)

K∏
k=1

uαk−1
k exp(−ρ

K∑
k=1

uk)du1 · · · duK .

By assumption (A5), there exist constants M1 and M2 such that 0 < M1 ≤ S∗
0 (pmax) < S∗

0 (pmin) ≤
M2 < 1, and it holds that N2 ≤ Λ0(v) ≤ N1 for all v ∈ [pmin, pmax], where N1 = − logM1 and
N2 = − logM2. Note that within the interval of integration,

∑K
k=1 uk ≤ Λ∗

0(gK)/δ + CpKϵ <
N1CpK + CpKϵ. Furthermore, for any 0 < αk ≤ 1, it holds that αkΓ(αk) = Γ(αk + 1) ≤ 1.
Therefore, the right side of the preceding display is bounded below by

ρ
∑K

k=1 αk exp(−ρCpK(N1 + ϵ))

K∏
k=1

{
(∆∗

0,k + Cpϵ)
αk − (max(∆∗

0,k − Cpϵ, 0))
αk
}
.

By the mean value theorem, the terms of the product in the preceding display is bounded below by
αk(∆

∗
0,k)

αk−1Cpϵ for some ∆
∗
0,k ∈ (max(∆∗

0,k − Cpϵ, 0),∆
∗
0,k + Cpϵ). Since ∆

∗
0,k < N1CpK +

Cpϵ and αk − 1 ≤ 0 for all k = 1, . . . ,K, by combining the last two displays, we have

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ)

≥ ρ
∑K

k=1 αk exp(−ρCpN1K)) exp(−ρCpKϵ) · (Cpϵ)
K(N1CpK + Cpϵ)

∑K
k=1 αk−K

K∏
k=1

αk.

Note that N1CpK + Cpϵ = 1/ϵ · (N1CpKϵ + Cpϵ
2) ≤ 1/(C ′ϵ) where C ′ := 1/(N1NCp +

Cp(A
2/b)−1) is a positive constant, as Kϵ ≤ N and Aϵb ≤ 1 by assumption. Therefore, we have

Π(∥Λ0 −Λ∗
0∥∞ ≤ ϵ)

≥ ρ
∑K

k=1 αk exp(−ρCpN1K)) exp(−ρCpN)(Cpϵ)
K(1/(C ′ϵ))

∑K
k=1 αk−K(Aϵb)K

≥ C1 exp(−C2K − C3K log− ϵ),
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for positive constants C1 := exp(−ρCpN), C2 := ρCpN1 + log− ρ+ log− A+ log− Cp + log− C ′

and C3 := b+2, where the first inequality holds because Kϵ ≤ N and Aϵb ≤ αk ≤ 1 by assumption,
the second inequality holds because log x ≥ − log− x for any x > 0, where log− denotes the
negative parts of logarithm. This concludes the proof in the case that M = 1.

We may assume without loss of generality that a M is an positive integer. For each k = 1, . . . ,K,
we can represent the λ0,k as the sum of independent random variables (λ0,k,m : m = 1, . . . ,M),
where λ0,k,m is distributed from Gamma distribution with parameters αk,m = αk/M and ρ for
m = 1, . . . ,M . Then, it satisfies the conditions of the lemma in the case of M = 1, with K and A
being adjusted to MK and A/M , respectively. The proof is then complete.

Lemma C.4. Under the assumption (A3), for a random sample Xt = (Xt,1, . . . , Xt,d), there is a
constant ϵ > 0 such that P(|Xt,j | > ϵ) > 0 for all j = 1, . . . , d.

Proof. Suppose that for any ϵ > 0, there exists j′ ∈ {1, . . . , d} such that P(|Xt,j′ | > ϵ) = 0.
It follows that P(∥Xt∥∞ > ϵ) = 0. Since ϵ > 0 is an arbitrary number, we have P(∥Xt∥∞ =
0) = 1. Take j∗ = argmaxj=1,...,d |Xt,j | and β1, β2 such that β1,j∗ ̸= β2,j∗ and β1,j = β2,j for
j ∈ [d] \ {j∗}. Note that X⊤

t (β1 − β2) = Xt,j∗(β1,j∗ − β1,j∗). Since P(|Xt,j∗ | = 0) = 1, we
have P(X⊤

t (β1 − β2) = 0) = 1. This contradicts the fact that P(X⊤
t (β1 − β2) ̸= 0) > 0 from the

assumption (A3), and therefore the proof is complete.

