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ABSTRACT

Source detection in graphs offers a viable solution to critical challenges such as
rumor tracing. Yet existing GCN-based approaches squander non-embedding pa-
rameters and rely on fixed activation functions. We present GraphKAN: An Effi-
cient and Interpretable Kolmogorov–Arnold Graph Network for Source Detection,
which capitalizes on Kolmogorov–Arnold Networks (KANs) by assigning learn-
able activation functions to edge weights. Node features are first diffused through
B-spline–based univariate activations, yielding expressive and localized transfor-
mations. We further devise a sparsity-aware neighborhood aggregation rooted in
community clusters, where edge-level attention is adaptively strengthened through
KAN-driven kernel learning. Unlike black-box GCNs, GraphKAN exposes in-
terpretable intermediate representations via its learnable basis functions. Exten-
sive experiments on twelve real-world datasets demonstrate that GraphKAN con-
sistently outperforms state-of-the-art baselines in accuracy, efficiency, and inter-
pretability. Codes will be made public upon paper acceptance.

1 INTRODUCTION

Source detection on graphs offers a viable solution to pressing societal challenges such as rumor
tracing, while simultaneously posing notable mathematical difficulties (Shah & Zaman, 2011; Zhu
et al., 2022). Early approaches, including LPSI (Wang et al., 2017), OJC (Zhu et al., 2017), and
MLE (Pinto et al., 2012; Yang et al., 2020), rely on source centrality theory (Shah & Zaman, 2011)
and maximum likelihood estimation (Cheng et al., 2025) to identify the origin of diffusion. In recent
years, with the advancement of deep learning, particularly Graph Convolutional Networks (GCNs)
(Kipf & Welling, 2017), researchers embed both node features and social topologies to learn more
expressive node representations (Dong et al., 2019; Ling et al., 2022; Wang et al., 2022), achieving
new state-of-the-art records.

However, existing GCN-based source detection methods are fundamentally built upon Multi-Layer
Perceptrons (MLPs), which leverage the universal approximation theorem to achieve a robust capac-
ity for approximating nonlinear functions (Kiamari et al., 2024). Despite their widespread adoption,
MLPs suffer from several notable limitations: 1) the excessive consumption of non-embedding pa-
rameters leads to high memory overhead in graph neural networks; 2) the use of fixed activation
functions constrains their representational flexibility; and 3) their inherently black-box nature hin-
ders interpretability.

We note that recent progress in the Kolmogorov–Arnold theorem has led to the remarkable develop-
ment of Kolmogorov–Arnold Networks (KAN) (Liu et al., 2024). Unlike traditional MLPs, where
edges carry learnable weights and nodes apply fixed activation functions, KAN assigns learnable
activation functions to edges while nodes perform only linear operations on incoming signals. In-
ternally, KAN employs univariate spline functions as activation kernels, which offer strong local
transformation capabilities and high accuracy in low-order function approximation. Externally, it
captures expressive feature representations through a compositional structure. This design provides
KAN with both powerful learning capacity and reduced computational graph complexity compared
to MLPs. Additionally, the use of distinct basis functions enhances interpretability. However, KAN
cannot be directly applied to source detection tasks. The key challenge lies in incorporating graph
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Figure 1: We propose a graph-aware Kolmogorov–Arnold network for source detection
(GraphKAN), which achieves significant improvements in accuracy and efficiency over baseline
methods, while also enhancing interpretability.

topology to design efficient information aggregation mechanisms, which is essential for adapting
KAN to this domain.

In this paper, we propose the GraphKAN: An Efficient and Interpretable Kolmogorov-Arnold Graph
Network for Source Detection, which harnesses the expressive power of learnable activation func-
tions within a graph-based inference framework. Specifically, node features are first propagated via
univariate B-spline-based activation functions, enabling localized and expressive nonlinear transfor-
mations. To effectively integrate structural information while preserving computational scalability,
we design a sparsity-aware neighborhood aggregation strategy grounded in community-based clus-
tering. This mechanism adaptively enhances edge-level attention weights through KAN’s learnable
kernel functions, allowing for flexible and topology-sensitive message passing. Furthermore, we
provide interpretable insights into the relative importance of different nodes in the source detec-
tion process through the analysis of learned activation patterns. We evaluate our approach on 12
real-world datasets. Extensive experimental results demonstrate that GraphKAN surpasses state-of-
the-art techniques in terms of accuracy, efficiency, and interpretability, establishing new baselines.

Overall, our contributions are summarized as:

• We propose GraphKAN, a novel graph learning framework for source detection that lever-
ages the Kolmogorov–Arnold representation to enable expressive, localized, and inter-
pretable nonlinear modeling within graph neural networks.

• We design a sparsity-aware neighborhood aggregation mechanism that integrates graph
topology via community-based clustering and adaptively enhances edge attention through
KAN’s learnable kernels, enabling efficient and structure-aware message passing.

• We show by extensive experiments on 12 real-world datasets that GraphKAN consistently
outperforms state-of-the-art methods in accuracy, efficiency, and interpretability, establish-
ing new performance baselines.

2 RELATED WORK

2.1 SNAPSHOT-BASED MULTI-SOURCE DETECTION

In recent years, snapshot-based approaches have gained popularity for multi-source detection due
to their ease of access and ability to capture essential information such as user states and network
topology (Cheng et al., 2024b). Based on source centrality theory (Prakash et al., 2012; Shah &
Zaman, 2011), LPSI identifies locally prominent nodes via label propagation (Wang et al., 2017),
EPA estimates infection times iteratively (Ali et al., 2019), and OJC optimizes Jordan centrality (Zhu
et al., 2017). While computationally efficient, these methods struggle to handle the complexity of
user attributes in real-world networks (Cheng et al., 2024a). Graph neural network-based approaches
have emerged as powerful alternatives (Bao et al., 2024). GCNSI (Dong et al., 2019) and SIGN (Li
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et al., 2021) incorporate user states and related attributes as input features for node classification,
while GCSSI targets wavefront nodes (Dong et al., 2022). From a structural modeling perspective,
ResGCN enhances information propagation through residual connections (Shah et al., 2020). How-
ever, these methods fall short in capturing the underlying dynamics of information diffusion. To
address this, IVGD (Wang et al., 2022) and SL-VAE (Ling et al., 2022) incorporate graph diffusion
processes to learn diverse propagation patterns. Despite these advances, existing GCN-based meth-
ods fundamentally rely on MLP backbones, which suffer from limited efficiency, flexibility, and
interpretability due to their overparameterized structures, fixed activations, and black-box nature.

