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Abstract001

We present ATC-QA, a novel benchmark for002
evaluating large language models (LLMs) in003
aviation safety applications. Derived from004
43,264 qualified Aviation Safety Reporting Sys-005
tem (ASRS) reports, our benchmark comprises006
47,151 question-answer pairs spanning seven007
question types and four difficulty levels. Exper-008
imental evaluation of nine representative LLMs009
reveals a striking dichotomy: apparent mastery010
of classification tasks (up to 95% accuracy)011
coupled with profound failures in critical ca-012
pabilities. We identify a pronounced "termi-013
nology generation bottleneck" where even top-014
performing models achieve only 20% accuracy015
on fill-in-the-blank questions—a 75 percent-016
age point drop from their classification perfor-017
mance. Our analysis further uncovers system-018
atic process-result discrepancies in calculation019
tasks, where models produce correct numeri-020
cal answers (53-82% accuracy) through funda-021
mentally flawed reasoning processes (8-55%022
correctness). Counter-intuitive performance023
patterns across difficulty levels, where models024
often perform better on more complex ques-025
tions, suggest fundamental differences between026
human and machine-perceived complexity. Ar-027
chitecture choice significantly impacts perfor-028
mance beyond parameter count, with similar-029
sized models showing up to 4× performance030
gaps on domain-specific tasks. ATC-QA pro-031
vides a framework for assessing LLM capa-032
bilities in safety-critical environments where033
domain expertise is essential, highlighting the034
need for specialized evaluation in high-stakes035
domains.036

1 Introduction037

Aviation safety directly impacts transportation se-038

curity and passenger well-being. While traditional039

approaches have advanced safety, they struggle to040

manage the increasing complexity of modern air041

traffic operations and regulations.042

Large language models (LLMs) show promise043

for transforming aviation safety management 044

through improved natural language understand- 045

ing. However, applying general-purpose LLMs to 046

specialized domains presents challenges, as main- 047

stream benchmarks like SQuAD (Rajpurkar et al., 048

2016), CEval (Huang et al., 2023), and MMLU 049

(Hendrycks et al., 2021) lack the industry-specific 050

context needed for meaningful aviation safety as- 051

sessment (Fischer et al., 2024; Li et al., 2024). 052

Recent work on specialized benchmarks, such 053

as GPQA (Rein et al., 2024), highlights the chal- 054

lenges of evaluating LLMs in technical domains. 055

The inconsistent reasoning of LLMs about domain 056

concepts (Sosa et al., 2024) raises concerns for avi- 057

ation applications where precision is vital. Similar 058

challenges have been observed in medical (Ouyang 059

et al., 2024) and tool learning domains (Ye et al., 060

2024), where domain-specific knowledge and pre- 061

cision are critical. 062

ATC-QA provides a comprehensive multi- 063

dimensional benchmark for evaluating LLM ca- 064

pabilities in aviation safety compliance. This work 065

contributes a diverse dataset of 47,151 QA pairs 066

across seven question types with systematic dif- 067

ficulty classification, accompanied by extensive 068

evaluation across nine representative LLMs. 069

Our analysis reveals several striking phenom- 070

ena: a significant gap between classification per- 071

formance and terminology generation capability; 072

discrepancies between numerical answers and rea- 073

soning processes in calculation tasks (Huang et al., 074

2024); and counter-intuitive performance patterns 075

across difficulty levels. We also find that architec- 076

ture choice impacts performance beyond parameter 077

count (Zhou et al., 2024). 078

This benchmark establishes a framework for as- 079

sessing LLM capabilities in environments where 080

precise understanding of technical terminology and 081

procedures is essential (Mou et al., 2024). The ob- 082

served surface-level mastery coupled with deeper 083

functional failures highlights the importance of 084
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multi-dimensional evaluation approaches for spe-085

