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Abstract

We present ATC-QA, a novel benchmark for
evaluating large language models (LLMs) in
aviation safety applications. Derived from
43,264 qualified Aviation Safety Reporting Sys-
tem (ASRS) reports, our benchmark comprises
47,151 question-answer pairs spanning seven
question types and four difficulty levels. Exper-
imental evaluation of nine representative LLMs
reveals a striking dichotomy: apparent mastery
of classification tasks (up to 95% accuracy)
coupled with profound failures in critical ca-
pabilities. We identify a pronounced "termi-
nology generation bottleneck” where even top-
performing models achieve only 20% accuracy
on fill-in-the-blank questions—a 75 percent-
age point drop from their classification perfor-
mance. Our analysis further uncovers system-
atic process-result discrepancies in calculation
tasks, where models produce correct numeri-
cal answers (53-82% accuracy) through funda-
mentally flawed reasoning processes (8-55%
correctness). Counter-intuitive performance
patterns across difficulty levels, where models
often perform better on more complex ques-
tions, suggest fundamental differences between
human and machine-perceived complexity. Ar-
chitecture choice significantly impacts perfor-
mance beyond parameter count, with similar-
sized models showing up to 4x performance
gaps on domain-specific tasks. ATC-QA pro-
vides a framework for assessing LLM capa-
bilities in safety-critical environments where
domain expertise is essential, highlighting the
need for specialized evaluation in high-stakes
domains.

1 Introduction

Aviation safety directly impacts transportation se-
curity and passenger well-being. While traditional
approaches have advanced safety, they struggle to
manage the increasing complexity of modern air
traffic operations and regulations.

Large language models (LLMs) show promise

for transforming aviation safety management
through improved natural language understand-
ing. However, applying general-purpose LLMs to
specialized domains presents challenges, as main-
stream benchmarks like SQuAD (Rajpurkar et al.,
2016), CEval (Huang et al., 2023), and MMLU
(Hendrycks et al., 2021) lack the industry-specific
context needed for meaningful aviation safety as-
sessment (Fischer et al., 2024; Li et al., 2024).

Recent work on specialized benchmarks, such
as GPQA (Rein et al., 2024), highlights the chal-
lenges of evaluating LLMs in technical domains.
The inconsistent reasoning of LLMs about domain
concepts (Sosa et al., 2024) raises concerns for avi-
ation applications where precision is vital. Similar
challenges have been observed in medical (Ouyang
et al., 2024) and tool learning domains (Ye et al.,
2024), where domain-specific knowledge and pre-
cision are critical.

ATC-QA provides a comprehensive multi-
dimensional benchmark for evaluating LLM ca-
pabilities in aviation safety compliance. This work
contributes a diverse dataset of 47,151 QA pairs
across seven question types with systematic dif-
ficulty classification, accompanied by extensive
evaluation across nine representative LLMs.

Our analysis reveals several striking phenom-
ena: a significant gap between classification per-
formance and terminology generation capability;
discrepancies between numerical answers and rea-
soning processes in calculation tasks (Huang et al.,
2024); and counter-intuitive performance patterns
across difficulty levels. We also find that architec-
ture choice impacts performance beyond parameter
count (Zhou et al., 2024).

This benchmark establishes a framework for as-
sessing LLLM capabilities in environments where
precise understanding of technical terminology and
procedures is essential (Mou et al., 2024). The ob-
served surface-level mastery coupled with deeper
functional failures highlights the importance of



multi-dimensional evaluation approaches for spe-
cialized domains.

2 ATC-QA Benchmark

Our benchmark comprises 47,151 aviation safety
QA pairs derived from 43,264 qualified ASRS in-
cident reports. Each entry includes both question-
answer content and structured metadata as outlined
in Table 1.

Using Gemini 2.0 Flash (Google DeepMind,
2025), we transformed aviation incident narratives
into seven distinct question types through a multi-
stage process: report-to-QA conversion, question
type diversification, quality optimization, and stan-
dardization. Questions were categorized into four
difficulty levels ranging from basic recall (L.1) to
expert analysis (L4), with manual validation con-
firming classification quality.

