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ABSTRACT

Learning 3D representations of point clouds that generalize well to arbitrary orien-
tations is a challenge of practical importance in problems ranging from computer
vision to molecular modeling. The proposed approach is based on a concentric
spherical representation of 3D space, formed by nesting spatially-sampled spheres
resulting from the highly regular icosahedral discretization. We propose separate
intra-sphere and inter-sphere convolutions over the resulting concentric spherical
grid, which are combined into a convolutional framework for learning volumetric
and rotationally equivariant representations over point clouds. We demonstrate the
effectiveness of our approach for 3D object classification, and towards resolving
the electronic structure of atomistic systems.

1 INTRODUCTION

3D point cloud data appear in domains ranging from computer vision, geographic information
systems, and molecular modeling. Learning suitable representations of point clouds for data-driven
modeling is well-motivated by applications like automonous vehicles and molecular simulation. It is
important and yet challenging to learn representations that generalize well to arbitrary orientations
of point clouds, in an efficient and accurate manner. Spherical Convolutional Neural Networks
(CNNs) were introduced in Cohen et al. (2018) and Esteves et al. (2018) to address the challenge of
rotations for spherical images, by defining rotationally equivariant convolutions in harmonic-space.
Convolutions equivariant to transformations (such as translation) underpins recognizable aspects of
2D CNNs such as effective filter sharing and feature localization, a key reason for their success Cohen
& Welling (2016). However, Spherical CNNs operate over data projected onto the spherical manifold,
which is lossy for general 3D point cloud data. It is desirable to learn features volumetrically, in
order to accurately detect patterns in complex 3D shapes, or incorporate spatial relationships between
atoms in describing atomic environments. We show that it is more expressive and general to operate
over an underlying spatial representation of concentric spheres, demonstrated experimentally.

We propose a new spatial structure consisting of multiple nested spheres, each discretized by the
icosahedral grid. This structure is used to record both the angular and radial distribution of input
points, as volumetric information. The icosahedral grid produces a highly regular sampling of the
sphere, which permits efficient convolutions scaling linearly with spherical resolution, explored
in Jiang et al. (2019), Cohen et al. (2019), and Defferrard et al. (2020). We then propose two
types of convolution for learning over the concentric spherical structure, by separately learning
intra-sphere and inter-sphere features. We formulate intra-sphere convolution in terms of graph-
based convolution over localized intra-sphere neighborhoods, and inter-sphere convolution as 1D
convolution over co-radial grid points. The resulting convolutions are both rotationally equivariant
and scalable, each scaling (near) linearly with respect to the size of the grid. Finally, we incorporate
the proposed convolutions into a hierarchical and multi-resolution architecture, CSGNN, for learning
over concentric spherical feature maps, and demonstrate its applicability to point cloud data.

We first apply our approach to the problem of classifying rotated 3D objects sampled by point clouds,
achieving state-of-the-art performance on the task. We further apply our approach to a problem of
molecular modeling, namely predicting the electronic density of states of materials. The density of
states is a fundamental property of electronic structure, used in determining total energy contributions.
Our approach is applied to learn localized descriptions of atomic environments, enabling more

1



Under review as a conference paper at ICLR 2022

accurate resolution of the band energy of carbon-based materials compared to previous approaches.
The implementation of our methods and experiments are publicly available 1.

In summary, our primary contributions are as follows:

1. We propose a new volumetric representation as the basis for convolutional learning. This
representation consists of multiple nested spheres, each discretized by the icosahedral grid.

2. We introduce a novel architecture for learning volumetric representation over concentric
spheres by combining intra-sphere and inter-sphere convolutions. The proposed convolutions
are rotationally equivariant, and also scale (near) linearly with grid resolution.

3. We demonstrate the applicability of our approach through experiments in 3D object classifi-
cation, and resolving electronic structure of atomistic systems.

