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Abstract

Semantic segmentation of electron microscopy (EM) images of biological samples
remains a challenge in the life sciences. EM data captures details of biological
structures, sometimes with such complexity that even human observers can find
it overwhelming. We introduce e-Seg, a method based on hierarchical variational
autoencoders (HVAES), employing center-region masking, sparse label contrastive
learning (CL), a Gaussian mixture model (GMM) prior, and clustering-free label
prediction. Center-region masking and the inpainting loss encourage the model to
learn robust and representative embeddings to distinguish the desired classes, even
if training labels are sparse (0.05% of the total image data or less). For optimal
performance, we employ CL and a GMM prior to shape the latent space of the
HVAE such that encoded input patches tend to cluster w.r.t. the semantic classes
we wish to distinguish. Finally, instead of clustering latent embeddings for semantic
segmentation, we propose a MLP semantic segmentation head to directly predict
class labels from latent embeddings. We show empirical results of e-Seg and
baseline methods on 2 dense EM datasets of biological tissues and demonstrate the
applicability of our method also on fluorescence microscopy data. Our results show
that e-Seg is capable of achieving competitive sparsely-supervised segmentation
results on complex biological image data, even if only limited amounts of training
labels are available. Code available at https://github.com/juglab/eps-Seg.

1 Introduction

Electron Microscopy (EM) comes in multiple flavors and is without doubt the tool of choice for
high-resolution investigations of biological samples [12]]. Today, microscopists can capture fine
cellular structures at nanometer resolution [22, |3]. Although this opens unprecedented possibilities
for studying the very fabric of life, it also means that such microscopes are producing an unfathomable
amount of raw image data that then are available to be analyzed [36].

A key module of nearly every analysis pipeline is the segmentation step, where specific structures of
interest must be found in the entire body of captured image data. Performing this step manually, is
typically not feasible as it takes an impossibly long time [16} 36} 22]. Unfortunately, even semantic
segmentation of EM data of biological samples remains a challenge [3, [31].

Ideally, methods for segmenting EM data should (4) lead to sufficiently good segmentation results for
the downstream analysis tasks at hand with as few training labels as possible, (i7) generalize well to
different imaging conditions and image tissue types and/or be able to fine-tune on moderate amounts
of new training data [9], (ii7) be able to benefit from sparse labeled data via supervised contrastive
learning approaches, and if possible (iv) operate on a hierarchy of spatial scales to distinguish objects
not only by either detailed textures or larger scale shapes, but both.
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With this in mind, we introduce e-Seg, a novel and sparsely supervised semantic segmentation
framework for EM images that reduces the ‘hunger’ for labeled data by using a powerful hierarchical
VAE (HVAE) [28| 21] with a GMM prior instead of a regular Gaussian one. Furthermore, our
method uses center-region inpainting and contrastive learning to enhance feature consistency and
segmentation robustness, even when training data is scarce. Hence, e-Seg learns structured latent
space representations with effective feature separation for the semantic classes of interest. Once such
features are learned, they can be clustered to obtain meaningful semantic segmentations. However,
since this process is computationally intensive, we integrate a dedicated semantic segmentation head
that directly produces segmentation labels, improving both accuracy and runtime.

2 Related Work

Sparse Supervision. Deep learning has transformed microscopy image segmentation. The U-Net [26]
has long been a standard architecture, achieving strong results when trained in a fully supervised
setting. However, such approaches rely on dense annotations, which are costly and time-consuming
to obtain. At the other extreme, self-supervised methods such as MAESTER [34] learn directly from
raw data without labels, offering excellent scalability but typically at the cost of reduced segmentation
accuracy compared to fully supervised approaches. Between these extremes lies a growing body
of work on sparse or weak supervision, which seeks to achieve label efficiency while maintaining
good performance. We aim to surpass self-supervised methods in accuracy while requiring only
a fraction of the annotations needed by fully supervised methods. Comprehensive reviews on
segmentation methods in large-scale EM with deep learning are available [3]], with representative
examples including slice-wise pseudo-label propagation for neuronal membranes (4S) [30] , or
domain adaptation variants of U-Net designed for limited-annotation settings [4]].

Hierarchical Variational Autoencoders. Hierarchical architectures, like HVAES [28| 21} 132 [7]24],
appear to be an interesting choice for segmenting biological microscopy data. Based on variational
autoencoders [20], these powerful models learn a full approximate posterior, but are limited by the
typically used Gaussian prior, making us wonder if a Gaussian mixture would not be a more suitable
choice for the semantic segmentation task at hand. While the above-mentioned methods pursue label
efficiency through different strategies, they do not explicitly enforce semantically disentangled latent
representations. In contrast, we explicitly enforce semantically disentangled latent representations by
combining a GMM prior with contrastive learning, ensuring that each latent component aligns with a
distinct object class. This motivates our focus on HVAES, which progressively encode features from
fine to coarse across network layers. As higher-level semantic structure emerges in deeper layers, the
latent space can be disentangled and aligned with semantic classes, enabling efficient segmentation
and downstream biological analysis.