cialized domains.086

2 ATC-QA Benchmark087

Our benchmark comprises 47,151 aviation safety088

QA pairs derived from 43,264 qualified ASRS in-089

cident reports. Each entry includes both question-090

answer content and structured metadata as outlined091

in Table 1.092

Using Gemini 2.0 Flash (Google DeepMind,093

2025), we transformed aviation incident narratives094

into seven distinct question types through a multi-095

stage process: report-to-QA conversion, question096

type diversification, quality optimization, and stan-097

dardization. Questions were categorized into four098

difficulty levels ranging from basic recall (L1) to099

expert analysis (L4), with manual validation con-100

firming classification quality.101

Table 2 and Figure 1 show the distribution across102

question types and difficulty levels. True/False103

(30.6%) and Single Choice (22.2%) questions are104

most common, with L3 difficulty questions (67.6%)105

representing the majority of the benchmark.106

3 Methodology107

We developed a four-stage pipeline to create the108

ATC-QA benchmark from aviation safety reports.109

Figure 2 illustrates our data processing workflow,110

starting with ASRS report filtering and culminating111

in structured QA pairs.112

3.1 Data Sources and Preprocessing113

The Aviation Safety Reporting System (ASRS)114

dataset contains 47,723 de-identified incident re-115

ports submitted by aviation professionals. Each116

report includes a narrative description, expert syn-117

opsis, and structured metadata.118

Our filtration process removed 4,459 reports119

(9.34%) with formatting issues or incomplete meta-120

data, yielding 43,264 qualified narratives for bench-121

mark development.122

3.2 Generation Framework123

Our generation framework consists of four main124

phases:125

3.2.1 Phase 1: Report-to-QA Conversion126

We used a prompt engineering approach to extract127

aviation safety knowledge from incident narratives.128

Gemini-2.0-Flash identified critical safety elements129

including event causality, safety procedures, pre-130

ventative measures, and learning points.131

This process generated 50,718 initial QA pairs 132

with metadata classifying knowledge type and rele- 133

vance. 134

3.2.2 Phase 2: Question Diversification 135

We transformed basic QA pairs into seven distinct 136

question formats to evaluate different aspects of 137

model capabilities. This involved analyzing seman- 138

tic structure based on information density, technical 139

terminology, numerical content, and scenario com- 140

plexity. 141

For classification tasks, we implemented contex- 142

tual negation strategies. Choice-based questions 143

used semantic similarity algorithms to generate 144

plausible distractors. Fill-in-the-blank questions 145

targeted terminology recall by strategically remov- 146

ing domain terms. Calculation questions extracted 147

numerical values and organized the calculation pro- 148

cess. Comprehensive and analytical questions in- 149

corporated multi-step reasoning requirements. 150

3.2.3 Phase 3: Quality Optimization 151

Our validation process addressed content valid- 152

ity and structural consistency through automated 153

checks and expert review. We enhanced question 154

clarity while preserving domain terminology, ap- 155

plied format-specific validation rules, verified an- 156

swer uniqueness, and ensured explanatory content 157

aligned with aviation standards. This approach is 158

similar to recent work in dataset cleansing using 159

LLM-based annotation methods (Choi et al., 2024), 160

but tailored specifically to aviation safety domain 161

requirements. 162

3.2.4 Phase 4: Standardization 163

The final phase established a standardized frame- 164

work for consistent model assessment. Each ques- 165

tion received a unique identifier and type specifica- 166

tion according to a defined taxonomy. 167

We implemented type-specific formatting solu- 168

tions to preserve semantic integrity while enabling 169

automated evaluation, with specialized handlers for 170

complex question types. 171

After removing 4,095 questions that failed to 172

meet final quality thresholds, the standardization 173

process yielded 47,151 fully specified QA pairs. 174

4 Experiments and Evaluation 175

We evaluated nine representative LLMs on ATC- 176

QA to assess their capabilities in aviation safety 177

domain. Our analysis uncovered several signifi- 178
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Field Description

question ID Unique identifier for each question
type Question type (Single, Multi, Fill-in, T/F, Calc., Analysis, Comp.)
difficulty Difficulty level (L1, L2, L3, L4) from basic to expert
question Question content formatted according to type
answer Expected correct response to the question
analysis Explanation of the solution with detailed reasoning
knowledge points Technical concepts relevant to the question

Table 1: Dataset structure showing the fields included in each QA pair
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Figure 1: ATC-QA benchmark statistics showing: (a) percentage by difficulty level, (b) count per difficulty level, (c)
percentage by question type, and (d) count per question type across all 47,151 questions
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Difficulty Level Distribution Summary

Question Type L1 L2 L3 L4 Total Proportion
(4.1%) (25.1%) (67.6%) (3.3%)

True/False 1,324 4,803 7,052 1,240 14,419 30.6%
Single Choice 9 1,773 8,684 16 10,484 22.2%
Multiple Choice 1 383 1,866 1 2,252 4.8%
Fill-in-the-Blank 581 2,561 5,510 306 8,958 19.0%
Case Analysis 1 2,112 3,048 0 5,161 10.9%
Calculation 0 29 2,888 0 2,917 6.2%
Comprehension 0 153 2,806 1 2,960 6.3%

