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Abstract001

Language models can be used to provide inter-002
active, personalized student feedback in edu-003
cational settings. However, real-world deploy-004
ment faces three key challenges: privacy con-005
cerns, limited computational resources, and the006
need for pedagogically valid responses. These007
constraints require small, open-source mod-008
els that can run locally and reliably ground009
their outputs in correct information. We in-010
troduce SCRIBE, a framework for multi-hop,011
tool-augmented reasoning designed to gener-012
ate valid responses to student questions about013
feedback reports. SCRIBE combines domain-014
specific tools with a self-reflective inference015
pipeline that supports iterative reasoning, tool016
use, and error recovery. We distill these ca-017
pabilities into 3B and 8B models via two-018
stage LoRA fine-tuning on synthetic GPT-4o-019
generated data. Evaluation using a human-020
aligned GPT-Judge and a user study with 108021
students shows that SCRIBE models matches022
or exceeds the perceived quality of much larger023
models, demonstrating its viability for low-024
resource, privacy-sensitive educational appli-025
cations.026

1 Introduction027

Education at scale, in contexts like massive open028

online courses (MOOCs) or large in-person lecture029

halls, enables thousands of learners to engage with030

the same material simultaneously (De Freitas et al.,031

2015). However, this scale comes at a cost: limited032

access to personalized guidance, feedback, and sup-033

port. Recent progress in Large Language Models034

(LLMs) offers a promising avenue toward personal-035

ized support at scale. LLMs have been applied to a036

wide range of tasks including question generation037

(Scaria et al., 2024; Hang et al., 2024; Fawzi et al.,038

2024; Ma et al., 2024; Liang et al., 2023), grading039

(Golchin et al., 2025), and automatic feedback gen-040

eration (Phung et al., 2023; Pardos and Bhandari,041

2024; Swamy et al., 2024).042

How can I improve my 
performance to pass the course?

Useful Relevant Actionable Correct 

Tools

sort_student_features_with_importance

Improve your performance by watching 
course videos more regularly and 
following a steady study routine — these 
habits strongly influence learning 
outcomes.

I need to understand which specific 
behaviors were most affecting your 
performance in the course.

This helped identify the most influential 
factors—mainly video load frequency 
and the number of study sessions.

Tools

get_feature_definitions

I used this to clarify what those features 
represent, confirming they reflect how 
frequently you engage with videos and 
how consistently you study.

Tools

To provide meaningful advice, I needed to 
understand which general learning behaviors 
correlate with success. Without specific 
performance data, I looked for broad 
behavioral factors linked to better outcomes.

impact_of_student_behaviors

This tool mapped the question to the 
assessment dimension (quiz performance 
patterns) and highlighted consistency and 
regularity as the top success factors —
relating to how students manage their time 
and maintain steady effort across the course.

To improve your performance, focus on 
consistency and regularity — study at similar 
times each week, stick to a schedule, and 
aim to complete quizzes with fewer 
attempts by preparing ahead.

Reasoning Step Final answer

Figure 1: Structured multi-hop reasoning for pedagog-
ically valid feedback via tool calls. The question is
addressed using distinct reasoning strategies: one model
uses multi-step analysis of learner behavior for a person-
alized advice (left), the other links it to effective learning
behavior dimensions for general guidance (right).

Despite promising results in educational tasks, 043

LLMs face challenges limiting their reliability in 044

real-world use. Hallucinations and factually incor- 045

rect explanations can mislead learners and erode 046

trust, especially problematic in education, where re- 047

sponses must be accurate and pedagogically sound 048

(Nazaretsky et al., 2024; Manakul et al., 2023; 049

Kumar et al., 2023; Levonian et al., 2025). A 050

promising direction to mitigate this is retrieval- 051

augmented generation (RAG) (Fang et al., 2025; 052

Dakshit, 2024), or tool augmentation (Wu et al., 053

2024; Ross et al., 2025; Schick et al., 2023; Patil 054

et al., 2024; Yao et al., 2023; Inaba et al., 2023) 055

where models use external resources or tools to sup- 056

port reasoning and verification. While these meth- 057

ods improve factuality and interpretability, they are 058

more effective in large models (Shen et al., 2024) 059

(such as GPT-4o (OpenAI et al., 2024)), which are 060

costly to run. As a result, there is growing interest 061

in training smaller, open-source models that can 062
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run locally and securely (Zhang et al., 2024).063