Gaussian Mixture Models (GMMs). GMMs have been extensively used to model multimodal
distributions and are a key component for many clustering methods [8} 27, 15, [10]. Many approaches
integrate GMMs within autoencoder-based architectures, either explicitly as a clustering module [S]] or
by enforcing multimodal latent structure through a GMM prior [8,[10]. In VAEs, GMM priors enable
structured latent spaces where each mixture component represents a distinct cluster or class [10} 18]
Some methods employ direct optimization of GMM objectives alongside autoencoders [S]], while
others leverage categorical latent variables within GMVAE frameworks, using discrete reparameter-
ization techniques such as the Gumbel-Softmax [19]] relaxation to improve scalability [8]]. These
techniques effectively combine deep generative models with Gaussian mixture priors, enhancing
unsupervised representation learning and clustering performance in high-dimensional data spaces.

Contrastive Learning (CL). CL has gained attention for its ability to refine feature representations
by maximizing similarities between related samples and minimizing them between unrelated ones.
Methods like SimCLR [6] and MoCo [15] demonstrated their effectiveness in many applications.
In the context of EM segmentation, CL enables better alignment of latent representations with
subcellular structures. We will use CL to ensure that each GMM component corresponds to a distinct
semantic class, not just in the highest level of the hierarchy we learn.

Next, we present our proposed method, which integrates hierarchical variational autoencoders with
GMM-based priors and contrastive learning to achieve accurate and label-efficient EM segmentation.
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Figure 1: The overall pipeline of e-Seg which is trained on an inpainting task (of center-region
masked inputs). ¢ and 6 are encoder and decoder of the network, respectively. Dotted arrows show
sampling from a distribution (Gumbel-Softmax (Categorical-like distribution) for segmentation head
and Normal distribution for conditional posterior). h is an intermediate feature embedding of input
x coming from the encoder ¢. f(h) is a logit vector and |f(h)| = C with C being the number of
different classes/GMM prior components (equal to 4 for “BetaSeg” [22]]). 5 and ~ are feature-wise
linear modulation (FiLM’s [23]]) parameters (shifting and scaling factors) of features h. h’ are the
posterior distribution’s parameters and are divided into two chunks shown as pr,(x) and o (x) by
¢ being the corresponding label of the masked center region of each input patch x in the batch. zj,
is a sample from N (pur(z),0%(x)). ¥ is a differentiable sample from a Gumbel-Softmax [19]
distribution. Green arrow shows positive pair of patches having similar labels, and red arrows show
negative pairs of patches having dissimilar labels. L, is then computed on ps (further explanation
can be found in section EI) For L inpainting loss, L, contrastive loss, Lo g cross-entropy loss
and L, refer to Equations|T} [T6} [T4]and [T5] respectively.

3 Methods

The method we propose is based on a Hierarchical VAE (HVAE) backbone similar to the ones
described in [28] 24]]. We modify the standard HVAE setup by (7) using a Gaussian mixture model
(GMM) instead of the default Gaussian, so every semantic class we want to distinguish has its own
predetermined Gaussian region, and by (i4) adding a contrastive loss (CL), we further ensure that
latent encodings are grouped by their semantic similarity through all hierarchy levels.

As the basis for our work, we used the openly available HVAE backbone of Hierarchical DivNoising
(HDN) [24]. HVAES, as introduced elsewhere [28], 32, 211, 24]], consist of a bottom-up path (encoder)
and a top-down path (decoder) with trainable parameters ¢ and 0, respectively. The encoder extracts
features from a given input x at progressively coarser scales, creating a hierarchical latent encoding
z that splits into sub-spaces z;,¢ = 1... L, with L being the number of hierarchy levels, or latent
layers, in the HVAE. The decoder network in regular HVAES reconstructs x, starting from the
topmost latent variables zy. Here, we first switch from reconstructing « to inpainting a masked
central region in x, as described next.

Autoencoding vs. Inpainting. In contrast to regular VAEs and HVAES that use a reconstruction
loss on full input patches x, we are using masked autoencoding instead [18]]. Since our aim is to
learn semantic features that can be used for pixel-level semantic segmentation, the zero-masking we
employed asks the network to only reconstruct the masked region, effectively learning features that
best represent the masked semantic class. We conducted experiments with masked regions of various
sizes and have always ensured that all masked pixels were from the same semantic class, see Table ]



The model is trained to reconstruct the masked center pixel(s) using an MSE-based inpainting loss on
X, a training batch of inputs, of size B, as

1 mas. =, mas 2
EIZEZ(:B K gmask)® 1)

rxeX

where 2™ is the inpainted masked region the decoder predicted, and £™** is the mask region of
the respective input patch prior to zero-masking.

HVAEs with Gaussian Priors. The Gaussian prior of regular VAEs only applies to the topmost
hierarchy level in HVAES, where it remains A (0, I') as depicted in Figure

The latent variables z of a HVAE are split into L layers z;,i € [1,..., L] so that

L—1
po(2) = po(zr) [ [ po(zilzita), @

i1
p@(ZL) :N(ZL‘OvI)v (3)
Po(zi|zit1) = N (zilpp,i(Zit1), Ui,i(zi+1)) and 4)
po(@|21) = N(2|1p,0(21), 75 o(21)), )

where 119(z;) and o3 (z;) represent the mean and the variance of the latent encoding, parameterized
by 6.

