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ABSTRACT

Conformal prediction, as an emerging uncertainty qualification technique, con-
structs prediction sets that are guaranteed to contain the true label with pre-defined
probability. Previous works often employ temperature scaling to calibrate the
classifier, assuming that confidence calibration can benefit conformal prediction. In
this work, we empirically show that current confidence calibration methods (e.g.,
temperature scaling) normally lead to larger prediction sets in adaptive conformal
prediction. Theoretically, we prove that a prediction with higher confidence could
result in a smaller prediction set on expectation. Inspired by the analysis, we
propose Conformal Temperature Scaling (ConfTS), a variant of temperature
scaling that aims to improve the efficiency of adaptive conformal prediction. Specif-
ically, ConfTS optimizes the temperature value by minimizing the gap between the
threshold and the non-conformity score of the ground truth for a held-out validation
dataset. In this way, the temperature value obtained would lead to an optimal set of
high efficiency without violating the marginal coverage property. Extensive exper-
iments demonstrate that our method can enhance adaptive conformal prediction
methods. When averaged across six different architectures, ConfTS reduces the
size of APS and RAPS on ImageNet by nearly 50% at an error rate of o = 0.1.

1 INTRODUCTION

Ensuring the reliability of model predictions is crucial for the safe deployment of machine learning
such as autonomous driving (Bojarski et al., 2016) and medical diagnostics (Caruana et al., 2015).
Numerous methods have been developed to estimate uncertainty and incorporate it into predictive
models, including confidence calibration (Guo et al., 2017) and Bayesian neural networks (Smith,
2013). However, these approaches lack theoretical guarantees of model performance. Conformal
prediction, on the other hand, offers a systematic approach to construct prediction sets that contain
ground-truth labels with a desired coverage guarantee (Vovk et al., 2005; Shafer & Vovk, 2008;
Balasubramanian et al., 2014; Angelopoulos & Bates, 2021; Manokhin, 2022). This framework thus
provides trustworthiness in real-world scenarios where wrong predictions are dangerous and costly.

In the literature, conformal prediction is frequently associated with confidence calibration, which
expects the model to predict softmax probabilities that faithfully estimate the true correctness (Wang
et al., 2021; Wei et al., 2022; Yuksekgonul et al., 2023; Wang, 2023; Wang et al., 2024). For example,
existing conformal prediction methods usually employ temperature scaling (Guo et al., 2017), a
post-hoc method that rescales the logits with a scalar temperature, to process the model output for a
better calibration performance (Angelopoulos et al., 2021b; Lu et al., 2022; 2023; Gibbs et al., 2023).
The underlying hypothesis is that well-calibrated models could yield precise probability estimates,
thus enhancing the reliability of generated prediction sets. However, the rigorous impacts of current
confidence calibration techniques on conformal prediction remain ambiguous in the literature, which
motivates our analysis of the connection between conformal prediction and confidence calibration.

In this paper, we empirically show that existing methods of confidence calibration increase the size
of prediction sets generated by adaptive conformal prediction methods. Moreover, high-confident
predictions, rescaled by a small temperature value (Guo et al., 2017), often result in efficient prediction
sets, while maintaining the desired coverage. To explain this phenomenon, we theoretically prove
that a prediction, applied with a smaller temperature, could result in a more efficient prediction set on
expectation. However, simply adopting an extremely small temperature value may result in invalid



Under review as a conference paper at ICLR 2025

and meaningless prediction sets since some tail probabilities would be truncated to zero due to the
finite precision problem. Given these findings, our goal is to automatically search for a temperature
value that can improve the efficiency of prediction sets for adaptive conformal prediction methods.

To this end, we propose a variant of temperature scaling, Conformal Temperature Scaling (ConfTS),
which optimizes the temperature value by minimizing the efficiency gap, i.e., the deviation between
the threshold and the non-conformity score of the ground truth. We calculate the efficiency gap
with the non-randomized APS score (Romano et al., 2020) for a hold-out dataset. In effect, ConfTS
optimizes the temperature value to improve the efficiency of prediction sets, preserving the marginal
coverage. Notably, our method is compatible with the original temperature scaling designed for
confidence calibration, as we can pick temperature values according to the purpose during inference.

Extensive experiments show that ConfTS can effectively enhance existing adaptive conformal predic-
tion techniques. In particular, our method drastically improves the efficiency of the prediction sets for
APS (Romano et al., 2020) and RAPS (Angelopoulos et al., 2021b). For instance, using ViT-B-16
(Dosovitskiy et al., 2021) on ImageNet (Deng et al., 2009), ConfTS reduces the average set size of
APS at o = 0.1 from 14.6 to 2.3, and declines that of RAPS from 6.9 to 1.8. Furthermore, ConfTS
improves the conditional coverage of APS, and enhances the performance of the training-time method,
ConfTr (Stutz et al., 2022). In practice, our approach is straightforward to implement within
deep learning frameworks, requiring no additional computational costs on temperature scaling.

2 PRELIMINARY

In this work, we consider the multi-class classification task with K classes. Let X C R® be the input
space and ) := {1,2,--- , K'} be the label space. We represent a pre-trained classification model by
f: X = RE Let(X,Y) ~ Pxy denote a random data pair sampled from a joint data distribution
Pxy, and f,(x) denote the y-th element of logits vector f(a) with a instance . Normally, the
conditional probability of class y is approximated by the softmax probability output 7 () defined as:

ofu(@)/t

P{Y = y|X =z} = 7y (x;t) = o(f(x); 1), = W»
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where ¢ is the softmax function and ¢ denotes the temperature parameter (Guo et al., 2017). The
temperature softens the output probability with £ > 1 and sharpens the probability with ¢ < 1. After
training the model, the temperature can be tuned on a held-out validation set by optimization methods.

Conformal prediction. To provide theoretical guarantees for model predictions, conformal prediction
(Vovk et al., 2005) is designated for producing prediction sets that contain ground-truth labels with
a desired probability rather than predicting one-hot labels. In particular, the goal of conformal
prediction is to construct a set-valued mapping C : X — 27 that satisfies the marginal coverage:

PY eC(xz)) > 1—a, 2)
where @ € (0, 1) denotes a user-specified error rate, and C(x) C ) is the generated prediction set.

Before deployment, conformal prediction begins with a calibration step, using a held-out calibration
set Dear := {(x;, y:) ;. We calculate the non-conformity score s; = S(x;,y;) for each example
(x,y;), where s; is a measure of deviation between an example and the training data, which we will
specify later. Then, we determine the 1 — « quantile of the non-conformity scores as a threshold:
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For a test instance x,,1, we first calculate the non-conformity score for each label in ), and then
construct the prediction set C(x,,+1) by including labels whose non-conformity score falls within 7:

C(xny1) ={y €Y :S(®ns1,y) <7} )

In this paper, we focus on adaptive conformal prediction methods, which are designed to guarantee
conditional coverage by improving adaptiveness (Romano et al., 2020). However, they usually suffer
from inefficiency in practice: these methods commonly produce large prediction sets (Angelopoulos
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Table 1: The performance of APS and RAPS on CIFAR-100 and ImageNet dataset using various
post-hoc calibration methods. In particular, we apply vector scaling (VS), Platt scaling (PS), and
temperature scaling (TS). We do not employ calibration techniques in the baseline (Base). We repeat
each experiment for 20 times. “|” indicates smaller values are better. “A” and “V” indicate whether
the performance is superior/inferior to the baseline. Bold numbers are superior results. The results
show that all post-hoc confidence calibration methods deteriorate the efficiency of APS and RAPS.

Datasets Metrics ResNet18 ResNet50 ResNet101

Base VS PS TS Base VS PS TS Base A PS TS

Accuracy 076  0.75 0.76 0.76 077 077 077 077 078 079 078  0.78
ECE(%) | 568 367A 420A 429A 879 3.62A 381A 406A 108 327A 383A 3.62A

CIFAR-100 aps  Coveraze 090 090 090 090 090 090 090  0.90 090 090 090  0.90
Averagesize | 873 894V 101V 100V 491 669V 775V 735V 401 577V 699V 666V

Raps _ Coverage 090  0.90 0.90 0.90 090 090 090  0.90 090 090 090  0.90
Averagesize | 4.4 440V 471V 467V 2,63 358V 372V 385V 227 339V 354V 353V

Accuracy 0.69  0.68 0.69 0.69 076 075 076 076 077 076 077 077
ECE(%) | 263 2.14A 210A 227A 3.69 150A 224A 235A 508 138A 202A 220A

ImageNet APS Coverage 0.90  0.90 0.90 0.90 090 090 090 090 090 090 090 090
Averagesize | 141 173V 159V 160V 9.06 120V 120V 121V 695 111V 107V 106V

Raps _ Coverage 090 0.90 0.90 0.90 090 090 090  0.90 090 090 090  0.90

Averagesize | 9.61 106V 1175V 1130V 599 756V 752V 716V 482 686V 685V 659V

et al., 2021b). In particular, we take the two representative methods: Adaptive Prediction Sets (APS)
(Romano et al., 2020) and Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021b).

