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Abstract

Automated materials synthesis requires historical data, but extracting detailed data
and metadata from publications is challenging. We developed initial strategies for
using large language models for rapid, autonomous data extraction from materials
science articles in a format curatable by a materials database. We used the sub-
domain of polymer nanocomposites as our example use case and demonstrated a
proof of concept case study via manual validation. We used Claude 2 chat, Open
AI GPT-3.5, and 4 API to extract characterization methods and general information
about the samples, utilizing zero and few-shot prompting to elicit more detailed
and accurate responses. We achieved the best results with an F1 score of 0.88 in the
sample extraction task, using Claude 2 chat. Our findings demonstrate the utility of
language models for more effective and practical retrieval of synthesis parameters
from literature.

1 Introduction

Research publications are the current official repository of reliable information on a huge variety of
materials data. It is important to connect data from different resources in materials science, as existing
data directs future discoveries and research. However, due to the unstructured nature and highly
unique writing and presentation styles, it is difficult to utilize the vast majority of materials data locked
in journal articles and reports [1]. Sifting through the articles and determining the structure, processing
steps, and properties of each material sample is tedious, time-consuming, and error prone. A robust
structured data platform to store, visualize, and analyze materials data is critical for downstream tasks
of material discovery, process optimization and virtual metrology/characterization [2], as recently
demonstrated by Szymanski et al [3]. NanoMine, part of MaterialsMine, focuses on collecting
experimental data from literature on the specific material system of polymer nanocomposites that
meets these needs. It is a FAIR (Findable, Accessible, Interoperable, Reusable) [4] data resource,
which is important for enabling reuse of data. To date, NanoMine data is collected manually.
However, it is impractical to manually curate the data from more than 1 million published papers in
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this subfield, much less data from more subfields in materials and science. Therefore, automation of
the curation process has gained attention increasingly to enable rapid growth of a robust repository of
prior published data. [2, 5–10]. Leveraging natural language processing (NLP) and large language
models (LLMs) can make the information most important to scientists, such as material identification,
composition, properties, or experimental details readily available in a machine-readable format
[11–15]. LLMs can be used in other ways to accelerate materials research by classifying documents,
correcting annotations, planning experiments, predicting properties and promising structures, making
recommendations, and answering questions [12, 16–22]. There has been an effort to extract data such
as compositions and properties of materials from tables and figures as important information is often
presented in these formats [11, 23–25].

Polymer nanocomposites are a class of materials consisting of a polymeric matrix material in which
one or more types of nanoparticle fillers are embedded. These fillers often have surface chemical
groups added to them in order to improve the dispersion and properties of the resulting composite [26].
Loadings of particles as small as less than 1 percent by mass have demonstrated dramatic physical
property enhancements [27]. Although the details of composition and processing leading to given
output properties are still poorly understood, these materials show immense promise for numerous
environmental and industrial applications [28]. Given the wealth of information in the literature on
these materials (1M papers according to search on Google Scholar), successful data extraction from
the published literature could allow for rapid new understanding and discoveries. Our study focuses
on the beginning of the process, which is to extract polymer nanocomposite sample information,
where each sample is identified by its composition (matrix name, filler name, composition fraction,
filler surface treatment) and is associated with synthesis (input) and property (output) details. Here,
the focus is on textual data due to additional challenges presented by other modalities, such as
structural variations and the presence of partial information [29]. We employ LLMs GPT-3.5, GPT-4,
and Claude 2 for this combined named entity recognition and relation extraction task, requiring
finding the right entities and the relationships between them for each sample. It is a non-trivial task
as it requires recognition of complicated patterns. We aimed to improve curation effectiveness and
performance. By carefully constructing prompts guiding the language models to recognize and tag
materials entities, we obtained promising results for sample extraction. Having a manually curated
set from MaterialsMine allows us to validate the quality of the extracted dataset.

2 Methods

We considered two pipelines for data extraction and evaluation. In Pipeline 1, we extracted the list of
samples in each paper, as identified by their composition (matrix and filler names), the composition
fraction of filler, and surface functional groups on the fillers; then we performed a manual evaluation.
In Pipeline 2, we focused on an automated evaluation procedure, for which we simplified and changed
the extraction goal; for a single paper we extracted a representative sample, as identified by a unique
matrix name, and the high level processing method and characterization techniques used; in this
second pipeline, comparison of higher level information across many papers can be achieved, although
the detailed sample list for each paper will be lacking.