For each layer i, the approximate posterior g4 (2;|x, z<;), computed by the encoder, is defined as

Q¢(zi‘maz<i) :N(zi;,u(b(mvz<’i)ao'<2p(maz<i))7 (6)

where 14(, 2<;) and o4(x, z<;) are functions parameterized by ¢, and are the mean and variance
conditioned on the input « and the latent variables from lower layers j < ¢, denoted by z;.

The KL divergence term for each layer in the Evidence Lower Bound (ELBO) is

Eq, (22 12) [KL (g4 (2T, 2<i) || po(2ilziv1))] @)

where z-,; are all z; for j > i.

HVAEs with a GMM Prior. When replacing the topmost prior py(zr,) in an HVAE with a Gaussian
mixture model (GMM), the prior becomes a weighted sum of Gaussians

C
po(zL) =Y 7N (21 pie, 02), ®
c=1

where C is the total number of Gaussian components and also the number of semantic classes we want
to distinguish, 7. are the mixing coefficients of the GMM with ZCC:1 7. = 1, and N'(21; i, 02) is
a Gaussian component with mean y:. and standard deviation o.

Note that there is a one-to-one correspondence between Gaussian components of the GMM and
the semantic classes e-Seg is supposed to distinguish. This would ensure that the latent variable
follows a categorical distribution over the semantic classes; we ideally want the mixture assignment
7 = (m1,...,Tc) to act as a one-hot vector, i.e. one 7. should be 1, and the rest should be 0.

However, in practice, learning a fully discrete 7 is challenging because the standard VAE framework
with a GMM prior typically results in soft assignments [[10]. To encourage hard assignments, one
could (7) use a Gumbel-Softmax [19] trick to approximate categorical sampling while maintaining
differentiability [8]], (¢¢) introduce an entropy loss to encourage 7. values to be closer to either O or 1.
In our experiments, we used the Gumbel-Softmax during training, while reverting to the standard
softmax at inference time. We also introduced an entropy loss term as a form of self-supervision,
which yielded moderate improvements in the Gumbel-Softmax-based results (see Supplementary
Material), but did not lead to significant gains w.r.t. the best-performing softmax configuration. We
therefore report the softmax-based results as our main findings, without the additional training phase
using the entropy loss. In future work, we plan to investigate alternative self-supervision strategies to



further enhance the segmentation performance, leveraging the vast amount of available unlabeled
data, within the proposed framework.

The approximate posterior for the topmost latent z;,, can now be expressed as
c

go(zele) = ap(c = llz) go(zz]m, c = 1), ©)
=1

where g4 (c|x) is the approximate posterior probability of the GMM component ¢ set to label [ given
input & and g4 (21|, c) is the topmost approximate posterior conditioned on « and component c.
We model g4 (21|, ¢) over all possible labels itself with a Gaussian

Q¢(ZL ‘ :B,C) = N(zL;/JL(w)vUL(w))a (10)

by predicting 1z, (z) and o (x) (see boxes labeled with “posterior” in Figure[I). In practice, the
parameters pr, () and o, (x) are computed once from the FILM-conditioned encoder output and are
shared across all components [. As a result, the mixture in Equation@] reduces to

g¢(zr|x) = N(zp; pr(x), o (x)), (11

as depicted in Figure|l} In order to predict pur (x) and o, (x)), we must compute the conditional
posterior.

Computing the Conditional Posterior. In this section, we describe the main backbone of our method
leading from a given input patch € X to the computed posteriors g5 = N (p(z), %(x)). Figure
illustrates the overall pipeline of e-Seg.

The encoder, parametrized by ¢, processes x, leading to intermediate features & in the topmost
hierarchy level L. These features are then passed through an MLP classifier (rouge box in Figure I},
producing a vector of logits f(h) with dimensionality C, coinciding with the number of classes e-Seg
is tasked to distinguish.

Instead of directly using h as our posterior distribution parameters, as done in our Vanilla HVAE
baseline, we are using f(h), fed through two additional MLPs, g, and gs (see violet boxes in
Figure[I)), to compute parameters, 7y and 3 such that v = g, (f(h)) and 3 = gg(f(h)).

Those MLPs are mapping logits f(h) into feature-wise scaling and shifting factors. In this way, the
encoded features h are modulated via these FiLM [23] parameters v and § into h’ via computing
h = ~v® h+ [, where ©® denotes the Hadamard product (element-wise multiplication). The
modulated feature representation b’ is then chunked into two parts, g7, (x) and o1, (), and used to
parameterize the conditional Gaussian posterior in Equation [IT]

The Latent Sematic Segmentation Head. To avoid computationally costly downstream latent space
clustering to perform the semantic segmentation task (as done in Xie et al. [34] and Han et al. [14]]
using K-Means clustering), we are introducing a segmentation head tasked to perform the semantic
pixel classification tasks directly from the computed logits f(h).

To compute g4 (c|z) of Equation E], we use a categorical reparameterization trick via Gumbel-
Softmax [19].