Recent work has explored fine-tuning small mod-064

els on synthetic tool-calling data (Patil et al., 2024;065

Schick et al., 2023; Liu et al., 2024; Qin et al.,066

2023). However, these efforts typically address067

narrow tasks with short, domain-agnostic prompts068

and a known, fixed sequence of tool calls (e.g.,069

querying the fuel level of an aircraft). This setup070

fails to reflect real-world domains like education,071

where open-ended questions require flexible, multi-072

step reasoning. As shown in Fig. 1, a question073

like “How can I improve my performance?” can074

be answered through different tool-use paths. The075

provided responses are both pedagogically valid,076

yet created by distinct reasoning trajectories.077

In this work, we propose SCRIBE, a framework078

for self-reflective, multi-hop tool reasoning in ed-079

ucational feedback scenarios, where models must080

flexibly use external tools and iteratively revise081

their outputs to generate pedagogically meaning-082

ful responses. We collect real student questions083

about structured feedback reports and augment084

them with high-quality synthetic data including rea-085

soning traces, tool calls, and final responses. We086

fine-tune small open-source models via a two-stage087

LoRA (Hu et al., 2022) pipeline and implement a088

self-reflective inference loop that enables iterative089

reasoning and tool use outperforming or matching090

larger models. Our evaluation combines automatic091

assessment using a human-aligned GPT-as-a-judge,092

alongside a user study with 108 students interact-093

ing with feedback across three different MOOCs.094

Notably, we find students equally rate our SCRIBE-095

trained 8b model, a much larger Llama-3.3 70b and096

GPT-4o. Our main contributions are:097

1. We propose SCRIBE, a framework for multi-098

hop tool reasoning, where models must flexi-099

bly call tools and self-reflect to generate high-100

quality responses.101

2. We distill tool calling and self-reflection rea-102

soning behavior of a larger model (GPT-4o)103

into relatively smaller open-source models104

through a two-stage LoRA fine-tuning process105

to enhance reasoning and multi-hop tool calling.106

3. We create a new synthetic dataset of 7000 stu-107

dent performance feedback questions derived108

from 28 real-world students with answers, tool109

calling and reasoning chains.110

4. We design a rubric for interactive feedback111

evaluation for a human-aligned GPT-as-a-112

judge, enabling scalable and consistent eval-113

uation of model responses. 114

5. We conduct a real-world interactive user 115

study with 108 university students assessing 116

perception of interactions with a small SCRIBE 117

8b model, Llama-3.3 70b, and GPT-4o across 118

distinct reports from three different MOOCs. 119

2 Related Work 120

Tool-Augmented Language Models. Tool calling 121

helps LLMs compensate for missing world knowl- 122

edge and reduce hallucinations (Komeili et al., 123

2022; Wang et al., 2024a). Recent work has ex- 124

plored in-context learning and few-shot prompting 125

to encourage reasoning about tool use (Yao et al., 126

2023; Kim et al., 2024; Shen et al., 2023; Chen 127

et al., 2023b). Prompting techniques like chain-of- 128

thought (CoT) (Wei et al., 2022), and ReAct (Yao 129

et al., 2023) structure intermediate reasoning and 130

improve factuality (as demonstrated by Inaba et al. 131

(2023)), but remain fragile in smaller models and 132

generalize poorly with weak instruction-following. 133

To enhance tool calling, especially in smaller 134

open-source LLMs, other works have performed 135

finetuning. Toolformer (Schick et al., 2023) uses a 136

self-supervised approach with LLM-generated data 137

to train models to decide when to call APIs. Go- 138

rilla (Patil et al., 2024) fine-tunes a LLaMA-based 139

model on GPT-4 instruction–API pairs to gener- 140

ate accurate calls from documentation or internal 141

knowledge. Recent works like ToolLLM (Qin et al., 142

2023) and ToolACE (Liu et al., 2024) use synthetic 143

data to support multi-tool use for complex tasks. 144

However, tool use is often treated as an end in itself 145

rather than a step toward producing high-quality, 146

correct answers. Despite gains in tool call accu- 147

racy, models are rarely trained to reason before 148

and after tool calls, and are seldom evaluated in 149

domain-specific, real-world settings such as edu- 150

cational feedback where clarity, correctness, and 151

user trust are essential. As a result, their responses 152

may often lack coherence, context-awareness, and 153

alignment with user needs. 154

LLMs in Education. LLMs are increasingly 155

used in education, enabling natural interactions 156

through conversational agents (Lieb and Goel, 157

2024; Wolfbauer et al., 2023; Neumann et al., 2024; 158

Pal Chowdhury et al., 2024). Their broad domain 159

knowledge reduces reliance on domain-specific 160

models, supporting applications like personalized 161

learning (Park et al., 2024), knowledge tracing 162

(Neshaei et al., 2024), and automated feedback 163

(Stamper et al., 2024). Prior work has explored 164

2



Course 
Evaluation

Where should I 
improve?

How should I 
improve?

What should I 
do next time?Student study

Expert annotations: 
Feedback category & Multi-hop tool labels  

Tools 
Development

Labelled Human Data
Question generation

Generate Reasoning and 
tool calling chains

Yes

No

Synthetic 
Questions Synthetic Dataset

Course 
Evaluation

Where should I 
improve?

How should I 
improve?

What should I 
do next time?

GPT-4o GPT-4o

Filter generated 
chains

Reasoning
Chains

GPT-4.1

Stage 1: Human Data Collection Stage 2: Synthetic Data Generation

Tool Functions

Data Context

DSP

GEO

VA

LNV

Figure 2: SCRIBE Data Generation Pipeline. Synthetic data is generated by collecting questions from students to
guide expert annotators in identifying essential tools (Stage 1). GPT-4o generates reasoning chains with these tools,
and GPT-4.1 filters the outputs based on actionability, relevance, tool use, and correctness (Stage 2).

various integration strategies, often focusing on165

prompting—e.g., zero-shot prompts for automatic166

science scoring (Wu et al., 2023) or CoT for clas-167

sifying learning outcomes via Bloom’s taxonomy168

(Almatrafi and Johri, 2025). Others fine-tune LLMs169

on educational data, e.g., recognize epistemic and170

topic-related dialogue acts in collaborative learning171

(Acosta et al., 2024) or to score math responses172

(Morris et al., 2024). Prior work also explored173

RAG, using textbooks for guidance (Henkel et al.,174

2024) or student reflections for feedback (Neshaei175

et al., 2025). However, most models act as stan-176

dalone generators, with few integrating tools for177

grounded interaction.178

3 Methods179

Our goal is to enable interactive feedback with180

small LLMs by using multi-hop tool calling to gen-181

erate pedagogically meaningful personalized re-182

sponses. Our framework, SCRIBE, consists of two183

main phases: (1) Dataset generation (see Fig. 2)184

and (2) Finetuning and inference (see Fig. 3).185

3.1 Dataset Generation Pipeline186

Our dataset generation pipeline consists of (1) a187

user study to identify real student questions and188

categorize them by pedagogical need; (2) domain-189

specific tools to support grounded, context-aware190

answers; (3) synthetic data generation using GPT-191

4o simulating multi-hop reasoning and tool calls.192

3.1.1 Data Context193

Our experiments use data from four globally-194

offered MOOCs at a European university: Digital195

Signal Processing (DSP), Éléments de Géomatique196

(GEO), Villes Africaines (VA), and Launching New197

Ventures (LNV). Each includes weekly video lec-198

tures, quizzes, and graded assignments. To analyze199

student performance, we use feedback reports from200

iLLuMinaTE (Swamy et al., 2024), a zero-shot201

LLM-XAI framework that generates social science 202

theory-driven, actionable explanations based on be- 203

havioral features predicting pass/fail outcomes. We 204

focus on feedback based on social science theories 205

and post-hoc explainers shown to be highly useful 206

and actionable: Necessity and Robustness selection 207

(NR) (Lipton, 1990; Lombrozo, 2010), Abnormal 208

Conditions (AC) (Hilton and Slugoski, 1986), and 209

Contrastive Explanation (Con) (Hilton, 1990), with 210

Contrastive Explanation Method (CEM) (Dhurand- 211

har et al., 2018) as the explainer. 212

3.1.2 Human Data Collection 213

Student Study. To design an interactive feedback 214

system, we first investigated the types of ques- 215

tions students ask when presented with explanation- 216

based feedback. We used five feedback reports 217

from Swamy et al. (2024). Two reports described a 218

student enrolled in DSP (based on the NR and Con 219

theories), two reports belonged to a student from 220

GEO (again one report per theory), and one report 221

was from a student in VA using the AC theory. 222

We conducted a study with 28 postgraduate 223

STEM students, each randomly assigned one of five 224

reports and given a brief description of the associ- 225

ated MOOC. Participants (1) wrote three follow-up 226

questions about the feedback, (2) rated five GPT- 227

4o-generated questions on a 1–5 scale (5 = very 228

useful), and (3) selected the most useful feedback 229

category, from Mandouit and Hattie (2023): What 230

have I done well?, Where should I improve?, How 231

should I improve?, and What should I do next time?. 232

All students gave informed consent to participation 233

and the study was approved by the university’s hu- 234

man research ethics commission. 235

Expert Annotations. We manually annotated 75 236

student-written questions categorizing feedback 237

students seek, using 3 dimensions from Mandouit 238

and Hattie (2023): Where to improve? (Where?), 239

How to improve? (How?), and What to do next 240
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LoRA 1 LoRA 2

…
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Self-reflection prompting 

LLM SCRIBE LLM Different
 tool functions

Yes

No

GPT-4.1

GPT-as-a-Judge

Tool Call

Error

Final answer

Correct Error
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5
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Figure 3: SCRIBE finetuning, inference, and evaluation pipelines. Finetuning involves two successive LoRA
stages for multi-hop reasoning with tool use. Inference operates as a closed-loop system with self-reflection
prompting for error correction. Evaluation combines GPT-as-a-judge assessments and a user study.

