

GRAPHKAN: AN EFFICIENT AND INTERPRETABLE KOLMOGOROV-ARNOLD GRAPH NETWORK FOR SOURCE DETECTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Source detection in graphs offers a viable solution to critical challenges such as
 014 rumor tracing. Yet existing GCN-based approaches squander non-embedding pa-
 015 rameters and rely on fixed activation functions. We present GraphKAN: An Effi-
 016 cient and Interpretable Kolmogorov–Arnold Graph Network for Source Detection,
 017 which capitalizes on Kolmogorov–Arnold Networks (KANs) by assigning learn-
 018 able activation functions to edge weights. Node features are first diffused through
 019 B-spline–based univariate activations, yielding expressive and localized transfor-
 020 mations. We further devise a sparsity-aware neighborhood aggregation rooted in
 021 community clusters, where edge-level attention is adaptively strengthened through
 022 KAN-driven kernel learning. Unlike black-box GCNs, GraphKAN exposes in-
 023 terpretable intermediate representations via its learnable basis functions. Exten-
 024 sive experiments on twelve real-world datasets demonstrate that GraphKAN con-
 025 sistently outperforms state-of-the-art baselines in accuracy, efficiency, and inter-
 026 pretability. Codes will be made public upon paper acceptance.

1 INTRODUCTION

030 Source detection on graphs offers a viable solution to pressing societal challenges such as rumor
 031 tracing, while simultaneously posing notable mathematical difficulties (Shah & Zaman, 2011; Zhu
 032 et al., 2022). Early approaches, including LPSI (Wang et al., 2017), OJC (Zhu et al., 2017), and
 033 MLE (Pinto et al., 2012; Yang et al., 2020), rely on source centrality theory (Shah & Zaman, 2011)
 034 and maximum likelihood estimation (Cheng et al., 2025) to identify the origin of diffusion. In recent
 035 years, with the advancement of deep learning, particularly Graph Convolutional Networks (GCNs)
 036 (Kipf & Welling, 2017), researchers embed both node features and social topologies to learn more
 037 expressive node representations (Dong et al., 2019; Ling et al., 2022; Wang et al., 2022), achieving
 038 new state-of-the-art records.

039 However, existing GCN-based source detection methods are fundamentally built upon Multi-Layer
 040 Perceptrons (MLPs), which leverage the universal approximation theorem to achieve a robust capac-
 041 ity for approximating nonlinear functions (Kiamari et al., 2024). Despite their widespread adoption,
 042 MLPs suffer from several notable limitations: 1) the excessive consumption of non-embedding pa-
 043 rameters leads to high memory overhead in graph neural networks; 2) the use of fixed activation
 044 functions constrains their representational flexibility; and 3) their inherently black-box nature hin-
 045 ders interpretability.

046 We note that recent progress in the Kolmogorov–Arnold theorem has led to the remarkable develop-
 047 ment of Kolmogorov–Arnold Networks (KAN) (Liu et al., 2024). Unlike traditional MLPs, where
 048 edges carry learnable weights and nodes apply fixed activation functions, KAN assigns learnable
 049 activation functions to edges while nodes perform only linear operations on incoming signals. In-
 050 ternally, KAN employs univariate spline functions as activation kernels, which offer strong local
 051 transformation capabilities and high accuracy in low-order function approximation. Externally, it
 052 captures expressive feature representations through a compositional structure. This design provides
 053 KAN with both powerful learning capacity and reduced computational graph complexity compared
 to MLPs. Additionally, the use of distinct basis functions enhances interpretability. However, KAN
 cannot be directly applied to source detection tasks. The key challenge lies in incorporating graph

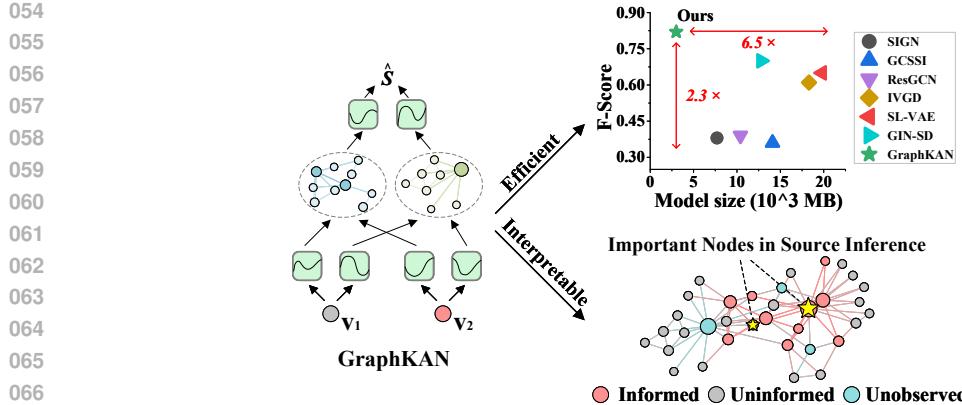


Figure 1: We propose a graph-aware Kolmogorov–Arnold network for source detection (GraphKAN), which achieves significant improvements in accuracy and efficiency over baseline methods, while also enhancing interpretability.

topology to design efficient information aggregation mechanisms, which is essential for adapting KAN to this domain.

In this paper, we propose the GraphKAN: An Efficient and Interpretable Kolmogorov–Arnold Graph Network for Source Detection, which harnesses the expressive power of learnable activation functions within a graph-based inference framework. Specifically, node features are first propagated via univariate B-spline-based activation functions, enabling localized and expressive nonlinear transformations. To effectively integrate structural information while preserving computational scalability, we design a sparsity-aware neighborhood aggregation strategy grounded in community-based clustering. This mechanism adaptively enhances edge-level attention weights through KAN’s learnable kernel functions, allowing for flexible and topology-sensitive message passing. Furthermore, we provide interpretable insights into the relative importance of different nodes in the source detection process through the analysis of learned activation patterns. We evaluate our approach on 12 real-world datasets. Extensive experimental results demonstrate that GraphKAN surpasses state-of-the-art techniques in terms of accuracy, efficiency, and interpretability, establishing new baselines.

Overall, our contributions are summarized as:

- We propose GraphKAN, a novel graph learning framework for source detection that leverages the Kolmogorov–Arnold representation to enable expressive, localized, and interpretable nonlinear modeling within graph neural networks.
- We design a sparsity-aware neighborhood aggregation mechanism that integrates graph topology via community-based clustering and adaptively enhances edge attention through KAN’s learnable kernels, enabling efficient and structure-aware message passing.
- We show by extensive experiments on 12 real-world datasets that GraphKAN consistently outperforms state-of-the-art methods in accuracy, efficiency, and interpretability, establishing new performance baselines.

2 RELATED WORK

2.1 SNAPSHOT-BASED MULTI-SOURCE DETECTION

In recent years, snapshot-based approaches have gained popularity for multi-source detection due to their ease of access and ability to capture essential information such as user states and network topology (Cheng et al., 2024b). Based on source centrality theory (Prakash et al., 2012; Shah & Zaman, 2011), LPSI identifies locally prominent nodes via label propagation (Wang et al., 2017), EPA estimates infection times iteratively (Ali et al., 2019), and OJC optimizes Jordan centrality (Zhu et al., 2017). While computationally efficient, these methods struggle to handle the complexity of user attributes in real-world networks (Cheng et al., 2024a). Graph neural network-based approaches have emerged as powerful alternatives (Bao et al., 2024). GCNSI (Dong et al., 2019) and SIGN (Li

108 et al., 2021) incorporate user states and related attributes as input features for node classification,
 109 while GCSSI targets waveform nodes (Dong et al., 2022). From a structural modeling perspective,
 110 ResGCN enhances information propagation through residual connections (Shah et al., 2020). How-
 111 ever, these methods fall short in capturing the underlying dynamics of information diffusion. To
 112 address this, IVGD (Wang et al., 2022) and SL-VAE (Ling et al., 2022) incorporate graph diffusion
 113 processes to learn diverse propagation patterns. Despite these advances, existing GCN-based meth-
 114 ods fundamentally rely on MLP backbones, which suffer from limited efficiency, flexibility, and
 115 interpretability due to their overparameterized structures, fixed activations, and black-box nature.

116 **2.2 KOLMOGOROV-ARNOLD NETWORKS (KAN)**

117 The Kolmogorov–Arnold representation theorem establishes that any multivariate continuous func-
 118 tion within a bounded domain can be represented as a finite superposition of univariate functions
 119 in a binary composition (Kolmogorov, 1957). Although earlier studies have attempted to leverage
 120 this theoretical foundation for machine learning (Sprecher & Draghici, 2002; Fakhouri et al., 2022;
 121 Montanelli & Yang, 2020), they are constrained to networks of fixed depth (2) and width ($2n+1$).
 122 By generalizing the theorem, Kolmogorov–Arnold Networks (KAN) extend the representation to
 123 arbitrary depth and width, enabling seamless integration into contemporary deep learning pipelines
 124 (Liu et al., 2024). KAN employs univariate spline-based activation functions with strong local trans-
 125 formation capacity, combined with a compositional architecture, achieving both high approximation
 126 accuracy and interpretability. These properties make KAN a promising alternative to traditional
 127 MLPs. However, KAN cannot be directly applied to source detection tasks. The primary challenge
 128 lies in incorporating graph structural information to design effective aggregation mechanisms.