Total 1,916 11,814 31,854 1,564 47,151 100%

Table 2: Distribution of questions by type and difficulty level

Data Source
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1.Single-Type QA Pairs Generation
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• QA pairs generate
50k+
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• Difficulty Level 1-4

• 7 different types

• Json structure format 55k+
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3.Quluty Optimization

51k+
Questions

47k+ JSONL
Structured

QA Benchmark

4.Final Benchmark

• Content Refinement

• Structural Validation

• Answer Verification

• Knowledge Alignment

• Structural

• Domain

• Privacy

Figure 2: Data processing pipeline for creating the ATC-QA benchmark

cant patterns with important implications for safety-179

critical applications.180

4.1 Experimental Setup181

We selected nine models spanning different archi-182

tectures and parameter scales:183

Closed-source models: Grok-2, GPT-4o-mini,184

Gemini-1.5-Flash, and Gemini-2.0-Flash185

Open-source models: Llama-3.1-8B, Llama-186

3.2-1B, Llama-3.2-3B, DeepSeek-R1-Qwen-7B,187

and DeepSeek-R1-Llama-8B188

We tailored evaluation methods to each question189

type while maintaining comparability. Classifica-190

tion tasks used standard accuracy metrics, while191

multiple-choice questions were evaluated through192

precision, recall, and F1 scores to account for par-193

tial correctness.194

For fill-in-the-blank questions, we implemented 195

exact and partial matching protocols to account 196

for terminology variations. Calculation questions 197

received multi-dimensional assessment including 198

answer accuracy, numerical proximity (±5% toler- 199

ance), and process correctness. 200

Complex reasoning tasks underwent human-in- 201

the-loop evaluation supplemented by LLM-based 202

judgment tools, using a 1-5 point scale measuring 203

reasoning quality and content coverage. 204

All evaluations used standardized zero-shot 205

prompting templates to assess fundamental model 206

capabilities. Performance metrics represent aver- 207

ages across 1,000 randomly sampled questions. 208
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4.2 Performance Analysis209