Table 2 and Figure 1 show the distribution across
question types and difficulty levels. True/False
(30.6%) and Single Choice (22.2%) questions are
most common, with L3 difficulty questions (67.6%)
representing the majority of the benchmark.

3 Methodology

We developed a four-stage pipeline to create the
ATC-QA benchmark from aviation safety reports.
Figure 2 illustrates our data processing workflow,
starting with ASRS report filtering and culminating
in structured QA pairs.

3.1 Data Sources and Preprocessing

The Aviation Safety Reporting System (ASRS)
dataset contains 47,723 de-identified incident re-
ports submitted by aviation professionals. Each
report includes a narrative description, expert syn-
opsis, and structured metadata.

Our filtration process removed 4,459 reports
(9.34%) with formatting issues or incomplete meta-
data, yielding 43,264 qualified narratives for bench-
mark development.

3.2 Generation Framework

Our generation framework consists of four main
phases:

3.2.1 Phase 1: Report-to-QA Conversion

We used a prompt engineering approach to extract
aviation safety knowledge from incident narratives.
Gemini-2.0-Flash identified critical safety elements
including event causality, safety procedures, pre-
ventative measures, and learning points.

This process generated 50,718 initial QA pairs
with metadata classifying knowledge type and rele-
vance.

3.2.2 Phase 2: Question Diversification

We transformed basic QA pairs into seven distinct
question formats to evaluate different aspects of
model capabilities. This involved analyzing seman-
tic structure based on information density, technical
terminology, numerical content, and scenario com-
plexity.

For classification tasks, we implemented contex-
tual negation strategies. Choice-based questions
used semantic similarity algorithms to generate
plausible distractors. Fill-in-the-blank questions
targeted terminology recall by strategically remov-
ing domain terms. Calculation questions extracted
numerical values and organized the calculation pro-
cess. Comprehensive and analytical questions in-
corporated multi-step reasoning requirements.

3.2.3 Phase 3: Quality Optimization

Our validation process addressed content valid-
ity and structural consistency through automated
checks and expert review. We enhanced question
clarity while preserving domain terminology, ap-
plied format-specific validation rules, verified an-
swer uniqueness, and ensured explanatory content
aligned with aviation standards. This approach is
similar to recent work in dataset cleansing using
LLM-based annotation methods (Choi et al., 2024),
but tailored specifically to aviation safety domain
requirements.

3.2.4 Phase 4: Standardization

The final phase established a standardized frame-
work for consistent model assessment. Each ques-
tion received a unique identifier and type specifica-
tion according to a defined taxonomy.

We implemented type-specific formatting solu-
tions to preserve semantic integrity while enabling
automated evaluation, with specialized handlers for
complex question types.

After removing 4,095 questions that failed to
meet final quality thresholds, the standardization
process yielded 47,151 fully specified QA pairs.

4 Experiments and Evaluation

We evaluated nine representative LLMs on ATC-
QA to assess their capabilities in aviation safety
domain. Our analysis uncovered several signifi-



Field Description

question ID Unique identifier for each question

type Question type (Single, Multi, Fill-in, T/F, Calc., Analysis, Comp.)
difficulty Difficulty level (L1, L2, L3, L4) from basic to expert

question Question content formatted according to type

answer Expected correct response to the question

analysis Explanation of the solution with detailed reasoning

knowledge points Technical concepts relevant to the question

Table 1: Dataset structure showing the fields included in each QA pair
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Figure 1: ATC-QA benchmark statistics showing: (a) percentage by difficulty level, (b) count per difficulty level, (c)
percentage by question type, and (d) count per question type across all 47,151 questions



Difficulty Level Distribution

Summary

Question Type L1 L2 L3 L4 Total Proportion
4.1%) (25.1%) (67.6%) (3.3%)
True/False 1,324 4,803 7,052 1,240 | 14,419 30.6%
Single Choice 9 1,773 8,684 16 | 10,484 22.2%
Multiple Choice 1 383 1,866 1| 2,252 4.8%
Fill-in-the-Blank 581 2,561 5,510 306 | 8,958 19.0%
Case Analysis 1 2,112 3,048 0| 5,161 10.9%
Calculation 0 29 2,888 0] 2,917 6.2%
Comprehension 0 153 2,806 1| 2,960 6.3%
Total 1,916 11,814 31,854 1,564 | 47,151 100%

Table 2: Distribution of questions by type and difficulty level
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Figure 2: Data processing pipeline for creating the ATC-QA benchmark

cant patterns with important implications for safety-
critical applications.