Lemma C.5. If the pricing policy πl for each epoch l is specified as in (5), then the assumption (A4)
is satisfied.

Proof. Let ql(· | x) be the conditional probability mass function of Pt given Xt = x for t ∈ El. Note
that for any x ∈ X and p ∈ G, we have

ql(p | x) = πl(x)({p})
≥ ηl/K

≳ ηl · n−γl

l

≳

{
n
− 1+γl

2

l (log nl)
1
2 if γl < 1

3 ,

n
−γl− 1

3

l (log nl)
1
2 if γl ≥ 1

3 ,

where the first inequality holds by (5), the second inequality holds by (7), and the last inequality
holds by (6). Thus, the conditional probability mass function ql(· | x), parameterized by the policy
πl, satisfies the assumption (A4).

Lemma C.6. Suppose that the prior distribution Π is specified as in (4), and the policy πl for each
epoch l is defined by (5). Suppose that assumptions (A1)-(A3), (A5) hold. Then, for every ϵ > 0, there
exist positive constants C1 and C2 depending on L,B, pmin, pmax, κ, α, ρ, a, b, n1 and ϵ, such that
for l ≥ C1,

∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2 ≤ ϵ

with probability at least 1− exp(−C2n
1/3
l−1).

Proof. We define the distance D∞(θ1, θ2) between θ1 = (S0,1, β1) and θ2 = (S0,2, β2) on Θ as

D∞(θ1, θ2) = ∥S0,1 − S0,2∥∞ + ∥β1 − β2∥2.
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Let ql(· | x) be the conditional probability mass function of Pt given Xt = x for t ∈ El in epoch
l. By Lemma C.5, ql(· | x) satisfies the assumption (A4) for every epoch l. Then, by Lemma
A.1, for every ϵ > 0 and γl−1 ∈ (0, 1], there exist positive constants c1, c2 and c3 depending on
L,B, pmin, pmax, κ, α, ρ and ϵ such that for l ≥ ⌈log2(c1/n1)⌉+ 1,

Π(D∞(θ, θ∗) ≥ ϵ/2 | Dl−1) < c2 exp
(
−c3n

1
3

l−1

)
(84)

with probability at least 1− exp(−c3n
1/3
l−1).

We partition the parameter space Θ̃ into two subsets

Θ̃1 = {θ ∈ Θ̃ : D∞(θ, θ∗) < ϵ/2},
Θ̃2 = {θ ∈ Θ̃ : D∞(θ, θ∗) ≥ ϵ/2}.

Then, we can decompose θ̂l−1 as

θ̂l−1 =

∫
Θ̃

θ dΠ̃(θ | Dl−1)

=

∫
Θ̃1

θ dΠ̃(θ | Dl−1) +

∫
Θ̃2

θ dΠ̃(θ | Dl−1)

= (1− τl−1)θ̂
l−1
1 + τl−1θ̂

l−1
2 , (85)

where τl−1 = Π̃(Θ̃2 | Dl−1). Here, θ̂l−1
1 and θ̂l−1

2 are the mean estimates of the probability measures
resulting from the restriction and normalization of the truncated posterior distribution on the sets Θ̃1

and Θ̃2, respectively. It is easy to check that the function θ 7→ D∞(θ, θ∗) is convex and bounded
over the domain Θ̃. By Jensen’s inequality, we have

D∞(θ̂l−1
1 , θ∗) ≤

∫
Θ̃1

D∞(θ, θ∗) dΠ̃1(θ | Dl−1)

< ϵ/2, (86)

where Π̃1(· | Dl−1) be the probability measure obtained by restricting and renormalizing Π̃(· | Dl−1)

to Θ̃1, and the last inequality holds by the definition of Θ̃1. On the event that the inequality (84)
holds, for l ≥ ⌈log2(c1/n1)⌉+ 1, we have

D∞(θ̂l−1, θ∗) ≤ (1− τl−1)D∞(θ̂l−1
1 , θ∗) + τl−1D∞(θ̂l−1

2 , θ∗)