2.1 Article and dataset selection

The used article text dataset consists of the abstract, the full text organized with top-level section
headers and content, and figure and table captions [30]. We utilized the material sample data extracted
from articles in MaterialsMine [31] to develop the ground truth dataset for 42 articles. MaterialsMine
contains 240 articles on nanocomposites with a total of 2,512 samples. Each article has an average of
10 samples with a minimum of 2 and a maximum of 49 samples in an article. The detailed sample
information is available in rdf or XML files from MaterialsMine, which we downloaded and converted
to JSON format. The fields include properties, processing details, conditions, and characterization
methods. If all fields were filled, each JSON would contain 400 fields, but in practice most fields are
empty, as only a small subset are relevant for a given study. This enabled us to create an accurate
ground truth mapping between samples and source articles based on the information available in
MaterialsMine.
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2.2 Identifying relevant article sections

Due to the 8,192 token limitation of the GPT-4 model that impeded us from feeding the full length
article, we needed to reduce the length of the full research articles.1 Rather than using specific
sections like the abstract or methods, or using paragraph classification methods such as using BERT-
based classifiers [32], we identified the most relevant sections across the entire article using a vector
database. For the pipeline with manual evaluation, we split each article into chunks of less than 1000
characters and then compared the vector embedding of each chunk to the embedding of our search
query using a squared L2 similarity score. The embeddings for the article chunks were pre-computed
using model "text-embedding-ada-002" provided by OpenAI and stored in the Chroma database [33].
The top 10 most similar chunks for each article were concatenated and used as the input to the GPT-4
model. This allowed us to provide a broad targeted context, while staying within the token limitations
of the model.

For the workflow pipeline with automated evaluation, we developed another method for extracting
comprehensive information. To capture all necessary data from polymer nanocomposite papers,
including materials, processing methods, and characterization, while meeting the 8,192 token limit
we kept all the sections but removed sentences that did not contain relevant information.

2.3 Prompt design

Since key differentiating fields are matrix, filler, composition and particle surface treatment (PST), we
picked this minimal set to define the samples for the first pipeline. While processing details can also
differentiate samples, this information was often sparse so we excluded it in this study. We utilized the
strength of zero-shot learning models, which can perform well without any training data, combined
with carefully crafted prompts. The models extract the entities and find the relations simultaneously.
First, we tried using the generic extraction chain function from LangChain [34] which uses a provided
schema. We put every field except the PST in the required list to be extracted since PST is not
applied to all nanocomposites. However, this did not sufficiently capture most samples. Therefore,
we designed custom prompts to provide more guidance for Claude 2 chat interface (the API access
was not available), Open AI GPT-3.5 and 4 API to better guide the model. The prompts include
a template JSON file to be filled along with a description of the task. For GPT-3.5 and 4, we also
included example output to make the outputs more consistent. The schema used for the extraction
function and custom prompts are included in the Appendix. These prompts are evaluated manually.

Given the necessity to evaluate a large number of papers, having an automated pipeline for evaluation
is crucial. However, we noticed that evaluating the task of sample extraction has several challenges
as it requires determining the most accurate alignment between each predicted sample and its corre-
sponding ground truth sample, taking into account all fields that describe the samples simultaneously.
Therefore, we considered a simpler task, focusing on some characteristics that are typically consistent
across many samples in a given paper, including several distinguishing characteristics that can be
classified categorically. We evaluated GPT-4 based on this new task with a predefined schema to
extract n-tuple JSON objects from the papers. Because filler types and surface functional groups
often have nearly infinite variation between sample sets in a given paper, we focused on extracting
the polymer matrix materials names as a core identifier. In order to extract useful characteristics
that can distinguish samples across papers, we captured the key entities of processing methods and
characterization techniques. These entities can be identified from high level categories with a list
of pre-defined entries, which allows models to find similar, but usually not identical, language in
the paper. Processing methods give an overview of the synthesis methodologies used to create the
samples and relate to fundamental output properties, and characterization methods give information
about the type of figures in the paper and the properties measured for each sample. The prompt we
used to prompt GPT-4 that achieved the highest F1 score can be found in the Appendix.