2.2 KOLMOGOROV–ARNOLD NETWORKS (KAN)

The Kolmogorov–Arnold representation theorem establishes that any multivariate continuous func-
tion within a bounded domain can be represented as a finite superposition of univariate functions
in a binary composition (Kolmogorov, 1957). Although earlier studies have attempted to leverage
this theoretical foundation for machine learning (Sprecher & Draghici, 2002; Fakhoury et al., 2022;
Montanelli & Yang, 2020), they are constrained to networks of fixed depth (2) and width (2n+1).
By generalizing the theorem, Kolmogorov–Arnold Networks (KAN) extend the representation to
arbitrary depth and width, enabling seamless integration into contemporary deep learning pipelines
(Liu et al., 2024). KAN employs univariate spline-based activation functions with strong local trans-
formation capacity, combined with a compositional architecture, achieving both high approximation
accuracy and interpretability. These properties make KAN a promising alternative to traditional
MLPs. However, KAN cannot be directly applied to source detection tasks. The primary challenge
lies in incorporating graph structural information to design effective aggregation mechanisms.

3 PROBLEM FORMULATION

Preliminary on Social Networks. The social network in physical world can be abstracted as graph
G = (V,E), where V = {v1, v2, · · · , vn} denotes the set of nodes representing users, and E =
{(vi, vj) | vi, vj ∈ V, i ̸= j} denotes the set of edges representing social interactions. Each node
vi ∈ V may be associated with a feature vector Xi ∈ Rd, capturing user attributes such as profile
information and activity status. The overall topology captures the structural properties of the under-
lying social system. We denote by N (i) the set of neighbors of node vi and A (Aij ∈ {0, 1}n×n)
the adjacency matrix.

Propagation Process on Social Networks. Information diffusion on social networks evolves over
time t. At t = 0, a subset of sources s transitions from uninformed to informed, initiating the cas-
cade; for t > 0, each informed user independently forwards to neighbors with a personal forwarding
probability p. Canonical diffusion models (SI, SIR, IC, and LT) simulate this process (Battiston
et al., 2020; de Arruda et al., 2020). Accordingly, the propagation is represented by time-indexed
snapshots {G′

t}t≥0, where each G′
t partitions nodes into informed G+ and uninformed G−.

Source Detection in Graphs. Once the informed fraction attains a prespecified threshold δ ∈
(0, 1), we obtain a snapshot G′ comprising the topology T , user infection states U , and propagation
information P . Formally, the problem is defined as:

ŝ = f(G′(T,U, P )), (1)
where f(·) represents the source detection algorithm, and ŝ denotes the set of detected sources.

GCN-based vs. KAN-based Approaches. The core difference between GCN-based and KAN-
based source detection methods lies in their nonlinear transformation. GCN-based methods model
the detection function f(·) using MLP backbones with fixed activations σ(·) and non-embedding
weights W, where information is aggregated via:

X(l+1)
i = σ

(∑
j∈N (i)

W(l)X(l)
j

)
. (2)

While KAN-based approach replaces fixed activations with learnable B-spline functions ϕ(·):

X(l+1)
i = AGraphKAN

({
ϕij

(
X(l)
j

)
| j ∈ N (i)

})
, (3)

where AGraphKAN denotes our proposed aggregator.
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4 METHOD

In this section, we present GraphKAN, a dedicated framework designed to address the challenges
Above. Specifically, we design the KAN-based Node Representation module to address Challenge
1), and propose a Community-guided Sparse Aggregation mechanism for Challenge 2).
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Figure 2: GraphKAN framework. (a) Input: snapshot with informed, uninformed, missing-state
nodes. (b) KAN representation: embed state, timestamp, positional encoding via learnable B-spline
activations. (c) Community-guided sparse aggregation: aggregate kernel-enhanced features with
sparsity-aware, kernel-adaptive attention. (d) Output: softmax yields source probabilities.

4.1 KAN-BASED NODE REPRESENTATION

To facilitate effective comparison and representation learning, several key attributes captured in the
snapshot G′

t are embedded as node features.

State Information X1
i . The user state reflects whether a user has participated in the propagation. In

the snapshot G′, users fall into several subsets: G+ (informed), G− (uninformed), and Π, which rep-
resents users with missing state information due to privacy constraints or incomplete observations.
The corresponding state feature X1

i is defined as:

X1
i =

{
+1, vi ∈ G+

−1, vi ∈ G−
0, vi ∈ Π.

(4)

Propagation Information X2
i . To model diffusion dynamics, each node’s participation timestamp

is incorporated as the temporal feature. For informed nodes vi ∈ G+, we record the time ti at which
the node was first influenced by the rumor. For uninformed nodes vi ∈ G− or nodes with missing
information vi ∈ Π, a default value (-1) is assigned. The resulting temporal feature X2

i is defined as:

X2
i =

{
ti, vi ∈ G+

−1, otherwise. (5)

Positional Encodings X3
i . In scenarios with partially missing node information, relative struc-

tural positions provide key signals for modeling diffusion and enhancing global propagation. How-
ever, existing GCN-based models learn representations with invariant node positions (Srinivasan &
Ribeiro, 2019). To address this, we adopt Laplacian positional encodings (Dwivedi et al., 2020) as
structural features due to their strong generalization capability.