129 **3 PROBLEM FORMULATION**

130 **Preliminary on Social Networks.** The social network in physical world can be abstracted as graph
 131 $G = (V, E)$, where $V = \{v_1, v_2, \dots, v_n\}$ denotes the set of nodes representing users, and $E =$
 132 $\{(v_i, v_j) \mid v_i, v_j \in V, i \neq j\}$ denotes the set of edges representing social interactions. Each node
 133 $v_i \in V$ may be associated with a feature vector $\mathbf{X}_i \in \mathbb{R}^d$, capturing user attributes such as profile
 134 information and activity status. The overall topology captures the structural properties of the under-
 135 lying social system. We denote by $\mathcal{N}(i)$ the set of neighbors of node v_i and \mathbf{A} ($A_{ij} \in \{0, 1\}^{n \times n}$)
 136 the adjacency matrix.

137 **Propagation Process on Social Networks.** Information diffusion on social networks evolves over
 138 time t . At $t = 0$, a subset of sources s transitions from uninformed to informed, initiating the cas-
 139 cade; for $t > 0$, each informed user independently forwards to neighbors with a personal forwarding
 140 probability p . Canonical diffusion models (SI, SIR, IC, and LT) simulate this process (Battiston
 141 et al., 2020; de Arruda et al., 2020). Accordingly, the propagation is represented by time-indexed
 142 snapshots $\{G'_t\}_{t \geq 0}$, where each G'_t partitions nodes into informed G_+ and uninformed G_- .

143 **Source Detection in Graphs.** Once the informed fraction attains a prespecified threshold $\delta \in$
 144 $(0, 1)$, we obtain a snapshot G' comprising the topology T , user infection states U , and propagation
 145 information P . Formally, the problem is defined as:

$$146 \hat{s} = f(G'(T, U, P)), \quad (1)$$

147 where $f(\cdot)$ represents the source detection algorithm, and \hat{s} denotes the set of detected sources.

148 **GCN-based vs. KAN-based Approaches.** The core difference between GCN-based and KAN-
 149 based source detection methods lies in their nonlinear transformation. GCN-based methods model
 150 the detection function $f(\cdot)$ using MLP backbones with fixed activations $\sigma(\cdot)$ and non-embedding
 151 weights \mathbf{W} , where information is aggregated via:

$$152 \mathbf{X}_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \mathbf{W}^{(l)} \mathbf{X}_j^{(l)} \right). \quad (2)$$

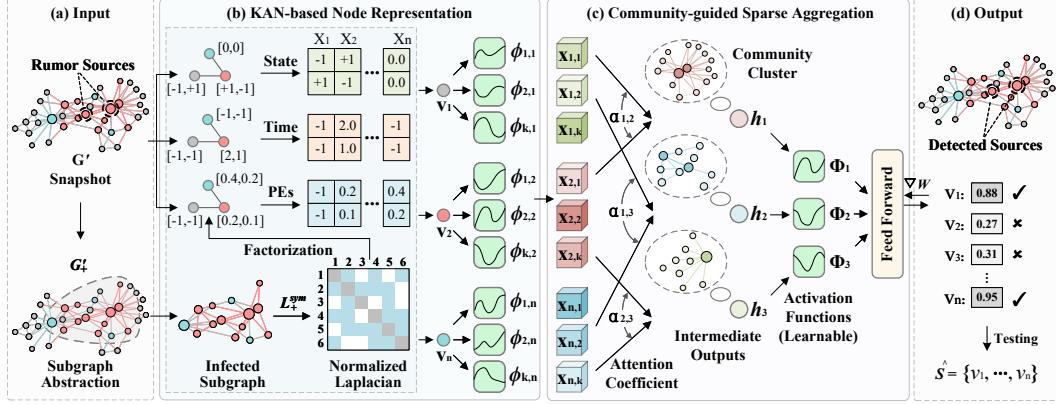
153 While KAN-based approach replaces fixed activations with learnable B-spline functions $\phi(\cdot)$:

$$154 \mathbf{X}_i^{(l+1)} = \mathcal{A}_{\text{GraphKAN}} \left(\left\{ \phi_{ij} \left(\mathbf{X}_j^{(l)} \right) \mid j \in \mathcal{N}(i) \right\} \right), \quad (3)$$

155 where $\mathcal{A}_{\text{GraphKAN}}$ denotes our proposed aggregator.

162 **4 METHOD**
 163

164 In this section, we present GraphKAN, a dedicated framework designed to address the challenges
 165 Above. Specifically, we design the **KAN-based Node Representation** module to address Challenge
 166 1), and propose a **Community-guided Sparse Aggregation** mechanism for Challenge 2).



182 Figure 2: GraphKAN framework. (a) Input: snapshot with informed, uninformed, missing-state
 183 nodes. (b) KAN representation: embed state, timestamp, positional encoding via learnable B-spline
 184 activations. (c) Community-guided sparse aggregation: aggregate kernel-enhanced features with
 185 sparsity-aware, kernel-adaptive attention. (d) Output: softmax yields source probabilities.

186
 187 **4.1 KAN-BASED NODE REPRESENTATION**
 188

189 To facilitate effective comparison and representation learning, several key attributes captured in the
 190 snapshot G'_t are embedded as node features.

191 **State Information X_i^1 .** The user state reflects whether a user has participated in the propagation. In
 192 the snapshot G'_t , users fall into several subsets: G_+ (informed), G_- (uninformed), and Π , which
 193 represents users with missing state information due to privacy constraints or incomplete observations.
 194 The corresponding state feature X_i^1 is defined as:

$$X_i^1 = \begin{cases} +1, & v_i \in G_+ \\ -1, & v_i \in G_- \\ 0, & v_i \in \Pi. \end{cases} \quad (4)$$

195 **Propagation Information X_i^2 .** To model diffusion dynamics, each node's participation timestamp
 196 is incorporated as the temporal feature. For informed nodes $v_i \in G_+$, we record the time t_i at which
 197 the node was first influenced by the rumor. For uninformed nodes $v_i \in G_-$ or nodes with missing
 198 information $v_i \in \Pi$, a default value (-1) is assigned. The resulting temporal feature X_i^2 is defined as:

$$X_i^2 = \begin{cases} t_i, & v_i \in G_+ \\ -1, & \text{otherwise.} \end{cases} \quad (5)$$

199 **Positional Encodings X_i^3 .** In scenarios with partially missing node information, relative struc-
 200 tural positions provide key signals for modeling diffusion and enhancing global propagation. How-
 201 ever, existing GCN-based models learn representations with invariant node positions (Srinivasan &
 202 Ribeiro, 2019). To address this, we adopt Laplacian positional encodings (Dwivedi et al., 2020) as
 203 structural features due to their strong generalization capability.

204 Motivated by source centrality theory, rather than computing positional encodings over the entire
 205 graph, we first extract an infection subgraph and then perform position encoding within this local
 206 structure, thereby emphasizing the topological centrality of potential sources. For uninformed nodes
 207 v_i , the subgraph extraction process is formulated as:

$$A_+ = J_{i,n} \cdot A \cdot J_{i,n}^T, \quad (6)$$

216 where $\mathbf{A} \in \mathbb{R}^{n \times n}$ denotes the adjacency matrix of the full graph G' , and $\mathbf{A}_+ \in \mathbb{R}^{(n-1) \times (n-1)}$ is the
 217 adjacency matrix after removing node v_i . $\mathbf{J}_{i,n} \in \mathbb{R}^{(n-1) \times n}$ is a selection matrix derived from the
 218 identity matrix by deleting the i -th row, which serves to remove node v_i and its associated edges.
 219

220 After extracting the infection-induced subgraph, the symmetrically normalized Laplacian matrix is
 221 computed as:

$$222 \quad \mathbf{L}_+^{sym} = \mathbf{I} - \mathbf{D}_+^{-1/2} \mathbf{A}_+ \mathbf{D}_+^{-1/2}, \quad (7)$$

223 where \mathbf{D}_+ is the degree matrix associated with \mathbf{A}_+ . The normalized Laplacian \mathbf{L}_+^{sym} can be further
 224 decomposed via eigendecomposition as:

$$225 \quad \Delta_{\mathbf{L}_+^{sym}} = \Gamma^T \lambda \Gamma, \quad (8)$$

227 where λ is a diagonal matrix of eigenvalues and Γ contains the corresponding eigenvectors. We
 228 select the eigenvectors associated with the r -smallest nontrivial eigenvalues to form the positional
 229 encoding matrix ($r \ll n$), yielding the final positional feature $\mathbf{X}_i^3 \in \mathbb{R}^r$:

$$231 \quad \mathbf{X}_i^3 = \begin{cases} \Gamma_i, & v_i \in G_+ \cup \Pi \\ -1, & \text{otherwise.} \end{cases} \quad (9)$$

233 To ensure compatibility with KAN’s localized activation structure and facilitate the capture of node-
 234 level propagation patterns with improved interpretability, we apply a transformation to the concatenated
 235 features such that each node representation serves as a basic computational unit for KAN:

$$237 \quad \mathbf{X}_i = \mathbf{W} \cdot [\mathbf{X}_i^3] + \mathbf{b}. \quad (10)$$

239 **Preliminary on KAN.** A KAN layer is characterised by a matrix of univariate functions $\Phi^{(l)} =$
 240 $\{\phi_{j,i}^{(l)}\}$, $i = 1, \dots, n_l$, $j = 1, \dots, n_{l+1}$, where n_l and n_{l+1} denote the input and output widths, re-
 241 spectively. For a more intuitive illustration, the layer-wise transformation can be represented as:

$$243 \quad \mathbf{x}_j^{(l+1)} = \sum_{i=1}^{n_l} \phi_{j,i}^{(l)}(\mathbf{x}_i^{(l)}), \quad j = 1, \dots, n_{l+1}, \quad (11)$$

246 with each $\phi_{j,i}^{(l)}$ instantiated as a learnable B-spline. Stacking such layers preserves universal approx-
 247 imation while endowing KAN with depth and gradient-based trainability.