2 BACKGROUND AND RELATED WORK

The goal of learning representations of general 3D point cloud data has led to a diverse body of work
for structured learning (Maturana & Scherer, 2015; Qi et al., 2017a;b; Wang et al., 2019; Thomas
et al., 2019; Zhang et al., 2019b). However, the main problem shared by these methods is that they do
not generalize well to general rotations of the data, which can lead to catastrophic loss of performance
when they are encountered. Augmenting training with rotated data helps bridge the gap somewhat,
but a significant performance gap remains. The key missing piece in many earlier work is their lack
of rotationally equivariant model design. A model layer is equivariant to rotation if it commutes
with rotation. In other words, feeding a rotated input to the model layer is same as feeding the
original input to the layer and rotating its output. A rotationally invariant layer is a special case of an
equivariant layer where rotation does not affect the output space of the layer. Several models have
been proposed which exclusively use rotationally invariant layers (Schütt et al., 2017; Gilmer et al.,
2017; Schütt et al., 2017; Chen et al., 2019; Zhang et al., 2019a; Poulenard et al., 2019; Kim et al.,
2020). However, using invariant layers through the entirety of model is unnecessarily restrictive, as
important information about the underlying spatial structure of the data may be lost. Our work focuses
on designing rotationally equivariant layers as primary building blocks, while invariant layer(s) can
be used before final output to achieve overall invariance of the model. This design has already seen
extension to other structures and learning strategies relevant to point cloud representation. Thomas
et al. (2018) proposed rotation equivariant point-wise convolutions for 3D graphs, but their approach
has difficulty scaling to point clouds beyond the scale of small molecules. Equivariant design has also
seen extension to spherical images through Spherical CNNs (Cohen et al., 2018; Esteves et al., 2018;
Jiang et al., 2019; Cohen et al., 2019; Rao et al., 2019; Defferrard et al., 2020; Yang et al., 2020).
However, they are not well-suited for direct application to point clouds. Their key limitation is loss
of information in constraining spatial representation from 3D domain to a 2D (spherical) manifold.
Our work overcomes this limitation by proposing convolutional learning over concentric spheres,
achieving rotationally equivariant 3D feature learning with scalable convolutions.

3 ARCHITECTURE DESIGN

The primary goal of our proposed approach is to learn volumetric representations of 3D point clouds
in a rotationally equivariant and also scalable manner. To achieve this goal, we propose concentric
spheres at different radii, each discretized by the icosahedral grid. The proposed construction naturally
organizes 3D data by angular and radial distribution, where the resolution of each component can be
controlled independently. We use the icosahedral grid as it results in a highly regular sampling of the
sphere. The former permits efficient use of spatial resolution, and the later results in design of efficient
and rotationally-equivariant convolutions. We propose using two separate convolutions together
to learn volumetric features over concentric spheres: (1) graph-based convolution to incorporate
information within spheres, and (2) radial convolutions to separately incorporate information between
spheres. The proposed convolutions are extended to different spatial scales via pooling based
on regular properties of the icosahedral grid, resulting in the proposed hierarchical convolutional
architecture of Fig. 1. We explain each component of our model in more detail in subsequent sections,
and pooling in A.5 of Appendix.

1https://github.com/anonymous10521/CSGNN
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Figure 1: Example architecture with three concentric spheres. Graph convolutions are followed by
radial convolutions, at each level of spherical resolution. Radial convolution (in this example) has
spatial window of three co-radial vertices, with padding applied to maintain radial dimensions across
convolutions. Each arrow indicates vertex neighborhood pooling and downsampling, after which
convolutions proceed with new filters at coarser spatial resolution. Global pooling is applied to obtain
final feature representation.

Figure 2: Illustrative example of converting point cloud to input features. (a) shows an example point
cloud (black points) contained within a bounding sphere. (b) The spherical volume is partitioned into
6 concentric spheres, co-radially. (c) Each point has a contribution to vertices in a local neighborhood
(gray circles), resulting in (d) single channel feature per vertex (gray square). (e) Co-radial vertices
are further grouped, resulting in smaller subset of concentric spheres with multi-channel inputs. In
this example, grouping results in 3 concentric spheres where vertices have 2 input channels each.

3.1 CONCENTRIC SPHERICAL DISCRETIZATION AND POINT CLOUD MAPPING

In this section we explain in detail our method of volumetric discretization by concentric spheres. We
further present our approach to converting arbitrary point cloud data to initial feature channels over
this spatial structure.

Concentric Icosahedral Spheres. The initial icosahedron has 12 vertices forming 20 equilateral
triangular faces. To increase grid resolution, each face can be sub-divided, with resolution scaling
as |V | = 10 ∗ 4l + 2 (l is target discretization level). See Fig. 3a for an illustration of this process.
We implement concentric spheres by stacking R identical icosahedral grids to form the radial
dimension, shown in Fig. 3b. Assuming normalization to unit radius, we uniformly assign concentric
spheres at radii [ 1R ,

2
R , ..., 1]. Assuming single-channel feature map, the resulting grid is the matrix

H ∈ RR×|V |, where each vertex is indexed by the sphere it belongs to, and its position on the sphere.
The resulting volumetric representation has several noteworthy properties. First, the icosahedral
discretization results in a highly regular spatial sampling within each sphere. This allows more
efficient use of spatial resolution compared to polar grids used in earlier works (Cohen et al., 2018;
Esteves et al., 2018; You et al., 2020), which have have resolution bias towards the polar regions.
Second, spatial resolution is not uniform across different spheres, as the proposed construction results
in higher sampling density closer to the center. However, this non-uniformity difference is largely
accounted for as a function of the radius of the sphere, and does not inhibit the design of efficient and
rotationally equivariant convolutions.
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(a) (b)

Figure 3: (a) The icosahedral grid is formed by vertices of equilateral triangles (left), which can be
recursively sub-divided to form a higher resolution grid (middle). This also defines a natural vertex
neighborhood and hierarchy for pooling and downsampling, where yellow highlighted vertices (right)
are involved in pooling. (b) Two spherical grids are stacked, corresponding to consecutive concentric
spheres. Graph convolution involves vertices within the same sphere (convolution neighborhood
highlighted orange). Conversely, radial convolution involves co-radial vertices between the two
spheres (green dotted line).