time? (Next Time). Our rubric is provided in ap-241

pendix F. Two expert annotators independently la-242

beled the questions, achieving substantial agree-243

ment (Cohen’s κ = 0.67). During annotation, we244

identified an additional category, "Course Evalu-245

ation", for questions about course structure and246

assessment. Based on annotations, we derived six247

tools needed to meaningfully answer these queries.248

3.1.3 Tools Development249

To be able to answer the students’ questions, we250

developed six different domain-specific tools.251

Textbook and Syllabus Retrieval Tools. For252

course content questions, we used RAG over253

MOOC materials. Textbook sections and exercises254

were embedded using the bge-small model (Xiao255

et al., 2023), enabling query-based retrieval. Syl-256

labi were embedded with the bilingual-embedding-257

base model (Javaness) for structure-related queries.258

Topic Dependency Mapping. To clarify topic de-259

pendencies, we used skill maps showing prerequi-260

site links. For DSP, we used the map from Swamy261

et al. (2022); for GEO, the instructor provided us262

with the map; and for VA and LNV, we extracted263

skills from video transcripts using GPT-4o and re-264

prompted to infer topic dependencies. The VA map265

was validated by the instructor. We built a function266

to return prerequisite weeks given a MOOC name267

and week. See appendix D for the maps.268

Grade Calculator. To address performance ques-269

tions, we designed a function that calculates student270

total grade from their ID, compares to the passing271

threshold, and returns the points needed to pass.272

Sort Student Features. The tool summarizes stu-273

dent progress using behavioral features (Swamy274

et al., 2024)–importance ranked by CEM. For a stu-275

dent and week, it returns 5 most and least important276

features with raw feature values for context.277

Features Description Search. Some student ques-278

tions focused on unfamiliar terms from feedback re-279

ports, derived from features used in student model- 280

ing (Swamy et al., 2024). To support these queries 281

and the Sort Student Features tool, we developed a 282

function that retrieves feature descriptions. Given 283

a feature name, we use efficient fuzzy string match- 284

ing for an efficient nearest-neighbor matching and 285

return the corresponding definition. 286

Student Behavior Impact on Performance. The 287

tool answers hypothetical questions about how be- 288

havioral changes affect outcomes (e.g., “Would 289

more consistent engagement improve my grade?”). 290

Given a MOOC name and query, it maps the in- 291

put to one of five behavioral dimensions (Mejia- 292

Domenzain et al., 2022)—Effort, Consistency, 293

Proactivity, Assessment, and Regularity—linked 294

to features from (Swamy et al., 2024) using CEM- 295

derived importance scores. Queries and feature 296

descriptions are embedded with all-MiniLM-L6-v2 297

(Reimers and Gurevych, 2019) and matched via 298

cosine similarity. The tool returns the closest di- 299

mension and two alternatives, each with a brief 300

definition, helping students assess their behavior’s 301

impact and explore other strategies. 302

3.1.4 Synthetic Data Generation 303

To generate synthetic questions that closely resem- 304

ble those written by students, we selected 16 stu- 305

dents across three MOOCs (DSP, GEO, and VA) 306

and chose two reports per student, each gener- 307

ated using one of two theories introduced in sec- 308

tion 3.1.1 (NR and Con). For each of these re- 309

ports, we used real student-written questions and 310

insights collected from students in human study 311

section 3.1.2 to construct the prompts for GPT-4o. 312

We generated 20 synthetic questions per feedback 313

category, per report, yielding a rich dataset of ap- 314

proximately 7000, diverse student-like questions. 315

Using the generated questions, we prompted 316

GPT-4o with a feedback report and a student ques- 317

tion to generate structured reasoning followed by 318
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an initial tool call. This tool call is executed, and319

its output is returned to GPT-4o to produce the next320

reasoning step and either a subsequent tool call or321

a final answer. This process is repeated until a final322

answer is produced. Each example thus forms a rea-323

soning trajectory of alternating reasoning and tool324

interactions, which we automatically filter using325

GPT-as-a-judge to exclude samples with erroneous326

reasoning chains or tool misuse. We used examples327

that the judge marked YES in all categories (details328

described in section 3.2.3).329

To assess the similarity and diversity of the330

generated questions relative to real student ques-331

tions, we first compared the distributions of ques-332

tion lengths and removed outliers that were shorter333

or longer than student responses. Next, we com-334

puted the distributions of Shannon entropy (to esti-335

mate token-level information content) and perplex-336

ity (to approximate linguistic fluency), and com-337

pared these between real and synthetic questions338

using Jensen-Shannon Divergence (JSD). We per-339

formed these comparisons across question types340

and courses. To further assess semantic diversity,341

we computed pairwise cosine similarity within each342

dataset (real and synthetic) across all questions, for343

each course and feedback category. This enabled us344

to quantify question diversity within each dataset.345

3.2 Inference and Finetuning Pipeline346

The objective of this pipeline is to distill GPT-4o347

tool calling and reasoning capabilities into smaller348

LLMs through a two-stage LoRA finetuning. Our349

finetuning and inference pipeline consists of (1)350

a multi-stage fine-tuning process where relatively351

small open-source models (e.g., Llama 8B) are352

trained via LoRA adapters to perform structured353

reasoning and tool use; and (2) a closed-loop in-354

ference pipeline that supports iterative tool use,355

self-reflection, and error correction.356

3.2.1 Multi-Stage LoRA Fine-Tuning357

To enhance the reasoning and multi-hop tool use358

abilities of relatively small open-source models, we359

distill structured tool-calling behavior from a much360

larger teacher model (GPT-4o). Inspired by multi-361

stage instruction tuning and curriculum-style learn-362

ing (Chen et al., 2023a; Guan et al., 2025; Pang363

et al., 2024), our training process is divided into364

two sequential stages that progressively increase365

task complexity. Each training instance consists of366

a student query q, a feedback report f , a sequence367

of reasoning steps {ri}ni=0, tool calls {ti}ni=0, tool368

outputs {oi}ni=0, and a final answer a. 369

Stage 1 (Initial Reasoning and Tool Selection). 370

The model is trained to generate an initial reasoning 371

step r0 and the first tool call t0 conditioned on 372

(q, f). This teaches the model how to interpret 373

student questions and initiate tool-call reasoning. 374

r0, t0 ∼ Pstage1(r, t | q, f) (1) 375

Stage 2 (Multi-Hop Reasoning and Answer Gen- 376

eration). Conditioned on q, f , the initial tool call 377

t0 and output o0, the model learns to iteratively 378

reason and revise its outputs across multiple steps. 379

It produces intermediate reasoning steps ri, addi- 380

tional tool calls ti, and the final answer a. 381

ri, ti ∼ Preason (r, t | q, f, {(rj , tj , oj)}j<i) , 382

for i = 1, . . . , n (2) 383

a ∼ Panswer (a | q, f, {(rj , tj , oj)}j≤n) 384

This decomposition ensures the model first 385

learns how to initiate tool-augmented reasoning be- 386

fore handling more complex reasoning trajectories 387

with iterative refinement. We use LoRA adapters 388

for efficient parameter updates in both stages. 389

3.2.2 Closed-Loop Tool Calling 390

Inspired by AnyTool (Du et al., 2024) which re- 391

queries the tool using a self-reflection loop, we 392

implement self-reflective, multi-hop reasoning as 393

our prompting framework for inference, where 394

the model incrementally constructs responses to 395

student questions by interacting with external tools 396

and revising reasoning based on their outputs. We 397

provide the prompts in appendix G. This task is 398

inherently underdetermined, as different sequences 399

of tool calls may lead to equally valid answers. 400

Our pipeline supports this flexibility while enabling 401

error recovery and iterative refinement. 402

Formally, for a given student query q and feed- 403

back report f , the model produces an initial reason- 404

ing step r0 and a corresponding tool call t0. The 405

output o0 from executing t0 is passed back to the 406

model, which generates the next reasoning step 407

r1 = Reason(r0, o0, q, f), followed optionally by 408

another tool call t1. This process continues for up 409

to N steps, producing a trajectory: 410

(f, q, r0, t0, o0, r1, t1, o1, . . . , rn, a) (3) 411

where a is the final answer and n < N . At each 412

step i, the model decides whether to call another 413

tool or produce a final answer, based on the evolv- 414

ing context of the query, feedback report, previous 415
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reasoning steps, and tool outputs. This iterative416