Motivated by source centrality theory, rather than computing positional encodings over the entire
graph, we first extract an infection subgraph and then perform position encoding within this local
structure, thereby emphasizing the topological centrality of potential sources. For uninformed nodes
vi, the subgraph extraction process is formulated as:

A+ = Ji,n · A · JT
i,n, (6)
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where A ∈ Rn×n denotes the adjacency matrix of the full graph G′, and A+ ∈ R(n−1)×(n−1) is the
adjacency matrix after removing node vi. Ji,n ∈ R(n−1)×n is a selection matrix derived from the
identity matrix by deleting the i-th row, which serves to remove node vi and its associated edges.

After extracting the infection-induced subgraph, the symmetrically normalized Laplacian matrix is
computed as:

Lsym
+ = I − D−1/2

+ A+D−1/2
+ , (7)

where D+ is the degree matrix associated with A+. The normalized Laplacian Lsym
+ can be further

decomposed via eigendecomposition as:

△Lsym
+

= ΓTλΓ, (8)

where λ is a diagonal matrix of eigenvalues and Γ contains the corresponding eigenvectors. We
select the eigenvectors associated with the r-smallest nontrivial eigenvalues to form the positional
encoding matrix (r ≪ n), yielding the final positional feature X3

i ∈ Rr:

X3
i =

{
Γi, vi ∈ G+ ∪Π
−1, otherwise. (9)

To ensure compatibility with KAN’s localized activation structure and facilitate the capture of node-
level propagation patterns with improved interpretability, we apply a transformation to the concate-
nated features such that each node representation serves as a basic computational unit for KAN:

Xi = W ·
[
∥3x=1Xx

i

]
+ b. (10)

Preliminary on KAN. A KAN layer is characterised by a matrix of univariate functions Φ(l) ={
ϕ
(l)
j,i

}
, i = 1, . . . , nl, j = 1, . . . , nl+1, where nl and nl+1 denote the input and output widths, re-

spectively. For a more intuitive illustration, the layer-wise transformation can be represented as:

x
(l+1)
j =

nl∑
i=1

ϕ
(l)
j,i

(
x
(l)
i

)
, j = 1, . . . , nl+1, (11)

with each ϕ
(l)
j,i instantiated as a learnable B-spline. Stacking such layers preserves universal approx-

imation while endowing KAN with depth and gradient-based trainability.

Kernel-driven Node Feature Diffusion. Given the initial node embedding Xi ∈ Rd and KAN
foundations, we compute the latent projection and spline responses:

ξi = a⊤Xi, (12)
gi,r = Br(ξi;µr, σr), r = 1, . . . , k, (13)

where a ∈Rd is a trainable vector, and the set {Br} comprises k learnable cubic B-spline kernels
with centres µr and widths σr. The response vector gi = [gi,1, . . . , gi,k]

⊤ constitutes a kernel-based
non-linear enhancement of node features, capturing expressive representations that are preserved for
subsequent attention and aggregation.

4.2 COMMUNITY-GUIDED SPARSE AGGREGATION

In this subsection, we detail the components of GraphKAN that enable topology-sensitive message
passing through sparse aggregation and adaptive attention.

Community-aware Sparse Message Passing with Adaptive Attention. Information exchange in
social graphs is typically more intensive within communities. We therefore derive a community
mask Pcomm ∈ {0, 1}n×n using the Louvain algorithm (Traag et al., 2019) and restrict message
passing to its non-zero pattern. To further reduce complexity, we retain only the top-kmax high-
degree nodes within each community as designated message-passing targets for all other members:

(Pcomm)ij =

{
1, if vj ∈ top-kmax(C(vi))
0, otherwise,

(14)

5
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where C(vi) denotes the community containing node vi.

Beyond conventional graph attention based on feature similarity (Ma et al., 2024), we introduce
kernel-driven adaptive attention to endow edges with learnable, data-driven weights. To promote
independent and diverse feature extraction, multiple attention channels are employed. For each
channel q = 1, . . . ,m, the unnormalized edge score and normalized attention are computed as:

e
(q)
ij = a⊤q [zi∥zj ] +

k∑
r=1

βq,r

(
gi,r + gj,r

)
, (15)

α
(q)
ij =

exp
(
σ(e

(q)
ij )

)∑
j′∈N comm

i
exp

(
σ(e

(q)
ij′ )

) , (16)

where aq ∈ R2d is the standard GAT vector, βq,r is a learnable kernel weight, σ(·) denotes
LeakyReLU, and N comm

i is the neighbor set defined by Pcomm.

Channel-wise Aggregation and Non-linearity. Following the calculation of attention coefficients,
kernel responses are diffused and aggregated per channel:

g̃
(q)
i,r =

∑
j∈N comm

i

α
(q)
ij gj,r, s

(q)
i =

k∑
r=1

wq,r g̃
(q)
i,r , (17)

Si = [s
(1)
i , . . . , s

(m)
i ]⊤, (18)

wq,r denotes a learnable channel weight. To promote diversity, Si is processed by a point-wise
non-linearity:

Ui = Φ(Si) = Bm(s
(m)
i ), Ui∈Rm, (19)

which forms the input to next GraphKAN layers. The final binary-classification logits are passed
through a softmax function to produce the estimated source probabilities:

p̂i =
exp

(
WclsUi + bcls

)∑1
c′=0 exp

(
(WclsUi + bcls)c′

) , (20)

p̂i =
[
p̂i,1, p̂i,0

]⊤
, (21)

p̂i,1 and p̂i,0 are the estimated probabilities that vi is a rumor source and a non-source, respectively.

Interpretability. Since each node is processed via univariate kernels and edge-adaptive attention,
variables such as kernel responses gi,r, attention weights βq,r and community mask Pcomm can
be inspected. This transparency enables fine-grained analysis of each node’s influence on source
inference and paves the way for interpretable graph learning.