<
ϵ

2
+

Π(Θ̃2 | Dl−1)

Π(Θ̃ | Dl−1)
D∞(θ̂l−1

2 , θ∗)

≤ ϵ

2
+

c2 exp(−c3n
1/3
l−1)

1− c2 exp(−c3n
1/3
l−1)

· (1 +
√
d(a ∨ b) +B),

where the first inequality holds because of the convexity of the function θ 7→ D∞(θ, θ∗) and (85),
and the second inequality holds by (86) and the definition of τl−1. The last inequality follows from
Π(Θ̃ | Dl−1) ≥ 1−Π(Θ̃l−1,2 | Dl−1), combined with inequality (84) and the boundedness of D∞

over Θ̃ under the assumption (A1). Note that the second term on the right of the preceding display is
upper bounded by ϵ/2 for nl−1 ≥ (log(c2(1+C1)/C1)/c3)

3, where C1 = ϵ/(2(1+
√
d(a∨b)+B)).

Combining this result with the preceding display, we conclude that for l ≥ (⌈log2(c1/n1)⌉+ 1) ∨
(⌈log2(C2/n1)⌉+ 1),

D∞(θ̂l−1, θ∗) < ϵ,

with probability at least 1− exp(−c3n
1/3
l−1), where C2 = (log(c2(1 + C1)/C1)/c3)

3. The proof is
then complete.
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Lemma C.7. Suppose that assumptions (A1)-(A3), (A5) and (B1) hold. Let observations Dl =
{(Xt, Pt, Yt)}t∈El

be i.i.d. copies of (X,Pl, Y ), where Pl is a random variable distributed from Ql as
specified in Algorithm 1. We consider the collection of random variables {M(p) : p ∈ (pmin, pmax)},
where M(p) := pS∗

0 (p)
exp(X⊤β∗). Let Pc denote the points of maximum of M(p) over (pmin, pmax)

such that

Pc ∈ argmax
p∈(pmin,pmax)

M(p). (87)

Then, Pl converges to Pc in distribution as l → ∞.

Proof. We consider the collection {Mk(p) : p ∈ (pmin, pmax)} of random variables, where Mk(p) :=

pŜl−1
0 (p)exp(X

⊤β̂l−1). For each l, define the point of maximum of Mk(p) over p ∈ G by

P̂l ∈ argmax
p∈G

Mk(p).

We first show that P̂l converges weakly to Pc. To see this, we need to verify the conditions of
Theorem 1 of [8]. We say that G Painlevé-Kuratowski (PK) converges to (pmin, pmax) if

{p ∈ (pmin, pmax) : lim inf
n→∞

inf
g∈G

|p− g| = 0} = {p ∈ (pmin, pmax) : lim sup
n→∞

inf
g∈G

|p− g| = 0} = (pmin, pmax).

Let N be the number of epochs for a given horizon T , satisfying N = log2(T/n1 + 1). As l → ∞
implies T → ∞, it is easy to see that the grid set G PK converges to the continuous interval
(pmin, pmax).

We denote the conditional distribution of Pl given X by Ql(· | X), where Ql(· | X) = πl(X)(·)
as defined in Algorithm 1. By the design of Algorithm 1 and the definition of ηl, the conditional
distribution Ql(· | X) satisfies the assumption (A4) for all l. Then, by Lemma A.1 and Theorem 6.8
of [16], for ϵ > 0, there exist positive constants c1, c2 and c3 such that for sufficiently large l with
nl−1 ≥ c1 and for any γ, we have

∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2 < ϵ+ c2 exp
(
−c3n

1
3

l−1

)
, (88)

with probability at least 1− exp(−c3n
1/3
l−1). Note that there exist constants M1 and M2 such that 0 <

M1 ≤ S∗
0 (pmax) < S∗

0 (pmin) ≤ M2 < 1 by assumption (A5). Let C0 := ((M1 ∧ (1−M2))/2∧B)
and take ϵ < C0/2. For large l such that nl−1 ≥ c1 ∨ (c−1