Adaptive Prediction Set (APS). (Romano et al., 2020) In the APS method, the non-conformity
score of a data pair (x, y) is calculated by accumulating the sorted softmax probability, defined as:

Saps(x,y) = m)(x) + - + U To@yn(a)) (), (5)

where 7(1)(x), T(2) (), - - - , T(k) () are the sorted softmax probabilities in descending order, and
o(y, m(x)) denotes the order of 7, (), i.e., the softmax probability for the ground-truth label y. In
addition, the term w is an independent random variable that follows a uniform distribution on [0, 1].

Regularized Adaptive Prediction Set (RAPS). (Angelopoulos et al., 2021b) The non-conformity
score function of RAPS encourages a small set size by adding a penalty, as formally defined below:

SRAPS(w> y) = 7T(1)(IB) +ootu 7-‘—o(y,fr(m))(aj) +A- (0(3/, 7T(£L')) - kreg)+7 (6)

where (z)" = max{0, z}, k., controls the number of penalized classes, and ) is the penalty term.

Notably, both methods incorporate a uniform random variable w to achieve exact 1 — « coverage
(Angelopoulos et al., 2021b). Moreover, we use coverage, average size, and size-stratified coverage
violation (SSCV) (Angelopoulos et al., 2021b) to assess the marginal and conditional coverage, as well
as the efficiency of prediction sets. A detailed description of the metrics is provided in Appendix A.

3  MOTIVATION

3.1 ADAPTIVE CONFORMAL PREDICTION WITH CALIBRATED PREDICTION

Confidence calibration (Guo et al., 2017) expects the model to predict softmax probabilities that faith-
fully estimate the true correctness: Vp € [0, 1], P{Y = y|m,(z) = p} = p. To measure the miscali-
bration, Expected Calibration Error (ECE) (Naeini et al., 2015) averages the difference between the

accuracy acc(+) and confidence conf(-) in M bins: ECE = "M | B | |ace(Bym) — conf(Bm)| ,

m=1 |Ziest
where B,,, denotes the m-th bin. In conformal prediction, previous‘ w0r1‘< claims that deep learning
models are often badly miscalibrated, leading to large prediction sets that do not faithfully articulate
the uncertainty of the model (Angelopoulos et al., 2021b). To address the issue, researchers usually
employ temperature scaling (Guo et al., 2017) to process the model outputs for better calibration
performance. However, the precise impacts of current confidence calibration techniques on adaptive
conformal prediction remain unexplored, which motivates our investigation into this connection.
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Figure 1: (a) & (b): The performance of APS and RAPS with different temperatures on ImageNet. The
results show that high-confidence predictions, with a small temperature, lead to efficient prediction
sets. (c): The performance of APS for ResNet18 on ImageNet with extremely low temperatures. In
this setting, APS generates large prediction sets with conservative coverage due to finite precision.

Confidence calibration methods deteriorate the efficiency of prediction sets. To figure out
the correlation between confidence calibration and adaptive conformal prediction, we incorporate
various confidence calibration methods to adaptive conformal predictors for classification models
on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009). Specifically, we use 6
calibration methods, including 4 post-hoc methods — vector scaling (Guo et al., 2017), Platt scaling
(Platt et al., 1999), temperature scaling (Guo et al., 2017), Bayesian methods (Daxberger et al., 2021),
and 2 training methods — label smoothing (Szegedy et al., 2016), mixup (Zhang et al., 2018). More
details of calibration methods and setups are presented in Appendix B and Appendix C, respectively.

In Table 1, we present the performance of calibration and conformal prediction using APS and RAPS
with various post-hoc calibration methods. The results show that the influences of those calibration
methods are consistent: models calibrated by these techniques generate large prediction sets
with lower ECE (i.e., better calibration). For example, on CIFAR-100 with ResNet50, Platt scaling
enlarges the average size of prediction sets of APS from 4.91 to 7.75, while decreasing the ECE from
8.79% to 3.81%. In addition, incorporating calibration methods into conformal prediction does not
violate the 1 — o marginal coverage as the assumption of data exchangeability is still satisfied: we use
a hold-out validation dataset for conducting confidence calibration methods. The same conclusion
can be obtained for training-time and Bayesian-based calibration methods, as shown in Appendix D.

Overall, we empirically show that current confidence calibration methods negatively impact the
efficiency of prediction sets, challenging the conventional practice of employing temperature scaling
in adaptive conformal prediction. While confidence calibration methods are primarily designed to
address overconfidence, we conjecture that high confidence may enhance prediction sets in efficiency.

3.2 ADAPTIVE CONFORMAL PREDICTION WITH HIGH-CONFIDENCE PREDICTION

In this section, we investigate how the high-confidence prediction influences the adaptive con-
formal prediction. In particular, we employ temperature scaling with different temperatures
t € [0.4,0.5,---,1.3] (defined in Eq. (1)) to control the confidence level. The analysis is con-
ducted on the ImageNet dataset with various model architectures, using APS and RAPS at oo = 0.1.

High confidence enhances the efficiency of adaptive conformal prediction. In Figures la and 1b,
we present the average size of prediction sets generated by APS and RAPS under various temperature
values t. The results show that a highly-confident model, produced by a small temperature value,
would decrease the average size of prediction sets. For example, using VGG16, the average size is
reduced by four times — from 20 to 5, with the decrease of the temperature value from 1.3 to 0.5.
There naturally arises a question: is it always better for efficiency to take smaller temperature values?

In Figure lc, we report the average size of prediction sets produced by APS on ImageNet with
ResNet18, using extremely small temperatures (i.e. t € {0.12,0.14, - - - ,0.2}). Different from the
above, APS generates larger prediction sets with smaller temperatures in this range, even leading
to conservative coverage. This problem stems from floating point numerical errors caused by finite
precision (see Appendix F for a detailed explanation). The phenomenon indicates that it is non-trivial
to find the optimal temperature value for the highest efficiency of adaptive conformal prediction.
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3.3 THEORETICAL EXPLANATION

Intuitively, confident predictions are expected to yield smaller prediction sets than conservative ones.
Here, we provide a theoretical justification for this by showing how the reduction of temperature
decreases the average size of prediction sets in the case of non-randomized APS (simply omit the
random term in Eq. (5)). We start by analyzing the relationship between the temperature ¢ and the

APS score. For simplicity, assuming the logits vector f(x) := [f1(z), f2(x), ..., fx(x)]T satisfies
fi(x) > fa(x) > --- > fr(x), then, the non-randomized APS score for class k € ) is given by:
k fi(m)/t
e
S, k,t) =Y  ———— (7
i=1 ijl efi@)/t

Then, we can derive the following proposition on the connection of the temperature and the score:

Proposition 3.1. For instance x € X, let S(x, k,t) be the non-conformity score function of an
arbitrary class k € Y, defined as in Eq. 7. Then, for any temperature ty € R™ and Vt € (0, 1), we
have

8(337 kv to) < S(ma k7 t)

The proof is provided in Appendix G.1. In Proposition 3.1, we show that the APS score increases
as temperature decreases, and vice versa. Then, we fix a temperature ¢, € R, and further define
e(k,t) = S(x,k,t) — S(x, k,tg) > 0 as the difference of the APS scores. As a corollary of
Proposition 3.1, we conclude that e(k, ¢) is negatively correlated with the temperature ¢t. We provide
the proof for this corollary in Appendix G.2. The corollary is formally stated as follows:

Corollary 3.2. For any sample x € X and a fixed temperature tg, the difference e(k,t) is a
decreasing function with respect to t € (0, tg).

In the following, we further explore how the change in the APS score affects the average size of
the prediction set. In the theorem, we make two continuity assumptions on the CDF of the non-
conformity score (see Appendix G.3), following prior works (Lei, 2014; Sadinle et al., 2019). Given
these assumptions, we can derive an upper bound for the expected size of C(x, t) for any ¢ € (0, to):

Theorem 3.3. Under assumptions in Appendix G.3, there exists constants c1,y € (0, 1] (defined in
the above assumptions) such that

E [C, )] < K - > cl2e(k,t)]7, Ve (0,t).
key

Interpretation. The proof of Theorem 3.3 is presented in Appendix G.3. Through Theorem 3.3, we
show that for any temperature ¢, the expected size of the prediction set C(x, t) has an upper bound
with respect to the non-conformity score deviation e. Recalling that e increases with the decrease
of temperature ¢, we conclude that a lower temperature ¢ results in a larger difference ¢, thereby
narrowing the prediction set C(x, t). Overall, the analysis shows that high-confidence predictions,
produced by a small temperature, could lead to efficient prediction sets on expectation. Given
the theoretical analysis, we propose to enhance the efficiency of adaptive conformal prediction by
tuning the temperature. We proceed by introducing our method — Conformal Temperature Scaling.

4 METHOD

In the previous analysis, we show that temperature scaling optimized by negative log-likelihood
deteriorates the efficiency of adaptive conformal prediction, while a small temperature can improve.
Nevertheless, results in Figure 1c demonstrate that finding the optimal temperature for the highest
efficiency is a non-trivial task. In this work, we propose Conformal Temperature Scaling, a variant of
temperature scaling, to select an appropriate temperature for enhancing adaptive conformal prediction.