4.3 OPTIMIZATION AND TRAINING

In rumor-spreading snapshots the number of sources is typically negligible compared with that of
non-sources, which can bias the model toward negative predictions. To compensate for this class
imbalance we introduce a weighting factor:

ω =
n− |s|
|s|

, (22)

where n is the total number of nodes in the snapshot and |s| is the number of labelled sources. All
source samples are multiplied by ω, whereas non-source samples keep unit weight, yielding equal
aggregate weight for the two classes.

Objective function. Given p̂i =
[
p̂i,1, p̂i,0

]⊤
as the softmax output for node vi and its ground-truth

label yi ∈ {1, 0}, the weighted cross-entropy loss over a snapshot is:

LCE = − 1

n

n∑
i=1

(
ω yi log p̂i,1 + (1− yi) log p̂i,0

)
. (23)

To prevent over-fitting we add an ℓ2 penalty on all trainable parameters Θ:
L = LCE + ε ∥Θ∥22, (24)

where ε > 0 is the regularization coefficient. The model is optimized end-to-end until convergency.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on twelve real-world datasets, including six static networks:
Football (Girvan & Newman, 2002), Jazz (Gleiser & Danon, 2003), Facebook (Leskovec &
Mcauley, 2012), LastFM (Rozemberczki & Sarkar, 2020), Enron (Klimt & Yang, 2004), and Github
(Rozemberczki et al., 2021); and six cascade datasets: Christianity (Sankar et al., 2020), Meme-
tracker (Leskovec et al., 2009), Android (Sankar et al., 2020), Twitter (Hodas & Lerman, 2014),
Douban (Zhong et al., 2012), and Weibo (Cao et al., 2017). The static networks differ in size, degree,
and clustering, while the cascade datasets capture time-resolved user interactions and propagation.
Together, they support comprehensive evaluation across diverse network settings.

Baselines. Different types of methods are selected as baselines: centrality-based methods such as
LPSI (Wang et al., 2017) and EPA (Ali et al., 2019), GCN-based methods leveraging user states
including GCNSI (Dong et al., 2019), SIGN (Li et al., 2021), GCSSI (Dong et al., 2022) and Res-
GCN (Shah et al., 2020), and propagation-aware models such as IVGD (Wang et al., 2022), SL-VAE
(Ling et al., 2022) and GIN-SD (Cheng et al., 2024b).

Implementation. For Networks 1–6, we simulate diffusion using the IC model: 3% of nodes are
randomly designated as sources, each informed node forwards with probability pi∼U(0, 0.5), and
snapshots are captured when 30% of nodes become informed. To emulate missing data, 2% of
node states are masked. For Datasets 7–12, the first user in each cascade is treated as the ground-
truth source. Samples are split 8:2 into training and test sets. GraphKAN is instantiated with two
KAN-Mix layers, each with m = 3 attention channels and k = 4 B-spline kernels. Community-
aware sparsity is enforced by selecting the top-5 high-degree nodes per community for message
passing. The model is trained via Adam with a learning rate of 10−3 and weight decay of 10−5. All
experiments run on a workstation equipped with four NVIDIA RTX 3090Ti GPUs.

Metrics. We evaluate performance using three standard metrics: accuracy (ACC), F1, and area
under the ROC curve (AUC). ACC measures the proportion of nodes that are correctly classified as
source or non-source. F1 balances precision and recall, where precision is |ŝ∩s|/|ŝ| and recall equals
|ŝ ∩ s|/|s| with ŝ denoting the predicted source set and s the ground-truth set. AUC quantifies the
model’s classification capability across all decision thresholds. These three complementary metrics
jointly provide a comprehensive and nuanced view of overall model performance.

5.2 PERFORMANCE ANALYSIS

Comparison with State-of-the-art Methods. Table 1 reports the performance of GraphKAN and
all baselines. Several observations arise. First, ACC are consistently higher than F1 for every
method. This gap reflects the pronounced class imbalance between source and non-source nodes:
centrality-based models (LPSI, EPA) and state-driven GCN variants (GCNSI, SIGN, GCSSI) are
particularly susceptible to this skew, resulting in low precision and thus depressed F1. Second,
learning-based approaches that integrate multiple node features generally surpass purely centrality-
oriented heuristics. Within this group, propagation-aware models (IVGD, SL-VAE) further im-
prove performance by explicitly capturing temporal diffusion patterns. GIN-SD attains the strongest
baseline results by additionally handling missing-state nodes. Finally, GraphKAN outperforms all
competitors on every dataset, it delivers 15%–25% absolute gains, and achieves up to a two-fold
improvement over centrality-based methods. These gains stem from two designs: (i) spline-based
node representations that capture fine-grained nonlinear cues, and (ii) community-aware sparse ag-
gregation with kernel-adaptive attention that models heterogeneous propagation paths.

Visualization. To offer an intuitive comparison, we visualize the predicted sources of GraphKAN
alongside those of representative baseline methods on the Jazz network. As shown in Fig. 3,
GraphKAN correctly identifies a greater number of true sources compared to competing approaches.