3 log(2c2/C0))
3, by (88), we have

∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2 < C0,

with probability at least 1 − exp(−c3n
1/3
l−1). This implies that Ŝl−1

0,1 > M1/2 > 0, Ŝl−1
0,K < (1 +

M2)/2 < 1 and ∥β̂l−1∥2 < 2B. Then, by Lemma C.2, for any p ∈ (pmin, pmax), we can decompose
as

|Mk(p)−M(p)| = p|Ŝl−1
0 (p)exp(X

⊤β̂l−1) − S∗
0 (p)

exp(X⊤β∗)|

≤ C1|Ŝl−1
0 (p)− S∗

0 (p)|+ C2∥β̂l−1 − β∗∥2, (89)

where C1 and C2 are positive constants depending on M1, M2, L, B and pmax, and the inequality
holds almost surely. For each p ∈ (pmin, pmax), there exists s ∈ {2, ...,K} such that p ∈ [gs−1, gs].
Then, we have

Ŝl−1
0 (p)− S∗

0 (p) ≤ Ŝl−1
0,s−1 − S∗

0,s−1 + S∗
0,s−1 − S∗

0 (p)

≤ |Ŝl−1
0,s−1 − S∗

0,s−1|+ L0δ,

where the first inequality holds by the monotonicity of Ŝl−1
0 , and the last inequality holds by L0-

Lipschitz continuity of S∗
0 under the assumption (A5). Similarly, we have S∗

0 (p) − Ŝl−1
0 (p) ≤

|Ŝl−1
0,s − S∗

0,s|+ L0δ. By combining this with (89),

|Mk(p)−M(p)| ≤ C3(∥Ŝl−1
0 − S∗

0∥∞ + ∥β̂l−1 − β∗∥2) + C1L0δ,
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where C3 = C1 ∨ C2 is a positive constant. Combining this with (88), for sufficiently large l and T ,
we have

|Mk(p)−M(p)| ≤ (C3 + 1)ϵ,

with probability at least 1 − exp(−c3n
1/3
l−1). Thus, for each p ∈ (pmin, pmax), Mk(p) → M(p) as

l → ∞ in probability, implying convergence in distribution. Since p is arbitrary, Mk converges
weakly M in ℓ∞(A) for every compact A ⊂ (pmin, pmax), where ℓ∞(A) denote the space of real-
valued bounded functions on A. By the assumption (B1) and Theorem 1 of [8], we conclude that P̂l

converges weekly to Pc.

By the design of policy πl in Algorithm 1, the random variable Pl is defined as Pl = RP̂l+(1−R)U ,
where R is Bernoulli distributed with success probability 1 − ηl. The variable U is uniformly
distributed on G. Let f : (pmin, pmax) → R be any bounded L1-Lipschitz continuous function for
some positive constant L1. Then, we have

|E[f(Pl)]− E[f(Pc)]| = |E[f(Pl)]− E[f(P̂l)] + E[f(P̂l)]− E[f(Pc)]|
≤ E[L1|(R− 1)P̂l + (1−R)U |] + |E[f(P̂l)]− E[f(Pc)]|
≤ 2L1ηlpmax + |E[f(P̂l)]− E[f(Pc)]|,

where the first inequality holds because f is L1-Lipschitz function, and the last inequality holds
because P̂l and U are less than pmax almost surely. By the definition of ηl and Portmanteau theorem,
the right-hand side of the preceding display converges to 0 as n → ∞. Then, we apply the
Portmanteau theorem to conclude that Pl converges weekly to Pc.

D Extension to nonuniform grids

The assumption of equally spaced prices is made solely for technical convenience in developing the
theory. However, with some additional technical work, our results can be readily extended to more
general discrete price sets. For instance, one may consider a nonuniform grid G = {g1, . . . , gK}
satisfying

aδ ≤ |gk+1 − gk| ≤ bδ for all k = 1, . . . ,K,

where δ ≍ T−γ and a, b > 0 are constants. This more general setting implies that our theoretical
findings can be extended to more practical settings.

Importantly, since the regret rate in our analysis depends on the discrete set only through the sparsity
level γ, this generalization does not fundamentally change the regret behavior. Therefore, while such
an extension increases technical complexity, it does not yield additional theoretical insights.