4.1 Experimental Setup

We selected nine models spanning different archi-
tectures and parameter scales:

Closed-source models: Grok-2, GPT-40-mini,
Gemini-1.5-Flash, and Gemini-2.0-Flash

Open-source models: Llama-3.1-8B, Llama-
3.2-1B, Llama-3.2-3B, DeepSeek-R1-Qwen-7B,
and DeepSeek-R1-Llama-8B

We tailored evaluation methods to each question
type while maintaining comparability. Classifica-
tion tasks used standard accuracy metrics, while
multiple-choice questions were evaluated through
precision, recall, and F1 scores to account for par-
tial correctness.

For fill-in-the-blank questions, we implemented
exact and partial matching protocols to account
for terminology variations. Calculation questions
received multi-dimensional assessment including
answer accuracy, numerical proximity (5% toler-
ance), and process correctness.

Complex reasoning tasks underwent human-in-
the-loop evaluation supplemented by LLM-based
judgment tools, using a 1-5 point scale measuring
reasoning quality and content coverage.

All evaluations used standardized zero-shot
prompting templates to assess fundamental model
capabilities. Performance metrics represent aver-
ages across 1,000 randomly sampled questions.



4.2 Performance Analysis

Figure 3 presents performance across question
types, revealing significant capability variations.

Classification Performance. Table 3 shows
strong performance on classification tasks, with
Gemini models and Grok-2 consistently leading.

Precision-recall trade-offs in multiple-choice
questions reveal varying model strategies: high-
precision models like Llama-3.1-8B (88% preci-
sion, 68% recall) adopt conservative approaches,
minimizing incorrect selections at the cost of miss-
ing some correct answers; high-recall models like
GPT-40-mini (74% precision, 94% recall) more
aggressively identify potential correct options but
include more errors; while Gemini models achieve
the most balanced performance (precision: 87%,
recall: 89%, F1: 85%).

Terminology Generation Bottleneck. Table 4
reveals a significant limitation in fill-in-the-blank
questions, where even top models achieve only 18-
20% exact match accuracy—a 75 percentage point
drop compared to their classification performance.
This "terminology generation bottleneck" per-
sists even with partial matching (only 2-4 percent-
age points improvement), suggesting a fundamen-
tal limitation in producing precise aviation termi-
nology. Notably, base architecture choice signifi-
cantly impacts performance, with DeepSeek mod-
els having similar parameter counts but different
foundations exhibiting a 3-4x performance gap on
this task. This finding has critical implications
for safety applications requiring precise technical
vocabulary generation and aligns with broader re-
search showing that LLMs struggle with consistent
conceptual reasoning (Sosa et al., 2024), partic-
ularly when required to produce precise domain-
specific terminology rather than recognize it.

Process-Result Gap in Calculations. Table 5 re-
veals a consistent gap between numerical accuracy
and methodological correctness. Models achieve
higher result accuracy (53-82%) than process cor-
rectness (8-55%), with gaps ranging from 20-45
percentage points.

This indicates that correct answers often emerge
from incorrect reasoning paths— a critical concern
for safety applications where procedural correct-
ness is essential (Huang et al., 2024). Proximity
scores further suggest that models may be lever-
aging pattern recognition rather than properly ex-
ecuting aviation calculation procedures, a finding

that parallels observations in biomedical reasoning
tasks where LLLMs can generate plausible outputs
without demonstrating sound methodological rea-
soning (Qi et al., 2024).

Complex Reasoning Capabilities. Table 6
shows substantial differences in complex reasoning
capabilities. Gemini models achieved the high-
est overall scores (4.28-4.42) and content coverage
(83-87%), while smaller models showed significant
limitations, particularly in comprehensive reason-
ing where content coverage dropped to 47-50% for
smaller Llama models.