Computational Efficiency. Model sizes (memory footprints) are reported in Table 2, their trade-off
with F1-score is visualised in Fig. 4, and runtimes are summarised in Table 3. Centrality-based
approaches exhibit the smallest footprints but also the lowest F1. GCN-based models incur sub-
stantially larger sizes due to heavy non-embedding parameters and dense attention. In contrast,
GraphKAN shifts expressiveness to learnable activation kernels and employs sparsity-aware ag-
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Datasets Metrics Methods
LPSI EPA GCNSI SIGN GCSSI ResGCN IVGD SL-VAE GIN-SD Ours

N
et

w
or

ks
1-

6
Football

ACC 0.81 0.82 0.81 0.82 0.78 0.82 0.85 0.84 0.88 0.96
F1 0.31 0.33 0.25 0.43 0.41 0.45 0.68 0.66 0.71 0.80

AUC 0.85 0.83 0.83 0.83 0.82 0.84 0.86 0.83 0.86 0.97

Jazz
ACC 0.83 0.80 0.81 0.84 0.79 0.82 0.83 0.83 0.85 0.95
F1 0.30 0.31 0.23 0.40 0.37 0.39 0.61 0.62 0.68 0.75

AUC 0.84 0.84 0.82 0.81 0.81 0.81 0.85 0.82 0.84 0.94

Facebook
ACC 0.85 0.81 0.77 0.82 0.83 0.84 0.83 0.82 0.85 0.95
F1 0.24 0.25 0.11 0.44 0.41 0.43 0.67 0.65 0.69 0.81

AUC 0.81 0.80 0.75 0.81 0.84 0.85 0.85 0.83 0.86 0.94

LastFM
ACC 0.86 0.81 0.78 0.83 0.81 0.82 0.84 0.81 0.89 0.93
F1 0.22 0.20 0.09 0.41 0.39 0.40 0.62 0.61 0.69 0.75

AUC 0.82 0.79 0.75 0.85 0.79 0.83 0.85 0.84 0.90 0.92

Enron
ACC 0.84 0.83 0.74 0.79 0.80 0.81 0.83 0.82 0.85 0.94
F1 0.20 0.23 0.07 0.39 0.37 0.39 0.59 0.58 0.67 0.74

AUC 0.83 0.81 0.76 0.82 0.78 0.83 0.85 0.84 0.88 0.92

Github
ACC 0.81 0.79 0.73 0.82 0.83 0.82 0.84 0.82 0.87 0.92
F1 0.19 0.17 0.08 0.35 0.36 0.38 0.60 0.61 0.61 0.72

AUC 0.82 0.81 0.71 0.81 0.84 0.83 0.86 0.84 0.85 0.94

D
at

as
et

s
7-

12

Christianity
ACC 0.82 0.78 0.81 0.80 0.81 0.82 0.81 0.84 0.87 0.94
F1 0.23 0.24 0.12 0.37 0.38 0.41 0.56 0.54 0.68 0.75

AUC 0.83 0.82 0.75 0.81 0.79 0.83 0.83 0.81 0.91 0.93

Memetracker
ACC 0.85 0.84 0.77 0.79 0.81 0.82 0.84 0.84 0.87 0.92
F1 0.22 0.24 0.13 0.35 0.34 0.38 0.54 0.55 0.64 0.71

AUC 0.87 0.82 0.76 0.81 0.80 0.83 0.83 0.82 0.88 0.91

Android
ACC 0.86 0.81 0.74 0.81 0.82 0.82 0.83 0.84 0.89 0.95
F1 0.21 0.20 0.10 0.38 0.36 0.39 0.52 0.54 0.73 0.82

AUC 0.84 0.80 0.80 0.78 0.83 0.84 0.85 0.85 0.92 0.96

Twitter
ACC 0.85 0.82 0.73 0.78 0.81 0.82 0.81 0.85 0.84 0.90
F1 0.20 0.23 0.09 0.31 0.33 0.36 0.49 0.47 0.52 0.63

AUC 0.88 0.84 0.78 0.75 0.79 0.84 0.80 0.84 0.86 0.91

Douban
ACC 0.86 0.81 0.79 0.81 0.82 0.84 0.81 0.82 0.88 0.89
F1 0.18 0.21 0.15 0.32 0.31 0.35 0.48 0.50 0.54 0.65

AUC 0.84 0.80 0.82 0.79 0.81 0.83 0.83 0.83 0.86 0.90

Weibo
ACC 0.84 0.81 0.81 0.77 0.80 0.82 0.81 0.82 0.86 0.88
F1 0.17 0.19 0.13 0.30 0.33 0.36 0.50 0.52 0.53 0.67

AUC 0.85 0.82 0.80 0.80 0.78 0.84 0.84 0.83 0.87 0.91

Table 1: Performance comparison of all evaluated methods across the twelve datasets, with the best
results being highlighted.

UnobservedUnobservedInformedInformedUninformedUninformed SourceSource Detected sourceDetected source

(a) IVGD (b) GIN-SD (c) KAN-SD

Figure 3: Visualization of source detection results on Jazz.

gregation, achieving the highest detection accuracy with a markedly smaller parameter budget and
comparable runtime, demonstrating its practical efficiency.

Datasets LPSI EPA GCNSI SIGN GCSSI ResGCN IVGD SL-VAE GIN-SD Ours
Facebook 0.715 2.405 6.723 8.156 12.148 10.326 19.240 18.248 15.042 1.065
Enron 1.921 5.148 12.533 13.648 19.427 21.529 28.629 26.318 24.215 3.593
Android 0.748 3.549 4.647 7.720 14.098 10.378 18.262 19.764 12.834 1.543
Douban 1.644 4.078 10.194 12.013 17.468 19.267 26.052 23.594 21.480 6.963

Table 2: Model size (103 MB) comparison across all baseline methods on benchmark datasets.

Interpretability. To quantify each node’s contribution in source inference, we extract a composite
importance score from the first GraphKAN layer by aggregating its attention-weighted B-spline re-
sponses. Nodes ranked by this score show that over 80% of true sources occupy the top positions on
the Jazz, Facebook, and Christianity networks (Fig. 5 and Table 4). This strong alignment provides
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Figure 4: Model size vs. F-score for all meth-
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Figure 5: Importance scores in descending order,
with red stars marking the true sources.

Datasets LPSI GCNSI IVGD GIN-SD Ours
Facebook 1.346 1.545 1.816 1.648 1.503
Enron 3.914 3.821 4.259 4.148 3.745
Android 2.254 2.106 2.619 2.352 2.041

Table 3: Runtime (103 s) of selected methods.