E Discussion on the Cox PH model assumption

We here provide additional discussion on our choice of the Cox PH model, addressing both its
suitability and potential concerns about model misspecification.

The key distinction between the Cox PH model and standard linear demand models lies in the use
of the hazard function, which is a central concept in survival analysis. Unlike linear models, which
model the conditional mean of a random variable, the Cox PH model focuses on modeling the hazard
rate, a quantity that fully characterizes the survival distribution and is particularly well-suited to
censored data settings. A key advantage of the Cox PH model is that it permits separate analysis of
λ0 and β, enabling theoretical development under minimal assumptions on the functional form of λ0.
This makes the Cox PH model an appropriate and principled choice for contextual dynamic pricing.

At the same time, we note that every model carries some risk of misspecification. Models that directly
target the mean (e.g., linear or log-linear) are often highly sensitive to tail behavior and thus more
vulnerable to misspecification. By contrast, models focusing on the hazard rate, such as the Cox PH
model, tend to be more robust in these settings. A fully distribution-free approach might be preferable
in order to avoid the risk of model misspecification. However, such an approach does not appear
to be suitable in our context, as interval-censored data contains very limited information about the
valuation distribution.
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F Discussion on the variational Bayes estimator

In our theoretical analysis, the regret bounds are derived under the assumption that the estimator θ̂l−1

corresponds to the posterior mean of the true Bayesian posterior, which contracts to the ground truth
at the rates established in Theorems 3.1 and 3.2. In practice, we employ a variational Bayes (VB)
approximation to obtain this estimator due to its computational efficiency in high-dimensional and
nonparametric settings. The variational family used in our implementation is sufficiently expressive so
that the VB posterior mean closely approximates the true posterior mean. As empirically demonstrated
in [29], the considered VB approach performs comparably to, or better than, traditional MCMC in
terms of estimation accuracy.

From a theoretical perspective, the regret bound depends directly on the convergence rate of θ̂l−1.
Therefore, if the VB posterior attains the same contraction rate as the true posterior, the regret
guarantees remain valid. Recent advances in the theoretical study of VB methods (e.g., [46, 1, 45])
provide sufficient conditions under which the VB posterior achieves the same contraction rate as the
full posterior. Although a rigorous regret analysis for VB-based estimation in our specific setting
remains open, these results indicate that our regret guarantees continue to hold under appropriate
contraction assumptions.

G Additional discussion on estimator replacement

Although we do not provide a formal proof, the Bayes estimator in our proposed algorithm could
potentially be replaced by the NPMLE. However, even if so, careful selection of the exploration
parameter ηl is crucial for designing an optimal pricing policy. As empirically demonstrated in
Section 6, our choice of the exploration parameter (6) substantially improves cumulative regret
compared to the parameter choice in [7] (denoted as αk in their notation), which employed the
NPMLE.

H Details of the experimental setup

We use a Gamma prior with α1 = · · · = αK = ρ = 10−5, For a prior of β, we use a multivariate nor-
mal distribution, N(0, Id), where Id denotes the d× d identity matrix. The truncated point estimator
is computed within a parameter space of β truncated to [−10, 10]d. The proposed algorithm involves
three hyperparameters: the first-epoch size n1, the exploration parameters η1 and η2. These are tuned
through grid search over the ranges n1 ∈ {64, 128, 256}, η1 ∈ {2−4/3, 2−3/3, 2−2/3, 2−1/3, 20} and
η2 ∈ {2−12/2, 2−11/2, 2−10/2, 2−9/2} with an initial period of T0 = 3000 for each combination.

For a fair comparison, the hyperparameters of [7] are also tuned using the grid search procedure.
We use the CoxCP algorithm with the ϵ-greedy heuristic, as described in their experiments. This
algorithm involves two hyperparameters: the first-epoch size τ1 and the degree of exploration
parameter τ . The hyperparameters are tuned over the ranges τ1 ∈ {64, 128, 256, 512, 1024} and
τ ∈ {2−4, 2−3, 2−2, 2−1, 20}, following the procedure outlined in their work.

I Computational resources used

All experiments in this paper were conducted using a machine equipped with an Intel(R) Core(TM)
i9-10900X CPU. No GPU was used.
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