For a test example (, y), conformal prediction aims to construct an efficient prediction set C(x) that
contains the true label y. Thus, the optimal prediction set meeting this requirement is defined as:

C'(x)={keY:S(x,k) <S(z,y)}

Specifically, the optimal prediction set is the smallest set that allows the inclusion of the ground-truth
label. The concept of optimal prediction set naturally leads to a way for quantifying the redundancy
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of generated prediction set C(x): we can compute the deviation between the size of the prediction
set and that of the optimal prediction set |C(x)| — |C*(x)|. However, it is challenging to perform
optimization with the size difference due to its discrete property. To circumvent the issue, we convert
the optimization objective of our method into a continuous loss function that is end-to-end trainable.

Efficiency gap. Recall that the prediction set is established through the 7 calculated from the
calibration set (Eq. (3)), the optimal set can be attained if the threshold 7 well approximates the non-
conformity score of the ground-truth label S(x, y). Therefore, we can also measure the redundancy
of the prediction set by the differences between thresholds 7 and the score of true labels, defined as:

Definition 4.1 (Efficiency Gap). For an example (x,y), a threshold T and a non-conformity score
Sunction S(-), the efficiency gap of the instance x is given by:

G(x,y,7) =7 - S(x,y).

In particular, a positive efficiency gap indicates that the ground-truth label y is included in the
prediction set y € C(x), and vice versa. To optimize for the optimal prediction set, we expect to
increase the efficiency gap for samples with negative gaps and decrease it for those with positive gaps.
We propose to accomplish the optimization by tuning the temperature ¢. This allows us to optimize
the efficiency gap since S(«, y) and 7 are functions with respect to the temperature ¢ (see Eq. (7)).

Conformal Temperature Scaling. To this end, we propose our method — Conformal Temperature
Scaling (dubbed ConfTS), which rectifies the objective function of temperature scaling through the
efficiency gap. In particular, the loss function for ConfTS is formally given as follows:

£ConfTS($7y;t) = (T(t) - S(:E,y,t))Q, (8)

where 7(t) is the conformal threshold and S(z, y, t) denotes the non-randomized APS score of the
example (z,y) with respect to ¢ (see Eq. (7)). By minimizing the mean squared error, the ConfTS
loss encourages smaller prediction sets for samples with positive efficiency gaps, and vice versa.

The optimization of ConfTS. To preserve the exchangeability assumption, we tune the temperature
to minimize the ConfTS loss on a held-out validation set. Following previous work (Stutz et al.,
2022), we split the validation set into two subsets: one to compute 7(t), and the other to calculate the
ConfTS loss with the obtained 7(t). Specifically, the optimization problem can be formulated as:

. 1
t* = arg min W g EConfTS (x’h Yis t)v (9)
teRT loss (24,Yi) €Dioss

where D)oss denotes the subset for computing ConfTS loss. Trained with the ConfTS loss, we can
optimize the temperature ¢ for adaptive prediction sets with high efficiency without violating coverage.
Since the threshold 7 is determined by the pre-defined «, our ConfTS method can yield different
temperature values for each «. Notably, ConfTS offers compelling advantages as a post-hoc method:

* Algorithm-agnostic: ConfTS trained with APS score can improve other adaptive conformal
prediction methods (e.g., RAPS) and is compatible with training-time methods such as
ConfTr (Stutz et al., 2022) for improved efficiency. This is supported by Table 2 and Table 3.

» Easy-to-use: Our method enhances the efficiency of conformal prediction in a parameter-
efficient fashion. This stands in contrast to training methods (Stutz et al., 2022), which
require optimizing the full parameters of networks and may degrade the accuracy. Moreover,
our ConfTS is free from hyper-parameter tuning, and requires low computational resources.

* Flexible: Our method does not conflict with confidence calibration, as it only replaces the
temperature value. During inference, one may use different temperature values according to
the objective, whether for improved calibration performance or efficient prediction sets.

5 EXPERIMENTS

In this section, we first verify the effectiveness of ConfTS in both post-hoc and training conformal
prediction methods across several benchmark datasets. Then, we investigate the adaptivity property
of prediction sets employed with ConfTS, focusing on the SSCV performance and adaptiveness. In
addition, we present ablation studies examining the impact of validation and conformal set sizes, as
well as the effect of using different non-conformity scores to compute the efficiency gap in ConfTS.
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Table 2: Performance of ConfTS using APS and RAPS on ImageNet dataset. We repeat each
experiment for 20 times. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence
level). “}” indicates smaller values are better. Bold numbers are superior results. Results show that
our ConfTS can improve the performance of APS and RAPS, maintaining the desired coverage rate.

a=0.1 a =0.05
Model Score Coverage Average size| Coverage Average size|
Base / ConfTS
ResNet18 APS 0.900 / 0.900 14.09/7.531* 0.951/0.952 29.58 /19.59*
RAPS 0.900 / 0.900 9.605 / 5.003* 0.950/0.950 14.72 / 11.08*
APS 0.899 /0.900 9.062 / 4.791* 0.950/0.951 20.03 /12.22*
ResNet50
RAPS 0.899 /0.900 5.992/3.561* 0.950/0.951 9.423 /5.517*
APS 0.900/0.899 6.947 / 4.328* 0.950/0.950 15.73/10.51*
ResNet101
RAPS 0.900/0.899 4.819/3.289* 0.950/0.950 7.523/5.091*
APS 0.900/0.899 9.271/4.746* 0.950/0.949 20.37 /11.47*
DenseNet121
RAPS 0.900 / 0.900 6.602 / 3.667* 0.949/0.949 10.39/6.203*
VGG16 APS 0.901/0.901 11.73 / 6.057* 0.951/0.951 23.71/14.78*
RAPS 0.901 /0.900 8.118/4.314* 0.950/0.950 12.27/ 8.350*
VIT-B-16 APS 0.900/0.901 14.64 /2.315* 0.951/0.950 36.72/9.050*
RAPS 0.902/0.901 6.889/1.800* 0.950/0.950 12.63/3.281*
APS 0.900 / 0.900 10.96 / 4.961* 0.950/0.950 24.36 /12.94*
Average
RAPS 0.900 / 0.900 7.000 / 3.606* 0.950/0.950 11.16/ 6.587*

5.1 EXPERIMENTAL SETUP

Datasets. In this work, we verify the effectiveness of ConfTS on CIFAR-100 (Krizhevsky et al.,
2009), ImageNet (Deng et al., 2009), and ImageNet-V2 (Recht et al., 2019). On ImageNet, we
split the test dataset, including 50,000 images, into 10,000 images for the calibration set and 40,000
images for the test set. On CIFAR-100 and ImageNet-V2, we split the test dataset, including 10,000
figures, into 4,000 figures for the calibration set and 6,000 for the test set. Additionally, we split
the calibration set into two subsets of equal size: one subset is the validation set to optimize the
temperature value with ConfTS, while the other half is the conformal set for conformal calibration.

Models. For ImageNet and ImageNet-V2, we employ 6 pre-trained classifiers from TorchVision
(Paszke et al., 2019) — ResNet18, ResNet50, ResNet101 (He et al., 2016), DenseNet121 (Huang et al.,
2017), VGG16 (Simonyan & Zisserman, 2015) and ViT-B-16 (Dosovitskiy et al., 2021). We also
utilize the same model architectures for CIFAR-100 and train them from scratch. The models are
trained for 100 epochs using SGD with a momentum of 0.9, a weight decay of 0.0005, and a batch size
of 128. We set the initial learning rate as 0.1 and reduce it by a factor of 5 at 60 epochs. For conformal
training, we set the smoothing parameter 7' = 0.1, penalty term x = 1, and hyperparameter A = 1,
using the same training setups. We conduct all the experiments on NVIDIA GeForce RTX 4090.

Conformal prediction algorithms. We leverage three adaptive conformal prediction methods:
APS (Romano et al., 2020) and RAPS (Angelopoulos et al., 2021b) to generate prediction sets at
error rate € {0.1,0.05}. In addition, we set the regularization hyper-parameter for RAPS to be:
kreqg = 1 and A € {0.001,0.002,0.004, 0.006,0.01,0.015,0.02}. For the evaluation metrics, we
employ coverage, average size, and SSCV (see Appendix A) to assess the performance of prediction
sets. All experiments are repeated 20 times with different seeds, and we report average performances.

5.2 MAIN RESULTS

ConfTS improves current adaptive conformal prediction methods. In Table 2, we present the
performance of APS and RAPS (A = 0.001) with ConfTS on the ImageNet dataset. A salient
observation is that ConfTS drastically improves the efficiency of adaptive conformal prediction, while
maintaining the marginal coverage. For example, on the ViT model at & = 0.05, ConfTS reduces the
average size of APS by 7 times - from 36.72 to 5.759. Averaged across six models, ConfTS improves
the efficiency of APS by 58.3% at o = 0.1. We observe similar results on CIFAR-100 and ImageNet-
V2 dataset in Appendix H and Appendix I. Moreover, our ConfTS remains effective for RAPS
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Table 3: The performance of ConfTS when applied to models trained with ConfTr loss on CIFAR-100.
We repeat each experiment for 20 times. “*” denotes significant improvement (two-sample t-test at a
0.1 confidence level). Bold numbers are superior results. “|” indicates smaller values are better. The
results show that ConfTS boosts ConfTr: it generates efficient prediction sets for APS and RAPS.

a=0.1 a=0.05
Model Score Coverage Average size | Coverage Average size |
Baseline / ConfTS
APS 0.899/0.899 6.670 / 5.827* 0.949/0.949 11.49/10.35%
ResNet18
RAPS 0.900/0.900 5.848 /1 4.799* 0.951/0.951 8.431/8.189*
ResNet50 APS 0.900/0.901 5.754 / 5.075% 0.951/0.951 9.911/9.150%*
RAPS 0.900/0.900 5.186/ 4.324* 0.951/0.949 7.868 /7.507*

across various penalty terms on ImageNet as shown in Appendix J. Furthermore, in Appendix K, we
demonstrate that ConfTS can lead to small prediction sets for SAPS (Huang et al., 2024) — another
adaptive conformal prediction technique. Overall, empirical results show that ConfTS consistently
improves the efficiency of existing adaptive conformal prediction methods across various networks.