Method Jazz Facebook Christianity
GraphKAN 0.925 0.854 0.836

Table 4: Fraction of true sources ranked as top-
scoring across datasets.

a clear, quantitative measure of node influence, enabling transparent and fine-grained interpretation
of the model’s decision process.

Methods Facebook Enron Android Twitter
w/o P 0.459 0.412 0.384 0.367
w/o PEs 0.751 0.706 0.748 0.597
w/ GCN 0.567 0.534 0.528 0.517
w/ GAT 0.712 0.685 0.703 0.515
w/ A1 0.594 0.583 0.615 0.475
w/ Single C 0.728 0.634 0.724 0.549
w/o KAN Att 0.674 0.548 0.613 0.508
GraphKAN 0.812 0.740 0.819 0.634

Table 5: Performance of different GraphKAN variants.

5.3 ABLATION STUDY AND OTHER ANALYSES

Effects of Node Representation. We first remove propagation features (row w/o P), which causes a
substantial F1 decline across all datasets, confirming that temporal signals are critical for modelling
source dynamics. Removing positional encodings (w/o PEs) also degrades performance, indicating
that relative structural position helps mitigate missing-state nodes and improves discrimination.

Effects of Existing Graph Learning Models. Replacing GraphKAN’s kernel-driven aggregation
with GCN sharply reduces performance, revealing GCN’s difficulty in modeling complex diffusion.
GAT improves on GCN by weighting node importance, yet both use fixed activations, limiting ex-
pressiveness and final source-detection accuracy.

Effects of Sparse Aggregation and Adaptive Attention. Using raw adjacency A1 impairs per-
formance, confirming community-sparsity aids rumor modeling. Collapsing channels to single (w/
Single C) worsens results, showing multi-channel prevents collapse. Removing kernel-enhanced
attention (w/o KAN Att) also reduces performance, proving feature-only attention is inadequate.
Combining all components, GraphKAN achieves the best accuracy.

6 CONCLUSION

This study proposes an accurate, efficient, and interpretable framework for rumor source detec-
tion. The key idea lies in constructing robust node representations by integrating heterogeneous
features and positional encodings to alleviate incomplete observations, performing kernel-driven
feature diffusion with learnable B-spline activations coupled with community-aware sparse aggre-
gation and kernel-adaptive attention, and enabling transparent analysis of internal graph learning
behaviour through inspection of activation kernels and attention weights. Extensive experiments on
twelve datasets demonstrate that GraphKAN consistently outperforms strong baselines across all
metrics. We hope this study inspires further research on effective and interpretable graph learning
for diffusion-driven inference tasks.
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A APPENDIX

A.1 STATEMENT ON LLM USAGE

LLMs were used only for language polishing (grammar, phrasing, clarity), not for ideation, study
design, data analysis, or substantive content generation.

A.2 KOLMOGOROV–ARNOLD REPRESENTATION THEOREM.

The Kolmogorov–Arnold theorem provides a foundational result in approximation theory, show-
ing that any continuous function on a high-dimensional box can be reduced to a combination of
univariate functions. Formally, for:

f : [0, 1]n → R, (25)

there exist continuous outer functions {Φq}2n+1
q=1 and inner functions {ϕq,p}1≤p≤n, 1≤q≤2n+1:

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

( n∑
p=1

ϕq,p(xp)
)
. (26)

This decomposition has several remarkable implications:
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• The number of outer terms, 2n + 1, depends only on the input dimension and not on the
complexity of f .

• Each inner sum
∑

p ϕq,p(xp) effectively projects the vector x onto a one-dimensional latent
space.

• The result yields a two-layer network that enjoys a universal approximation guarantee: any
continuous f can be approximated arbitrarily well by suitably chosen ϕq,p and Φq .

• This decomposition attains universal approximation: given arbitrary ε > 0, one can choose
continuous ϕq,p,Φq so that ∥f − fKA∥∞ < ε.

A.3 KOLMOGOROV–ARNOLD NETWORKS (KAN).

KAN generalises this construction into deep architectures. At layer l, let the input width be nl and
the output width be nl+1. We parameterise a matrix of univariate basis functions:

Φ(l) =
{
ϕ
(l)
j,i

}
, i = 1, . . . , nl, j = 1, . . . , nl+1, (27)

and define the layer transform:

x
(l+1)
j =

nl∑
i=1

ϕ
(l)
j,i

(
x
(l)
i

)
, j = 1, . . . , nl+1. (28)

Each ϕ
(l)
j,i is implemented as a cubic B-spline with learnable knot positions µ

(l)
j,i and widths σ

(l)
j,i .

Concretely, given a projection of xi:
ξ
(l)
i = a⊤j,ix

(l)
i , (29)

the spline response is:
ϕ
(l)
j,i(x

(l)
i ) = B

(
ξ
(l)
i ;µ

(l)
j,i , σ

(l)
j,i

)
, (30)

where B(·;µ, σ) denotes the standard cubic B-spline kernel. Stacking L such layers yields:

x(L) = Φ(L−1) ◦ · · · ◦ Φ(0)︸ ︷︷ ︸
L layers

(x(0)), (31)

which retains universal approximation and supports gradient-based training.

A.4 B-SPLINE BASIS: DEFINITION AND PROPERTIES.

A cubic B-spline B(u;µ, σ) is defined piecewise by:

B(u) =


2
3 − |u|2 + 1

2 |u|
3, |u| ≤ 1,

1
6 (2− |u|)3, 1 < |u| ≤ 2,

0, |u| > 2,

(32)

with u = (ξ−µ)/σ. Its compact support [−2σ, 2σ] and C2-continuity make it a flexible yet efficient
choice for learnable nonlinear transformations.

A.5 GRAPH-AWARE KAN FOR SOURCE DETECTION.