2.4 Evaluation

Manual evaluation, Pipeline 1 For the extraction of samples, we compared the sample information
extracted by GPT-3.5 and 4, and Claude 2 to the ground truth samples from the papers. The ground
truth samples are a subset of all the samples that can be found in the paper since we only considered

1The experiments were done in September 2023.
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the samples that were mentioned in the text, for a fair comparison. A sample was considered correct
if the values in the matrix, filler, composition, and PST fields matched any ground truth sample. To
allow for flexibility in polymer terminology, exact word matches were not required. F1 scores were
calculated based on the number of samples captured in the outputs. Repeated extractions of the same
sample were excluded, as some samples have an identical minimal information set, but differ in other
information such as processing details. Samples with empty or non-numerical composition values
were also excluded, and not counted as false positives. Therefore, the number of ground truth samples
considered was lower than the total number of complete samples. In complete samples, samples that
come from figures and tables or have the same minimal information but are different in terms of other
processing methods or detailed information such as the particle size of the filler are also present.

Automated evaluation, Pipeline 2 We evaluated the performance of GPT-4 using the F1 metric for
the extraction of consistent sample information task. Our evaluation method compared the predicted
JSON objects to the ground truth. Specifically, an entity was correctly predicted if it exactly matches
its corresponding ground truth entity. It is noteworthy that incorporating semantic similarity may
increase the F1 score. If there is a mismatch between the predicted entity and the ground truth, it is
counted as both a false positive and a false negative. If the prediction is null, but there is a ground
truth entity, it is classified as a false negative.

3 Results and discussion

Initial experiments for pipeline 1 using the generic Langchain’s create extraction chain function and
GPT-4 resulted in an F1 score of 0.26 as shown in Table 1. The low score was likely because it often
extracted just one sample, despite most papers having more than one sample using this method. Our
customized prompts significantly improved the performance. GPT-3.5 achieved an F1 of 0.36, GPT-4
0.62 and Claude 0.88. Therefore, the prompts play a key role in guiding the model to extract the
relevant information. It was expected that Claude would perform better given its access to the full
text, while GPT-4 and GPT-3.5 used selected sections which may have lacked some sample details.
We also expected GPT-4 to outperform GPT-3.5 as it is more capable of understanding intricate
instructions.

Table 1: The F1 scores of sample extraction task

Method F1

Claude 2 0.88
GPT-4, custom prompt 0.62

GPT-3.5-16k, custom prompt 0.36
GPT-4, create extraction chain function 0.26

Table 2 shows the results of GPT-4’s predictions for Pipeline 2 based on various prompts focusing on
the properties that are consistent across samples. Parsable accuracy looks at whether the predicted
output matches the given template. Our findings indicate that while it is relatively straightforward
for the model to extract characterization methods, identifying the correct processing method is more
challenging and therefore less accurate. This is because characterization methods are typically
explicitly stated in papers. In contrast, processing methods such as melt mixing or solution processing
often require reasoning based on the content of the paper.

Table 2: The F1 score and Parsable accuracy scores of GPT-4 for extracting information that is
consistent across samples

Precision Recall F1 Parsable
60.71 60.71 60.71 73.69

A limitation of our current preliminary approaches is that the extraction is biased towards samples
that exhibit the desired properties that scientists deliberately report. It is noted from our manual
evaluation that samples mentioned explicitly in the text, and therefore extractable by these methods,
are the ones that exhibit the desired properties and/or the most noteworthy ones. Focusing on the
text only, without considering figures and tables, we capture the subset of all samples that have the
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best performance, or the worst performance. The "middle of the pack" samples are rarely called out
explicitly in the written text and will require more nuanced work to extract from the papers.

An important criterion to contribute data to a materials database is ensuring faithfulness of the
extractions. Our future research includes plans to incorporate additional verification steps prior to
storing extracted information to ensure the information stored is reliable. Nonetheless, the approaches
described here can accelerate curation by automating parts of the process. Finding the most relevant
parts and extracting sample sets from text adds computational steps to curation, thus making it
semi-automatic rather than fully manual.

While in this work we focused on zero-shot and few-shot learning, we believe designing better prompts
and chain of thought prompting may further improve performance. Moreover, more experiments
should be done to find the optimal chunking method. Although our current research presents a
generalized overview with an aggregated F1 score metric, yet we recognize the need for a more
granular analysis of the results to understand how the model performs in retrieving different entities
and providing insights into specific strengths and areas for improvement. Future work could consider
extending these approaches to extract sample information from non-textual inputs such as tables and
figures. Additionally, developing evaluation techniques tailored to sample extraction from literature
is needed. We will also explore fine-tuning the models and designing prompts to include process
details and properties that could better guide materials design. This method allows scientist to explore
previously tested process/batch variations and guide them in process optimization.