ConfTS boosts training-time conformal prediction

method. Previous work (Stutz et al., 2022) proposes 0.06

Conformal Training (ConfTr) which enhances the effi- B Base
ciency of prediction sets during training process. In this ~ “”| mEE ConfTs
part, we investigate how our ConfTS interacts with ConfTr. 004

In particular, we leverage ResNet18 and ResNet50 trained
with ConfTr loss for 100 epochs on CIFAR-100, gener-
ating prediction sets with APS and RAPS (A = 0.001) 002
method at error rate o € {0.1,0.05}. In Table 3, we
present the performance of ConfTS when applied to net-

SScvV

works trained with ConfTr loss. The results show that 0.00 x

our ConfTS can boost the performance of ConfTr. For &&, éé”g eo& 0&0«,0@@ /\g,f“’ @‘f
instance, on the ResNet50 model trained with ConfTr loss, & & @,‘? of T

at an error rate « = 0.1, ConfTS reduces the average *

size of RAPS from 5.186 to 4.324. In summary, our find-
ings highlight that ConfTS can effectively improve both  Figure 2: The SSCV performance of

post-hoc and training methods of conformal prediction. ~ ConfTS using APS on ImageNet dataset.
A smaller SSCV is better. The results

show that ConfTS can improve the con-

ConfTS enhances the conditional coverage. The con- >%
ditional coverage performance of APS.

ditional coverage (Vovk, 2012) requires conformal predic-
tion methods to satisfy the marginal coverage at instance
level. The size-stratified coverage violation (SSCV) (An-
gelopoulos et al., 2021b) is often employed to evaluate the conditional coverage of prediction sets:

) S i C 3
j 551
where {S;} Y+, is a disjoint set-size strata, satisfying Ufil S; ={1,2,---,|V|}. Specifically, a lower

SSCV value indicates better conditional coverage performance. Following prior work (Angelopoulos
et al., 2021b), we set the partitioning of the set sizes as: 0-1, 2-3, 4-10, 11-100, and 101-1000.
Figure 2 presents the SSCV performance of ConfTS using APS on ImageNet at « = 0.05. The
results show that ConfTS can enhance conditional coverage in most cases. For example, on ResNet50,
ConfTS reduces the SSCV of APS from 0.033 to 0.025. Moreover, in Appendix M, we provide
a synthetic experiment that shows that ConfTS is particularly effective in improving conditional
coverage when the classification task is more deterministic. Overall, these findings highlight that
ConfTS improves both conditional coverage and the efficiency of adaptive conformal prediction.

ConfTS maintains the adaptiveness. Adaptiveness (Romano et al., 2020; Angelopoulos et al.,
2021b; Seedat et al., 2023) requires prediction sets to communicate instance-wise uncertainty: easy
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Figure 3: (a)&(b): Average sizes of examples with different difficulties using APS on ResNet18 and
ResNet50 respectively. Results show that ConfTS can maintain adaptiveness. (b)&(c) Average sizes
of APS employed with ConfTS under various sizes of (b) conformal dataset (c) validation dataset.
Results show that our ConfTS is robust to variations in the validation and conformal dataset size.

Table 4: The performance of ConfTS using various non-conformity scores to compute the efficiency
gap. We consider standard APS and RAPS score as well as their non-randomized variants. Each
experiment is repeated 20 times. “Avg.size” and “Cov.” represent the results of average size and
coverage, and 'Base’ presents the results without ConfTS. The non-conformity scores in rows indicate
the methods used to generate the prediction sets, while the columns indicate the scoring functions used
in the ConfTS optimization process. “|” indicates smaller values are better. “A” and “V” indicate the
performance is superior/inferior to the baseline. Bold numbers are superior results. Results show that
using the non-randomized APS score achieves the overall best performance.

Model Score Base APS_no_random  RAPS_no_random APS_random RAPS_random
Avgsize | Cov. Avgsize] Cov. Avgsize| Cov. Avgsize] Cov. Avgsize] Cov.
ResNetlgs APS 14.09 0900 7.531A 0900 7.752A 0900 13.67A 0900 1397 A  0.900
RAPS 9.605 0.900 5.003A 0900 5346A 0900 11.36V 0900 11.58V  0.900
ResNetso APS 9.062 0900 4.791A 0900 5201A 0900 1292V 0900 1643V  0.900
RAPS 5.992 0900 3.561A 0900 3.782A 0900 9.838V 0900 11.70V  0.900

examples should obtain smaller sets than hard ones. In this part, we examine the impact of ConfTS
on the adaptiveness of prediction sets and measure the instance difficulty by the order of the ground
truth o(y, w(x)). Specifically, we partition the sample by label order: 1, 2-3, 4-6, 7-10, 11-100,
101-1000, following (Angelopoulos et al., 2021b). Figure 3a and Figure 3b present the adaptiveness
performance of ConfTS with APS score, using ResNet18 and ResNet50 on the ImageNet at o = 0.1.
A salient observation is that prediction sets, when applied with ConfTS, satisfy the adaptiveness
property. Notably, employing ConfTS can promote smaller prediction sets for all examples ranging
from easy to hard. Overall, the results demonstrate that APS with ConfTS succeeds in producing
adaptive prediction sets: examples with lower difficulty obtain smaller prediction sets on average.

Ablation study on the size of validation and calibration set. In the experiment, ConfTS splits
the calibration data into two subsets: validation set for tuning the temperature and conformal set for
conformal calibration. In this part, we analyze the impact of this split on the performance of ConfTS
by varying the validation and conformal dataset sizes from 3,000 to 8,000 samples while maintaining
the other part at 5,000 samples. We use ResNet18 and ResNet50 on ImageNet, with APS at o = 0.1.
Figure 3c and 3d show that the performance of ConfTS remains consistent across different conformal
dataset sizes and validation dataset sizes. Based on these results, we choose a calibration set including
10000 samples and split it into two equal subsets for the validation and conformal set. In summary,
the performance of ConfTS is robust to variations in the validation dataset and conformal dataset size.

Ablation study on the non-conformity score in ConfTS. In this ablation, we compare the
performance of ConfTS trained with various non-conformity scores in Eq. (8), including standard
APS and RAPS, as well as their non-randomized variants. Table 4 presents the performance of
prediction sets generated by standard APS and RAPS (A = 0.001) methods with different variants
of ConfTS, employing ResNet18 and ResNet50 on ImageNet. The results show that ConfTS with
randomized scores fails to produce efficient prediction sets, while non-randomized scores result in
small prediction sets. This is because the inclusion of the random variable u leads to the wrong



Under review as a conference paper at ICLR 2025

estimation of the efficiency gap, thereby posing challenges to the optimization process in ConfTS.
Moreover, randomized APS consistently performs better than randomized RAPS, even in the case of
using the standard RAPS to generate prediction sets. Overall, our findings show that ConfTS with the
non-randomized APS outperforms the other scores in enhancing the efficiency of prediction sets.

6 RELATED WORK

Conformal prediction. Conformal prediction (Papadopoulos et al., 2002; Vovk et al., 2005) is a
statistical framework for uncertainty qualification. Previous works have applied conformal prediction
across various domains, including regression (Lei & Wasserman, 2014; Romano et al., 2019), image
classification (Sadinle et al., 2019; Angelopoulos et al., 2021b; Huang et al., 2024), hyperspectral
image classification (Liu et al., 2024), object detection (Angelopoulos et al., 2021a; Teng et al.), and
large language models (Kumar et al., 2023).

Some methods leverage post-hoc techniques to enhance the performance of prediction sets (Romano
et al., 2020; Angelopoulos et al., 2021b; Ghosh et al., 2023; Huang et al., 2024). For example,
Adaptive Prediction Sets (APS) (Romano et al., 2020) calculates the score by accumulating the sorted
softmax values in descending order. However, the softmax probabilities typically exhibit a long-tailed
distribution, and thus those tail classes are often included in the prediction sets. To alleviate this issue,
Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021b) exclude tail classes by
appending a penalty to these classes, resulting in efficient prediction sets. Moreover, these post-hoc
methods often employ temperature scaling for better calibration performance (Angelopoulos et al.,
2021b; Lu et al., 2022; Gibbs et al., 2023; Lu et al., 2023). In our work, we show that the bulk of
confidence calibration methods increase the average size of the prediction set, which motivates us to
design a variant of temperature scaling, i.e., ConfTS, to enhance the efficiency of prediction sets.