Point Cloud to Concentric Spheres. We now consider the problem of describing a point cloud
P ∈ RN×3 in terms of concentric spherical feature map H ∈ RR×|V |×C , where C is number of
channels. While the concentric grid representation is defined discretely, the space point positions are
continuous, which we would like to capture. To do so, we summarize the contribution of points using
the Gaussian radial basis function (RBF):

f(x) =

N∑
j=1

φ(||x− Pj ||22) (1)

N is the number of data points, and the function φ = exp(−γr2) is parameterized by the bandwidth
γ. In practice we limit computation to a local neighborhood (instead of considering all points) and
choose γ accordingly. We refer to Fig. 2 for illustrative example of the conversion, and Sec. A.6 for
implementation details as applied in experiments.

We determine the input channels C by grouping concentric spheres and concatenating features of
co-radial vertices, also shown in Fig. 2. Suppose converting the point cloud results in a single-
channel feature tensor H′ ∈ RR′×|V |, where R′ is the initial number of spheres. Grouping the
features from co-radial vertices across R groups results in feature tensor H ∈ RR×|V |×R′

R , where
R is the number of spheres represented spatially, and R′

R is the number of spheres represented via
input channels. The proposed grouping mechanism gives flexibility to significantly increase radial
resolution without correspondingly increasing the size of the spatial grid, which persists across
convolutions. This enables balancing between computational efficiency and the representational
boost of having additional spheres.

3.2 CONCENTRIC SPHERICAL CONVOLUTIONS

In this section we present our implementation of rotationally equivariant intra-sphere and inter-sphere
convolutions for learning volumetric features. Proof of equivariance is provided in Sec. A.1.

Intra-sphere convolutions. The objective for intra-sphere convolutions is to learn localized features
within each sphere, in a rotationally equivariant fashion. We use graph convolutional filters for
this objective, as localized graph convolutions on icosahedral grids are rotationally equivariant with
respect to the icosahedral rotation group. This motivates our construction of the undirected graph
G(l) = (V (l), E(l)) from level l icosahedron I(l). Vertices of the vertex set V (l) correspond one-
to-one with vertices of I(l), projected to unit sphere, and E(l) is the set of edges corresponding
to face edges of the icosahedron. We refer to Fig. 3b for an example of graph connectivity over
each sphere. The resulting graph is highly regular, as all vertices are degree six beyond I(0). All
edges within each sphere are also approximately equidistant (Wang & Lee, 2011). We use the graph
convolutional operator from Kipf & Welling (2017), but omit the degree-based normalization due to
the regularity of our graph construction. We introduce additional notation to define graph convolution
in the context of the proposed discretization. Let H ∈ RR×|V |×C denote a C channel tensor of
features, and Z ∈ RC×F be learnable weights, where C and F are input and output channel sizes.
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We use to N(u) denote neighbors of vertex u in graph G. We also introduce subscript t to indicate
convolutional layer number, i ∈ [0, R − 1] to index the radial dimension, and u ∈ [0, |V | − 1] to
index the vertices. The layer t+ 1 intra-sphere convolution output for vertex u of sphere i is then
given by Eq. 2, where σ is a nonlinear activation function:

H(t+1)
i,u = σ(

∑
v∈N(u)

H(t)
i,vZ

(t)) (2)

Inter-sphere convolutions. We introduce radial convolutions to learn features between spheres. To
do so, we propose applying 1D convolution over co-radial vertices. In treating co-radial vertices as a
sequence, 1D convolution is intended to learn localized features across spheres while distinguishing
their relative positions. Importantly, the proposed convolution is rotationally equivariant, as co-radial
vertices transform identically under rotation. We refer to Fig. 3b for illustration. We introduce some
additional notation to describe radial convolutions: let K be the size of the 1D convolution kernel
window. We pad inputs in the radial dimension such that the number of spheres R is maintained
spatially across convolutions. Let W ∈ RK×C×F be a tensor of shared parameters, where C and F
are input and output channel sizes. The layer t+ 1 radial convolution output for vertex u of sphere i
is:

H(t+1)
i,u = σ(

bK2 c∑
k=−bK2 c

H(t)
i+k,uW(t)

k+bK2 c
) (3)

3.3 COMPLEXITY ANALYSIS

The neighborhood size of both graph and radial convolutions are constant, and so are their filter
parameters due to weight sharing. Therefore the overall complexity of both the graph convolution and
radial convolution isO(R×|V |), or linear with respect to the total discretization size. This introduces
an additional factorR of computational and memory cost compared to theO(|V |) complexity of some
spherical CNNs, corresponding to stacking multiple spherical discretizations. However, as we show
in later experiments, the number of spheres can be small in practice while providing considerable
performance benefit. We further provide empirical runtime analysis with respect to R in Sec. A.4 of
Appendix.