Furthermore, it is important to note that extracting sample information from an experimental paper
is a persistent challenge. Our flexible approach can be applied in sample extraction across various
domains. This adaptability is achievable by modifying the template defined in the prompt and
incorporating a few examples and does not require a fully supervised dataset. While each domain
might present its unique challenges, the general approach remains applicable throughout various
realms within materials science.

4 Conclusions

We showed the potential for large language models to be effective in extracting sample information
from polymer nanocomposite literature. Our prompting approaches improved the models’ ability
to identify relevant sample details compared to generic extraction methods. While Claude achieved
the best performance by leveraging full text access and capturing 123 samples from 42 articles,
GPT-4 showed strong capabilities when guided by specific prompts. Further refinement of prompting
strategies, inclusion of non-textual data, and development of tailored evaluation metrics are impor-
tant next steps. Overall, this work demonstrates the promise of leveraging LLMs to expedite the
extraction of key polymer nanocomposite sample information from text, thereby accelerating and
facilitating database curation. Access to such curated data will enable downstream capabilities such as
classification and regression tasks to find relationships between synthesis steps and output properties.
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A Appendix

A.1 Query used for similarity match

query = """
Read the following paragraphs, find all the nanocomposite samples, and fill out the
JSON template for each one:

{
"sample ID": "",
"matrix chemical name": "",
"filler chemical name": "",
"composition (mass % or vol % )": "",
"particle surface treatment name": "",
"properties": ""

}
"""
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A.2 Schema

schema = {
"properties": {

"sample ID": {"type": "integer"},
"matrix chemical name": {"type": "string"},
"filler chemical name": {"type": "string"},
"composition (mass % or vol % )": {"type": "string"},
"particle surface treatment name": {"type": "string"},

},
"required": ["sample ID", "matrix chemical name","filler chemical name",
"composition (mass % or vol % )"],

}

A.3 Prompts

A.3.1 GPT-3.5 & GPT-4

query = """
Read the following paragraphs, find all the nanocomposite samples, and fill out the
JSON template for each one. Samples should be unique. Composition is how much filler
is inside the matrix. it should be a
numerical number and unit (%mass or %weight):

//insert text

{
"sample ID": "",
"matrix chemical name": "",
"filler chemical name": "",
"composition (mass % or vol % )": "",
"particle surface treatment chemical name": "",

}

example output
[
{

"sample ID": "1",
"matrix chemical name": "Diglycidyl ether of bisphenol-A (DGEBA) epoxy resin",
"filler chemical name": "BaTiO3 nanoparticles",
"composition (mass % or vol % )": "50 vol%",
"particle surface treatment chemical name": "N/A"

},
{

"sample ID": "2",
"matrix chemical name": "Diglycidyl ether of bisphenol-A (DGEBA) epoxy resin",
"filler chemical name": "BaTiO3 nanoparticles",
"composition (mass % or vol % )": "50 vol%",
"particle surface treatment chemical name": "silane coupling agents"

},
{

"sample ID": "3",
"matrix chemical name": "Diglycidyl ether of bisphenol-A (DGEBA) epoxy resin",
"filler chemical name": "BaTiO3 nanoparticles",
"composition (mass % or vol % )": "30 vol%",
"particle surface treatment chemical name": "silane coupling agents"

}
]
"""
%
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A.3.2 Claude 2

Read the following paragraphs, find all the nano-composite samples, and then fill out
the given JSON template for each one of those nanocomposite samples and output
complete json that consists of the sample jsons. Composition is the amount of filler
found in the composite. nano-composites can have different compositions, filler names,
matrix names or particle surface treatment names

[PAPER]

JSON template
{

"sample ID number: ,
"matrix chemical name": ,
"filler chemical name": ,
"composition (weight % or mass %)”: ,

"particle surface treatment name":
}

A.4 Automated Evaluation

JSON Template:
{

“Matrix Chemical Name”: " " ,
“Processing Method”: “Solution Processing/Melt Mixing/In Situ Polymerization” ,
“Characterization”: "Transmission electron microscopy/
Scanning electron microscopy/
Atomic force microscopy/
Optical microscopy/
Fourier transform infrared spectroscopy/
Dielectric and impedance spectroscopy analysis/
Raman spectroscopy/
Differential scanning calorimetry"

}

Please read the following paragraphs, and fill out the given JSON template.
For processing method and characterization, choose between the given options.

[PAPER SPLIT]
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