Some works propose training time regularizations to improve the efficiency of conformal prediction
(Colombo & Vovk, 2020; Stutz et al., 2022; Einbinder et al., 2022; Bai et al.; Correia et al., 2024). For
example, uncertainty-aware conformal loss function (Einbinder et al., 2022) optimizes the efficiency of
prediction sets by encouraging the non-conformity scores to follow a uniform distribution. Moreover,
conformal training (Stutz et al., 2022) constructs efficient prediction sets by prompting the threshold
to be less than the non-conformity scores. In addition, information-based conformal training (Correia
et al., 2024) incorporates side information into the construction of prediction sets. In this work, we
mainly focus on enhancing adaptive conformal prediction in a post-hoc manner, which is parameter-
efficient and requires low computational resources. Notably, our findings show that ConfTS can
effectively improve the performance of both post-hoc and training-time conformal prediction methods.

Confidence calibration. Confidence calibration has been studied in various contexts in recent years.
Some works address the miscalibration problem by post-hoc methods, including histogram binning
(Zadrozny & Elkan, 2001) and Platt scaling (Platt et al., 1999). Besides, regularization methods like
entropy regularization (Pereyra et al., 2017) and focal loss (Mukhoti et al., 2020) are also proposed to
improve the calibration performance of deep neural networks. The most related work explored the
influence of confidence calibration on confidence intervals in binary classification settings (Gupta
et al., 2020). Our work aligns with and extends these findings by focusing on multi-class classification
scenarios, which are more prevalent in practical applications. Moreover, we provide a detailed
examination of how the temperature value affects the performance of adaptive conformal prediction.

7 CONCLUSION

In this paper, we introduce Conformal Temperature Scaling (ConfTS), a modification to Temperature
Scaling that enhances the efficiency of adaptive conformal prediction. ConfTS optimizes the tempera-
ture value by minimizing the efficiency gap on a held-out validation set. The obtained temperature
would encourage the prediction sets to approximate optimal sets of high efficiency while maintaining
the marginal coverage. Extensive experiments show that with ConfTS, the prediction set can be
efficient and have better conditional coverage performance. By enhancing adaptive conformal predic-
tion in a post-hoc manner, ConfTS can be easily implemented within any deep learning framework
without sacrificing predictive performance. We hope that the insights from this study can serve as a
guideline for researchers to effectively incorporate temperature scaling into conformal prediction.

10
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A CONFORMAL PREDICTION METHODS AND METRICS

In practice, we often use coverage and average size to evaluate prediction sets, defined as:

1
Coverage = —— Z I{y; € C(z:)}, (10)
|Dtest| ( o
wzay'L)EDtest
1
Average size = ——— C(x;)l, (11
g Dy > e

(xi,yi)€EDtest

where 1 is the indicator function and Dy, denotes the test dataset. The coverage rate measures
the percentage of samples whose prediction set contains the true label, i.e., an empirical estimation
for P(Y € C(X)). Average size measures the efficiency of prediction sets. The prediction sets
should both provide valid coverage (defined in Eq. (2)) and efficiency (i.e., small prediction sets).
Smaller prediction sets are often preferred since they are more informative in practice (Vovk, 2012;
Angelopoulos et al., 2021b).

Moreover, we use size-stratified coverage violation (SSCV) (Angelopoulos et al., 2021b) to measure
the performance of prediction sets on conditional coverage. Specifically, considering a disjoint
set-size strata {S;} 7, where Ufil S; ={1,2,---,|Y|}. Then, we define the indexes of examples
stratified by the prediction set size by J; = {¢ : |C(x;)| € S;}. Formally, we can define the SSCV as:

1€ J;:y; €C(x;
SSCV:SUp ‘{ J yl ( 1)}‘ _
j | T
This metric measures the maximum deviation from the target coverage rate 1 — « across all strata. A
lower SSCV value generally indicates better conditional coverage performance of the prediction sets.

(1—a)l. (12)

B CONFIDENCE CALIBRATION METHODS

Here, we briefly review three post-hoc calibration methods, whose parameters are optimized with
respect to negative log-likelihood (NLL) on the calibration set, and three training calibration methods.
Let o be the softmax function and f € RX be an arbitrary logits vector.

Platt Scaling (Platt et al., 1999) is a parametric approach for calibration. Platt Scaling learns two
scalar parameters a, b € R and outputs

m=o(af +0). (13)

Temperature Scaling (Guo et al., 2017) is inspired by Platt scaling (Platt et al., 1999), using a
scalar parameter ¢ for all logits vectors. Formally, for any given logits vector f, the new prediction is
defined by

T =o(f/1).

Intuitively, ¢ softens the softmax probabilities when ¢ > 1 so that it alleviates over-confidence.

Vector Scaling (Guo et al., 2017) is a simple extension of Platt scaling. Let f be an arbitrary logit
vector, which is produced before the softmax layer. Vector scaling applies a linear transformation:

m=0o(Mf+0),
where M € REXK and b € RE.

Label Smoothing (Szegedy et al., 2016) softens hard labels with an introduced smoothing parame-
ter « in the standard loss function (e.g., cross-entropy):

K
L==> yilogpi yi=u(l—0a)+a/K,
k=1

where yy, is the soft label for k-th class. It is shown that label smoothing encourages the differences
between the logits of the correct class and the logits of the incorrect class to be a constant depending
on .
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Mixup (Zhang et al., 2018) is another classical work in the line of training calibration. Mixup
generates synthetic samples during training by convexly combining random pairs of inputs and labels
as well. To mix up two random samples (x;, y;) and (x;, y;), the following rules are used:

T=ar;, +(1—-a)z;, ¥=oay+(1-a)y;,

where (Z;, §;) is the virtual feature-target of original pairs. Previous work (Thulasidasan et al., 2019)
observed that compared to the standard models, mixup-trained models are better calibrated and less
prone to overconfidence in prediction on out-of-distribution and noise data.

Bayesian Method (Daxberger et al., 2021). Bayesian modeling provides a principled and unified
approach to mitigate poor calibration and overconfidence by equipping models with robust uncertainty
estimates. Specifically, Bayesian modeling handles uncertainty in neural networks by modeling the
distribution over the weights. In this approach, given observed data D = { X, y}, we aim to infer a
posterior distribution over the model parameters 6 using Bayes’ theorem:

p(DI0)p(6)
p(D)

Here, p(D|0) represents the likelihood, p(6) is the prior over the model parameters, and p(D) is the
evidence (marginal likelihood). However, the exact posterior p(8|D) is often intractable for deep
neural networks due to the high-dimensional parameter space, which makes approximate inference
techniques necessary.

p(0|D) = (14)

One common method for approximating the posterior is Laplace approximation (LA). The Laplace
approximation assumes that the posterior is approximately Gaussian in the vicinity of the optimal
parameters Oyiap, Which simplifies inference. Mathematically, LA begins by finding the MAP
estimate:

Omap = arg max log p(D|0) + log p(h). (15)

Then, the posterior is approximated by a Gaussian distribution:

p(0|D) ~ N (Omap, H™'), H = —Vjlogp(6|D) : (16)

0=0mapr

The LA provides an efficient and scalable method to capture uncertainty around the MAP estimate,
making it a widely used baseline in Bayesian deep learning models.

C EXPERIMENTAL SETUP OF SECTION 3.1

Datasets. We use two datasets in our study: ImageNet (Deng et al., 2009) and CIFAR-100 (Krizhevsky
et al., 2009). On ImageNet, we split the test dataset including 50,000 images into 10,000 images
for the calibration set and 40,000 images for the test set; on CIFAR-100, we split the test dataset
including 10,000 images into 4,000 images for the calibration set and 6,000 for the test set. Then, we
split the calibration set into two subsets of equal size: one is the validation set used for confidence
calibration, while the other half is the conformal set used for conformal calibration.

Models. We employ three pre-trained classifiers: ResNet18, ResNet50, ResNet101 (He et al., 2016)
from TorchVision (Paszke et al., 2019); on CIFAR-100, we train models from scratch. The models
are trained for 100 epochs using SGD with a momentum of 0.9, a weight decay of 0.0005, and a
batch size of 258. We set the initial learning rate as 0.1 and reduce it by a factor of 5 at 60 epochs. For
ConfTr, we set the smoothing parameter 7' = 0.1, penalty term x = 1, and hyperparameter A = 1,
using the same setups. We conduct all the experiments on NVIDIA GeForce RTX 4090.

Conformal prediction algorithms. We leverage APS and RAPS to generate prediction sets at an
error rate o = 0.1, and the hyperparameters are set to be k. = 1 and A = 0.001.

Evaluation. For the evaluation metrics, we employ coverage and average size (see Appendix A)
to evaluate the performance of prediction sets and utilize ECE to measure the miscalibration (see
Section 3.1). All experiments are repeated 20 times with different seeds, and we report the average
performance.
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D RESULTS OF TRAINING-TIME CALIBRATION METHODS

In this section, we report the results of how training-time calibration methods and Bayesian deep
learning with Laplace approximation affect the conformal prediction methods. Specifically, we
employ label smoothing and mixup to train a ResNet50 model on the CIFAR100 dataset from
scratch and utilize Laplace approximation in a post-hoc manner. For label smoothing, we set the
hyperparameter o« = 0.05, and for mixup, the hyperparameter is set to be « = 0.1. The training
details are available in Appendix C. In Table 5, we show that employing these calibration methods
enlarges the prediction sets of APS and RAPS, which is consistent with our results in the main
paragraph. For example, with label smoothing, the average size of APS increases from 4.91 to 11.9.