The standard Gumbel-Softmax formula using the class probabilities 7; is
g = xp((logmi +9:)/7)
[ C )
> j—1exp((logm; + g;)/7)

where g; ~ Gumbel(0, 1) are Gumbel noise samples. Instead of probabilities 7;, we work with logits
f(h) (raw scores before softmax). The equivalent formula becomes
ex i h +gi)/T
Yl = - p((fi(h) +g:)/7) . (13)
2 j=1exp((f5(h) +95)/7)

(12)

The temperature parameter 7 in the Gumbel-Softmax distribution plays a crucial role in controlling
the degree of discreteness in the sampled values. During training, 7 is often annealed from a higher
value to a lower one, gradually transitioning from a smooth approximation to a discrete categorical
distribution.



In e-Seg, we use a typical annealing schedule 7 = max(Tyin, €xp(—rt)), where r = 0.999 is the de-
cay rate, Tmin = 0.9, and ¢ is the training step. Therefore, Gumbel enables the differentiable sampling
of categorical variables, improving gradient estimation, and semi-supervised classification [[19].

Next, we draw a vector y’, representing the class assignment (segmentation prediction) for an input
patch (¥ in the batch X, by sampling from the Gumbel-Softmax distribution parameterized by
logits f(h) with temperature 7.

For input patches (") € X for which we know the class label /;, we want to ensure that yl'(i) cy'®
is the largest entry. We do so using the cross-entropy loss
Log =— Z log y;(i). (14)

z(eX

Computing the Kullback Leibler Divergence. As it is commonly done in VAEs [20], the KL-
divergence term is regularizing the parameters of our encoder, ¢, such that the approximate posterior
will be close to our prior pg(z). In HVAES, KL is computed at each hierarchy level. Changing from
a standard Gaussian prior at the highest hierarchy level L to using a GMM prior, as described earlier
in this section, requires us to define a strategy to compute the KL-divergence appropriately.

Hershey and Olsen [[17] address the challenge of efficiently approximating the KL divergence between

two GMMs, and Durrieu et al. [13]] propose lower and upper bounds to estimate this divergence.

While these approaches can be needed in practical setups [10l 8], we only need to compute the KL

divergence between the posterior ¢, (zy|x) (Equation and the [-th GMM component, where [

is either the known class label for an input patch (¥, or | = argmax ') for a patch (/) for
y/ () gy’ (3)

which we do not have a ground truth class label.

Hence, Equationbecomes po.c(21) = N(2L; , 07), and L, is therefore still computed as the
divergence between two normal distributions. The KL loss over all hierarchy levels is therefore

Lir = —(KL(gs(z1|@) | po(z1]22)) + 3155 KL(go(2ilzi-1) || po(2ilzit1)) + KL(ge(2L|2L-1,¢) | po.c(22)).  (15)

Contrastive Loss. The contrastive loss consists of two terms, positive pair loss £, which encourages
proximity between samples belonging to the same class, and negative pair loss £_, that penalizes
proximity between samples of different classes, ensuring inter-class separation. We define boolean ma-
1 lle:ljandl#],

trices P and NV for positive pairs and negative pairs, respectively, as P;; = {O therwi
otherwise

and N;; = {(1) i)ftlllzejvf;;:, with [; and [; being the labels of patches 7 and j, respectively. These loss
terms then become £, = ﬁ > Py D, pD)and L =37, - Nij-L_(D(p®, u0))),

with p(%) being the predicted means of the posterior distribution over all hierarchy levels for a patch
7 in batch X, and D(u(i), u(j )) a distance function. In our experiments, we used the Euclidean
0 ifd > m,

(m —d)? otherwise ’
being the so-called margin, a hyperparameter that must be set appropriately, e.g. using grid-search.

distance. Note that for £_ we define the penalty function {_ (d) = { with m

The full contrastive loss term is finally defined as
Lo =M +(1—=NL_, (16)

with A being a hyperparameter that balances the positive and negative pair loss with each other.

Readers might wonder why a contrastive loss is useful when a GMM prior is used, where for each
structure to be classified (i.e. for each label) we have defined a Gaussian component in its own right.
The main reason is that the GMM prior only takes effect at the uppermost hierarchy level L. At all
levels i < L, Loy, is taking care of the desired label-wise segregation of latent encodings.

The Overall Loss of e-Seg. Taken all together, the overall loss of e-Seg is
L=Lr+aLep+alir+asler, 17)



Learning Paradigm Model U N G M  Avg DSC
Vanilla HVAE* [24] 0.44 055 034 0.13 0.37

Self-Supervised Han et al.* - - - - 0.66
MAESTER* [34] 0.84 095 0.56 0.79 0.79
Labkit [2] 0.85 044 0.68 0.61 0.65
Sparsely Supervised  U-Net 090 096 0.78 0.66 0.83
e-Seg (ours) 091 096 0.82 0.86 0.89
Vanilla ViT [L1] 091 098 0.77 0.87 0.88
Fully Supervised Segmenter 091 099 0.86 0.90 0.92
U-Net [26] 094 099 090 0.87 0.93

Table 1: Dice similarity coefficient per class and average across all classes on the ‘“BetaSeg”
dataset [22]]. Methods marked with an asterisk use K-Means clustering on latent features to conduct
semantic segmentation (see SectionE[). U: Unrecognized, N: Nucleus, G: Granules, M: Mitochondria.