249 **Kernel-driven Node Feature Diffusion.** Given the initial node embedding $\mathbf{X}_i \in \mathbb{R}^d$ and KAN
 250 foundations, we compute the latent projection and spline responses:

$$251 \quad \xi_i = \mathbf{a}^\top \mathbf{X}_i, \quad (12)$$

$$252 \quad g_{i,r} = B_r(\xi_i; \mu_r, \sigma_r), \quad r = 1, \dots, k, \quad (13)$$

254 where $\mathbf{a} \in \mathbb{R}^d$ is a trainable vector, and the set $\{B_r\}$ comprises k learnable cubic B-spline kernels
 255 with centres μ_r and widths σ_r . The response vector $\mathbf{g}_i = [g_{i,1}, \dots, g_{i,k}]^\top$ constitutes a kernel-based
 256 non-linear enhancement of node features, capturing expressive representations that are preserved for
 257 subsequent attention and aggregation.

258 4.2 COMMUNITY-GUIDED SPARSE AGGREGATION

261 In this subsection, we detail the components of GraphKAN that enable topology-sensitive message
 262 passing through sparse aggregation and adaptive attention.

263 **Community-aware Sparse Message Passing with Adaptive Attention.** Information exchange in
 264 social graphs is typically more intensive within communities. We therefore derive a community
 265 mask $\mathbf{P}_{\text{comm}} \in \{0, 1\}^{n \times n}$ using the Louvain algorithm (Traag et al., 2019) and restrict message
 266 passing to its non-zero pattern. To further reduce complexity, we retain only the top- k_{\max} high-
 267 degree nodes within each community as designated message-passing targets for all other members:

$$268 \quad (\mathbf{P}_{\text{comm}})_{ij} = \begin{cases} 1, & \text{if } v_j \in \text{top-}k_{\max}(\mathcal{C}(v_i)) \\ 0, & \text{otherwise,} \end{cases} \quad (14)$$

270 where $\mathcal{C}(v_i)$ denotes the community containing node v_i .
 271

272 Beyond conventional graph attention based on feature similarity (Ma et al., 2024), we introduce
 273 kernel-driven adaptive attention to endow edges with learnable, data-driven weights. To promote
 274 independent and diverse feature extraction, multiple attention channels are employed. For each
 275 channel $q = 1, \dots, m$, the unnormalized edge score and normalized attention are computed as:
 276

$$277 \quad e_{ij}^{(q)} = \mathbf{a}_q^\top [\mathbf{z}_i \| \mathbf{z}_j] + \sum_{r=1}^k \beta_{q,r} (g_{i,r} + g_{j,r}), \quad (15)$$

$$279 \quad \alpha_{ij}^{(q)} = \frac{\exp(\sigma(e_{ij}^{(q)}))}{\sum_{j' \in \mathcal{N}_i^{\text{comm}}} \exp(\sigma(e_{ij'}^{(q)}))}, \quad (16)$$

282 where $\mathbf{a}_q \in \mathbb{R}^{2d}$ is the standard GAT vector, $\beta_{q,r}$ is a learnable kernel weight, $\sigma(\cdot)$ denotes
 283 LeakyReLU, and $\mathcal{N}_i^{\text{comm}}$ is the neighbor set defined by \mathbf{P}_{comm} .
 284

285 **Channel-wise Aggregation and Non-linearity.** Following the calculation of attention coefficients,
 286 kernel responses are diffused and aggregated per channel:
 287

$$288 \quad \tilde{g}_{i,r}^{(q)} = \sum_{j \in \mathcal{N}_i^{\text{comm}}} \alpha_{ij}^{(q)} g_{j,r}, \quad s_i^{(q)} = \sum_{r=1}^k w_{q,r} \tilde{g}_{i,r}^{(q)}, \quad (17)$$

$$289 \quad \mathbf{S}_i = [s_i^{(1)}, \dots, s_i^{(m)}]^\top, \quad (18)$$

290 $w_{q,r}$ denotes a learnable channel weight. To promote diversity, \mathbf{S}_i is processed by a point-wise
 291 non-linearity:
 292

$$293 \quad \mathbf{U}_i = \Phi(\mathbf{S}_i) = B_m(s_i^{(m)}), \quad \mathbf{U}_i \in \mathbb{R}^m, \quad (19)$$

294 which forms the input to next GraphKAN layers. The final binary-classification logits are passed
 295 through a softmax function to produce the estimated source probabilities:
 296

$$297 \quad \hat{\mathbf{p}}_i = \frac{\exp(\mathbf{W}_{\text{cls}} \mathbf{U}_i + \mathbf{b}_{\text{cls}})}{\sum_{c'=0}^1 \exp((\mathbf{W}_{\text{cls}} \mathbf{U}_i + \mathbf{b}_{\text{cls}})_{c'})}, \quad (20)$$

$$299 \quad \hat{\mathbf{p}}_i = [\hat{p}_{i,1}, \hat{p}_{i,0}]^\top, \quad (21)$$

300 $\hat{p}_{i,1}$ and $\hat{p}_{i,0}$ are the estimated probabilities that v_i is a rumor source and a non-source, respectively.
 301

302 **Interpretability.** Since each node is processed via univariate kernels and edge-adaptive attention,
 303 variables such as kernel responses $g_{i,r}$, attention weights $\beta_{q,r}$ and community mask \mathbf{P}_{comm} can
 304 be inspected. This transparency enables fine-grained analysis of each node’s influence on source
 305 inference and paves the way for interpretable graph learning.
 306

4.3 OPTIMIZATION AND TRAINING

308 In rumor-spreading snapshots the number of sources is typically negligible compared with that of
 309 non-sources, which can bias the model toward negative predictions. To compensate for this class
 310 imbalance we introduce a weighting factor:
 311

$$312 \quad \omega = \frac{n - |s|}{|s|}, \quad (22)$$

313 where n is the total number of nodes in the snapshot and $|s|$ is the number of labelled sources. All
 314 source samples are multiplied by ω , whereas non-source samples keep unit weight, yielding equal
 315 aggregate weight for the two classes.
 316

317 **Objective function.** Given $\hat{\mathbf{p}}_i = [\hat{p}_{i,1}, \hat{p}_{i,0}]^\top$ as the softmax output for node v_i and its ground-truth
 318 label $y_i \in \{1, 0\}$, the weighted cross-entropy loss over a snapshot is:
 319

$$320 \quad \mathcal{L}_{\text{CE}} = -\frac{1}{n} \sum_{i=1}^n (\omega y_i \log \hat{p}_{i,1} + (1 - y_i) \log \hat{p}_{i,0}). \quad (23)$$

321 To prevent over-fitting we add an ℓ_2 penalty on all trainable parameters Θ :
 322

$$323 \quad \mathcal{L} = \mathcal{L}_{\text{CE}} + \varepsilon \|\Theta\|_2^2, \quad (24)$$

324 where $\varepsilon > 0$ is the regularization coefficient. The model is optimized end-to-end until convergenceny.
 325

324

5 EXPERIMENTS

325

5.1 EXPERIMENTAL SETTINGS

326 **Datasets.** We conduct experiments on twelve real-world datasets, including six static networks:
 327 Football (Girvan & Newman, 2002), Jazz (Gleiser & Danon, 2003), Facebook (Leskovec &
 328 Mcauley, 2012), LastFM (Rozemberczki & Sarkar, 2020), Enron (Klimt & Yang, 2004), and Github
 329 (Rozemberczki et al., 2021); and six cascade datasets: Christianity (Sankar et al., 2020), Memetracker
 330 (Leskovec et al., 2009), Android (Sankar et al., 2020), Twitter (Hodas & Lerman, 2014),
 331 Douban (Zhong et al., 2012), and Weibo (Cao et al., 2017). The static networks differ in size, degree,
 332 and clustering, while the cascade datasets capture time-resolved user interactions and propagation.
 333 Together, they support comprehensive evaluation across diverse network settings.
 334

335 **Baselines.** Different types of methods are selected as baselines: centrality-based methods such as
 336 LPSI (Wang et al., 2017) and EPA (Ali et al., 2019), GCN-based methods leveraging user states
 337 including GCNSI (Dong et al., 2019), SIGN (Li et al., 2021), GCSSI (Dong et al., 2022) and Res-
 338 GCN (Shah et al., 2020), and propagation-aware models such as IVGD (Wang et al., 2022), SL-VAE
 339 (Ling et al., 2022) and GIN-SD (Cheng et al., 2024b).
 340

341 **Implementation.** For Networks 1–6, we simulate diffusion using the IC model: 3% of nodes are
 342 randomly designated as sources, each informed node forwards with probability $p_i \sim U(0, 0.5)$, and
 343 snapshots are captured when 30% of nodes become informed. To emulate missing data, 2% of
 344 node states are masked. For Datasets 7–12, the first user in each cascade is treated as the ground-
 345 truth source. Samples are split 8:2 into training and test sets. GraphKAN is instantiated with two
 346 KAN-Mix layers, each with $m = 3$ attention channels and $k = 4$ B-spline kernels. Community-
 347 aware sparsity is enforced by selecting the top-5 high-degree nodes per community for message
 348 passing. The model is trained via Adam with a learning rate of 10^{-3} and weight decay of 10^{-5} . All
 349 experiments run on a workstation equipped with four NVIDIA RTX 3090Ti GPUs.
 350