4 EXPERIMENTS

We demonstrate the effectiveness of our approach for 3D object classification in Sec. 4.1, and applied
to resolving fundamental properties of electronic structure in materials in Sec. 4.2. We further study
the main components to the performance of our proposed approach in Sec. 4.3.

4.1 POINT CLOUD CLASSIFICATION

We consider the ModelNet40 3D shape classification task, with 12308 shapes and 40 classes. We use
the pre-processed point clouds from Qi et al. (2017a), and 1024 points per point cloud. In total, 9840
shapes are used for training and 2468 for testing.

Architecture and Hyperparameters. See Fig. 4 for overview of model layers and components.
Batch normalization and ReLU activation is applied after each convolution and hidden layer. A
residual connection is also added between each graph convolution layer when the number of input and
output channels match. The point cloud is converted to initial concentric spherical features following
procedure detailed in A.6. We follow prior work in augmenting training with random translation,
re-scaling, and positional jitter of input point clouds. We trained separate models when training with
z-aligned vs. SO3 rotations, and refer to Sec. A.2 for hyperparameter and additional experiment
details.

Results. For experimental evaluation, we consider two types of rotations in training and/or testing,
following convention from earlier work: z-axis aligned rotations and arbitrary rotations (SO3).
The SO3 case is most challenging, as it indicates objects can be in any rotational orientation. We
compare with related work organized into three categories, based on their strategy for handling
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Figure 4: Architecture for ModelNet40 classification. Number of output channels are shown for
each layer, where applicable. L = 4 is initial level of discretization of icosahedral spheres. Radial
convolution uses kernel size of 3 for spatial size (co-radial vertices).

Method Strategy Params z/z z/SO3 SO3/SO3

PointNet (Qi et al., 2017a) Augmentation 3.5M 87.5 22.9 84.9
DGCNN (Wang et al., 2019) Augmentation 1.8M 90.7 35.5 89.0

ShellNet (Zhang et al., 2019b) Augmentation 470K 89.2 22.9 84.8
KPConv (Thomas et al., 2019) Augmentation 6.1M 90.0 27.5 85.0

SPHNet (Poulenard et al., 2019) Invariance 2.9M 86.5 85.6 87.0
RIConv (Zhang et al., 2019a) Invariance 0.7M 87.0 87.0 87.2
RI-GCN (Kim et al., 2020) Invariance 4.4M 89.2 89.3 89.1
SFCNN (Rao et al., 2019) Equivariance 9.2M 90.8 84.2 89.6
PRIN (You et al., 2020) Equivariance 1.7M 76.5 81.9 81.0

Ours (CSGNN) Equivariance 4.0M 91.0 88.3 90.1

Table 1: ModelNet40 object classification overall accuracy, considering two types of rotations: z-axis
aligned, and more general SO3 rotations. For example, SO3/SO3 indicates training and testing with
arbitrary rotations of input data. Strategy refers to how rotations are handled. Number of parameters
is in millions.

rotations. Resulted are presented in Table 1, where we ran each baseline. Our method achieves
state of the art performance in z/z and SO3/SO3 settings when training and testing from same space
of rotation, and achieves competitive even when generalizing to unseen type of rotations in the
z/SO3 setting. Methods without rotationally equivariant design (Wang et al., 2019; Zhang et al.,
2019b; Thomas et al., 2019) depend primarily on augmenting training with rotations, allowing it to
achieve competitive performance on easier rotations, but performing very poorly when generalizing
to unseen SO3 rotations. Methods like RI-GCN (Kim et al., 2020) rely on designing invariant
features at input to achieve rotational invariance, and so performs well when generalizing to unseen
rotations. However, their performance is not best in z/z and SO3/SO3 settings, suggesting some loss
of expressiveness from enforcing strict rotational invariance throughout the model. SFCNN uses
rotationally equivariant convolutions based on icosahedral discretization, similar to our work. Unlike
our approach, SFCNN is based on a single-sphere spatial representation, and uses a PointNet-like
module Qi et al. (2017a) to learn point cloud projection. While competitive to our approach in z/z
and SO3/SO3 settings, our approach generalizes much better to unseen rotations.