Table 5: Results of different calibration methods using ResNet50 on CIFAR-100. “]” indicates
smaller values are better. “A” and “V” indicate whether the performance is superior/inferior to the
baseline. Bold numbers are superior results. Results show that existing training-time calibration
methods and Bayesian deep learning often hurt the efficiency of adaptive conformal prediction.

a=0.1 a=0.05
Method Baseline LabelSmoothing Mixup Bayesian Baseline LabelSmoothing Mixup Bayesian
Accuracy 0.77 0.78 0.78 0.77 0.77 0.78 0.78 0.77
ECE(%) | 8.79 439 A 296A 43 A 8.79 439 A 296A 43 A
Avg.size(APS) | 491 119V 125V 755V 11.1 198V 201V 156V
Coverage(APS) 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95
Avg.size(RAPS) | 2.56 95V 102V 646V 6.95 145V 155V 934V
Coverage(RAPS) 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95

E EXPERIMENTAL SETUP OF SECTION 3.2

In the previous section, we empirically show that current confidence calibration methods negatively
impact the efficiency of prediction sets. This motivates our investigation of the impact of high-
confidence prediction on prediction set efficiency. The analysis is conducted on the ImageNet dataset
with various model architectures, using APS and RAPS at o = 0.1. We employ temperature scaling
(Guo et al., 2017) in the experiment as it is the simplest method to adjust the confidence level with
only a temperature parameter 7'. Specifically, as proven in Lemma G.1(2), lower temperature values
consistently encourage higher confidence predictions. This enables us to provide a thorough analysis
with theoretical and empirical results, revealing the relationship between confidence calibration and
conformal prediction.

F WHY NUMERICAL ERROR OCCURS UNDER AN EXCEEDINGLY SMALL
TEMPERATURE?

In Section 3.3, we show that an exceedingly low temperature could pose challenges for prediction
sets. This problem can be attributed to numerical errors. Specifically, in Proposition 3.1, we
show that the softmax probability tends to concentrate in top classes with a small temperature,
resulting in a long-tail distribution. Thus, the tail probabilities of some samples could be small and
truncated, eventually becoming zero. For example, in Figure 4, the softmax probability is given
by (x) = [0.999997,2 x 107°,1 x 10~°,- -], and the prediction set size should be 4, following
Eq. (4). However, due to numerical error, the tail probabilities, i.e., 75, g are truncated to be zero.
This numerical error causes the conformal threshold to exceed the non-conformity scores for all
classes, leading to a trivial set. Furthermore, as the temperature decreases, numerical errors occur in
more data samples, resulting in increased trivial sets and consequently raising the average set size.
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Figure 4: An example of softmax probabilities produced by a small temperature.

G PROOFS

G.1 PROOF FOR PROPOSITION 3.1

We start by showing several lemmas: the Lemma G.1, Lemma G.2 and Lemma G.3.

Lemma G.1. For any given logits (f1,--+ , fx) with f1 > fo > -+ > fx, and a constant 0 < t < 1,
we have:

(@) ef1/t el

a > ,

ZiKzl elilt Zszl eli
i/t fK
e e
(b)

< .
K ) K )
Zi:l efilt Zi:l efi

Proof. Let s = + — 1. Then, we have

efl/t e(1+‘s)f1 efl efl

— = > .

Zfil efilt Zfil e(1+8) fi Zfil efies(fi—f1) Zfil efi
efK/t e(1+3) fx elK el1

Zfil efi/t Efile(wsm Zfil efies(fi—fx) Zfil efi

O
Lemma G.2. Forany given logits (f1,- -, fi) with f1 > fo > --- > fk, and a constant 0 < t < 1,
if there exists 7 > 1 such that
efj/t efj
>
Zfil efi/t Zfil efi’
then, forallk =1,2,--- | j, we have
fr/t fr
e e
> . a7
Zfil elilt Zfil efi
Proof. 1Tt suffices to show that
efi-1/t efi-1 (18)
> 5
Efil efi/t Zf; el
since the rest cases where k = 1,2, --- | 7 — 1 would hold by induction. The assumption gives us
efj/t efj

> .
K v K .
dim1 efilt i efi
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Let s = 1 — 1, which follows that
elilt e(1+s)f; eli (@) el
Zfil ofi/t Zszl c(+)fe Zfil efies(fi—f;) - Zfil efi
The inequality (a) indicates that

K K
Z efies(fi=1i) Z eli.
i=1 i=1

Therefore, we can have

efi-1/t e(1+s)fi-1 efi—1 efi—1 efi—1
= = > > 5
K efirt K s YK efiesfiofic) T OSK efiestfi=f) T SR e
which proves the Eq. (18). Then, by induction, the Eq. (17) holds for all 1 < k < j. O
Lemma G.3. For any given logits (f1,- -+ , fx), where f1 > fo > -+ > [k, aconstant 0 < t < 1,
andforallk =1,2,--- , K, we have
k filt k fi
e e
> > 19)
K . K A
i=1 Zj:l elilt i=1 Zj:l els
The equation holds if and only if k = K.
Proof. The Eq. (19) holds trivially at k¥ = K, since both sides are equal to 1:
K filt K fi
(& €
Z —_— = — =1 (20)
T IR et
i=1 Ej:l elilt i3 Zj:l efi
We continue by showing the Eq. (19) at K = K — 1. The Lemma G.1 gives us that
fx/t fr
€ €
- <= 1)
S efit el
Subtracting the Eq. (21) by the Eq. (21) directly follows that
K1 filt K-l fi
e e
> , (22)

which prove the Eq. (19) at K = K — 1. We then show that the Eq. (19) holds at £ = K — 2, which
follows that the Eq. (19) remains true for all k = 1,2, - - - K — 1 by induction. Here, we assume that

K2 filt K2 fi
e e

> <> (23)
K ) K i

i=1 Zj:l efi/t i=1 2uj=1 els

and we will show that the Eq. (23) leads to a contradiction. Subtracting Eq. (23) by the Eq. (22) gives
us that

efrx-1/t efK-1
T > —% o (24)
>im €l >im €l
Considering the Lemma G.2, the Eq. (24) implies that
fr/t fr
e e 25)

>
Zz‘K:1 efi/t Zf; efi
holds forall k = 1,2,--- K — 2. Accumulating the Eq. (25) from k = 1 to K — 2 gives us that

K v K o
i=1 Zj:l eli/t i=1 Zj:l els

This contradicts our assumption (Eq. (23)). It follows that Eq. (19) holds at k = K — 2. Then, by
induction, the Eq. (19) remains true for all k = 1,2, - - - K — 1. Combining with the Eq. (20), we can
complete our proof. O
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Proposition G.4 (Restatement of Proposition 3.1). For any sample x € X, let S(x, k,t) be the
non-conformity score function with respect to an arbitrary class k € ), defined as in Eq. 7. Then, for
a fixed temperature to and ¥t € (0,1), we have

S(x, k,tg) < S(x, k,t).

Proof. We restate the definition of non-randomized APS score in Eq. 7:
k efi
S(@,y,t) =

K v
i=1 ijl efs

Let a = t/tg € (0,1) and f; = f;/to. We rewrite the formulation of S(x, k, ) and S(x, k, t) by

k fi
e
S($7 Y, tO) = Z —K 7
Pl D) els
k efi/oc

S(a,yt) =Y

—K  F /o
i=1 Zj:l efile

Since the scaling parameter ¢ty does not change the order of (fl7 f27 s ,fK), ie. fl > fg > >
fr and a € (0, 1), then by the Lemma G.3, we have S(x, y,t0) < S(z,y,1). O

G.2 PROOF FOR COROLLARY 3.2

Corollary G.5 (Restatement of Corollary 3.2). For any sample x € X and a fixed temperature t,
the difference €(k,t) is a decreasing function with respect to t € (0, to).

Proof. For all tq,t5 satisfying 0 < t; < ty < tg, we will show that e(k, ¢1) > e(k, t2). Continuing
from Proposition 3.1, we have S(x, y,t2) < S(x,y, t1). It follows that
E(k,tl) = S((E, k,tl) — S(CIZ, k,to)
> S(J?, k,tz) - S(:II, k,to)
= E(k‘,tg).

G.3 PROOF FOR THEOREM 3.3

In the theorem, we make two continuity assumptions on the CDF of the non-conformity score
following (Lei, 2014; Sadinle et al., 2019). We define G%(-) as the CDF of S(z, k, t), assuming that
(1)3y,c1,c0 € (0,1] 5.t. Yk € Y, c1le]” < |Gh(s+¢) — Gh(s)| < eale]?,

(2)3p > 0 s.t. 1kn;f |G (s) — Gl(s)] > p. (26)

To prove Theorem 3.3, we start with a lemma:

Lemma G.6. Give a pre-trained model, data sample x, and a temperature satisfying t* < to. Then,
under assumtion (26), we have

P{k € C(x,ty), k ¢ C(z,t")} > c1(2¢(k,t"))".