351 **Metrics.** We evaluate performance using three standard metrics: accuracy (ACC), F1, and area
 352 under the ROC curve (AUC). ACC measures the proportion of nodes that are correctly classified as
 353 source or non-source. F1 balances precision and recall, where precision is $|\hat{s} \cap s| / |\hat{s}|$ and recall equals
 354 $|\hat{s} \cap s| / |s|$ with \hat{s} denoting the predicted source set and s the ground-truth set. AUC quantifies the
 355 model’s classification capability across all decision thresholds. These three complementary metrics
 356 jointly provide a comprehensive and nuanced view of overall model performance.
 357

358

5.2 PERFORMANCE ANALYSIS

359 **Comparison with State-of-the-art Methods.** Table 1 reports the performance of GraphKAN and
 360 all baselines. Several observations arise. First, ACC are consistently higher than F1 for every
 361 method. This gap reflects the pronounced class imbalance between source and non-source nodes:
 362 centrality-based models (LPSI, EPA) and state-driven GCN variants (GCNSI, SIGN, GCSSI) are
 363 particularly susceptible to this skew, resulting in low precision and thus depressed F1. Second,
 364 learning-based approaches that integrate multiple node features generally surpass purely centrality-
 365 oriented heuristics. Within this group, propagation-aware models (IVGD, SL-VAE) further im-
 366 prove performance by explicitly capturing temporal diffusion patterns. GIN-SD attains the strongest
 367 baseline results by additionally handling missing-state nodes. Finally, GraphKAN outperforms all
 368 competitors on every dataset, it delivers 15%–25% absolute gains, and achieves up to a two-fold
 369 improvement over centrality-based methods. These gains stem from two designs: (i) spline-based
 370 node representations that capture fine-grained nonlinear cues, and (ii) community-aware sparse ag-
 371 gregation with kernel-adaptive attention that models heterogeneous propagation paths.
 372

373 **Visualization.** To offer an intuitive comparison, we visualize the predicted sources of GraphKAN
 374 alongside those of representative baseline methods on the Jazz network. As shown in Fig. 3,
 375 GraphKAN correctly identifies a greater number of true sources compared to competing approaches.
 376

377 **Computational Efficiency.** Model sizes (memory footprints) are reported in Table 2, their trade-off
 378 with F1-score is visualised in Fig. 4, and runtimes are summarised in Table 3. Centrality-based
 379 approaches exhibit the smallest footprints but also the lowest F1. GCN-based models incur sub-
 380 stantially larger sizes due to heavy non-embedding parameters and dense attention. In contrast,
 381 GraphKAN shifts expressiveness to learnable activation kernels and employs sparsity-aware ag-

Datasets	Metrics	Methods										
		LPSI	EPA	GCNSI	SIGN	GCSSI	ResGCN	IVGD	SL-VAE	GIN-SD	Ours	
Networks 1-6	Football	ACC	0.81	0.82	0.81	0.82	0.78	0.82	0.85	0.84	0.88	0.96
		F1	0.31	0.33	0.25	0.43	0.41	0.45	0.68	0.66	0.71	0.80
		AUC	0.85	0.83	0.83	0.83	0.82	0.84	0.86	0.83	0.86	0.97
	Jazz	ACC	0.83	0.80	0.81	0.84	0.79	0.82	0.83	0.83	0.85	0.95
		F1	0.30	0.31	0.23	0.40	0.37	0.39	0.61	0.62	0.68	0.75
		AUC	0.84	0.84	0.82	0.81	0.81	0.81	0.85	0.82	0.84	0.94
	Facebook	ACC	0.85	0.81	0.77	0.82	0.83	0.84	0.83	0.82	0.85	0.95
		F1	0.24	0.25	0.11	0.44	0.41	0.43	0.67	0.65	0.69	0.81
		AUC	0.81	0.80	0.75	0.81	0.84	0.85	0.85	0.83	0.86	0.94
Datasets 7-12	LastFM	ACC	0.86	0.81	0.78	0.83	0.81	0.82	0.84	0.81	0.89	0.93
		F1	0.22	0.20	0.09	0.41	0.39	0.40	0.62	0.61	0.69	0.75
		AUC	0.82	0.79	0.75	0.85	0.79	0.83	0.85	0.84	0.90	0.92
	Enron	ACC	0.84	0.83	0.74	0.79	0.80	0.81	0.83	0.82	0.85	0.94
		F1	0.20	0.23	0.07	0.39	0.37	0.39	0.59	0.58	0.67	0.74
		AUC	0.83	0.81	0.76	0.82	0.78	0.83	0.85	0.84	0.88	0.92
	Github	ACC	0.81	0.79	0.73	0.82	0.83	0.82	0.84	0.82	0.87	0.92
		F1	0.19	0.17	0.08	0.35	0.36	0.38	0.60	0.61	0.61	0.72
		AUC	0.82	0.81	0.71	0.81	0.84	0.83	0.86	0.84	0.85	0.94
Datasets 7-12	Christianity	ACC	0.82	0.78	0.81	0.80	0.81	0.82	0.81	0.84	0.87	0.94
		F1	0.23	0.24	0.12	0.37	0.38	0.41	0.56	0.54	0.68	0.75
		AUC	0.83	0.82	0.75	0.81	0.79	0.83	0.83	0.81	0.91	0.93
	Memetracker	ACC	0.85	0.84	0.77	0.79	0.81	0.82	0.84	0.84	0.87	0.92
		F1	0.22	0.24	0.13	0.35	0.34	0.38	0.54	0.55	0.64	0.71
		AUC	0.87	0.82	0.76	0.81	0.80	0.83	0.83	0.82	0.88	0.91
	Android	ACC	0.86	0.81	0.74	0.81	0.82	0.82	0.83	0.84	0.89	0.95
		F1	0.21	0.20	0.10	0.38	0.36	0.39	0.52	0.54	0.73	0.82
		AUC	0.84	0.80	0.80	0.78	0.83	0.84	0.85	0.85	0.92	0.96
Datasets 7-12	Twitter	ACC	0.85	0.82	0.73	0.78	0.81	0.82	0.81	0.85	0.84	0.90
		F1	0.20	0.23	0.09	0.31	0.33	0.36	0.49	0.47	0.52	0.63
		AUC	0.88	0.84	0.78	0.75	0.79	0.84	0.80	0.84	0.86	0.91
	Douban	ACC	0.86	0.81	0.79	0.81	0.82	0.84	0.81	0.82	0.88	0.89
		F1	0.18	0.21	0.15	0.32	0.31	0.35	0.48	0.50	0.54	0.65
		AUC	0.84	0.80	0.82	0.79	0.81	0.83	0.83	0.83	0.86	0.90
	Weibo	ACC	0.84	0.81	0.81	0.77	0.80	0.82	0.81	0.82	0.86	0.88
		F1	0.17	0.19	0.13	0.30	0.33	0.36	0.50	0.52	0.53	0.67
		AUC	0.85	0.82	0.80	0.80	0.78	0.84	0.84	0.83	0.87	0.91

Table 1: Performance comparison of all evaluated methods across the twelve datasets, with the best results being highlighted.

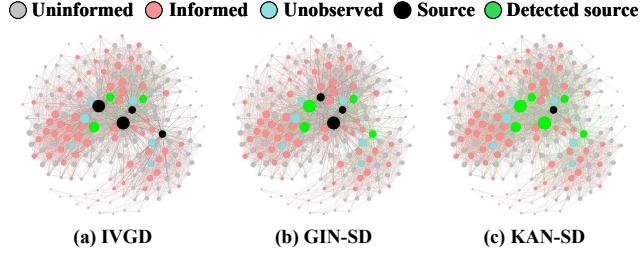


Figure 3: Visualization of source detection results on Jazz.

gregation, achieving the highest detection accuracy with a markedly smaller parameter budget and comparable runtime, demonstrating its practical efficiency.

Datasets	LPSI	EPA	GCNSI	SIGN	GCSSI	ResGCN	IVGD	SL-VAE	GIN-SD	Ours
Facebook	0.715	2.405	6.723	8.156	12.148	10.326	19.240	18.248	15.042	1.065
Enron	1.921	5.148	12.533	13.648	19.427	21.529	28.629	26.318	24.215	3.593
Android	0.748	3.549	4.647	7.720	14.098	10.378	18.262	19.764	12.834	1.543
Douban	1.644	4.078	10.194	12.013	17.468	19.267	26.052	23.594	21.480	6.963

Table 2: Model size (10^3 MB) comparison across all baseline methods on benchmark datasets.

Interpretability. To quantify each node’s contribution in source inference, we extract a composite importance score from the first GraphKAN layer by aggregating its attention-weighted B-spline responses. Nodes ranked by this score show that over 80% of true sources occupy the top positions on the Jazz, Facebook, and Christianity networks (Fig. 5 and Table 4). This strong alignment provides

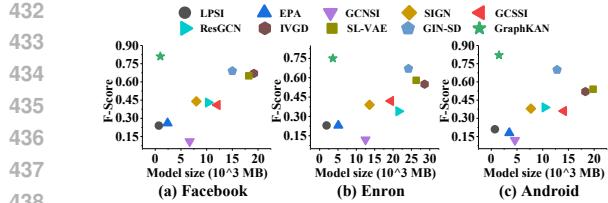


Figure 4: Model size vs. F-score for all methods. GraphKAN attains the best performance.