4.2 RESOLVING ELECTRONIC STRUCTURE OF MATERIALS

Accurate molecular dynamics simulation from quantum-mechanical principles is critical to many
applications, such as the design of advanced materials or the study of materials’ properties under
extreme conditions. However, accurately scaling simulations to systems beyond hundreds of atoms is
a problem of primary concern. The main bottleneck appears when solving the quantum mechanical
questions, which provides properties describing the electronic structure, such as the electronic
density of states (DOS) and the electron density. Recent ML efforts have tried to overcome this
issue by effectively predicting the electronic structure (output) from the atomic structure (input)
(Chandrasekaran et al., 2019; Fabrizio et al., 2019; del Rio et al., 2020; Kamal et al., 2020; Ellis
et al., 2021). Here we aim to effectively and accurately predict the DOS, which describes the energy
distribution of the electrons within an atomic snapshot. The DOS is a physical quantity that is
invariant to rotations of the system. From the DOS, the band energy, an essential component of the
total energy of the system, can be calculated. Due to the atomic nature of the problem, we propose
learning atom-centered descriptors of local environments end-to-end, enabling data-driven and more
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Figure 5: Illustrations of each type of carbon structure present in the dataset. They fall under three
geometric classes: sheet-like (graphene, graphite), cylindrical (C(6,4), C(9,9), C(8,0)), and spherical
(C20, C40, C60).

flexible representations compared to hand-crafted descriptors of prior work of del Rio et al. (2020);
Ben Mahmoud et al. (2020). We further introduce and make publicly available a dataset consisting of
geometrically diverse structures of graphene, and show that the use of CSGNN lowers overall error
for calculating band energy, and increases the number of structures resolved to to chemical accuracy.

Dataset. The datasets consists of eight different types of graphene allotropes: graphene sheet,
graphite, three different fullerenes, and three single-walled nanotubes–see Fig. 5). There are 200
atomic snapshots per structure, generated from snapshots of DFT molecular dynamics simulations
run using VASP (Kresse & Furthmüller, 1996a;b). The number of atoms per snapshot range from 20
up to 152. After alignment with respect to the vaccum energy used as global reference, the resulting
DOS curve is binned into 310 windows of 0.1 eV each, from -30 to 1 eV. We refer to del Rio et al.
(2020) for more details on the data generation and preparation process. Using the same 80:20 split
for each type of graphene structure results in 1280 total files for training and 320 files for validation
A separate test set of size 160 is used with 20 snapshots per structure.

Problem Formulation. Each input is a snapshot of positions of carbon atoms, represented by
coordinates X ∈ RN×3 and bounding lattice vectors C ∈ R3×3. The atoms are located inside a unit
cell, with periodic boundary conditions. The prediction target is the DOS, represented by a fixed
dimension vector y ∈ R310. From the DOS an important downstream property of interest can be
computed, the band energy:

Eband =

∫ EF

−∞
DOS(ε)εdε (4)

where ε is the energy and EF is the Fermi level. In practice, the integral is evaluated as a cumulative
sum over a discrete and bounded domain. The integration has an upper bound of EF , a physical limit
representing the highest energy of the bound electrons. EF is calculated as the energy at which the
cumulative integral of the DOS curve equals the total number of electrons in the system. Since this
limit is a function of the DOS integral and electron number, we introduce an additional prediction
target in terms of the cumulative DOS (FDOS). Including the FDOS during training enables better
resolution of EF and lowers band energy error. The resulting objective function to minimize is:

L = α ∗ LDOS(y, ŷ) + (1− α) ∗ LFDOS(y, ŷ) (5)

where ŷ is the predicted DOS and α controls the relative weighting between DOS and FDOS losses,
which are both in terms of mean squared error.

Model. To model the total DOS, we use a decomposed approach to predict the contribution of each
atom to the overall DOS. We further assume that each atom’s contribution is a function of its local
atomic atomic environment, an observation often exploited in electronic structure methods (Behler,
2016). The closer the neighboring atoms are to the target, the stronger the effect they have on
the target’s properties. To account for this effect, a fixed cutoff radius of 7 angstroms is used in
experiments, eliminating the effect of neighbors that are further away. Our approach is then applied
to learn a suitable descriptor of each local environment for mapping to atom-wise DOS contributions,
which are then summed to obtain the overall DOS. This workflow is further illustrated in Fig. 6.
Each atom serves as the center for concentric spherical representation, and the atomic neighboring
environment is a point cloud. To convert a point cloud to concentric spherical feature map, each point
is assigned a contribution to its nearest vertex. The contribution is determined as the inverse of the
point’s distance from center, based on the aforementioned neighbor effect.

All concentric spherical feature maps are combined channel-wise into a single group, resulting in
single spatial sphere R = 1 with C = 32 channels. This eliminates effectively eliminates inter-sphere
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Figure 6: From left to right: each atom’s local atomic environment is a point cloud, and the input for
our proposed model. CSGNN (shared across inputs) learns a descriptor as output, which is mapped
through additional dense layers and 1D convolution to predict atom-wise DOS contribution. All
atoms’ contributions are summed to obtain total DOS.

Figure 7: Architecture for DOS prediction. Number of output channels are shown for each layer,
where applicable. L = 3 is initial icosahedral spherical resolution. 1x1 convolution is applied within
channels, without spatial component. 1D convolution is applied to smooth the predicted DOS curve,
represented by output energy bins.

convolutions, which instead become 1x1 convolutions in feature space. The main consideration
here is computational and memory efficiency, as capturing co-radial information via input channels
does not require adding additional spatial dimensions. We note that this version of our proposed
architecture is already sufficient to obtain strong results in this problem. Fig. 7 presents the layers of
the model architecture, and Sec. A.3 provides training and hyperparameter details.