Labkit ®  nucleus

@  granules
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Figure 2: Qualitative segmentation result on part of the test image stack (here we show section 627 of
high_c4 of the “BetaSeg” dataset [22]]).

where o;’s are hyperparameters to adjust the contribution of each loss with each other. We tuned
those hyperparameters using grid search and by manual tuning.

Next, we show empirical results we obtained using e-Seg and comparisons to several baseline methods
on two dense EM datasets and one fluorescence microscopy dataset.

4 Experiments and Results

Datasets. One of the datasets used in this study is the “BetaSeg” [22] dataset from OpenOr-
ganelle [16]], a public repository of high-resolution cellular imaging data. Acquired via Focused Ton
Beam Scanning Electron Microscopy (FIB-SEM), the dataset focuses on primary mouse pancreatic
islet 3 cells from a high-glucose-dosage group, chosen for comparison with prior works. It underwent
preprocessing, including rescaling each stack to form 4x4x4 nm isotropic voxels, which can be
viewed in any arbitrary orientations, and generating reference segmentations through human annota-
tion or manually corrected deep learning models. The final dataset consists of four cell volumes with
binary segmentation masks for seven subcellular structures, centrioles, nucleus, plasma membrane,
microtubules, golgi body, granules, and mitochondria, along with an eighth “unrecognized” category.
Notably, the nucleus, granules, mitochondria, and unrecognized regions dominate the dataset. For
evaluation, cells 1, 2, and 3 were used for training, while cell 4 served as an independent test set.

Next, We used “liver FIBSEM” dataset that samples were fresh needle biopsies fixed with 4%PFA
and 2%GA in phosphate buffer. High contrast staining was performed with reduced osmium and
Waltons lead aspartate stain [33]] and embedded in Epon. Sample preparation and imaging was done
on a ZEISS GeminiSEM according to prior reports [33]. The final dataset consists of one cell volume
with 11 crops that have been extracted from a cell volume, annotated manually and used for training,
validation and testing. The segmentation masks consist of six subcellular structures, mitochondria,
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Figure 3: Qualitative segmentation result on two crops of the whole 3D volume. (a) and (b) are
section 80 and 26 of crop00 and cropl0 in “liver FIBSEM” dataset respectively. The U-Net is
sparsely-supervised (for the fully-supervised U-Net result, see Figure @)

Model B M P L BM OBC CBC AvgDSC
U-net [26]-Fully Supervised 0.97 0.95 0.85 0.79 052 0.87 0.90 0.84
U-net-Sparsely Supervised 094 0.81 0.68 0.81 049 039 0.00 0.59
e-Seg-Sparsely Supervised 091 0.82 0.63 0.81 039 0.70 0.46 0.67

Table 4: Dice similarity coefficient per class and average across all classes comparing our model
with baselines for “liver FIBSEM” dataset. B: Background, M: Mitochondria, P: Peroxisomes, L:
Lipofuscin, BM: Basolateral Membrane, OBC: Open Bile Canaliculus, CBC: Closed Bile Canaliculus.

peroxisomes, lipofuscin, basolateral membrane, open bile canaliculus and closed bile canaliculus,
along with a seventh “background” category.

Trained Per-Class Dice Coefficient Avg

P Class Dice Cosficient - on U N G M DSC
er-Class Dice Coefficien vg highcl _ 0.85 038 0.68 061 063
Background  Cytoplasm  Nuclei DSC hiih_zz 080 033 058 056 057
0.94 0.86 050 090 high_.c3 082 044 063 042  0.58

Table 2: Dice similarity coefficient per Table 3: Labkit results. Due to different im-
GEA . : tL) . . . . ..

class and average for “Aitslab-bioimaging age sizes, Labkit was trained on individual

datasets. volumes. U: Unrecognized, N: Nucleus, G:

Granules, M: Mitochondria.

RLF Per-Class Dice Coefficient Avg
U N G M DSC
20 089 098 081 0.83 0.88

15 0.88 098 0.81 0.78 0.86 Entropy Per-Class Dice Coefficient Avg

10 086 098 080 075 085 Loss U N G M __ DSC

5 085 096 077 076 084 X 081 097 074 071 08I

1 079 095 069 069 078 v 086 098 080 075 085
Table 5: DSC per class and average across Table 6: Effect of entropy loss: The best
all classes. The “RLF” column (Relative La- checkpoint of a sparsely supervised model
beling Factor) specify a scaling factor where was further trained using batches with 50%
20 corresponds to 0.05% and 1 as small unlabeled data. U: Unrecognized, N:Nucleus,
as 0.0025% of the total labeles available. G:Granules, M:Mitochondria.
U: Unrecognized, N:Nucleus, G:Granules,
M:Mitochondria.