To adapt KAN to graph data, we interleave node-wise spline lifts with a community-aware
message-passing scheme. Let G = (V,E), |V | = n, with adjacency matrix A. For each node
vi with initial feature x

(0)
i :

1) Kernel-driven feature lift. We begin by mapping each node’s initial feature to a latent coordinate
and evaluating a bank of cubic B-spline kernels as univariate activations.

zi = Wz x
(0)
i , ξi = a⊤zi, (33)

gi,r = Br(ξi;µr, σr), r = 1, . . . , k. (34)

This produces a k-dimensional kernel response gi capturing localized nonlinear cues.
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2) Community-guided sparsification. To encode mesoscale structure and reduce computational
load, we restrict message passing to salient intra-community links identified by a community de-
tector. Using Louvain clustering, we derive a binary mask Pcomm that retains only the top-kmax

intra-community edges per node. The effective adjacency is Acomm = A⊙Pcomm.

3) Kernel-adaptive attention. On the sparsified graph, we compute kernel-augmented edge scores
and their softmax normalisation independently for each attention channel.

e
(q)
ij = a⊤q [zi∥zj ] +

k∑
r=1

βq,r

(
gi,r + gj,r

)
, (35)

α
(q)
ij =

exp(LeakyReLU(e
(q)
ij ))∑

j′∈N comm
i

exp(LeakyReLU(e
(q)
ij′ ))

. (36)

Thus, attention weights reflect both feature similarity and kernel-based propagation signals.

4) Message passing and update. Using these attentions, we diffuse kernel responses from neigh-
bours and aggregate them channel-wise to obtain node-level summaries.

g̃
(q)
i,r =

∑
j∈N comm

i

α
(q)
ij gj,r, s

(q)
i =

k∑
r=1

wq,r g̃
(q)
i,r , (37)

Si = [s
(1)
i , . . . , s

(m)
i ]⊤, (38)

followed by a channel-wise nonlinearity or a second KAN layer to produce x
(1)
i .

This integration exploits KAN’s universal approximation at the node level, while community-guided
sparsity and kernel-adaptive attention ensure scalable, topology-sensitive diffusion modeling.

5) Complexity and Parameter Counts. Analysing a single GraphKAN layer highlights its effi-
ciency:

Ops = O
(
nk + |E| k + nmk

)
,

covering spline evaluations, sparse edge traversals, and channel-aggregation. Each layer includes:

dindh︸ ︷︷ ︸
Wz

+ dh︸︷︷︸
a

+ 3k︸︷︷︸
µ,σ splines

+ mk︸︷︷︸
β

+m · 2dh︸ ︷︷ ︸
aq

+ mk︸︷︷︸
wq,r

, (39)

scaling linearly in the number of kernels k and channels m. This contrasts favorably with standard
GNNs, whose parameter counts grow superlinearly when dense attention or deep MLP backbones
are used.

6) Training and Optimization. We train GraphKAN end-to-end with Adam and a weighted cross-
entropy loss:

L = − 1

n

n∑
i=1

(
ω yi log p̂i,1 + (1− yi) log p̂i,0

)
+ λ∥Θ∥22, (40)

where ω = (n−|s|)/|s| balances source vs. non-source classes, and λ is an ℓ2 regulariser. We apply
a cosine learning-rate schedule and dropout in each GraphKAN layer to stabilise training. Models
converge within 1000 epochs on a single NVIDIA RTX 3090 Ti.

A.6 DATASETS.

We evaluate our method across 12 benchmark datasets—six static graphs and six cascade-based
networks. Summary statistics are provided in Table 6.

A.7 MORE DETAILS ABOUT COMPARISON WITH SOTA METHODS.

Table 7 (5% state-missing) reveals consistent trends across twelve datasets and three metrics.
Source-centrality methods (LPSI, EPA) attain respectable ACC but low F1, indicative of class imbal-
ance (e.g., Football: ACC 0.80–0.82, F1 0.30–0.31). GCN-based models (GCNSI, SIGN, GCSSI,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Id Networks |V | |E| ⟨k⟩ CC Id Datasets #Users #Links #Cascades Avg. Length

1 Football 115 613 10.66 0.40 7 Christianity 2897 35624 589 22.90
2 Jazz 198 2742 27.70 0.62 8 Memetracker 4709 209194 12661 16.24
3 Facebook 4039 88234 43.69 0.61 9 Android 9958 48573 679 33.30
4 LastFM 7624 27806 7.29 0.22 10 Twitter 12627 309631 3442 32.60
5 Enron 36692 183831 10.02 0.50 11 Douban 23123 348280 10602 27.14
6 Github 37700 289003 15.33 0.17 12 Weibo 46684 502400 18954 38.76

Table 6: Statistics of selected datasets. Datasets 1–6 summarize static network properties, while
7–12 report user-level cascades.

Id Datasets Metrics Methods
LPSI EPA GCNSI SIGN GCSSI ResGCN IVGD SL-VAE GIN-SD Ours

N
et

w
or

ks
1-

6

Football
ACC 0.78 0.80 0.79 0.80 0.75 0.79 0.81 0.82 0.85 0.94
F1 0.30 0.31 0.24 0.41 0.39 0.43 0.65 0.62 0.66 0.77

AUC 0.81 0.80 0.81 0.81 0.78 0.82 0.84 0.81 0.82 0.93

Jazz
ACC 0.79 0.77 0.78 0.80 0.77 0.79 0.79 0.80 0.81 0.92
F1 0.28 0.30 0.22 0.38 0.35 0.37 0.58 0.59 0.64 0.71

AUC 0.81 0.82 0.80 0.77 0.78 0.78 0.83 0.79 0.82 0.91

Facebook
ACC 0.81 0.78 0.74 0.79 0.79 0.80 0.81 0.80 0.83 0.92
F1 0.23 0.23 0.10 0.42 0.39 0.41 0.63 0.62 0.66 0.77