process continues until the model outputs a final417

answer or reaches a predefined step limit N .418

The model may select the same tool repeatedly419

or switch tools across steps, depending on the420

evolving context. To improve robustness, the sys-421

tem monitors for tool-call errors or instruction vio-422

lations (e.g., invalid tools, skipped reasoning). In423

such cases, the model is re-prompted to self-reflect424

and revise its reasoning or tool choice. If no valid425

answer is generated after N iterations, the interac-426

tion is terminated and marked as unresolved.427

3.2.3 Evaluation428

We evaluated the models’ responses using expert429

annotation and a LLM-as-a-judge protocol as well430

as through a user study with real students.431

GPT-as-a-Judge. Given the open-ended task, stan-432

dard metrics like tool selection accuracy are insuf-433

ficient, as multiple tool sequences can yield valid434

answers. We therefore developed a rubric to eval-435

uate both the tool used and the model’s student-436

facing final response. Based on existing literature,437

we defined four criteria and added a fifth, tool rele-438

vance, specific to our setting. The criteria include:439

(1) Relevance to the question (Zheng et al., 2023),440

(2) Actionability in terms of providing concrete441

advice (Swamy et al., 2024), (3) Tool Relevance442

(whether the selected tools were appropriate), (4)443

Spelling and Grammar (Swamy et al., 2024), and444

(5) Correctness based on factual alignment with445

tool outputs and feedback (Zheng et al., 2023). The446

detailed rubric is provided in appendix B.447

In a first step, two researchers independently la-448

beled 60 instances comprising 20 responses, tool449

calls, and tool outputs from three different mod-450

els (Llama-3.1 8b base, SCRIBE, and Llama-3.3451

70b) sampled across three MOOCs (DSP, GEO,452

and VA). The annotations achieved an overall Co-453

hen’s κ of 0.85, indicating strong inter-rater agree-454

ment. To assess the quality of model outputs at455

scale, we then adopted GPT-4.1 (OpenAI, 2025) as456

an third evaluator, following prior work on LLM-457

based judgment for response quality (Liu et al.,458

2023; Zheng et al., 2023; Qin et al., 2023; Du et al.,459

2024). Each judgment is generated by prompting460

GPT-4.1 with a feedback report, student question,461

a description of available tools, the model’s full462

reasoning trace (with tool calls and outputs), and463

definitions for each evaluation criterion. We used464

CoT prompting to encourage step-by-step reason-465

ing before GPT-4.1 returns a binary rating (Yes/No)466

for each question criterion (Qin et al., 2024). To en- 467

sure reliabilty, we ran GPT-4.1 five times, achieving 468

Cohen’s κ = 0.818± 0.014 between the GPT-4.1 469

judge and the humans. We provide prompts and per 470

criterion inter-annotator agreement in appendix B. 471

User Study. To evaluate how students perceive 472

model-generated responses, we conducted a user 473

study comparing a small multi-stage LoRA-tuned 474

model (ToolACE-8b SCRIBE) to two large LLMs 475

(Llama-3.3 70b and GPT-4o). To reflect deploy- 476

ment constraints where hosting large models may 477

be infeasible for schools, we used API for Llama- 478

3.3 70b and GPT-4o. We recruited 108 students via 479

Prolific1 (see appendix E for more details). All par- 480

ticipants provided informed consent; the study was 481

approved by our university’s human research ethics 482

commission. Each participant saw three feedback 483

reports (passing and failing students) generated by 484

iLLuMinaTE (Swamy et al., 2024), each from a 485

different MOOC: DSP, GEO, and LNV (hold-out 486

MOOC). The study was designed ensured each 487

participant interacted with reports from all three 488

MOOCs and models. We constructed 108 unique 489

combinations, each consisting of one student re- 490

port per course (drawn from six possible reports 491

per course: 3 passing and 3 failing), with each re- 492

port paired with a different model. Report–model 493

assignments were permuted to ensure that each 494

model was used exactly once within each combina- 495

tion and to prevent ordering effects. 496

Participants posed 3–5 unrestricted questions 497

per report to have natural conversations. After 498

each conversation, participants rate the model’s re- 499

sponses on a 5-point scale (1 is lowest and 5 is high- 500

est) across five criteria from prior work (Swamy 501

et al., 2024; Frej et al., 2024): (1) Relevance: Re- 502

sponse directly addresses the question. (2) Useful- 503

ness: Response provides meaningful insights that 504

answer the question and that can enhance learn- 505

ing or deepen understanding. (3) Actionability: 506

Response provides clear steps or instructions. (4) 507

Coverage: Response comprehensively addresses 508

all components of questions asked, including sub- 509

questions. (5) Conciseness: Response is clear, and 510

complete with minimal redundancy. 511

At the end of the study, participants reviewed the 512

three full conversations side by side and selected 513

their overall preferred interaction and provided the 514

reasons for their preference in an open text field. 515

1https://www.prolific.com
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4 Results516

We conducted a series of experiments to evalu-517

ate the quality of the synthetic data used to train518

SCRIBE, the response quality of the model through519

a quantitative analysis, and student perception of520

its outputs through a user study.521

Experimental Protocol. We finetuned and evalu-522

ated three small models: Llama-3.2 3b and Llama-523

3.1 8b, which natively support tool calling, and524

ToolACE-8b (Liu et al., 2024)–an 8b model that525

achieves state-of-the-art performance on the Berke-526

ley Function Calling Leaderboard (BFCL) (Yan527

et al., 2024) and was able to follow our self-528

reflection and reasoning instructions. The finetun-529

ing required six A100 GPU hours per stage. We530

compared the small models to GPT-4o (gold stan-531

dard) and Llama 3.3 70b. All small models were532

finetuned on 7,000 generated questions (see sec-533

tion 3.1.4) with corresponding tool-use and reason-534

ing chains (see section 3.2.1). Our self-reflection535

inference pipeline was applied uniformly across536

models for fair comparison. Evaluation was con-537

ducted on 192 test questions, including 75 written538

by real students and additional synthetic questions539

(unseen in fine-tuning) used to balance coverage540

across three MOOCs (DSP, GEO, VA) and four541

categories (How, Where, Next Time, Course Evalu-542

ation). We also evaluated on 20 additional held-out543

questions from the LNV MOOC which was not in-544

cluded in the fine-tuning. For the Llama-3.1 8b and545

ToolACE-8b models, we achieved best results with546

LoRAs of rank of 256 (see ablations appendix A).547

We used LoRAs of rank of 128 for Llama-3.2 3b.548

4.1 Synthetic student questions closely match549

real student questions550

To evaluate the quality and variety of GPT-4o-551

generated questions, we compared them to real552

student-written questions. Table 1 shows the JSD553

for the Shannon entropy and for perplexity be-554

tween student and generated questions as well as555

cosine similarity within each dataset. We observe556

that all JSD values are < 0.387, indicating that557

the generated questions are reasonably close to558

human questions in both entropy and perplexity.559

Among the MOOCs, the lowest divergence in en-560

tropy was observed in GEO (entropy JSD = 0.114561

± 0.076), while the highest was in VA (entropy562

JSD = 0.335 ± 0.144), suggesting more distinc-563

tive phrasing in student-written questions for that564

course. For perplexity, VA had the lowest diver-565

gence (0.140 ± 0.093), indicating strong alignment566

Table 1: Jensen-Shannon Divergence (JSD) and pair-
wise cosine similarity between human and generated
questions across MOOCs and question categories.

Group Type JSD
(Entropy)

JSD
(Perplexity)

Pairwise
Cosine Similarity

Generated Human

MOOC
GEO 0.114 ±0.076 0.202 ±0.079 0.265 ±0.034 0.238 ±0.024
DSP 0.327 ±0.079 0.212 ±0.095 0.279 ±0.044 0.265 ±0.029
VA 0.335 ±0.144 0.140 ±0.093 0.280 ±0.064 0.307 ±0.047

Question
Category

How? 0.180 ±0.093 0.184 ±0.095 0.241 ±0.035 0.234 ±0.034
Where? 0.242 ±0.121 0.152 ±0.075 0.272 ±0.046 0.249 ±0.021

Next Time 0.387 ±0.089 0.211 ±0.064 0.271 ±0.052 0.319 ±0.026

in fluency. Across question categories, “Next Time” 567

questions diverged the most (entropy JSD = 0.387 568

± 0.089 and perplexity JSD = 0.211 ± 0.064), likely 569

due to the high variability and learner-specific na- 570

ture of next-step feedback questions (Mandouit and 571

Hattie, 2023). The pairwise cosine similarity was 572

slightly higher among generated questions in GEO 573

and DSP and categories How? and Where?, indicat- 574

ing slightly less variation. However, overlapping 575

standard deviations suggest that both generated and 576

human questions exhibit comparable diversity. 577

GPT-4o-generated questions closely match real stu-
dent ones in fluency, content, and diversity, validating
them as high-quality training data.