4.3 Counter-Intuitive Difficulty Patterns

The relationship between question difficulty and
model performance reveals counter-intuitive pat-
terns that challenge common assumptions. As
demonstrated in Figure 4, while all models show
declining performance as difficulty increases (aver-
age drop of 15 percentage points from L1 to L4),
the magnitude of this effect varies significantly by
model type:

Monotonically increasing: Grok-2 shows
steady improvement (67%—71%—76%—78%) as
difficulty increases.

Peak-at-L.3: Gemini-2.0-Flash peaks at L3
(65%—T72%—83%—T5%).

Non-monotonic: Llama-3.2-1B shows erratic
patterns (52%—43%—47%—69%).

This counter-intuitive relationship reveals funda-
mental differences between human-perceived and
machine-perceived question complexity. Our anal-
ysis suggests three contributing factors to this phe-
nomenon. First, higher difficulty questions typi-
cally contain more detailed technical contexts and
specific operational scenarios, providing LLMs
with richer semantic networks for inference. Sec-
ond, difficult aviation questions often incorporate
specialized terminology with less lexical ambigu-
ity than general language, reducing the model’s
uncertainty during reasoning. Third, complex ques-
tions frequently require explicit multi-step reason-
ing, which appears to activate more structured rea-
soning pathways in transformer architectures com-
pared to seemingly simpler questions that may re-
quire implicit knowledge not directly stated in the
context.

This explanation aligns with recent cognitive
modeling research showing that transformer ar-
chitectures process information differently from
humans, with particular strength in structured pat-
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Figure 3: Performance comparison by question type showing strong classification performance (T/F: 67-95%) but
weak terminology generation (Fill-in: 3-20%) across nine LLMs

T/F Single Choice Multiple Choice
Model Acc.(%) | Acc.(%) | Precision Recall F1 Score
Grok-2 95 88 86 77 79
GPT-40-mini 95 81 74 94 81
Llama-3.1-8B 93 76 88 68 74
Llama-3.2-1B 67 46 66 61 60
Llama-3.2-3B 88 68 84 70 73
Gemini-1.5-Flash 94 89 87 89 85
Gemini-2.0-Flash 94 89 87 89 85
DeepSeek-R1-Qwen-7B 87 75 74 89 76
DeepSeek-R1-Llama-8B 85 78 63 86 69

Table 3: Classification performance showing three distinct model strategies: high-precision (Llama-3.1-8B), high-
recall (GPT-40-mini), and balanced (Gemini models)
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Figure 4: Performance across difficulty levels showing stronger results on L1 (92%+) and weaker performance on
L4 (74% max), with 15% average performance drop from L1 to L4

Match Rate (%)
Model Exact  Partial
Grok-2 18 22
GPT-40-mini 11 14
Llama-3.1-8B 6 7
Llama-3.2-1B 4 4
Llama-3.2-3B 6 6
Gemini-1.5-Flash 20 24
Gemini-2.0-Flash 19 23
DeepSeek-R1-Qwen-7B 11 12
DeepSeek-R1-Llama-8B 3 4

Table 4: Fill-in-the-blank performance showing univer-
sally low accuracy (max 20% exact match) and strong
architecture influence (DeepSeek-Qwen-7B outperform-
ing DeepSeek-Llama-8B by 3-4x)

tern recognition rather than abstract concept for-
mation (Sun et al., 2024). The stability difference
between large and small models (9 versus 26 per-
centage point variation across difficulty levels) fur-
ther suggests that increased parameter count en-
hances the model’s ability to maintain consistent

reasoning patterns across varying problem com-
plexities—a finding with significant implications
for safety-critical applications.

4.4 Model Typology Analysis

Building on our multi-dimensional evaluation
across both question types and difficulty levels,
we identify distinct behavioral patterns that char-
acterize different model architectures. This cross-
examination of performance metrics reveals three
clearly differentiated LLM profiles:

Recognition-dominant models (e.g., Llama-
3.1-8B) excel in classification (91-93% on T/F) but
exhibit fundamental limitations in generative tasks
(6% on fill-in) and procedural reasoning (15-22%
on calculations).