Figure 3 presents performance across question210

types, revealing significant capability variations.211

Classification Performance. Table 3 shows212

strong performance on classification tasks, with213

Gemini models and Grok-2 consistently leading.214

Precision-recall trade-offs in multiple-choice215

questions reveal varying model strategies: high-216

precision models like Llama-3.1-8B (88% preci-217

sion, 68% recall) adopt conservative approaches,218

minimizing incorrect selections at the cost of miss-219

ing some correct answers; high-recall models like220

GPT-4o-mini (74% precision, 94% recall) more221

aggressively identify potential correct options but222

include more errors; while Gemini models achieve223

the most balanced performance (precision: 87%,224

recall: 89%, F1: 85%).225

Terminology Generation Bottleneck. Table 4226

reveals a significant limitation in fill-in-the-blank227

questions, where even top models achieve only 18-228

20% exact match accuracy—a 75 percentage point229

drop compared to their classification performance.230

This "terminology generation bottleneck" per-231

sists even with partial matching (only 2-4 percent-232

age points improvement), suggesting a fundamen-233

tal limitation in producing precise aviation termi-234

nology. Notably, base architecture choice signifi-235

cantly impacts performance, with DeepSeek mod-236

els having similar parameter counts but different237

foundations exhibiting a 3-4× performance gap on238

this task. This finding has critical implications239

for safety applications requiring precise technical240

vocabulary generation and aligns with broader re-241

search showing that LLMs struggle with consistent242

conceptual reasoning (Sosa et al., 2024), partic-243

ularly when required to produce precise domain-244

specific terminology rather than recognize it.245

Process-Result Gap in Calculations. Table 5 re-246

veals a consistent gap between numerical accuracy247

and methodological correctness. Models achieve248

higher result accuracy (53-82%) than process cor-249

rectness (8-55%), with gaps ranging from 20-45250

percentage points.251

This indicates that correct answers often emerge252

from incorrect reasoning paths— a critical concern253

for safety applications where procedural correct-254

ness is essential (Huang et al., 2024). Proximity255

scores further suggest that models may be lever-256

aging pattern recognition rather than properly ex-257

ecuting aviation calculation procedures, a finding258

that parallels observations in biomedical reasoning 259

tasks where LLMs can generate plausible outputs 260

without demonstrating sound methodological rea- 261

soning (Qi et al., 2024). 262

Complex Reasoning Capabilities. Table 6 263

shows substantial differences in complex reasoning 264

capabilities. Gemini models achieved the high- 265

est overall scores (4.28-4.42) and content coverage 266

(83-87%), while smaller models showed significant 267

limitations, particularly in comprehensive reason- 268

ing where content coverage dropped to 47-50% for 269

smaller Llama models. 270

4.3 Counter-Intuitive Difficulty Patterns 271

The relationship between question difficulty and 272

model performance reveals counter-intuitive pat- 273

terns that challenge common assumptions. As 274

demonstrated in Figure 4, while all models show 275

declining performance as difficulty increases (aver- 276

age drop of 15 percentage points from L1 to L4), 277

the magnitude of this effect varies significantly by 278

model type: 279

Monotonically increasing: Grok-2 shows 280

steady improvement (67%→71%→76%→78%) as 281

difficulty increases. 282

Peak-at-L3: Gemini-2.0-Flash peaks at L3 283

(65%→72%→83%→75%). 284

Non-monotonic: Llama-3.2-1B shows erratic 285

patterns (52%→43%→47%→69%). 286

This counter-intuitive relationship reveals funda- 287

mental differences between human-perceived and 288

machine-perceived question complexity. Our anal- 289

ysis suggests three contributing factors to this phe- 290

nomenon. First, higher difficulty questions typi- 291

cally contain more detailed technical contexts and 292

specific operational scenarios, providing LLMs 293

with richer semantic networks for inference. Sec- 294

ond, difficult aviation questions often incorporate 295

specialized terminology with less lexical ambigu- 296

ity than general language, reducing the model’s 297

uncertainty during reasoning. Third, complex ques- 298

tions frequently require explicit multi-step reason- 299

ing, which appears to activate more structured rea- 300

soning pathways in transformer architectures com- 301

pared to seemingly simpler questions that may re- 302

quire implicit knowledge not directly stated in the 303

context. 304

This explanation aligns with recent cognitive 305

modeling research showing that transformer ar- 306

chitectures process information differently from 307

humans, with particular strength in structured pat- 308
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Figure 3: Performance comparison by question type showing strong classification performance (T/F: 67-95%) but
weak terminology generation (Fill-in: 3-20%) across nine LLMs

T/F Single Choice Multiple Choice

Model Acc.(%) Acc.(%) Precision Recall F1 Score

Grok-2 95 88 86 77 79
GPT-4o-mini 95 81 74 94 81
Llama-3.1-8B 93 76 88 68 74
Llama-3.2-1B 67 46 66 61 60
Llama-3.2-3B 88 68 84 70 73
Gemini-1.5-Flash 94 89 87 89 85
Gemini-2.0-Flash 94 89 87 89 85
DeepSeek-R1-Qwen-7B 87 75 74 89 76
DeepSeek-R1-Llama-8B 85 78 63 86 69

Table 3: Classification performance showing three distinct model strategies: high-precision (Llama-3.1-8B), high-
recall (GPT-4o-mini), and balanced (Gemini models)
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Figure 4: Performance across difficulty levels showing stronger results on L1 (92%+) and weaker performance on
L4 (74% max), with 15% average performance drop from L1 to L4

Match Rate (%)

Model Exact Partial

Grok-2 18 22
GPT-4o-mini 11 14
Llama-3.1-8B 6 7
Llama-3.2-1B 4 4
Llama-3.2-3B 6 6
Gemini-1.5-Flash 20 24
Gemini-2.0-Flash 19 23
DeepSeek-R1-Qwen-7B 11 12
DeepSeek-R1-Llama-8B 3 4

Table 4: Fill-in-the-blank performance showing univer-
sally low accuracy (max 20% exact match) and strong
architecture influence (DeepSeek-Qwen-7B outperform-
ing DeepSeek-Llama-8B by 3-4×)