578

4.2 SCRIBE achieves the performance of 579

significantly larger models 580

The top plot in Fig. 4 shows evaluation results on 581

the test dataset from GEO, DSP, and VA. Fine- 582

tuned SCRIBE models consistently outperform 583

their base versions. ToolACE-8b-SCRIBE and 584

Llama-3.1 8b-SCRIBE surpass the larger Llama- 585

3.3 70b in relevance, with ToolACE-8b-SCRIBE 586

achieving the highest among smaller models. A 587

similar trend holds for actionability, where both 8b 588

models outperform the 70b model, with ToolACE- 589

8b-SCRIBE slightly ahead. While Llama-3.2 3b 590

SCRIBE sees most gain in tool relevance, over- 591

all improvements in this metric remain modest 592

likely because effective tool selection depends 593

heavily on the model’s initial reasoning capabilities. 594

While Correctness slightly improves, Llama-3.1 8b 595

SCRIBE matches its 70b counterpart. 596

The bottom of Fig. 4 shows results on 597

LNV (hold-out MOOC), reflecting similar trends. 598

ToolACE-8b SCRIBE achieves the highest rele- 599

vance, followed by Llama-3.1 8b SCRIBE—both 600

outperforming Llama-3.3 70b. For actionability, 601

Llama-3.1 8b SCRIBE leads, also surpassing the 602

70b baseline. Notably, Llama-3.2 3b SCRIBE 603

outperforms the larger Llama-3.1 8b in both rel- 604
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DSP, GEO, VA

LNV

Figure 4: Percentage of YES given by GPT-Judge for
each criterion on a holdout dataset of GEO, DSP and
VA MOOCs (top) and a holdout set of LNV MOOC
(bottom). Hashed bars indicate SCRIBE models

evance and actionability. Tool relevance improves605

for Llama-3.2 3b SCRIBE, slightly for ToolACE-606

8b, and remains unchanged for Llama-3.1 8b. In607

correctness, ToolACE-8b SCRIBE matches the 70b608

model; Llama-3.1 8b shows minor gains, while609

Llama-3.2 3b shows none. These results align610

with earlier findings, indicating that SCRIBE mod-611

els generalize well without overfitting to specific612

course distributions. All models achieved a perfect613

score on the spelling and grammar criterion; we614

therefore omitted this category in the Figures.615

SCRIBE-trained models match or exceed the response
quality of much larger models in relevance and action-
ability, highlighting the effectiveness of our targeted
fine-tuning strategy for small, open-source models.

616

4.3 Students rate SCRIBE responses highly617

Fig. 5 shows the average ratings per criterion for618

each model included in the user study. We observe619

that the ratings across all five criteria are highly620

similar across models. Despite the SCRIBE model621

being significantly smaller in size (8b vs. 70b),622

students perceive its response quality as on par with623

much larger models. To test whether any observed624

differences in ratings were statistically significant,625

we conducted a one-way ANOVA for each criterion626

across the three models. In all cases, we failed to627

reject the null hypothesis (p > 0.05), indicating no628

significant difference in perceived response quality629

(see appendix E.3 for ANOVA results). 630

When students were asked to select their pre- 631

ferred conversation and explain why, 47.2% chose 632

GPT-4o, while the remaining responses were 633

evenly split between Llama-3.3 70b and ToolACE- 634

SCRIBE. Among those who preferred GPT-4o, 635

about 25% cited its detailed explanations as the 636

main reason. Others highlighted its actionable ad- 637

vice and clarity. In contrast, 32.1% of students 638

who preferred ToolACE-SCRIBE praised its con- 639

ciseness. One participant stated: “The feedback 640

provided clear and direct answers to all my ques- 641

tions in a precise and concise manner, making it 642

easy to understand what I’m doing well.”. 643

Figure 5: Average ratings from 108 students (1–5 scale)
for LLama-3.3 70b, GPT-4o and ToolAce-8b SCRIBE.

Students rate Relevance, Usefulness, Actionability,
Coverage, and Conciseness of the SCRIBE model on
par with larger API-based models, validating its use in
low-resource, privacy-sensitive educational settings.

644

5 Conclusion 645

We introduce SCRIBE, a framework for interac- 646

tive student behavior explanations that combines 647

synthetic data generation, two-stage LoRA fine- 648

tuning, and automatic evaluation with a human- 649

aligned GPT-as-a-Judge. SCRIBE enables small 650

language models to perform self-reflective, multi- 651

hop tool-calling in domains with multiple valid 652

tool-use paths. In education, SCRIBE-trained mod- 653

els outperform base models and match or exceed 654

much larger ones in relevance and actionability, key 655

dimensions of student-centered feedback. A user 656

study with 108 students confirmed they are per- 657

ceived as equally helpful, relevant, and actionable 658

as larger models. These results show that synthetic 659

data and staged fine-tuning can distill complex tool 660

use into smaller, privacy-preserving educational 661

assistants. Future work will extend SCRIBE to ad- 662

ditional models and contexts, and focus on improv- 663

ing correctness and tool relevance. One possible 664

context is medical and psychiatric diagnosis where 665

different diagnostic paths are valid and lead to the 666

same diagnosis (Alarcón, 2009; Maung, 2016; The 667

National Academies of Sciences et al., 2015). 668
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6 Limitations669

While SCRIBE advances small LLMs on interac-670

tive student feedback, multihop reasoning and tool-671

calling, there can be room to further improvements.672

Specifically, on correctness where the margin of im-673

provement can be tight due to high performance of674

the base models. Also, tool relevance is another cri-675

terion that is challenging to improve as it is heavily676

dependent on the model’s initial reasoning.677
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A Ablation Studies1093

It is worth noting that in all of our quantitative1094

results we found that Spelling and Grammar was1095

always perfect across all models.1096

A.1 Different LoRA Ranks1097

In this section, we ablate the LoRA rank used for1098

fine-tuning models on multihop reasoning with tool1099

calling. As shown in Figs. 6 and 7, we compare1100

rank sizes 32, 64, 128, and 256 across both fine-1101

tuning stages for the ToolACE-8B and Llama-3.1-1102

8B models. Results indicate that rank 256 consis-1103

tently outperforms lower ranks on actionability, and1104

correctness for both models. It also out performs1105

lower ranks on relevance in the case of ToolACE.1106

An exception is tool relevance, where rank 321107

achieves the highest performance. For Llama-3.1-1108

8B, relevance is less sensitive to LoRA rank, but1109

the model follows the same trend as ToolACE-8B1110

on the other criteria.

Figure 6: Fraction of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) on different LoRA ranks for ToolACE-
8B-SCRIBE.

1111

Figure 7: Fraction of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) on different LoRA ranks for Llama-3.1-
8B-SCRIBE.

A.2 Single Stage vs two-stage LoRA 1112

We additionally ablate our two-stage LoRA ap- 1113

proach versus single LoRA in which the model was 1114

finetuned on single, multi-hop tool calling and final 1115

response formulation in a single stage. Figs. 8 and 9 1116

shows the comparison between the approaches for 1117

ToolACE-8B and LLama-3.1-8B models respec- 1118

tively. While the only exception is the tool rele- 1119

vance only for the ToolACE model where the two- 1120

stage is slightly less, the figures show the two-stage 1121

LoRA consistently outperform single LoRA fine- 1122

tuning across all evaluation criteria for both models. 1123

This highlights the effectiveness of our multi-stage 1124

LoRA finetuning technique. 1125

Figure 8: Fraction of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) to compare between single and multi stage
LoRA

Figure 9: Fraction of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) to compare between single and multi stage
LoRA

B GPT-as-a-Judge 1126

In this section, we report the rubric defined by the 1127

annotators for each evaluation criterion as well as 1128

the per-category alignment, and the prompt used 1129

13



with GPT-4.1 for evaluation.1130

B.1 Evaluation Rubric1131

In the following, we describe the rubric agreed1132

upon by human annotators for the judge. We ex-1133

plain the criteria used for judging the final response1134

in terms of relevance, actionability, tool relevance,1135

spelling and grammar, and correctness respectively.1136

Human Annotators Rubric – Relevance

The response from the model directly ad-
dresses the student’s question. If the answer
includes relevant responses and also extra-
neous information, then the response is still
YES. The answer doesn’t need to be very
detailed to be considered relevant, as long
as it meaningfully responds to the student’s
question. If the Response is vague, unre-
lated, or fails to address the core question,
then the response is NO.