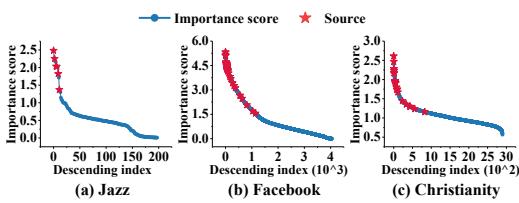


Figure 5: Importance scores in descending order, with red stars marking the true sources.

Datasets	LPSI	GCNSI	IVGD	GIN-SD	Ours
Facebook	1.346	1.545	1.816	1.648	1.503
Enron	3.914	3.821	4.259	4.148	3.745
Android	2.254	2.106	2.619	2.352	2.041

Table 3: Runtime (10^3 s) of selected methods.

a clear, quantitative measure of node influence, enabling transparent and fine-grained interpretation of the model’s decision process.

Methods	Facebook	Enron	Android	Twitter
w/o P	0.459	0.412	0.384	0.367
w/o PEs	0.751	0.706	0.748	0.597
w/ GCN	0.567	0.534	0.528	0.517
w/ GAT	0.712	0.685	0.703	0.515
w/ A_1	0.594	0.583	0.615	0.475
w/ Single_C	0.728	0.634	0.724	0.549
w/o KAN_Att	0.674	0.548	0.613	0.508
GraphKAN	0.812	0.740	0.819	0.634

Table 5: Performance of different GraphKAN variants.

5.3 ABLATION STUDY AND OTHER ANALYSES

Effects of Node Representation. We first remove propagation features (row w/o P), which causes a substantial F1 decline across all datasets, confirming that temporal signals are critical for modelling source dynamics. Removing positional encodings (w/o PEs) also degrades performance, indicating that relative structural position helps mitigate missing-state nodes and improves discrimination.

Effects of Existing Graph Learning Models. Replacing GraphKAN’s kernel-driven aggregation with GCN sharply reduces performance, revealing GCN’s difficulty in modeling complex diffusion. GAT improves on GCN by weighting node importance, yet both use fixed activations, limiting expressiveness and final source-detection accuracy.

Effects of Sparse Aggregation and Adaptive Attention. Using raw adjacency A_1 impairs performance, confirming community-sparsity aids rumor modeling. Collapsing channels to single (w/ Single_C) worsens results, showing multi-channel prevents collapse. Removing kernel-enhanced attention (w/o KAN_Att) also reduces performance, proving feature-only attention is inadequate. Combining all components, GraphKAN achieves the best accuracy.

6 CONCLUSION

This study proposes an accurate, efficient, and interpretable framework for rumor source detection. The key idea lies in constructing robust node representations by integrating heterogeneous features and positional encodings to alleviate incomplete observations, performing kernel-driven feature diffusion with learnable B-spline activations coupled with community-aware sparse aggregation and kernel-adaptive attention, and enabling transparent analysis of internal graph learning behaviour through inspection of activation kernels and attention weights. Extensive experiments on twelve datasets demonstrate that GraphKAN consistently outperforms strong baselines across all metrics. We hope this study inspires further research on effective and interpretable graph learning for diffusion-driven inference tasks.

486
487 ETHICS STATEMENT488 This study does not involve human subjects, sensitive data, or any practice that may raise ethical
489 concerns outlined in the ICLR Code of Ethics. The datasets used are publicly available, and our method
490 poses no foreseeable societal or security risks. No conflicts of interest, sponsorship influence, or
491 fairness issues were encountered during this research.492
493 REPRODUCIBILITY STATEMENT494 For reproducibility, we provide detailed hyperparameter settings, training protocols, and dataset
495 descriptions in the Experimental Settings section. Upon acceptance, we will release the complete
496 implementation, including data preprocessing scripts, model training, and evaluation routines.
497498
499 REFERENCES500 Syed Shafat Ali, Tarique Anwar, Ajay Rastogi, and Syed Afzal Murtaza Rizvi. EPA: Exoneration
501 and prominence based age for infection source identification. In *Proceedings of the 28th ACM*
502 *International Conference on Information and Knowledge Management*, pp. 891–900, 2019.503
504 Qing Bao, Ying Jiang, Wang Zhang, Pengfei Jiao, and Jing Su. Graph contrastive learning for source
505 localization in social networks. *Information Sciences*, pp. 121090, 2024.506 Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, Alice Patania,
507 Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interactions: Structure and
508 dynamics. *Physics Reports*, 874:1–92, 2020.509
510 Qi Cao, Huawei Shen, Keting Cen, Wentao Ouyang, and Xueqi Cheng. DeepHawkes: Bridging the
511 gap between prediction and understanding of information cascades. In *Proceedings of the 2017*
512 *ACM on Conference on Information and Knowledge Management*, pp. 1149–1158, 2017.513
514 Le Cheng, Peican Zhu, Chao Gao, Zhen Wang, and Xuelong Li. A heuristic framework for sources
515 detection in social networks via graph convolutional networks. *IEEE Transactions on Systems,*
516 *Man, and Cybernetics: Systems*, 2024a.517
518 Le Cheng, Peican Zhu, Keke Tang, Chao Gao, and Zhen Wang. GIN-SD: source detection in graphs
519 with incomplete nodes via positional encoding and attentive fusion. In *Proceedings of the AAAI*
520 *Conference on Artificial Intelligence*, volume 38, pp. 55–63, 2024b.521
522 Le Cheng, Peican Zhu, Keke Tang, Chao Gao, and Zhen Wang. Efficient source detection in incom-
523 plete networks via sensor deployment and source approaching. *IEEE Transactions on Information*
524 *Forensics and Security*, 2025.525
526 Guilherme Ferraz de Arruda, Giovanni Petri, and Yamir Moreno. Social contagion models on hy-
527 pergraphs. *Physical Review Research*, 2(2):023032, 2020.528
529 Ming Dong, Bolong Zheng, Nguyen Quoc Viet Hung, Han Su, and Guohui Li. Multiple rumor
530 source detection with graph convolutional networks. In *Proceedings of the 28th ACM Interna-*
531 *tional Conference on Information and Knowledge Management*, pp. 569–578, 2019.532
533 Ming Dong, Bolong Zheng, Guohui Li, Chenliang Li, Kai Zheng, and Xiaofang Zhou. Wavefront-
534 based multiple rumor sources identification by multi-task learning. *IEEE Transactions on Emerg-*
535 *ing Topics in Computational Intelligence*, 6(5):1068–1078, 2022.536
537 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
538 Xavier Bresson. Benchmarking graph neural networks. *arXiv preprint arXiv:2003.00982*, 2020.539
540 Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exspline: An interpretable and
541 expressive spline-based neural network. *Neural Networks*, 152:332–346, 2022.542
543 Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.
544 *Proceedings of the National Academy of Sciences*, 99(12):7821–7826, 2002.

540 Pablo M Gleiser and Leon Danon. Community structure in jazz. *Advances in Complex Systems*, 6
 541 (04):565–573, 2003.

542

543 Nathan O Hudas and Kristina Lerman. The simple rules of social contagion. *Scientific Reports*, 4
 544 (1):4343, 2014.

545

546 Mehrdad Kiamari, Mohammad Kiamari, and Bhaskar Krishnamachari. Gkan: Graph kolmogorov-
 547 arnold networks. *arXiv preprint arXiv:2406.06470*, 2024.

548

549 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 550 works. In *5th International Conference on Learning Representations, ICLR*, 2017.

551

552 Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classification research.
 553 In *Machine Learning: ECML 2004: 15th European Conference on Machine Learning, Pisa, Italy,
 September 20-24, 2004. Proceedings 15*, pp. 217–226. Springer, 2004.

554

555 Andrei Nikolaevich Kolmogorov. On the representations of continuous functions of many variables
 556 by superposition of continuous functions of one variable and addition. In *Dokl. Akad. Nauk USSR*,
 557 volume 114, pp. 953–956, 1957.

558

559 Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. *Advances
 in Neural Information Processing Systems*, 25, 2012.

560

561 Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking and the dynamics of the news
 562 cycle. In *Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-
 covery and Data Mining*, pp. 497–506, 2009.

563

564 Liang Li, Jianye Zhou, Yuewen Jiang, and Biqing Huang. Propagation source identification of
 565 infectious diseases with graph convolutional networks. *Journal of Biomedical Informatics*, 116:
 566 103720, 2021.

567

568 Chen Ling, Junji Jiang, Junxiang Wang, and Zhao Liang. Source localization of graph diffusion via
 569 variational autoencoders for graph inverse problems. In *Proceedings of the 28th ACM SIGKDD
 Conference on Knowledge Discovery and Data Mining*, pp. 1010–1020, 2022.

570

571 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 572 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint
 arXiv:2404.19756*, 2024.

573

574 Zhongtian Ma, Qiaosheng Zhang, Bocheng Zhou, Yexin Zhang, Shuyue Hu, and Zhen Wang. Graph
 575 attention is not always beneficial: A theoretical analysis of graph attention mechanisms via con-
 576 textual stochastic block models. In *International Conference on Machine Learning (ICML)*, 2024.

577

578 Hadrien Montanelli and Haizhao Yang. Error bounds for deep relu networks using the kolmogorov-
 579 arnold superposition theorem. *Neural Networks*, 129:1–6, 2020.

580

581 Pedro C Pinto, Patrick Thiran, and Martin Vetterli. Locating the source of diffusion in large-scale
 582 networks. *Physical Review Letters*, 109(6):068702, 2012.