Proof. Let P'(-) be the probability measure corresponding to G (-), and Cf (s) = {z : S(x,y,t) <
s}. Then, we have

P (Cye (7(t))) = B (Cy (7(t") + e(k, 1))

Y
= Glo(T(t") + e(k, t*)) 27)
@

> G (r(t") + e(k, t*)) + p.
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where (a) comes from the assumptlon (2). Let 7* = 7(t*) — e(k, t*) — [c; *p]*/7. Then, replacing
the 7(¢*) in Eq. (27) with 7*, we have

PI(CI (7)) 2 G (r(t) — ez ') +
(28)

© pto (Co(7(to))).
where (a) is due to the assumption (1):
GY (7(t) = GL (r(t") = ez ' p]'/7) < calle; o]V = p.
(b) and (c) is because of the definition of threshold 7: C’;* (T(t*)) = Cio(7(to)) = . The Eq. (29)
follows that
T(to) < 7 = 7(t*) — e(k, t*) — [e5 ']/ (29)
Continuing from Eq. (29), it holds for all y € ) that
P{k € Clx,to). k ¢ Clx,1")} & P{S(w.y.t*) < 7(t"),S(@,y.t0) > 7(to)}

Q Prtr) > Sa,y,t7) = 7(to) — e(k, 1)}

> P{r(t") > S(@,y,t*) > 7(t") — 2e(k, t*) — [c5 ' o]/}

(c) * * * * —

= GU(r(t") = GL (r(t*) — 2e(k,t*) — [e3 ' p]'7)

(d)

> c1(2e(k, t*) + [e5 ']/ 7)Y

> 1 (2(k, %))

where (a) comes from the construction of prediction set: y € C(x) if and only if S(x,y) < 7. (b) is
because of the definition of €. (¢) and (d) is due to the definition of th() and assumption (1). O

Theorem G.7. Under the assumption (26), there exists constants c1,~y € (0, 1] such that

E llC(,t)] < K - > a2e(k, )], V€ (0,to).
key

Proof. For all t < tg, we consider the expectation size of C(x, t):

E [IC@,t)] = B > 1{k € C(, )]

keY
_Z  [1{k € C(z,1)}]
key”
=Y P{keC(x,t)}
key
=3 (1~ P{k ¢ Cla. 1)}).
key
Due to the fact that
P{k € C(x, o), k ¢ C(x,t)} <P{k ¢ C(x,t)},
we have
E e, 1] < %[1 —P{k € C(x,t0),k & C(,1)}].
Continuing from Lemma G.6, we can get
E [IC(z,1)]] < K(1 - c1(2e(k, 1)) = K — > er(2e(k, 1))

key
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G.4 PROOF FOR PROPOSITION L.3

Proposition G.8 (Restatement of Proposition L.3). Define T as the 1 — o conformal threshold (see
Eq. (3) in the main paragraph). Then, we have

where v = max(a, 1 — «).

MSCE < 2Ly - E¢g yy~axy { EConfTS(ZE»y;t)}

Proof. Continuing from the Proposition 3.5 in (Kiyani et al., 2024b), we have

MSCE < 2L - Eg [l1—o(7(£),S) — li—a(q1-a(X), S)]
< 2L - Es[li_a(r,S)]

< 2L-Eg[max(a,1 — a)|t — 5]

= 2L"y . ]E(:L-,y)NXXy |: EConfTS (‘Lvy7t):|

H RESULTS OF CONFTS oN CIFAR-100

In this section, we show that ConfTS can effectively improve the efficiency of adaptive conformal
prediction on the CIFAR100 dataset. In particular, we train ResNetl8, ResNet50, ResNet191,
ResNext50, ResNext101, DenseNet121 and VGG16 from scratch on CIFAR-100 datasets. We
leverage APS and RAPS to generate prediction sets at error rates € {0.1,0.05}. The hyper-
parameter for RAPS is set to be k. = 1 and A = 0.001. In Table 6, results show that after being
employed with ConfTS, APS, and RAPS tend to construct smaller prediction sets and maintain the

desired coverage.

Table 6: Performance comparison of the baseline and ConfTS on CIFAR-100 dataset. We employ
five models trained on CIFAR-100. “*” denotes significant improvement (two-sample t-test at a 0.1
confidence level). “|” indicates smaller values are better. Bold numbers are superior results. Results
show that our ConfTS can improve the performance of APS and RAPS, maintaining the desired

coverage rate.

a=0.1 a=0.05

Model Score Coverage Average | size Coverage Average size |
Baseline / ConfTS

ResNet18 APS 0.902/0.901 7.049 / 6.547* 0.949/0.949 12.58 /11.91*
RAPS 0.900/0.901 5.745 / 4.948* 0.949/0.949 8.180/7.689*
ResNet50 APS 0.901 /0.900 5.614/5.322%* 0.951/0.951 10.27 / 10.00*
RAPS 0.900/ 0.900 4.707 / 4.409* 0.951/0.950 7.041/6.811*
ResNet101 APS 0.900/ 0.900 5.049 /4.917* 0.949 /0.949 9.520/9.405*
RAPS 0.901/0.900 4.324 /1 4.145% 0.950/0.950 6.515/6.450*
ResNext50 APS 0.900/0.900 4.668 / 4.436* 0.950/0.950 8.911/8.626*
RAPS 0.901/0.901 4.050/3.811* 0.951/0.951 6.109 / 5.854*
ResNext101 APS 0.900/0.900 4.125/3.988* 0.950/0.950 7.801/7.614*
RAPS 0.901 /0.901 3.631/3.492* 0.950/0.950 5.469 / 5.253*
DenseNet121 APS 0.899/0.899 4.401/3.901* 0.949/0.949 8.364 /7.592*
RAPS 0.898/0.898 3.961/3.434* 0.950/0.949 6.336 / 5.222*
VGG16 APS 0.900 / 0.900 7.681 / 6.658* 0.949/0.950 12.36/11.70*
RAPS 0.899/0.900 6.826 / 5.304* 0.949 /0.949 10.32%/11.70

22



Under review as a conference paper at ICLR 2025

I RESULTS OF CONFTS ON IMAGENET-V2

In this section, we show that ConfTS can effectively improve the efficiency of adaptive conformal
prediction on the ImageNet-V2 dataset. In particular, we employ pre-trained ResNet50, DenseNet121,
VGG16, and ViT-B-16 on ImageNet. We leverage APS and RAPS to construct prediction sets and
the hyper-parameters of RAPS are set to be k. = 1 and A = 0.001. In Table 7, results show that
after being employed with ConfTS, APS, and RAPS tend to construct smaller prediction sets and
maintain the desired coverage.

Table 7: Performance comparison of conformal prediction with baseline and ConfTS under distri-
bution shifts. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “]”
indicates smaller values are better. Bold numbers are superior results. Results show that ConfTS can
improve the efficiency of APS and RAPS on a new distribution.

Metrics ResNet50 DenseNet121 VGGI16 ViT
Baseline ConfTS Baseline ConfTS Baseline ConfTS Baseline ConfTS
Avg.size(APS) | 24.6 11.9% 50.3 13.3* 272 17.9% 342 10.1*
Coverage(APS) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Avg.size(RAPS) | 13.3 11.3* 13.7 9.67* 16.3 13.6* 14.9 4.62%*
Coverage(RAPS) 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

J RESULTS OF CONFTS ON RAPS WITH VARIOUS PENALTY TERMS

Recall that the RAPS method modifies APS by including a penalty term A (see Eq. (6)). In this
section, we investigate the performance of ConfTS on RAPS with various penalty terms. In particular,
we employ the same model architectures with the main experiment on ImageNet (see Section 5.1)
and generate prediction sets with RAPS (k,., = 1) at an error rate o = 0.1, varying the penalty
A € {0.002,0.004,0.006,0.01,0.015,0.02} and setting kreg to 1. Table 8 and 9 show that our
ConfTS can enhance the efficiency of RAPS across various penalty values.

Table 8: Performance of ConfTS on RAPS with various penalty terms A € {0.002,0.004,0.006} at
ImageNet. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “]”
indicates smaller values are better. Bold numbers are superior results. Results show that our ConfTS
can enhance the efficiency of RAPS across various penalty values.

A = 0.002 A =0.004 A = 0.006
Model Coverage Average size | Coverage Average size | Coverage Average size |
Baseline / ConfTS

ResNet18 0.901/0.900 8.273/4.517* 0.901/0.901 6.861/4.319* 0.901/0.901 6.109 / 4.282*
ResNet50 0.899/0.900 5.097/3.231* 0.899/0.900 4.272/2.892* 0.899/0.900 3.858/2.703*
ResNet101 ~ 0.900/0.900 4.190/2.987* 0.901/0.899 3.599/2.686* 0.900/0.900 3.267/2.516*
DenseNet121  0.901/0.901 5.780/ 3.340* 0.900/0.900 4.888/3.014* 0.900/0.900 4.408 /2.836*
VGG16 0.901/0.900 7.030/3.902* 0.901/0.900 5.864/3.514* 0.901/0.900 5.241/3.344*
ViT-B-16 0.901/0.900 5.308/1.731* 0.901/0.901 4.023 /1.655* 0.901/0.901 3.453/1.611*
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Table 9: Performance of ConfTS on RAPS with various penalty terms A € {0.01,0.015,0.02} at
ImageNet. “*” denotes significant improvement (two-sample t-test at a 0.1 confidence level). “|”
indicates smaller values are better. Bold numbers are superior results. Results show that our ConfTS

can enhance the efficiency of RAPS across various penalty values.