Results. We present our results in Table 2. AGNI (Botu & Ramprasad, 2015; Botu et al., 2016) is a
hand-crafted descriptor method for extracting rotationally invariant features of atomic environments
applied to this problem and dataset in del Rio et al. (2020). SchNet (Schütt et al., 2017) is a
neural message passing model for learning atom-centered features end-to-end, and is considered a
strong baseline for many atomistic ML problems. Our rotationally equivariant approach achieves the
lowest mean error in resolving band energy on the test set, reducing overall error by 24% relative to
previous best. Our approach also demonstrates the ability of learned descriptors to improve over the
performance of hand-crafted descriptors for this problem. We also included a single-sphere version of
our model (C = 1) for ablation, which did not perform as well as the multi-sphere version (C = 32).
Since the dataset is composed of different types of Graphene geometries, we further group test error
by each type of structure. Our approach achieves the lowest mean error on six out of eight structures.
Furthermore, our approach achieves chemical accuracy on more structures–chemical accuracy (0.043
eV/atom) is a widely adopted accuracy threshold in computational chemistry. We achieve chemical
accuracy on seven structures, compared to six for SchNet and five for AGNI, out of eight.

4.3 ABLATION STUDY

In this section we further analyze some key components to the performance of our model, based on
the model architecture for ModelNet40 classification task. We refer to Table 3 for all results.

Number of concentric spheres. We study the impact of concentric spheres on model performance.
One option is to maintain a single sphere spatially (R = 1), and group all radial information from
concentric spheres into input channels (C). Inter-sphere convolution is not applicable in this case,
and only intra-sphere convolution is used. While increasing C in this manner is effective, adding
concentric spheres spatially is needed to achieve best performance, as seen in Table 3. The number of
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Method Type Parameters Mean Error (eV/atom)

AGNI (Botu & Ramprasad, 2015) Hand-crafted 392K 0.033
SchNet (Schütt et al., 2017) Learned 976K 0.035

CSGNN (R = 1, C = 1) Learned 1.06M 0.036
CSGNN (R = 1, C = 32) Learned 1.06M 0.025

(a) Overall error in resolving band energy for the test set. The mean absolute error per sample is normalized
by number of atoms. R is number of spatial concentric spheres, C is number of concentric spheres as input
channels.

Model Graphene Graphite C20 C40 C60 C(6,4) C(9,9) C(8,0)

AGNI 0.021 0.053 0.052 0.030 0.010 0.046 0.027 0.026
SchNet 0.042 0.045 0.065 0.030 0.022 0.022 0.033 0.019

Ours (CSGNN) 0.013 0.039 0.051 0.033 0.017 0.020 0.014 0.015

(b) Band energy mean absolute error of predictions for each type of structure. C = 32 version of our model is
used here.

Table 2: Comparison of descriptors for resolving band energy from predicted density of states. Table
2a shows overall error over test dataset. Table 2b further categorizes energy prediction error by
structure. CSGNN achieves lowest overall error, as well as lowest error in six out of eight structures.

Setting SO3/SO3

Spheres,
channels only
R = 1, C = 1 84.1
R = 1, C = 8 87.6
R = 1, C = 16 87.9
R = 1, C = 32 87.7

Setting SO3/SO3

Spheres,
spatial

R = 4, C = 8 88.9
R = 8, C = 8 89.6
R = 16, C = 8 90.0
R = 32, C = 8 90.1

Setting SO3/SO3

Radial convolution
kernel size

R = 16,KRC = 1 86.3
R = 16,KRC = 3 90.0
R = 16,KRC = 5 89.9

Table 3: Ablation results in terms of SO3/SO3 accuracy on Modelnet40 dataset. KRC is radial
convolution kernel size. C to refers to concentric spheres grouped via input channels, while R refers
to number of spheres represented spatially.

trainable parameters is same when increasing the spatial dimension, and so performance differences
can be attributed to increased representational power via concentric spheres.

Radial convolution. We further provide justification for using the proposed radial convolution for
learning features between spheres. The radial kernel size refers to the number of co-radial vertices
considered in the convolution window. We set KRC = 1, which operates over only the feature
dimension and ignores the spatial dimension (analogous to 1x1 convolution for 2D images). This
gave significantly worse performance than KRC = 3, confirming that non-trivial radial convolution
is necessary for performance. We did not observe any benefit to increasing kernel size beyond
KRC = 3.