While it is true that FIB-SEM datasets like “BetaSeg” offer isotropic resolution suitable for
3D processing, this is not always the case in EM imaging, where data often comes in 2D slices
(especially in higher-throughput screens).
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Figure 4: Qualitative results on a representative 2-channel image from the overlapping subset of the
“Aitslab-bioimaging1” and “Aitslab-bioimaging2” datasets. The first two panels show the fluorescence
microscopy channels: EGFP-Galectin-3-labeled cytoplasm (left) and Hoechst 33342-stained nuclei
(center-left). The center-right panel (GT) displays the ground truth semantic segmentation with nuclei
(cyan) and cytoplasm (magenta). The rightmost panel (e-Seg) shows the prediction from our method.

Furthermore, we conducted an experiment on overlapping subset of two datasets Aitslab-
bioimagingl [1] and Aitslab-bioimaging?2 [25]]. The Aitslab-bioimaging] dataset is a benchmarking
fluorescence microscopy dataset containing 50 images of Hoechst 33342-stained U20S osteosarcoma
cell nuclei, including annotations for nuclei, nuclear fragments, and micronuclei, designed for training
and evaluating neural networks for instance and semantic segmentation and the Aitslab-bioimaging?2
dataset is a fluorescence microscopy dataset containing 60 images of EGFP-Galectin-3 labeled
U20S osteosarcoma cells with hand-annotated cell outlines, designed for training and benchmarking
neural networks for instance and semantic segmentation, with over 2200 annotated cell objects and
compatibility with object detection tasks. The overlapping subset of them contains 30, 2-channel
images for training and 10 for testing.

Evaluation Metrics. We used Dice Similarity Coefficient (DSC) to evaluate the segmentation
performance. DSC is a widely used metric in image segmentation and measures the similarity
between the predicted and actual segmentation masks.

Let A and B be two sets representing the binary segmentation masks of the ground truth and the

predicted segmentation. The Dice coefficient is defined as Dice(A, B) = |2 A‘ﬁ_ﬂg‘l , where |AN B,

the number of overlapping pixels between the predicted and ground truth masks, |A|, the number of
pixels in the ground truth mask, and | B|, the number of pixels in the predicted mask.

Experiments. We use an architecture similar to the one used in the HDN work [24]]. For all hyperpa-
rameters we have introduced, we used grid searches to find a good balance between performance and
stability. We first evaluate our method on “BetaSeg” dataset [22] and compare its performance against
baseline methods shown in Table They demonstrate that our approach outperforms existing
baselines in terms of DSC (F1-score). For the Labkit baseline we trained per cell and show the results
in Table[3]and report the best class-wise performance in Table[ST] Quantitative segmentation result
are shown in Figure [2] (complete Figure[S3).

To further validate the robustness of our method, we conduct experiments on the “liver FIBSEM”
dataset, comparing it with U-Net baselines (fully and sparsely-supervised). Quantitative and qualita-
tive results are shown in Table ] and Figure [3] respectively (complete Figure[S4). Additionally, we
show e-Seg results also on a fluorescent microscopy dataset (see Table [2]and Figure 4)).

Model Ablations. We strip our model down to a vanilla HVAE and then re-introduce one component
at a time, showing how each of the modules we have introduced above contributes to the overall
performance we report. These results on the “BetaSeg” dataset are shown in Table

Additionally, we evaluate how the quality of the results depends on the amount of available training
labels. To this end, we are starting from 0.05% of the total image data available in the “BetaSeg”
dataset and gradually decreasing the used training labels down to 0.0025%. The results of these
experiments can be found in Table[5] As discussed in Section [3] £ helps us to gain additional
performance also from the unlabeled data, which we measure and report in Table[6] Finally, we
measured the effect of differently sized masking regions in Table
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- Table 8: Label consistency ablation on “Be-

Table 7: Loss components and prior distribu- taSeg” dataset. The “Mask Size” column
: . 113 2 . . . . .
tion ablation on “BetaSeg” dataset. U: Unrec- indicates the size of the center-region mask,
ognized, N: Nucleus, G: Granules, M: Mito- within which the pixel-wise ground truth la-
chondria. bels are consistent.

Limitations. While e-Seg achieves competitive segmentation results using only sparse supervision,
several limitations do remain. First, all experiments we present are conducted on 2D images.
Extending the presented framework to operate in full 3D is an important next step, especially for
volume EM data analysis. Second, we noticed that the effectiveness of our entropy-based loss must be
improved, e.g. by replacing it with a more adaptive or data-driven strategy. Finally, in the presented
form, hyperparameters such as the contrastive loss margin still require manual tuning, which is not
ideal for the ease of use by biological experts.

5 Discussion

Here we presented e-Seg, a novel semantic segmentation approach that leverages the variational
latent representation of hierarchical variational autoencoders (HVAESs) trained on a limited amount
of pixel-labels in an inpainting setup. We used a GMM prior instead of the traditionally employed
Gaussian prior and introduced a novel segmentation head that incorporates both a cross-entropy
loss and an entropy loss to leverage available data for which no ground truth (GT) class-labels are
available. The integration of contrastive loss, combined with the structural advantages of the GMM
prior, provides a means to effectively distinguish biological structures directly from the latent space
encoding.