1137

Human Annotators Rubric – Actionability

The response provides clear steps or instruc-
tions for the student to take to answer their
question. If there is no action that is relevant
based on the question (the question is purely
informational such as asking about course
materials or grading), then the answer to this
question is YES. If the response provides
vague, unclear, or generic advice without
actionable instructions, then mark it as NO.
Fallback advice in case tools did not prove
enough information counts as actionable if
clear — provided it’s not hallucination or
made up information (it can be a summary
of what the model got from the tools or feed-
back reports or general actionable advice
that it doesn’t contain specific details that
need to be double checked with an external
source).

1138

Human Annotators Rubric – Tool Relevance

The tools that the model called are conceptu-
ally relevant to answer the question and can
produce a response that directly answers the
student’s question. If the model calls multi-
ple tools, some of which produce errors, the
answer is YES if one or more of the tools
provide sufficient information to answer the
question. Do not evaluate the accuracy of

1139

the tool output or the correctness of the in-
formation passed to the tools by the LLM
in this step. Multiple tools can be equally
relevant to the question. If the called tools
can "in theory" sufficient to answer the ques-
tions without needing to call another follow
up tool then mark as YES.

1140

Human Annotators Rubric – Spelling and
Grammar

The response is understandable without
grammatical mistakes.

1141

Human Annotators Rubric – Correctness

The response is factually correct and strictly
aligns with the provided tool outputs and
course feedback context without any extrap-
olations or assumptions beyond the given
data (tool outputs and feedback reports).
Comparing tool arguments and outputs to
the LLM response can be crucial for an accu-
rate evaluation. For instance, if the response
mentions weeks 4 and 5, but the tool was
only called with week 4 as an argument, then
the LLM is extrapolating the tool output and
should be marked as NO. Only penalise tool
misuse if it affects the final answer, render-
ing it factually incorrect. It is okay if the
model relies entirely on the feedback re-
port to provide an answer. It is also okay
if the model says I couldn’t find enough in-
formation and provide general "correct" ad-
vice. This is better than "not" saying that it
couldn’t find enough information and start
making up unsupported claims information.

1142

B.2 Per-category Alignment 1143

We report the per-category Cohen’s κ for alignment 1144

between human and GPT as well as between both 1145

human annotators in Table 2. 1146

Metric Human-GPT Human-Human

Relevance 0.861 ± 0.000 0.755
Tool Relevance 0.775 ± 0.039 0.843
Actionability 1.000 ± 0.000 1.000
Correctness 0.814 ± 0.000 0.843
Overall κ 0.818 ± 0.014 0.850

Table 2: Cohen’s κ Scores between human annotations
and GPT and both human annotators.
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B.3 Evaluation Prompts1147

Using the rubric agreed upon by humans, we use1148

the following prompt to GPT-4.1. For this prompt,1149

we feed the criterion and reasoning for CoT prompt-1150

ing depending on the evaluation criterion. In the1151

following, we show the general prompt followed by1152

the specific CoT prompt used for every criterion.1153

Prompt for Evaluation

You are an impartial AI Judge evaluating
the {criterion} of a response provided by
an AI assistant to a student question about
their feedback report. Evaluate this criterion
systematically using the reasoning process
provided below.

Provided Materials

• Tools Available for the AI Assistant:
{tool_schemas}

Evaluation Process for {criterion}

[1] Restate the student’s question in your
own words.

[2] Summarize the AI assistant’s response.
[3] Summarize tool arguments used.
[4] Explain your step-by-step reasoning re-

garding the {criterion} based on the
definition provided.

[5] Make a clear YES or NO decision, ex-
plicitly justified by your reasoning.

{criterion} Definition
{criterion_definition}

Reasoning Steps
{criterion_reasoning}

Please provide your evaluation for the
{criterion} criterion only.

FINAL DECISION: YES or NO
1154

CoT Prompt – Relevance

Definition:

• YES: Response directly addresses the
student’s explicit question. It may in-
clude extra context or background in-
formation, as long as the core question

1155

is still clearly answered. Do not eval-
uate whether the correct tool was used
or whether the response is accurate. If
the response is on-topic and attempts
to answer the student’s question, even
if it cannot provide exact details due to
missing information, mark YES.

• NO: Response is vague, off-topic, or
does not engage with the core of the stu-
dent’s question. This includes generic
advice that does not attempt to answer
the actual question asked.

Reasoning Steps:

• Step 1: What specifically is the student
asking?

• Step 2: Does the response directly en-
gage with and attempt to answer that
question?

• Step 3: Even if partially detailed or
if the information is limited, does the
response stay on-topic and provide a
meaningful attempt to respond to the
student’s explicit request?

• Important: Do not penalize for incor-
rect tool usage or inaccurate content —
that is evaluated under Correctness.

1156

CoT Prompt – Actionability

Definition:

• YES: The response explicitly provides
clear steps, recommendations, or di-
rections that the student can reason-
ably follow. If the question is infor-
mational (e.g., about course structure,
exercises, resources, definitions, or ex-
planations), mark YES automatically
without reviewing the response, as no
actions are required.

If tool outputs limit the ability to offer
detailed steps (e.g., no access to spe-
cific problems or resources), still mark
YES if the response provides the most
practical and targeted guidance pos-
sible—such as pointing to relevant top-
ics, review areas, or general strategies

1157
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tied to the tool output or feedback con-
text.

• NO: Mark NO if the response is
vague—e.g., generic, non-directional
advice like "study more," "improve
your skills," or "engage better" with-
out specifying what to focus on or
how to proceed. Also mark NO if it
uses unexplained terms (e.g., "improve
competency_anticipation") or suggests
unclear, impractical, or disconnected
actions.

Reasoning Steps:

• Step 1: Determine if the student’s ques-
tion requires actionable guidance or is
purely informational. Questions about
content, exercises, resources, or defi-
nitions do not need an actionable re-
sponse (MARK YES by default).
Note: Requests for extra exercises or
additional resources are not actionable
and default to YES.

• Step 2: If actionable, check whether
the response provides clear, focused,
and applicable steps or recommenda-
tions, even if high-level (e.g., “focus on
topics like DFT and DTFT”).

• Step 3: If tool output restricts detailed
actions, assess whether the response
still offers practical next steps based
on what’s available (e.g., pointing to
relevant topics or materials).

• Step 4: Mark NO if the response only
gives broad encouragement without di-
rection (e.g., “engage more”) or in-
cludes technical terms without explana-
tion.

• Step 5: Overall, if the student
can clearly understand what to do
next—even generally—mark YES. Do
not assess tool relevance, usefulness, or
correctness here.

1158

CoT Prompt – Tool Relevance

Definition:

• YES: At least one chosen tool is con-
ceptually appropriate for the question
and is among the available tools for
producing a correct or personalized an-
swer. It does not have to be the best
tool—only reasonably capable of gen-
erating the type of answer the student
needs. Do NOT evaluate how well
the tool was used or its output—only
whether it was a strong choice given
the available tools.

• NO: Either no tool was conceptually
suited to the question, or the assis-
tant used a tool when a clearly bet-
ter, more appropriate tool was avail-
able and should have been used instead.
This includes cases where the tool used
cannot provide the type of informa-
tion requested—e.g., using behavioral
tools alone when the student asks about
course topics, study strategies, or learn-
ing materials.

Reasoning Steps:

• Step 1: Identify the type of informa-
tion needed to answer the student’s
question: performance patterns, gen-
eral advice, conceptual understanding,
study materials, or strategies.

• Step 2: Identify which tools (from the
available list, not just the ones used)
are conceptually capable of providing
that information.

– sort_student_features_with _im-
portance is for behavioral/perfor-
mance analysis and cannot sup-
port content explanations or study
material suggestions.