583

584 B Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. Spotting culprits in epidemics: How
 585 many and which ones? In *2012 IEEE 12th International Conference on Data Mining*, pp. 11–20.
 IEEE, 2012.

586

587 Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
 588 from statistical descriptors to parametric models. In *Proceedings of the 29th ACM International
 Conference on Information and Knowledge Management*, pp. 1325–1334, 2020.

589

590 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal
 591 of Complex Networks*, 9(2):cnab014, 2021.

592

593 Aravind Sankar, Xinyang Zhang, Adit Krishnan, and Jiawei Han. Inf-vae: A variational autoencoder
 594 framework to integrate homophily and influence in diffusion prediction. In *Proceedings of the
 13th International Conference on Web Search and Data Mining*, pp. 510–518, 2020.

594 Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-László Barabási, Alessandro
 595 Vespiagnani, and Rose Yu. Finding patient zero: Learning contagion source with graph neural
 596 networks. *arXiv preprint arXiv:2006.11913*, 2020.

597 Devavrat Shah and Tauhid Zaman. Rumors in a network: Who’s the culprit? *IEEE Transactions on*
 598 *Information Theory*, 57(8):5163–5181, 2011.

600 David A Sprecher and Sorin Draghici. Space-filling curves and kolmogorov superposition-based
 601 neural networks. *Neural Networks*, 15(1):57–67, 2002.

603 Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
 604 beddings and structural graph representations. In *International Conference on Learning Repre-*
 605 *sentations*, 2019.

606 Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
 607 well-connected communities. *Scientific Reports*, 9(1):1–12, 2019.

609 Junxiang Wang, Junji Jiang, and Liang Zhao. An invertible graph diffusion neural network for
 610 source localization. In *Proceedings of the ACM Web Conference 2022*, pp. 1058–1069, 2022.

611 Zheng Wang, Chaokun Wang, Jisheng Pei, and Xiaojun Ye. Multiple source detection without
 612 knowing the underlying propagation model. In *Proceedings of the AAAI Conference on Artificial*
 613 *Intelligence*, volume 31, 2017.

615 Fan Yang, Shuhong Yang, Yong Peng, Yabing Yao, Zhiwen Wang, Houjun Li, Jingxian Liu,
 616 Ruisheng Zhang, and Chungui Li. Locating the propagation source in complex networks with
 617 a direction-induced search based gaussian estimator. *Knowledge-Based Systems*, 195:105674,
 2020.

619 Erheng Zhong, Wei Fan, Junwei Wang, Lei Xiao, and Yong Li. Comsoc: adaptive transfer of user
 620 behaviors over composite social network. In *Proceedings of the 18th ACM SIGKDD International*
 621 *Conference on Knowledge Discovery and Data Mining*, pp. 696–704, 2012.

622 Kai Zhu, Zhen Chen, and Lei Ying. Catch’em all: Locating multiple diffusion sources in networks
 623 with partial observations. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 624 ume 31, 2017.

626 Peican Zhu, Le Cheng, Chao Gao, Zhen Wang, and Xuelong Li. Locating multi-sources in social
 627 networks with a low infection rate. *IEEE Transactions on Network Science and Engineering*, 9
 628 (3):1853–1865, 2022.

630 A APPENDIX

632 A.1 STATEMENT ON LLM USAGE

634 LLMs were used only for language polishing (grammar, phrasing, clarity), not for ideation, study
 635 design, data analysis, or substantive content generation.

637 A.2 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM.

639 The Kolmogorov–Arnold theorem provides a foundational result in approximation theory, show-
 640 ing that any continuous function on a high-dimensional box can be reduced to a combination of
 641 univariate functions. Formally, for:

$$642 f : [0, 1]^n \rightarrow \mathbb{R}, \quad (25)$$

643 there exist continuous outer functions $\{\Phi_q\}_{q=1}^{2n+1}$ and inner functions $\{\phi_{q,p}\}_{1 \leq p \leq n, 1 \leq q \leq 2n+1}$:

$$644 f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right). \quad (26)$$

647 This decomposition has several remarkable implications:

- The number of outer terms, $2n + 1$, depends only on the input dimension and not on the complexity of f .
- Each inner sum $\sum_p \phi_{q,p}(x_p)$ effectively projects the vector \mathbf{x} onto a one-dimensional latent space.
- The result yields a two-layer network that enjoys a universal approximation guarantee: any continuous f can be approximated arbitrarily well by suitably chosen $\phi_{q,p}$ and Φ_q .
- This decomposition attains universal approximation: given arbitrary $\varepsilon > 0$, one can choose continuous $\phi_{q,p}, \Phi_q$ so that $\|f - f_{\text{KA}}\|_\infty < \varepsilon$.

A.3 KOLMOGOROV-ARNOLD NETWORKS (KAN).

KAN generalises this construction into deep architectures. At layer l , let the input width be n_l and the output width be n_{l+1} . We parameterise a matrix of univariate basis functions:

$$\Phi^{(l)} = \{\phi_{j,i}^{(l)}\}, i = 1, \dots, n_l, j = 1, \dots, n_{l+1}, \quad (27)$$

and define the layer transform:

$$x_j^{(l+1)} = \sum_{i=1}^{n_l} \phi_{j,i}^{(l)}(x_i^{(l)}), \quad j = 1, \dots, n_{l+1}. \quad (28)$$

Each $\phi_{j,i}^{(l)}$ is implemented as a cubic B-spline with learnable knot positions $\mu_{j,i}^{(l)}$ and widths $\sigma_{j,i}^{(l)}$. Concretely, given a projection of x_i :

$$\xi_i^{(l)} = \mathbf{a}_{j,i}^\top x_i^{(l)}, \quad (29)$$

the spline response is:

$$\phi_{j,i}^{(l)}(x_i^{(l)}) = B(\xi_i^{(l)}; \mu_{j,i}^{(l)}, \sigma_{j,i}^{(l)}), \quad (30)$$

where $B(\cdot; \mu, \sigma)$ denotes the standard cubic B-spline kernel. Stacking L such layers yields:

$$x^{(L)} = \underbrace{\Phi^{(L-1)} \circ \dots \circ \Phi^{(0)}}_{L \text{ layers}}(x^{(0)}), \quad (31)$$

which retains universal approximation and supports gradient-based training.

A.4 B-SPLINE BASIS: DEFINITION AND PROPERTIES.

A cubic B-spline $B(u; \mu, \sigma)$ is defined piecewise by:

$$B(u) = \begin{cases} \frac{2}{3} - |u|^2 + \frac{1}{2}|u|^3, & |u| \leq 1, \\ \frac{1}{6}(2 - |u|)^3, & 1 < |u| \leq 2, \\ 0, & |u| > 2, \end{cases} \quad (32)$$

with $u = (\xi - \mu)/\sigma$. Its compact support $[-2\sigma, 2\sigma]$ and C^2 -continuity make it a flexible yet efficient choice for learnable nonlinear transformations.

A.5 GRAPH-AWARE KAN FOR SOURCE DETECTION.

To adapt KAN to graph data, we interleave node-wise spline lifts with a community-aware message-passing scheme. Let $G = (V, E)$, $|V| = n$, with adjacency matrix \mathbf{A} . For each node v_i with initial feature $\mathbf{x}_i^{(0)}$:

1) Kernel-driven feature lift. We begin by mapping each node's initial feature to a latent coordinate and evaluating a bank of cubic B-spline kernels as univariate activations.

$$\mathbf{z}_i = W_z \mathbf{x}_i^{(0)}, \quad \xi_i = \mathbf{a}^\top \mathbf{z}_i, \quad (33)$$

$$g_{i,r} = B_r(\xi_i; \mu_r, \sigma_r), \quad r = 1, \dots, k. \quad (34)$$

This produces a k -dimensional kernel response \mathbf{g}_i capturing localized nonlinear cues.

702 **2) Community-guided sparsification.** To encode mesoscale structure and reduce computational
 703 load, we restrict message passing to salient intra-community links identified by a community de-
 704 tector. Using Louvain clustering, we derive a binary mask \mathbf{P}_{comm} that retains only the top- k_{\max}
 705 intra-community edges per node. The effective adjacency is $\mathbf{A}^{\text{comm}} = \mathbf{A} \odot \mathbf{P}_{\text{comm}}$.

706 **3) Kernel-adaptive attention.** On the sparsified graph, we compute kernel-augmented edge scores
 707 and their softmax normalisation independently for each attention channel.

$$709 \quad e_{ij}^{(q)} = \mathbf{a}_q^\top [\mathbf{z}_i \| \mathbf{z}_j] + \sum_{r=1}^k \beta_{q,r} (g_{i,r} + g_{j,r}), \quad (35)$$

$$712 \quad \alpha_{ij}^{(q)} = \frac{\exp(\text{LeakyReLU}(e_{ij}^{(q)}))}{\sum_{j' \in \mathcal{N}_i^{\text{comm}}} \exp(\text{LeakyReLU}(e_{ij'}^{(q)}))}. \quad (36)$$

715 Thus, attention weights reflect both feature similarity and kernel-based propagation signals.

716 **4) Message passing and update.** Using these attentions, we diffuse kernel responses from neigh-
 717 bours and aggregate them channel-wise to obtain node-level summaries.

$$719 \quad \tilde{g}_{i,r}^{(q)} = \sum_{j \in \mathcal{N}_i^{\text{comm}}} \alpha_{ij}^{(q)} g_{j,r}, \quad s_i^{(q)} = \sum_{r=1}^k w_{q,r} \tilde{g}_{i,r}^{(q)}, \quad (37)$$

$$723 \quad \mathbf{S}_i = [s_i^{(1)}, \dots, s_i^{(m)}]^\top, \quad (38)$$

724 followed by a channel-wise nonlinearity or a second KAN layer to produce $\mathbf{x}_i^{(1)}$.