A=0.01 A =0.015 A=0.02
Model Coverage Average size | Coverage Average size | Coverage Average size |
Baseline / ConfTS

ResNet18 0.901/0.901 5.281/4.449* 0.901/0.901 4.712/4.683* 0.900/0.900 4.452% /4917
ResNet50 0.899/0.900 3.380/2.505* 0.900/0.901 3.048/2.373* 0.901/0.901 2.860/2.321*
ResNet101 ~ 0.900/0.900 2.902/2.317* 0.900/0.899 2.643/2.168* 0.900/0.900 2.484/2.096*
DenseNet121  0.900/0.900 3.843/2.657* 0.900/0.900 3.452/2.587* 0.901/0.899 3.213/2.750*
VGG16 0.900/0.900 4.537/3.371* 0.900/0.900 4.060 / 3.423* 0.899/0.899 3.744/3.530*
ViT-B-16 0.901/0.900 2.872/1.564* 0.901/0.900 2.508 /1.543* 0.900/0.900 2.285/1.535*

K RESULTS OF CONFTS oN SAPS

Recall that APS calculates the non-conformity score by accumulating the sorted softmax values in
descending order. However, the softmax probabilities typically exhibit a long-tailed distribution,
allowing for easy inclusion of those tail classes in the prediction sets. To alleviate this issue, Sorted
Adaptive Prediction Sets (SAPS) (Huang et al., 2024) discards all the probability values except
for the maximum softmax probability when computing the non-conformity score. Formally, the
non-conformity score of SAPS for a data pair (x, y) can be calculated as

Ssa}?s(mvyvu;ﬁ—) = { L ﬂmHZ(w)7

Tmaz(®) + (0(y, 7(2)) — lse,

where ) is a hyperparameter representing the weight of ranking information, 7,4, () denotes the
maximum softmax probability and  is a uniform random variable.

In this section, we investigate the performance of ConfTS on SAPS with various weight terms. In
particular, we employ the same model architectures with the main experiment on ImageNet (see
Section 5.1) and generate prediction sets with SAPS at an error rate o = 0.1, varying the weight
A € {0.01,0.02,0.03,0.05,0.1,0.12}. Table 10 and Table 12 show that our ConfTS can enhance the
efficiency of SAPS across various weights.

Table 10: Performance of ConfTS on SAPS with various penalty terms A € [0.005,0.01, 0.02]. “*”
denotes significant improvement (two-sample t-test at a 0.1 confidence level). “}” indicates smaller
values are better. Bold numbers are superior results. Results show that our ConfTS can enhance the
efficiency of SAPS across various penalty values.

A = 0.005 A=0.01 A =0.02
Model Coverage Average size | Coverage Average size | Coverage Average size |
Baseline / ConfTS

ResNet18 0.901/0.900 37.03/27.38* 0.901/0.902 19.91/14.81* 0.900/0.901 11.21/8.469*
ResNet50 0.899/0.899 27.13/21.37* 0.899/0.899 14.45/11.48* 0.899/0.899 8.016/6.510*
ResNet101 ~ 0.901/0.901 24.89/20.78* 0.901/0.901 13.21/11.16* 0.901/0.901 7.350/ 6.287*
DenseNet121  0.900/0.901 30.54 / 22.67* 0.900/0.901 16.28 /12.30* 0.901/0.901 9.085/6.968*
VGG16 0.900/0.900 34.88/25.57* 0.900/0.900 18.56/13.71* 0.901/0.900 10.34/7.788*
ViT-B-16 0.901/0.900 18.90/11.51* 0.901/0.900 10.11/6.379* 0.900/0.900 5.669/3.784*
Average 0.900/0.900 28.89/21.54* 0.900/0.900 15.42/11.63* 0.900/0.900 8.611/6.634*
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Table 11: Performance of ConfTS on SAPS with various penalty terms A € {0.03,0.05,0.1}. «*”
denotes significant improvement (two-sample t-test at a 0.1 confidence level). “|” indicates smaller
values are better. Bold numbers are superior results. Results show that our ConfTS can enhance the
efficiency of SAPS across various penalty values.

A=0.03 A=0.05 A=0.1
Model Coverage Average size | Coverage Average size | Coverage Average size |
Baseline / ConfTS

ResNet18 0.900/0.900 8.206/ 6.269* 0.900/0.900 5.747/4.716* 0.901/0.901 4.143*/4.581
ResNet50 0.899/0.899 5.853/4.838* 0.899/0.900 4.122/ 3.464* 0.899/0.900 2.753/2.460%*
ResNet101 ~ 0.901/0.901 5.364 /4.640* 0.901/0.901 3.756/ 3.293* 0.899/0.900 2.511/2.286*
DenseNet121  0.900/0.900 6.600/5.151%* 0.900/0.900 4.601/3.672%* 0.900/0.900 3.063/2.811*
VGG16 0.900/0.900 7.504 /5.785%* 0.900/0.900 5.225/4.173* 0.900/0.900 3.483*/3.551
ViT-B-16 0.900/0.900 4.197/ 2.905* 0.900/0.900 2.995/2.212* 0.901/0.900 2.114/1.768*
Average 0.900/0.900 6.287/4.931* 0.900/0.900 4.407 / 3.588* 0.900/0.900 3.011/2.909*

L. THE PERFORMANCE OF CONFTS ON CONDITIONAL COVERAGE

In this section, we formally analyze why ConfTS enhances conditional coverage for APS. Following
previous work (Kiyani et al., 2024b), we use Mean Squared Conditional Error (MSCE) as a measure
of conditional coverage performance:

MSCE = E,x[{Coverage(C(X)|X = x) — (1 — a)}?]
In particular, it quantifies how prediction sets deviate from the ideal conditional coverage:
P{lYeCX)X=z}=1-«

As shown in [1], MSCE is a valid measure of conditional coverage performance. Consider the pinball
loss [3]:

Loa(r,s)=alt—s)1{r >s}t+ (1 —a)(s—7)1{r < s}. (30)
where 1{-} is the indicator function. Let us now state the required technical assumption:

Definition L.1. A distribution P, is called L-lipschitz if we have for every real numbers q < q:

PSNP{S < q/} - PSNP{S < Q} < L|q/ - Q|

Assumption L.2. The distribution of S conditional on X = x is L-lipschitz.

Assumption L.2 is often needed for the analysis of conditional coverage in CP literature in both
regression (Jung et al., 2023; Kiyani et al., 2024b) and classification (Kiyani et al., 2024a) setting. In
the following theorem, we will show that MSCE can be upper bounded by ConfTS loss:

Proposition L.3. Define 7 as the 1 — « conformal threshold (see Eq. (3) in the main paragraph).
Then, we have

MSCE < 2L~ - E(ny)NXXy [ LconfTs (X', Yﬁ)}
where v = max(a, 1 — ).
The proof can be found in Appendix G.4. Thus, we conclude that by minimizing |7 — S| and

consequently reducing MSCE, ConfTS improves conditional coverage. The rigorous proofs are
available in the supplementary material.
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Important note: Though ConfTS demonstrates enhanced conditional coverage, we emphasize
that this is an auxiliary benefit rather than its core design purpose and we acknowledge that this
improvement does not extend to RAPS in terms of SSCV and CSCV. This is because **temperature
tuning alone provides limited capacity for minimizing** Lconfrs. For researchers primarily focus
on achieving valid conditional coverage, we recommend specialized methods such as [1,2,3,4].
Notably, [1] proposes to improve conditional coverage by minimizing pinball loss, with their results
demonstrating improvements in both efficiency and conditional coverage. Their approach shows
similarity to our method given the connection between the efficiency gap and pinball loss.

M SIMULATION

In our setup, we consider a 10-class classification problem with 200-dimensional data and implement
an oracle classifier that knows the true data generation process. We control the inherent uncertainty
by adding Gaussian noise to the logits, where higher noise levels represent more inherent uncertainty
in the classification task. We employ APS to generate prediction sets. To ensure robustness, each
experiment is repeated 100 times, and we report the average results.

The results demonstrate the relationship between task uncertainty and ConfTS’s effectiveness:

Table 12: ConfTS performance analysis with synthetic data. “|” indicates smaller values are better.
Bold numbers are superior results.

Noise Level Method Average Size | CSCV |

noise_std=0  W/0 ConfTS 1.09 3.45
w/ ConfTS 0.95 1.65
noise_std=1 /0 ConfTS 1.20 2.42
w/ ConfTS 1.07 4.03
noise_std=2 W0 ConfTS 1.36 3.62
w/ ConfTS 1.27 4.44

The results show that ConfTS consistently reduces the average prediction set size across all noise
settings. However, ConfTS increases the coverage gap as we add noise to the logits. This suggests
that ConfTS is particularly effective in improving conditional coverage when the classification task is
more deterministic.
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