– get_feature_description de-
fines internal metrics and is not
suited for topic or concept-level
guidance.

– Mark NO if these tools are
used alone for questions asking
about course understanding, con-
ceptual improvement, or finding
resources.
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• Step 3: Determine if the assistant
used a conceptually appropriate tool.
If yes, mark YES. If a clearly mis-
matched tool was used—even if the an-
swer sounds plausible—mark NO. Do
not evaluate tool usage quality, argu-
ments, or output.

1160

CoT Prompt – Spelling and Grammar

Definition:

• YES: The response is clear, readable,
and contains no major spelling or gram-
matical errors affecting comprehension.
Minor errors are acceptable if they do
not hinder understanding.

• NO: Errors significantly reduce read-
ability or clarity.

Reasoning Steps:

• Step 1: Check for any major grammar
or spelling errors.

• Step 2: Decide if these errors signifi-
cantly impact readability or clarity.

1161

CoT Prompt – Correctness

Correctness
Definition:

• YES: The response is factually cor-
rect, aligns with the provided tool
outputs and course feedback context,
and avoids unsupported or misleading
claims. General strategies or logical
assumptions are acceptable as correct
interpretations of the tool (e.g., not-
ing that low engagement may impact
performance, if engagement is refer-
enced). Phrases like “likely to be rel-
evant” are acceptable. The response
does not need to explicitly acknowl-
edge missing information.

• NO: The response includes clear inac-
curacies, misleading assumptions, or
unjustified certainty not supported by
tool outputs or feedback. This in-
cludes:

1162

– Making definitive claims about
unknowns (e.g., exact exam con-
tent without syllabus details).

– Incorrect tool usage (e.g., pass-
ing week numbers to tools requir-
ing topic names). Accept course
name variants (e.g., dsp_002 for
dsp).

– Misinterpreting or misrepresent-
ing tool outputs or feedback—e.g.,
inventing definitions or substitut-
ing meanings not supported by
data.

– Any factual errors or distortions
that could mislead or confuse the
student.

Reasoning Steps:

• Step 1: Summarize the student’s ques-
tion, tool outputs, tool arguments, and
feedback reports.

• Step 2: Check for incorrect tool us-
age (e.g., wrong arguments). If present,
mark NO.

• Step 3: Verify that each claim or rec-
ommendation is explicitly supported by
tool outputs, feedback, or represents a
harmless, logical educational strat-
egy. Do not accept reinterpreted mean-
ings or invented definitions. Pay close
attention to topic names, weeks, tool
metrics, or feature names. Misuse of
these—even if plausible—should be
marked NO if potentially misleading.

• Step 4: General advice (e.g., study
tips) and harmless assumptions (e.g.,
“missing content may impact perfor-
mance”) are allowed without tool sup-
port, as long as they do not misin-
terpret or substitute tool meanings.
Phrases like “likely to help” are fine.
Penalize only if the advice introduces
harmful specifics or misleading cer-
tainty.

• Step 5: If unknown information is pre-
sented as certain (e.g., stating guaran-
teed exam content), mark NO.

1163

17



• Step 6: Ensure there are no harmful
extrapolations, misinterpretations, or
misleading assumptions. Even if harm-
less, unsupported claims (e.g., made-
up definitions) must be rejected. Sug-
gestions like reviewing extra material
are acceptable, but definitions or spe-
cific answers must come from tools or
the feedback report. Do not penalize
use of known details from the feedback
report (e.g., preferences, course top-
ics). Do not evaluate tool relevance
or completeness—focus solely on fac-
tual alignment with tool outputs and
feedback.

1164

C Student Questions Generation1165

C.1 Questions generation prompt1166

To generate questions that are close to those writ-1167

ten by students, we use persona-based prompting1168

(Wang et al., 2024b; White et al., 2023) with GPT-1169

4o. Each prompt simulates the scenario students1170

encountered during the data collection phase (see1171

section 3.1.2) and includes the MOOC name, the1172

feedback report, the question category (What have I1173

done well?, Where should I improve?, How should1174

I improve?, and What should I do next time?) and1175

a set of guidelines derived from student comments1176

and preferences observed during the study. Note1177

that all feedback reports used for generating the1178

questions were in English, and all generated ques-1179

tions are also in English.1180

Prompt for Question Generation

You are a student taking the an Online
Course (MOOC): {course_name}. Since
the courses are difficult, often with low pass-
ing rates, the teaching team wants to help
students who are not doing well to perform
better in the course by giving them personal-
ized assistance, and encourage students who
are already performing well to continue.
Our goal is to give students feedback on
their performance and possible trajectories.
To do this, we use various weekly behav-
ior features (such as the number of video
clicks or how accurately questions are an-
swered on weekly quizzes). We predict stu-
dent performance early in the course (before

1181

the halfway point) as passing or failing be-
havior. We use the explanation of the predic-
tion to give students additional, personalized
feedback to help pass the course.
You received the following personalized
feedback report: {feedback_report}

Your Task:

• Generate follow-up questions in the
style: {style}, defined as {ques-
tion_styles[style]}.

• Sound like a student: use simple, in-
formal language, include grammatical
mistakes, short, direct, or incomplete
questions.

• Refer to these student examples: {ques-
tions_sample} (don’t copy — generate
new ones).

• Include:

– Short: "Why did my score drop?"
– Medium: "How can I use Week 2

to help later weeks?"
– Long: "Week 7 not in report, but

says prep for 6 and 8. Does that
mean Week 7 is easier?"

Guidelines for Generating Questions:
[1] Use everyday student language. Typos

and grammar issues are okay.
[2] Ask about specific actions: e.g., "Should

I rewatch Week 5 videos?"
[3] Keep questions direct and practical.
[4] Avoid abstract or overly technical ques-

tions.
[5] Do not ask about general habits or exter-

nal resources.
[6] Show emotion or stress, e.g., "I did bad,

what to fix?"
[7] Focus on content: Week 5 priority,

quizzes, misunderstood topics.
[8] Avoid overused questions like:

• "Why did my score drop?"
• "What can I do to improve?"
• "Week X wasn’t mentioned, why?"

[9] Long questions (40+ words) should in-
volve improvement strategies or specific
content, not scheduling. 1182
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C.2 Generated Questions Analysis1183

To compare real student questions with those gener-1184

ated by GPT-4o, we evaluate distributional similar-1185

ity using Shannon entropy, perplexity, and cosine1186

similarity. Figures 10–14 show that generated ques-1187

tions closely match human-authored ones across1188

feedback categories and MOOCs in terms of infor-1189

mativeness, fluency, and diversity.1190

(a) African Cities (b) Digital Signal
Processing

(c) Elements of Ge-
ometry

Figure 10: KDE plots of Shannon Entropy for human
vs. generated questions across MOOCs

(a) How can I im-
prove?

(b) Where to im-
prove?

(c) What to do next
time?

Figure 11: KDE plots of Shannon Entropy across ques-
tion types

(a) African Cities (b) Digital Signal
Processing

(c) Elements of Ge-
ometry

Figure 12: KDE plots of Perplexity across MOOCs

D Tools: Topic Dependency Mapping.1191

In this section, we report the topic dependency1192

maps created for the Digital Signal Processing1193

(DSP) MOOC, the Elements de Géomatique (Geo)1194

MOOC and the Villes Africaines (VA) MOOC used1195

for the Topic Dependancy Mapping tool. Note that1196

GEO and VA are taught in french while DSP and1197

LNV are taught in English. We generate the VA1198

and DSP maps in English and the GEO map in1199

french.1200

E User Study1201

In this section, we summarize the details of the user1202

study we conducted. We start with details about the1203

participants followed by the introduction used and1204

(a) How can I im-
prove?

(b) Where to im-
prove?

(c) What to do next
time?