726 This integration exploits KAN’s universal approximation at the node level, while community-guided
 727 sparsity and kernel-adaptive attention ensure scalable, topology-sensitive diffusion modeling.

728 **5) Complexity and Parameter Counts.** Analysing a single GraphKAN layer highlights its effi-
 729 ciency:

$$730 \quad \text{Ops} = O(nk + |E|k + nmk),$$

731 covering spline evaluations, sparse edge traversals, and channel-aggregation. Each layer includes:

$$733 \quad \underbrace{d_{\text{in}} d_h}_{W_z} + \underbrace{d_h}_{\mathbf{a}} + \underbrace{3k}_{\mu, \sigma \text{ splines}} + \underbrace{mk}_{\beta} + \underbrace{m \cdot 2d_h}_{\mathbf{a}_q} + \underbrace{mk}_{w_{q,r}}, \quad (39)$$

735 scaling linearly in the number of kernels k and channels m . This contrasts favorably with standard
 736 GNNs, whose parameter counts grow superlinearly when dense attention or deep MLP backbones
 737 are used.

739 **6) Training and Optimization.** We train GraphKAN end-to-end with Adam and a weighted cross-
 740 entropy loss:

$$741 \quad \mathcal{L} = -\frac{1}{n} \sum_{i=1}^n (\omega y_i \log \hat{p}_{i,1} + (1 - y_i) \log \hat{p}_{i,0}) + \lambda \|\Theta\|_2^2, \quad (40)$$

743 where $\omega = (n - |s|)/|s|$ balances source vs. non-source classes, and λ is an ℓ_2 regulariser. We apply
 744 a cosine learning-rate schedule and dropout in each GraphKAN layer to stabilise training. Models
 745 converge within 1000 epochs on a single NVIDIA RTX 3090 Ti.

747 A.6 DATASETS.

749 We evaluate our method across 12 benchmark datasets—six static graphs and six cascade-based
 750 networks. Summary statistics are provided in Table 6.

752 A.7 MORE DETAILS ABOUT COMPARISON WITH SOTA METHODS.

754 Table 7 (5% state-missing) reveals consistent trends across twelve datasets and three metrics.
 755 Source-centrality methods (LPSI, EPA) attain respectable ACC but low F1, indicative of class imbal-
 756 ance (e.g., Football: ACC 0.80–0.82, F1 0.30–0.31). GCN-based models (GCNSI, SIGN, GCSSI,

756	Id	Networks	$ V $	$ E $	$\langle k \rangle$	CC	757	Id	Datasets	#Users	#Links	#Cascades	Avg. Length
758	1	Football	115	613	10.66	0.40	7	Christianity	2897	35624	589	22.90	
759	2	Jazz	198	2742	27.70	0.62	8	Memetracker	4709	209194	12661	16.24	
760	3	Facebook	4039	88234	43.69	0.61	9	Android	9958	48573	679	33.30	
761	4	LastFM	7624	27806	7.29	0.22	10	Twitter	12627	309631	3442	32.60	
762	5	Enron	36692	183831	10.02	0.50	11	Douban	23123	348280	10602	27.14	
763	6	Github	37700	289003	15.33	0.17	12	Weibo	46684	502400	18954	38.76	

Table 6: Statistics of selected datasets. Datasets 1–6 summarize static network properties, while 7–12 report user-level cascades.

765	Id	Datasets	Metrics	Methods									
				LPSI	EPA	GCNSI	SIGN	GCSSI	ResGCN	IVGD	SL-VAE	GIN-SD	Ours
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 	Networks 1-6	Football	ACC	0.78	0.80	0.79	0.80	0.75	0.79	0.81	0.82	0.85	0.94
			F1	0.30	0.31	0.24	0.41	0.39	0.43	0.65	0.62	0.66	0.77
			AUC	0.81	0.80	0.81	0.81	0.78	0.82	0.84	0.81	0.82	0.93
		Jazz	ACC	0.79	0.77	0.78	0.80	0.77	0.79	0.79	0.80	0.81	0.92
			F1	0.28	0.30	0.22	0.38	0.35	0.37	0.58	0.59	0.64	0.71
			AUC	0.81	0.82	0.80	0.77	0.78	0.78	0.83	0.79	0.82	0.91
		Facebook	ACC	0.81	0.78	0.74	0.79	0.79	0.80	0.81	0.80	0.83	0.92
			F1	0.23	0.23	0.10	0.42	0.39	0.41	0.63	0.62	0.66	0.77
			AUC	0.78	0.78	0.72	0.77	0.81	0.83	0.81	0.80	0.84	0.92
		LastFM	ACC	0.84	0.78	0.75	0.80	0.79	0.79	0.80	0.78	0.85	0.89
			F1	0.21	0.19	0.09	0.39	0.37	0.38	0.59	0.58	0.65	0.70
			AUC	0.78	0.77	0.72	0.83	0.75	0.79	0.83	0.81	0.87	0.90
		Enron	ACC	0.80	0.80	0.71	0.76	0.78	0.79	0.81	0.78	0.81	0.90
			F1	0.19	0.22	0.07	0.36	0.35	0.37	0.57	0.54	0.63	0.71
			AUC	0.80	0.78	0.74	0.78	0.75	0.81	0.82	0.81	0.86	0.89
		Github	ACC	0.77	0.76	0.71	0.79	0.81	0.80	0.82	0.79	0.85	0.90
			F1	0.18	0.16	0.08	0.33	0.34	0.36	0.57	0.57	0.58	0.69
			AUC	0.78	0.78	0.69	0.78	0.80	0.81	0.84	0.81	0.82	0.91
		Christianity	ACC	0.79	0.75	0.77	0.78	0.78	0.80	0.77	0.82	0.85	0.91
			F1	0.22	0.23	0.11	0.35	0.36	0.38	0.53	0.52	0.63	0.70
			AUC	0.79	0.78	0.72	0.79	0.76	0.81	0.80	0.79	0.88	0.88
		Memetracker	ACC	0.83	0.80	0.74	0.76	0.77	0.78	0.81	0.80	0.85	0.89
			F1	0.21	0.23	0.12	0.33	0.33	0.36	0.51	0.51	0.61	0.66
			AUC	0.85	0.80	0.73	0.78	0.78	0.81	0.79	0.80	0.85	0.88
		Android	ACC	0.83	0.78	0.71	0.77	0.80	0.79	0.81	0.81	0.85	0.92
			F1	0.20	0.19	0.10	0.36	0.34	0.36	0.50	0.52	0.70	0.76
			AUC	0.80	0.76	0.78	0.76	0.79	0.81	0.82	0.81	0.88	0.94
		Twitter	ACC	0.81	0.80	0.70	0.74	0.79	0.80	0.79	0.82	0.82	0.87
			F1	0.19	0.22	0.09	0.30	0.31	0.34	0.46	0.45	0.49	0.60
			AUC	0.86	0.80	0.75	0.73	0.76	0.81	0.77	0.82	0.84	0.87
		Douban	ACC	0.82	0.78	0.75	0.78	0.80	0.82	0.79	0.78	0.84	0.85
			F1	0.17	0.20	0.14	0.31	0.29	0.33	0.46	0.47	0.52	0.61
			AUC	0.80	0.76	0.78	0.75	0.79	0.80	0.81	0.79	0.82	0.86
		Weibo	ACC	0.80	0.79	0.78	0.75	0.76	0.78	0.79	0.78	0.83	0.85
			F1	0.16	0.18	0.13	0.29	0.31	0.34	0.47	0.50	0.50	0.64
			AUC	0.81	0.79	0.76	0.78	0.74	0.82	0.80	0.81	0.85	0.88
		Datasets 7-12	ACC	0.75	0.75	0.77	0.78	0.78	0.80	0.77	0.82	0.85	0.91
			F1	0.22	0.23	0.11	0.35	0.36	0.38	0.53	0.52	0.63	0.70
			AUC	0.79	0.78	0.72	0.79	0.76	0.81	0.80	0.79	0.88	0.88
			ACC	0.83	0.80	0.74	0.76	0.77	0.78	0.81	0.80	0.85	0.89
			F1	0.21	0.23	0.12	0.33	0.33	0.36	0.51	0.51	0.61	0.66
			AUC	0.85	0.80	0.73	0.78	0.78	0.81	0.79	0.80	0.85	0.88
			ACC	0.83	0.78	0.71	0.77	0.80	0.79	0.81	0.81	0.85	0.92
			F1	0.20	0.19	0.10	0.36	0.34	0.36	0.50	0.52	0.70	0.76
			AUC	0.80	0.76	0.78	0.76	0.79	0.81	0.82	0.81	0.88	0.94
			ACC	0.81	0.80	0.70	0.74	0.79	0.80	0.79	0.82	0.82	0.87
			F1	0.19	0.22	0.09	0.30	0.31	0.34	0.46	0.45	0.49	0.60
			AUC	0.86	0.80	0.75	0.73	0.76	0.81	0.77	0.82	0.84	0.87
			ACC	0.82	0.78	0.75	0.78	0.80	0.82	0.79	0.78	0.84	0.85
			F1	0.17	0.20	0.14	0.31	0.29	0.33	0.46	0.47	0.52	0.61
			AUC	0.80	0.76	0.78	0.75	0.79	0.80	0.81	0.79	0.82	0.86
			ACC	0.80	0.79	0.78	0.75	0.76	0.78	0.79	0.78	0.83	0.85
			F1	0.16	0.18	0.13	0.29	0.31	0.34	0.47	0.50	0.50	0.64
			AUC	0.81	0.79	0.76	0.78	0.74	0.82	0.80	0.81	0.85	0.88

Table 7: Performance comparison of all evaluated methods across the twelve datasets, with the best results highlighted. The proportion of state-missing nodes is set to 5%.