5 CONCLUSION

To address the problem of learning rotationally robust representations of point cloud data, we propose
a new volumetric feature learning approach. We propose a new volumetric structure based on
nested spheres formed by the icosahedral discretization. We design intra-sphere and inter-sphere
convolutions for learning over the concentric spheres, combined into a multi-resolution convolutional
architecture. The proposed approach is both rotationally equivariant and efficient, scaling linearly
with grid resolution. Our method achieves state-of-the-art performance in benchmarks for classifying
arbitrarily rotated 3D objects. Our method is also effective in molecular environment description, and
is applied towards more accurately resolving electronic structure of materials. An avenue for future
work is extending our approach to variable icosahedral resolution across concentric spheres, in order
to balance the resolution requirements of inner vs. outer spheres.
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REPRODUCIBILITY STATEMENT

To aid in the reproducibility of our work, we have taken the following measures:

• We have made our model and experiment implementations publicly available at
https://github.com/anonymous10521/CSGNN. This also includes access to the datasets
used in our experiments, from the repository.

• We have also provided pre-trained versions of our models used in reporting best results, in
the repository.

• The repository includes instructions for setting up the environment and dependencies needed
to run our implementation.

• To facilitate reproducing results from training, we have included relevant hyperparameters
in Sec. A.2 and A.3 of the Appendix. We have also set default parameters of training scripts
to match those in the paper, as much as possible.
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A APPENDIX

A.1 EQUIVARIANCE OF INTRA-SPHERE AND INTER-SPHERE CONVOLUTIONS

We define the feature map h : S2 × R→ R as the function which maps positions on the spherical
volume to scalar features (without loss of generality). A rotation R on the feature map is then defined
by the following operator:

[LRh](x) = h(R−1x) (6)

A convolutional layer Φ is equivariant to the rotation groupR if it commutes with all rotations:

Φ[LRh](x) = [LR(Φh)](x), ∀R ∈ R (7)

In other words, applying convolution over the rotated feature map is the same as applying rotation
over the result of convolution. In this work we focus on equivariance to the icosahedral rotation group
I, a subgroup of SO(3) containing 60 discrete rotational symmetries.

We start with intra-sphere convolution implemented by graph convolution within each sphere:

Φh(xi,j) = σ(θ
∑

xi,k∈N(xi,j)

h(xi,k)) (8)

where xi,j is the position corresponding to a vertex in the concentric spherical grid, indexed by radial
and spherical dimension. Additionally, θ is trainable parameter, N(xi,j) denotes positions of vertices
in the neighborhood of the vertex at xi,j , and σ is nonlinearity function. Equivariance of the proposed
graph convolution layer is shown as follows:

Φ[LRh](xi,j) = Φh(R−1xi,j) (9)

= σ(θ
∑

x̃i,k∈N(x̃i,j)

h(x̃i,k), x̃i,k = R−1xi,k (10)

= [LR(Φh)](xi,j) (11)

The second equality follows from rotation R ∈ I being an isometric transformation that maps
the icosahedral sphere onto itself. This means that each vertex position xi,j of the rotated feature
map corresponds to an vertex unique position R−1xi,j in the original feature map, and that vertex
neighborhoods are also preserved. The final equality follows from applying Eq. 6 and Eq. 8.

Next, we show that the intra-sphere convolution layer is also rotationally equivariant. Intra-sphere
convolution is defined via 1D convolution over co-radial vertices:

φh(xi,j) = σ(

bK2 c∑
k=−bK2 c

h(xi+k,j)βk+bK2 c
) (12)

where K is the size of the radial kernel and β denotes trainable parameter. We show that the
convolution φ commutes with rotation:

φ[LRh](xi,j) = φh(R−1xi,j) (13)

= σ(

bK2 c∑
k=−bK2 c

h(x̃i+k,j)βk+bK2 c
), x̃i+k,j = R−1xi+k,j (14)

= [LR(φh)](xi,j) (15)

The second equality follows trivially from the fact that co-radial vertices remain co-radial after shared
rotation, thereby preserving neighborhood for convolution. Equivariance of the intra-sphere and
inter-sphere convolutional layers ensures that compositions of these layers are also equivariant to
rotation.
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Concentric spheres (R) 1 8 16 24 32

Training (seconds/epoch) 51 83 104 150 204
Inference (milliseconds/batch) 70 75 97 119 155

Table 4: Training and inference time comparison for ModelNet40 using batch size 32, while varying
the number of spatial spheres. Training time reported is seconds per epoch, while inference time is
milliseconds per batch.