tern recognition rather than abstract concept for-309

mation (Sun et al., 2024). The stability difference310

between large and small models (9 versus 26 per-311

centage point variation across difficulty levels) fur-312

ther suggests that increased parameter count en-313

hances the model’s ability to maintain consistent314

reasoning patterns across varying problem com- 315

plexities—a finding with significant implications 316

for safety-critical applications. 317

4.4 Model Typology Analysis 318

Building on our multi-dimensional evaluation 319

across both question types and difficulty levels, 320

we identify distinct behavioral patterns that char- 321

acterize different model architectures. This cross- 322

examination of performance metrics reveals three 323

clearly differentiated LLM profiles: 324

Recognition-dominant models (e.g., Llama- 325

3.1-8B) excel in classification (91-93% on T/F) but 326

exhibit fundamental limitations in generative tasks 327

(6% on fill-in) and procedural reasoning (15-22% 328

on calculations). 329

Reasoning-oriented models (e.g., DeepSeek- 330

R1-Qwen-7B) demonstrate superior process cor- 331

rectness (55%) while maintaining competitive clas- 332

sification performance. 333

Balanced performers (Gemini and Grok-2) 334

maintain consistent performance across dimen- 335

sions, with robust knowledge representation and 336

multi-faceted reasoning capabilities. 337

This typology synthesizes the observed patterns 338
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Metrics (%)

Model Accuracy Proximity Process Correctness

Grok-2 82 89 45
GPT-4o-mini 70 80 42
Llama-3.1-8B 54 83 22
Llama-3.2-1B 53 82 8
Llama-3.2-3B 62 81 15
Gemini-1.5-Flash 80 88 50
Gemini-2.0-Flash 79 88 51
DeepSeek-R1-Qwen-7B 75 88 55
DeepSeek-R1-Llama-8B 74 87 45

Table 5: Calculation performance showing models achieving higher result accuracy (53-82%) than process correct-
ness (8-55%), revealing correct answers often derived through incorrect reasoning

Analysis Comprehensive

Model Score (1-5) Coverage (%) Avg. Score (1-5) Coverage (%) Avg.

Grok-2 4.09 78 77 4.07 76 77
GPT-4o-mini 4.11 79 78 3.96 78 74
Llama-3.1-8B 3.73 69 68 3.09 57 52
Llama-3.2-1B 2.68 46 42 2.73 50 43
Llama-3.2-3B 3.22 56 56 2.58 47 40
Gemini-1.5-Flash 4.28 83 82 4.35 85 84
Gemini-2.0-Flash 4.34 84 83 4.42 87 85
DeepSeek-R1-Qwen-7B 4.01 74 75 3.65 71 66
DeepSeek-R1-Llama-8B 3.84 69 71 3.64 68 66

Table 6: Complex reasoning performance showing larger models achieving superior performance while smaller
models struggle with complex reasoning

from previous sections and carries significant im-339

plications for safety-critical deployments. The340

stark performance differences between recognition341

and generation tasks suggest that even advanced342

LLMs develop disparate capabilities in informa-343

tion processing. For aviation safety applications,344

this indicates that model selection should be task-345

specific rather than assuming universal capabil-346

ity across all operational contexts—a recognition-347

dominant model might be appropriate for classify-348

ing incident reports, while safety-critical calcula-349

tion tasks would require reasoning-oriented archi-350

tectures with stronger procedural correctness.351

5 Limitations352

While ATC-QA advances aviation safety assess-353

ment, several limitations merit acknowledgment.354

The ASRS dataset introduces North American-355

centric biases from its voluntary reporting mech-356

anism, limiting global representativeness. Our 357

QA generation’s dependence on Gemini-2.0-Flash 358

may also propagate inherent biases into the bench- 359

mark, similar to challenges observed in other AI- 360

augmented benchmark generation approaches (Xia 361

et al., 2024). 362

Methodologically, the uneven distribution of 363

question types—with True/False questions (30.6%) 364

significantly overrepresented compared to Multi- 365

ple Choice (4.8%)—may skew performance met- 366

rics. The counter-intuitive relationship between 367

human-assigned difficulty levels and model perfor- 368

mance suggests fundamental differences in com- 369

plexity perception. Our heterogeneous evaluation 370

approaches across question types further introduces 371

methodological inconsistencies affecting compara- 372

bility, a challenge also noted in broader studies of 373

domain-specific LLM evaluation (Sun et al., 2024). 374

The domain-specificity creates inevitable trade- 375
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offs between aviation safety performance and376

broader generalizability, similar to findings in do-377

main adaptation strategies for retrieval-augmented378

generation (Zhang et al., 2024) and specialized379

benchmarks in medical (Ouyang et al., 2024) and380

tool learning scenarios (Ye et al., 2024). Labo-381

ratory results may not translate to operational en-382

vironments where additional contextual variables383

influence model behavior. Future work should ex-384

pand data sources beyond ASRS, implement multi-385

model consensus approaches for question genera-386

tion, develop unified evaluation frameworks, and387

engage aviation practitioners for validation.388
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