Transformer-based architectures, as used in MAESTER [34], usually have a rather large number
of trainable parameters (i.e. 328,452, 352 trainable parameters in MAESTER). This makes such
approaches less applicable to life-scientists since they require rather powerful compute setups. Even
our biggest network, in contrast, only employs 3, 800, 869 trainable parameters (see Tables[S2]and[S3),
making it fast to train and easy to use. Our experiments also highlight an interesting fact, namely
that smaller mask sizes with consistent labels emerged as the best strategy. This stands in contrast to
Transformer-based approaches where a relatively large fraction of the input images is masked during
training [34].

By combining hierarchical representations with advanced regularization techniques such as contrastive
learning, we have shown that we can achieve competitive segmentation performance on complex
microscopy data, even with relatively small models and limited training data. The proposed approach
tackles the challenge of label scarcity, enhances latent space representations tailored to structured
biological data, and lays the groundwork for future exploration of semi-supervised learning techniques
and adaptive latent priors.

Overall, this work bridges the gap between fully supervised and unsupervised methods by offering a
scalable approach for large-scale biomedical semantic image data segmentation.
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e-Seg: Sparsely Supervised Semantic Segmentation
of Microscopy Data

Supplementary Material
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Figure S1: The overall pipeline of Vanilla HVAE in Table (first row in Table m), which is trained
on an inpainting task (of the center-region masked inputs). ¢ and 6 are encoder and decoder of the
network, respectively. Dotted arrows show sampling from a distribution. A is an intermediate feature
embedding of input & coming from the encoder ¢ and it is posterior distribution’s parameters which
is divided into two chunks shown as py, and of. zy, is a sample from N (uz (), 0% (x)). For L;
inpainting loss and L, refer to Equations|T]and [7] respectively.
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Figure S2: The overall pipeline of Vanilla HVAE with only CL added in the pipeline in the second row
in Table[7] which is trained on an inpainting task (of the center-region masked inputs). Green and red
arrows are showing positive and negative pair respectively, in a batch. ¢ and 6 are encoder and decoder
of the network, respectively. Dotted lines show sampling from a distribution. h is an intermediate
feature embedding of input  coming from the encoder ¢ and it is posterior distribution’s parameters
which is divided into two chunks shown as p7, and o, 2y, is a sample from N (pr(z), 0% (x)). For
L1 inpainting loss, L1, contrastive loss and L, refer to EquationsEI, @andmrespectively.
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Model Learning Paradigm U N G M AvgDSC
Vanilla HVAE™* [24] Self-Supervised 044 055 034 0.13 0.37

Labkit [2] Sparsely Supervised 0.85 0.44 0.68 0.61 0.65
U-net [26] Fully Supervised 0.94 099 090 0.87 0.93
U-net Sparsely Supervised 0.90 0.96 0.78 0.66 0.83
Vanilla ViT [[11] Fully Supervised 091 098 0.77 0.87 0.88
Segmenter [29] Fully Supervised 091 099 0.86 0.90 0.92
MAESTER* [34] Self-Supervised 0.84 095 056 0.79 0.79
Han et al* [14] Self-Supervised - - - - 0.66
e-Seg (+Lr) Sparsely Supervised 0.89 098 0.81 0.83 0.88

Table S1: Dice similarity coefficient per class and average across all classes comparing our model with
baselines on the “BetaSeg” dataset [22]]. Methods marked with an asterisk use K-Means clustering
on latent features to conduct semantic segmentation (more explanation can be found in Section[3). U:
Unrecognized, N:Nucleus, G:Granules, M:Mitochondria.

#res. Per-Class Dice Coefficient Avg
blocks U N G M DSC

5 0.86 098 080 0.75 0.85
4 0.85 097 080 074 0.84
3 0.88 096 0.81 0.80 0.86
2 0.87 097 081 077 0.86
1 0.85 097 080 072 0.84

Table S2: Residual blocks ablation (3 latent variables). U: Unrecognized, N: Nucleus, G: Granules,
M: Mitochondria.

Entropy-based Loss. When the sample y’ of the Gumbel-Softmax distribution is uniform, the
network is maximally unsure about which class to predict for the current input patch. We noticed that
this is commonly the case early during training, where the network has not yet seen a lot of patches
for which ground truth labels are available.

To encourage the network not to predict a uniform g’, we introduced an entropy loss for all patches
x) € X for which we do not have a ground truth class label.

Lp=— Y yViogly'"). (18)
z(HeX

#latent Per-Class Dice Coefficient Avg
U N G M DSC
2 0.87 098 0.81 076 0.86
3 0.86 098 0.80 0.75 0.85
Table S3: Latent variables ablation (5 res. blocks/layer). U: Unrecognized, N:Nucleus, G:Granules,
M:Mitochondria.