AUC 0.78 0.78 0.72 0.77 0.81 0.83 0.81 0.80 0.84 0.92

LastFM
ACC 0.84 0.78 0.75 0.80 0.79 0.79 0.80 0.78 0.85 0.89
F1 0.21 0.19 0.09 0.39 0.37 0.38 0.59 0.58 0.65 0.70

AUC 0.78 0.77 0.72 0.83 0.75 0.79 0.83 0.81 0.87 0.90

Enron
ACC 0.80 0.80 0.71 0.76 0.78 0.79 0.81 0.78 0.81 0.90
F1 0.19 0.22 0.07 0.36 0.35 0.37 0.57 0.54 0.63 0.71

AUC 0.80 0.78 0.74 0.78 0.75 0.81 0.82 0.81 0.86 0.89

Github
ACC 0.77 0.76 0.71 0.79 0.81 0.80 0.82 0.79 0.85 0.90
F1 0.18 0.16 0.08 0.33 0.34 0.36 0.57 0.57 0.58 0.69

AUC 0.78 0.78 0.69 0.78 0.80 0.81 0.84 0.81 0.82 0.91

D
at

as
et

s
7-

12

Christianity
ACC 0.79 0.75 0.77 0.78 0.78 0.80 0.77 0.82 0.85 0.91
F1 0.22 0.23 0.11 0.35 0.36 0.38 0.53 0.52 0.63 0.70

AUC 0.79 0.78 0.72 0.79 0.76 0.81 0.80 0.79 0.88 0.88

Memetracker
ACC 0.83 0.80 0.74 0.76 0.77 0.78 0.81 0.80 0.85 0.89
F1 0.21 0.23 0.12 0.33 0.33 0.36 0.51 0.51 0.61 0.66

AUC 0.85 0.80 0.73 0.78 0.78 0.81 0.79 0.80 0.85 0.88

Android
ACC 0.83 0.78 0.71 0.77 0.80 0.79 0.81 0.81 0.85 0.92
F1 0.20 0.19 0.10 0.36 0.34 0.36 0.50 0.52 0.70 0.76

AUC 0.80 0.76 0.78 0.76 0.79 0.81 0.82 0.81 0.88 0.94

Twitter
ACC 0.81 0.80 0.70 0.74 0.79 0.80 0.79 0.82 0.82 0.87
F1 0.19 0.22 0.09 0.30 0.31 0.34 0.46 0.45 0.49 0.60

AUC 0.86 0.80 0.75 0.73 0.76 0.81 0.77 0.82 0.84 0.87

Douban
ACC 0.82 0.78 0.75 0.78 0.80 0.82 0.79 0.78 0.84 0.85
F1 0.17 0.20 0.14 0.31 0.29 0.33 0.46 0.47 0.52 0.61

AUC 0.80 0.76 0.78 0.75 0.79 0.80 0.81 0.79 0.82 0.86

Weibo
ACC 0.80 0.79 0.78 0.75 0.76 0.78 0.79 0.78 0.83 0.85
F1 0.16 0.18 0.13 0.29 0.31 0.34 0.47 0.50 0.50 0.64

AUC 0.81 0.79 0.76 0.78 0.74 0.82 0.80 0.81 0.85 0.88

Table 7: Performance comparison of all evaluated methods across the twelve datasets, with the best
results highlighted. The proportion of state-missing nodes is set to 5%.

ResGCN) provide only modest gains in F1 and AUC and underuse temporal and positional cues
(e.g., Facebook F1 0.39–0.42). Propagation-aware baselines (IVGD, SL-VAE, GIN-SD) are the
strongest among baselines, yet gains diminish with fragmented communities or partial observability
(e.g., Twitter best baseline F1 0.49; Weibo 0.50; Android AUC 0.88; Memetracker 0.85).

Our method yields a more balanced profile, combining high ACC with stronger F1 and consistently
higher AUC on both static graphs and cascades. Representative improvements include Football (F1
0.66 to 0.77; AUC 0.84 to 0.93), Jazz (F1 0.64 to 0.71; AUC 0.83 to 0.91), Facebook (ACC 0.83 to
0.92; F1 0.66 to 0.77), Android (F1 0.70 to 0.76; AUC 0.88 to 0.94), and Douban (F1 0.52 to 0.61;
AUC 0.82 to 0.86). These gains arise from three components: (i) learnable B-spline activations that
adapt to local regimes and emphasize early-spread signals, (ii) community-guided sparsification that
suppresses spurious cross-community paths, and (iii) kernel-adaptive attention that weights edges
beyond feature similarity.

Metric behavior aligns with imbalance: ACC generally exceeds F1, but the gap narrows for our
method. On Github, F1 increases from 0.58 (best baseline) to 0.69 and AUC increases from 0.84 to
0.91. Improvements are broad and persist under 5% missing-state information.
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A.8 VISUALIZATION.

To provide deeper insight into the detection of rumor sources and clarify the analytical findings, we
present the outcomes of various approaches in Fig. 6 and Fig. 7. The plots show that GraphKAN
concentrates on true sources, yielding clearer propagation fronts than competing baselines. This
visual representation supports direct comparisons across multiple methods and enhances the inter-
pretability of the intricate propagation patterns that emerge.

(a) Initial (b) LPSI

(c) EPA (d) GCNSI (e) SIGN

(f) GCSSI (g) ResGCN (h) IVGD

(i) SL-VAE (j) GIN-SD (k) GraphKAN

UnobservedUnobservedInformedInformedUninformedUninformed SourceSource Detected sourceDetected source

Figure 6: Visualization of source detection results on Karate network.
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(a) Initial (b) LPSI

(c) EPA (d) GCNSI (e) SIGN

(f) GCSSI (g) ResGCN (h) IVGD

(i) SL-VAE (j) GIN-SD (k) GraphKAN

UnobservedUnobservedInformedInformedUninformedUninformed SourceSource Detected sourceDetected source

Figure 7: Visualization of source detection results on Jazz network.
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