A.2 MODELNET40 EXPERIMENT DETAILS

We specify CSGNN-z as the model trained on z-axis aligned rotations, and CSGNN-SO3 as the
model trained on SO3 rotations. For concentric spheres, CSGNN-z uses 15 spheres spatially, and
CSGNN-SO3 uses 20. Level 4 icosahedral discretization (2562 vertices) is used for initial spatial
resolution of each sphere. Point clouds are mapped to vertex features using Gaussian RBF with
of threshold T = 0.01. After vertex grouping, the number of concentric spheres as input channels
is 8. Each model is trained using Adam optimizer for 60 epochs and batch size 32, with early
termination if learning rate falls below 1e-5. CSGNN-z is trained with initial learning rate of 3.9e-4,
and CSGNN-SO3 with initial learning rate of 2.2e-4. For regularization, CSGNN-z uses dropout of
0.19, and weight decay of 3.2e-7. CSGNN-SO3 uses dropout of 0.14, and weight decay of 2.7e-7.
Beyond rotational augmentation in training, we apply random uniform translation in the range of
[−0.1, 0.1], random Gaussian noise for positional jitter with standard deviation of 0.01, and random
uniform re-scaling by a factor of [0.8, 1.2] applied independently to each axis. For the z/SO3 test
setting, it was beneficial to additionally apply voting over 5 sampled test rotations per instance.

A.3 ELECTRONIC STRUCTURE OF MATERIALS EXPERIMENT DETAILS

We refer to the CSGNN model for density of states prediction as CSGNN-DOS. The initial spherical
resolution is L = 3 icosahedron, or 642 vertices per sphere. CSGNN-DOS is trained using Adam
optimizer for 1500 epochs, with initial learning rate of 5e-4 and early termination if learning rate
falls below 1e-5. A batch size of 32 snapshots is used, and a weight decay of 1e-7 is applied for
regularization. Using α = 0.1 provided best performance for band energy calculation, for weighting
DOS and FDOS losses. A single 1D convolution layer with kernel size of 3 is applied over the atom-
wise output channels, corresponding to each atom’s predicted DOS contribution, prior to summing to
obtain the total DOS.

A.4 RUNTIME ANALYSIS

We report how training and inference time scales with the addition of spatial concentric spheres to our
model for the ModelNet40 task, in Table 4. The number of input channels is fixed at C = 8. Training
time is seconds/epoch, averaged over the course of training. Inference time is milliseconds/batch,
averaged over a run over the validation set. The training time increases from single sphere to 32
spheres by a factor of four, while the inference time increases by a factor of two. We also did not
observe any benefit to model accuracy going beyond R = 20 for the ModelNet40 task in practice.
Numbers were obtained from running on a single NVIDIA V100 GPU with 16 GB memory.

A.5 INTRA-SPHERE POOLING

Pooling is widely used alongside convolutional filters in CNN architectures to learn invariance to
transformations of the input. The icosahedron, due to its recursive refinement by discretization level,
has a well-defined and natural hierarchy for pooling and coarsening. Each coarser representation
also follows a uniform discretization of the sphere, which allows efficient information propagation
in hierarchical fashion when combined with convolutions and pooling. To formalize the pooling
operation, we introduce the overloaded notation H(l) ∈ RR×|V (l)|×C to denote the feature tensor
corresponding to V (l), the vertex set corresponding to level l discretization. Pooling is defined as
H(l−1)

i,u = f({H(l)
i,v : v ∈ N(u)}), where N(u) is the neighborhood of vertex u ∈ V (l) and f is a

permutation invariant function (e.g. max operator). Pooling is followed by downsampling, where
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Structure Graphene Graphite C20 C40 C60 C(6,4) C(9,9) C(8,0)

Atoms 128 108 20 40 60 152 144 128

Table 5: Each carbon structure, and the number of atoms for each snapshot of the structure.

only vertices of the smaller vertex set V (l−1) are retained. We only apply neighborhood pooling
within vertices of the same sphere.

A.6 POINT CLOUD TO VERTEX FEATURES

Instead of computing the summation in Eq. 1 with respect to all points, for each data point we
update the features of vertices in a local neighborhood. The radial basis function (RBF) φ decays
exponentially, and so points beyond a local neighborhood have little influence (depending on choice
of bandwidth γ). Furthermore, restricting to a constant size local neighborhood reduces computation
cost from O(N |V |) to O(N). To define the local neighborhood of data point p in this work: any
given point p is contained within two bounding “triangles” of the discretization (ignoring boundary
conditions and degenerate cases). These correspond to the vertices S(i) = {u(i), v(i), w(i)} and
S(i+1) = {u(i+1), v(i+1), w(i+1)}, where i indexes radial level. However, using a single γ value for
the RBF results in scaling inconsistency: distances between vertices progressively shrink moving to
inner spheres. Based on the assumption that RBF values should be invariant to scale, a different γ
and corresponding RBF is defined with respect to radial level. To define γi, we use the maximum
pairwise distance d(i)max between vertices in {S(i), S(i+1)}. Specifically, we set γi = − log T

d
(i)
max

2 , where

T is a lower bound target RBF value. For example, T = 1 would correspond to γi = 0, or a RBF
value of 1 at any distance. T ∈ (0, 1] is a tuning parameter that enables toggling the overall sensitivity
of the RBF to distances. Based on the approximation that d(i)max is similar for any data point, d(i)max is
precomputed once.

A.7 ELECTRONIC STRUCTURE DATASET

We present the number of atoms per structure in Table 5.
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