14



Vanilla HVAE

L]
@
@
(e

‘ él ;-v’itqé; "‘ﬁ.f!la’

MAESTER
03 .8'.’},

ofo \".‘ *y

Tt o e
- .’&“ a 'S .ﬂ ~. g
cels ¢
e-Seg (+Lp)
R

Han t al.

nucleus

granules
mitochondria
unrecognized

Figure S3: Qualitative segmentation result on part of the test image stack (section 627 of high_c4 in
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RLF Model U N G M  Avg DSC
20 U-net 0.63 0.75 0.51 0.12 0.50
e-Seg  0.89 098 081 0.83 0.88
15 U-net 053 064 041 0.14 0.43
e-Seg 0.88 098 0.81 0.78 0.86
10 U-net 030 020 042 0.34 0.31
e-Seg  0.86 098 0.80 0.75 0.85
5 U-net 0.71 0.00 0.00 0.03 0.18
e-Seg  0.85 096 0.77 0.76 0.84
1 U-net 0.17 0.00 037 0.02 0.14
e-Seg  0.79 095 0.69 0.69 0.78

Table S4: Comparison between U-Net and e-Seg on the “BetaSeg” dataset under varying label
sparsity levels. “RLF” (Relative Labeling Factor) specifies the fraction of available labels, where
20 corresponds to 0.05% and 1 to 0.0025% of total labels. U: Unrecognized, N: Nucleus, G:
Granules, M: Mitochondria. Although both models were trained with balanced supervision,
using patches selected to include all classes, the U-Net still fails to segment the nucleus at very
low labeling levels (RLF 1 and 5). This illustrates a key limitation of discriminative models
such as U-Net, under extreme supervision sparsity, even balanced examples may not suffice
to generalize fine-grained or context-sensitive structures like the nucleus. In contrast, e-Seg
benefits from its class-aware latent modeling via the GMM prior, which enables it to extract
meaningful representations for different structures and distinguish them semantically. We note
that the sparse U-Net reported earlier was trained on slice numbers 800, 600, and 500 of the
“high_c1”, “high_c2”, and “high_c3” volumes of the “BetaSeg” dataset. For selecting the same
amount of data used in e-Seg, to train the 2D U-Net on, as reported in the table above, we
extracted 64x64 patches where except background, different classes are approximately well
balanced.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions, including
the design of e-Seg, an HVAE-based segmentation framework with a GMM prior, center-
region inpainting, contrastive learning, and a dedicated semantic segmentation head. These
claims are appropriately scoped and supported by the methodology and experiments pre-
sented in the rest of the paper. The text also specifies that the method works with extremely
limited supervision and addresses common practical challenges in EM segmentation, which
are demonstrated through empirical results.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We included a dedicated Limitations mini-headline at the end of the Exper-
iments and Result (Section[d). There, we discuss that the current method is restricted to
2D data and would likely benefit from a 3D extension. We also note that the entropy-
based loss could be further optimized, and that dataset-specific tuning is required for some
hyperparameters, such as the contrastive loss margin.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or proofs (e.g., theorems
or lemmas). However, it provides detailed derivations and explanations of the model
components and loss functions (see Section [3), including the use of a GMM bprior in the
HVAE framework and KL divergence formulation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all necessary implementation details, including model
architecture (Figure[T), training settings, dataset descriptions and evaluation metrics (Sec-
tion Ei]) Loss terms, and component configurations are also disclosed to allow faithful
reproduction of the reported results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Two of the datasets used in our experiments are publicly available and ref-
erenced in the paper. The third dataset is private and cannot be shared due to data access
restrictions. We will publicly release the code on GitHub along with detailed instructions to
reproduce all experiments based on the public datasets.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all relevant training and evaluation details, including data splits,
optimizer type, learning rate, batch size, and other key hyperparameters. Where appropriate,
we explain how hyperparameters were chosen, either based on prior work or grid search.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While our main experiment (Table [ST)) includes 5-fold cross-validation to
mitigate variability due to data splits, we did not report error bars or perform statistical
significance tests. Given the limited size of our dataset and the exploratory nature of
our work, our focus was on assessing the feasibility of the proposed method rather than
establishing statistically significant performance differences.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this work, we mentioned the number of parameters in our largest model
and the efficiency of our approach. Our method improves upon previous techniques by
eliminating the need for K-Means clustering, allowing the model to directly generate
segmentation labels from the segmentation head. This change significantly accelerates the
inference process, resulting in faster segmentation without sacrificing accuracy.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper conforms with the NeurIPS Code of
Ethics. We have adhered to all relevant ethical guidelines, ensuring transparency, fairness,
and respect for privacy in our work.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The focus of this paper is primarily on technical advancements in segmentation,
and while it does not explicitly address societal impacts, the method may have positive
implications in fields like medical imaging. However, the societal implications are, if at all,
only indirect and we believe the answer "NA’ is most appropriate.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve models or data with a high risk for misuse, and
thus does not describe any specific safeguards related to their release.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all creators and original owners of assets used in this paper, including
datasets, code, and models, have been properly credited. Additionally, the licenses and terms
of use associated with these assets have been explicitly mentioned and respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the private dataset used in this paper is well documented, including details
on its structure, size, and usage. However, due to privacy and confidentiality constraints, the
dataset is not publicly available. Access to the dataset is restricted, but interested parties can
contact the authors to be connected to the dataset owners.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects, and therefore, no
IRB or equivalent approvals were required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models (LLMs) were used as part of the core methods in
this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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