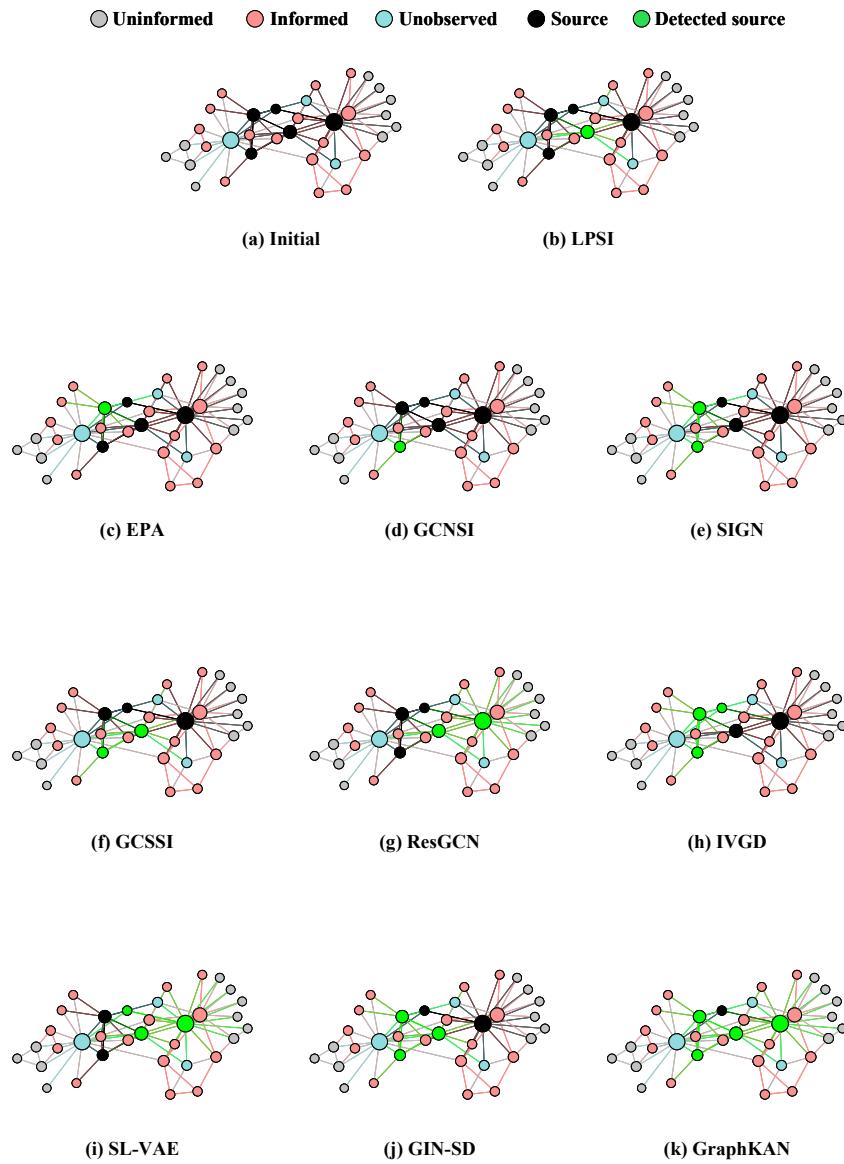
ResGCN) provide only modest gains in F1 and AUC and underuse temporal and positional cues (e.g., Facebook F1 0.39–0.42). Propagation-aware baselines (IVGD, SL-VAE, GIN-SD) are the strongest among baselines, yet gains diminish with fragmented communities or partial observability (e.g., Twitter best baseline F1 0.49; Weibo 0.50; Android AUC 0.88; Memetracker 0.85).

Our method yields a more balanced profile, combining high ACC with stronger F1 and consistently higher AUC on both static graphs and cascades. Representative improvements include Football (F1 0.66 to 0.77; AUC 0.84 to 0.93), Jazz (F1 0.64 to 0.71; AUC 0.83 to 0.91), Facebook (ACC 0.83 to 0.92; F1 0.66 to 0.77), Android (F1 0.70 to 0.76; AUC 0.88 to 0.94), and Douban (F1 0.52 to 0.61; AUC 0.82 to 0.86). These gains arise from three components: (i) learnable B-spline activations that adapt to local regimes and emphasize early-spread signals, (ii) community-guided sparsification that suppresses spurious cross-community paths, and (iii) kernel-adaptive attention that weights edges beyond feature similarity.

Metric behavior aligns with imbalance: ACC generally exceeds F1, but the gap narrows for our method. On Github, F1 increases from 0.58 (best baseline) to 0.69 and AUC increases from 0.84 to 0.91. Improvements are broad and persist under 5% missing-state information.

810 A.8 VISUALIZATION.
811

812 To provide deeper insight into the detection of rumor sources and clarify the analytical findings, we
813 present the outcomes of various approaches in Fig. 6 and Fig. 7. The plots show that GraphKAN
814 concentrates on true sources, yielding clearer propagation fronts than competing baselines. This
815 visual representation supports direct comparisons across multiple methods and enhances the inter-
816 pretability of the intricate propagation patterns that emerge.

855 Figure 6: Visualization of source detection results on Karate network.
856
857
858
859
860
861
862
863

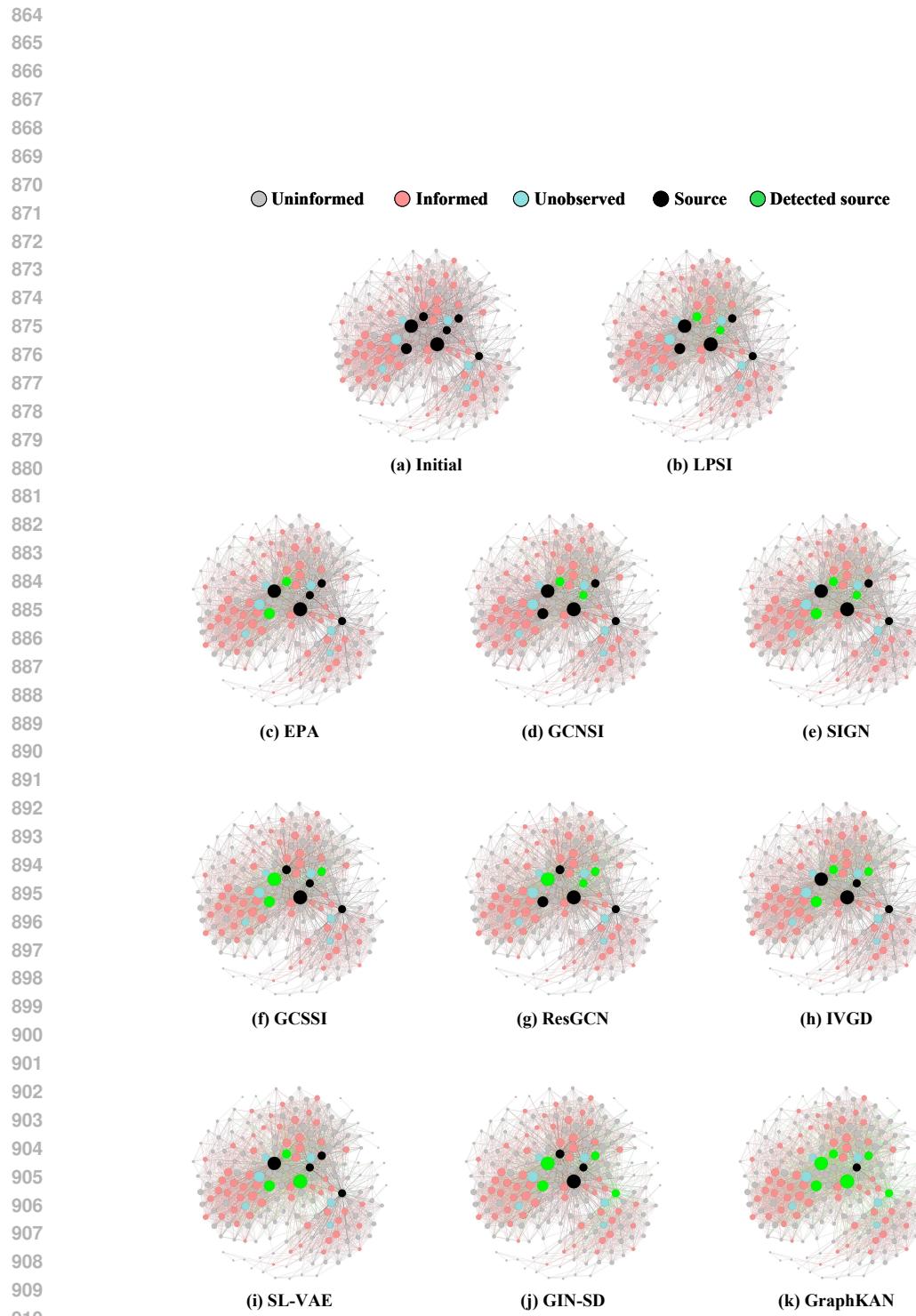


Figure 7: Visualization of source detection results on Jazz network.