Reasoning-oriented models (e.g., DeepSeek-
R1-Qwen-7B) demonstrate superior process cor-
rectness (55%) while maintaining competitive clas-
sification performance.

Balanced performers (Gemini and Grok-2)
maintain consistent performance across dimen-
sions, with robust knowledge representation and
multi-faceted reasoning capabilities.

This typology synthesizes the observed patterns



Metrics (%)

Model Accuracy Proximity Process Correctness
Grok-2 82 89 45
GPT-40-mini 70 80 42
Llama-3.1-8B 54 83 22
Llama-3.2-1B 53 82 8
Llama-3.2-3B 62 81 15
Gemini-1.5-Flash 80 88 50
Gemini-2.0-Flash 79 88 51
DeepSeek-R1-Qwen-7B 75 88 55
DeepSeek-R1-Llama-8B 74 87 45

Table 5: Calculation performance showing models achieving higher result accuracy (53-82%) than process correct-
ness (8-55%), revealing correct answers often derived through incorrect reasoning

Analysis Comprehensive
Model Score (1-5) Coverage (%) Avg. ‘ Score (1-5) Coverage (%) Avg.
Grok-2 4.09 78 77 4.07 76 77
GPT-40-mini 4.11 79 78 3.96 78 74
Llama-3.1-8B 3.73 69 68 3.09 57 52
Llama-3.2-1B 2.68 46 42 2.73 50 43
Llama-3.2-3B 322 56 56 2.58 47 40
Gemini-1.5-Flash 4.28 83 82 4.35 85 84
Gemini-2.0-Flash 4.34 84 83 4.42 87 85
DeepSeek-R1-Qwen-7B 4.01 74 75 3.65 71 66
DeepSeek-R1-Llama-8B 3.84 69 71 3.64 68 66

Table 6: Complex reasoning performance showing larger models achieving superior performance while smaller

models struggle with complex reasoning

from previous sections and carries significant im-
plications for safety-critical deployments. The
stark performance differences between recognition
and generation tasks suggest that even advanced
LLMs develop disparate capabilities in informa-
tion processing. For aviation safety applications,
this indicates that model selection should be task-
specific rather than assuming universal capabil-
ity across all operational contexts—a recognition-
dominant model might be appropriate for classify-
ing incident reports, while safety-critical calcula-
tion tasks would require reasoning-oriented archi-
tectures with stronger procedural correctness.

5 Limitations

While ATC-QA advances aviation safety assess-
ment, several limitations merit acknowledgment.
The ASRS dataset introduces North American-
centric biases from its voluntary reporting mech-

anism, limiting global representativeness. Our
QA generation’s dependence on Gemini-2.0-Flash
may also propagate inherent biases into the bench-
mark, similar to challenges observed in other Al-
augmented benchmark generation approaches (Xia
et al., 2024).

Methodologically, the uneven distribution of
question types—with True/False questions (30.6%)
significantly overrepresented compared to Multi-
ple Choice (4.8%)—may skew performance met-
rics. The counter-intuitive relationship between
human-assigned difficulty levels and model perfor-
mance suggests fundamental differences in com-
plexity perception. Our heterogeneous evaluation
approaches across question types further introduces
methodological inconsistencies affecting compara-
bility, a challenge also noted in broader studies of
domain-specific LLM evaluation (Sun et al., 2024).

The domain-specificity creates inevitable trade-



offs between aviation safety performance and
broader generalizability, similar to findings in do-
main adaptation strategies for retrieval-augmented
generation (Zhang et al., 2024) and specialized
benchmarks in medical (Ouyang et al., 2024) and
tool learning scenarios (Ye et al., 2024). Labo-
ratory results may not translate to operational en-
vironments where additional contextual variables
influence model behavior. Future work should ex-
pand data sources beyond ASRS, implement multi-
model consensus approaches for question genera-
tion, develop unified evaluation frameworks, and
engage aviation practitioners for validation.
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