Figure 13: KDE plots of Perplexity across question
types

(a) Pairwise Cosine Similar-
ity by MOOC

(b) Pairwise Cosine Similar-
ity by Feedback Category

Figure 14: Cosine similarity comparisons of real vs.
generated questions

ethical agreement. Finally, we show a statistical 1205

analysis of the user ratings results shown in Fig. 5. 1206

E.1 Participants Background 1207

We recruited 108 participants via Prolific, selecting 1208

individuals aged 18 and older who identified as stu- 1209

dents. As post-secondary students, they were well- 1210

positioned to engage with the academic context and 1211

assess the clarity and usefulness of the explanations 1212

provided. During the study, we gathered data on 1213

their experience with online courses (MOOCs), ed- 1214

ucation level, and confidence in handling academic 1215

tasks (See Fig. 18 for the detailed demographics). 1216

The median completion time was 35 minutes, and 1217

participants earned an average hourly rate of £9.00 1218

which was the recommended rate by the platform 1219

based on the participants’ demographics. 1220

E.2 User Study Introduction 1221

User Study Introduction Section

Dear participant,
Thank you for participating in our study on
model explanations. We are very grateful
for your participation and your invaluable
insight. Please read this Explanatory State-
ment in full before proceeding. If you would
like further information regarding any aspect
of this project, please contact us using the
email address provided below.

1222
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Figure 15: Digital Signal Processing (DSP) topic de-
pendency map. The direction of each arrow indicates
a dependency, where the source topic provides founda-
tional knowledge required to understand the target topic

Figure 16: Elements de Géomatique (Geo) topic de-
pendency map. The direction of each arrow indicates
a dependency, where the source topic provides founda-
tional knowledge required to understand the target topic
(or groups of topics)

We are a group of researchers from the
Laboratory at , dedicated to

improving education through technology.
The goal of this study is to evaluate the re-
sponses of a language model when asked
questions about progress feedback reports
given to students to help improve their per-
formance in an online course.

Human Research Ethics
This survey has been approved by the

Human Research Ethics Commit-
tee under application number

. re-
views research proposals involving human
participants to ensure they are ethically ac-
ceptable.

• All personal information will be kept
confidential and anonymized. Only
demographic information is recorded,
and it will be reported only in aggre-
gate form to prevent identifying any
individual participant.

• You may withdraw at any time. Any
1223

Figure 17: Villes Africaines (VA) topic dependency
map. The direction of each arrow indicates a depen-
dency, where the source topic provides foundational
knowledge required to understand the target topic

Age Gender How often do you 
struggle in a course?

MOOC Experience Education Level

Figure 18: Demographics of study participants (age,
gender, course struggles, MOOC Experience, and edu-
cational background)

data you have provided up to that point
will be destroyed.

• All data will be collected, stored se-
curely, and reported in accordance with

• Only anonymized or aggregated data
may be used in future research (subject
to ethics approval) and made available
to other researchers for further analysis
and verification.

• Only the principal investigator and the
designated researchers will have access
to the original data under strict con-
fidentiality. Results from the project
may be published in conference papers
and/or journal articles, but no personal
data will be shared.

• Personal data will be stored for 5 years
1224
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from the date of collection. During this
period, participants have the right to
access their data and inquire about its
processing. To exercise this right, con-
tact the Principal Investigator.

By participating in this survey, you agree
that your data may be used for scientific
purposes.
In the following study, you will read three
progress feedback reports and interact
with a chatbot designed to answer your ques-
tions about each report. You will be ex-
pected to ask three questions per report.
The study should take approximately 30
minutes. Please ensure you have sufficient
time to complete it in full, as incomplete
submissions will not be considered.
We ask that you approach the questions se-
riously and complete them to the best of
your ability. Responses will be reviewed for
quality, and submissions that appear unseri-
ous may be discarded. If you encounter any
issues or would like to provide additional
feedback or request more information, feel
free to contact us.

Context

You are a student enrolled in three online
courses (MOOCs): Digital Signal Process-
ing, Elements of Geometry, and Launching
New Ventures. These courses are known for
their challenging content and typically low
passing rates. To better support students, the
teaching team has implemented a system
that provides personalized feedback based
on each student’s learning behavior.
We used a highly accurate predictive model
(over 90% accuracy) to forecast student suc-
cess or risk of failure early in the course, us-
ing weekly behavioral data (e.g., number of
video views, quiz performance, engagement
metrics). Based on these predictions, each
student received a personalized feedback re-
port explaining the factors influencing their
predicted performance and offering tailored
advice to improve or maintain success.
This study explores how students can inter-
act with these feedback reports using a lan-
guage model assistant. This assistant allows
you to ask questions about your feedback re-

1225

port, clarify details, seek advice, and better
understand the factors affecting your learn-
ing progress. To ensure accuracy, the as-
sistant uses deterministic tools to retrieve
precise information needed to answer your
questions.
You will receive three feedback reports
and are expected to ask three to five clari-
fying questions for each report. Questions
must focus only on the feedback content.
For the same report, you may ask different
questions or a sequence of follow-ups.

Evaluation Criteria
We will assess the assistant’s responses
based on the following criteria:

• Relevance: The response directly ad-
dresses the question without veering
off-topic.

• Usefulness: The response provides
meaningful insights that enhance learn-
ing or deepen understanding.

• Actionability: The response includes
clear, practical steps or guidance rele-
vant to the question.

• Coverage: The response thoroughly
addresses all parts of the question, in-
cluding sub-questions.

• Conciseness: The response is clear and
complete, using the fewest words nec-
essary while avoiding repetition or un-
necessary detail.

1226

E.3 User Study Ratings Analysis 1227

Table 3 shows results of ANOVA test. For all 1228

criteria, we failed to reject the null hypothesis 1229

(p > 0.05), indicating no significant difference 1230

in perceived response quality. 1231

Table 3: One-way ANOVA comparing average ratings
across models for each evaluation criterion. All p-values
> 0.05 indicate no statistically significant difference.

Actionability Conciseness Coverage Relevance Usefulness

F-value 0.204 0.366 0.619 0.408 0.061
Degrees of freedom (2, 321) (2, 321) (2, 321) (2, 321) (2, 321)
p-value 0.816 0.694 0.539 0.665 0.941
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F Question Category Annotation Rubric1232

In this section, we provide the rubric used to cat-1233

egorize the question categories. They are adapted1234

from (Mandouit and Hattie, 2023).1235

Question Category Annotation Rubric – how
can I improve?

"How to improve?” relates to how to correct
certain errors or what strategies students can
follow to rectify their problems. It should
be related to current progress and how to
fix current issues. Example: How can I do
better in the weeks 3,4,5?

1236

Question Category Annotation Rubric –
where to improve?

“Where to improve?” Indicates where errors
have occurred, and what needs to be fixed.
This category includes questions that ask for
elaboration on specific tasks or weaknesses
in certain weeks or topics. Example: Why
did my performance drop?

1237

Question Category Annotation Rubric –
what to do next time?

“What to do next time?” relates to future di-
rections, events or tasks that will be carried
out in the future. This also encompasses
self-regulation or questions regarding devel-
oping the capacity to self-monitor. Example:
What is the best way to start reviewing for
the next week’s material?

1238

Question Category Annotation Rubric –
course evaluation

Relates to course evaluation criteria and non-
improvement or feedback questions. Exam-
ple: How is the evaluation of the course
done?

1239

G Inference Prompts1240

We report an example of the self-reflection prompt1241

used to correct errors in tool calling. We addi-1242

tionally provide prompts used for inference for the1243

initial reasoning stage and the multiple reasoning1244

stages.1245

Self Reflection Prompt Example for Error
Correction

You encountered an error during reasoning
or tool invocation.

Error Message

I encountered an error: {str(e)}. Please
fix your reasoning or calls so we can reach
a final answer.
Remember to use the correct tokens for tool
call and final answer: [TOOL_CALL] and
[FINAL_ANSWER].
Terminate them using:
[END_OF_TOOL_CALL] and
[END_OF_FINAL_ANSWER].
Note: Without [END_OF_TOOL_CALL] and
[END_OF_FINAL_ANSWER], your answer
cannot be parsed.

<|start_header_id|> user
<|end_header_id|>
[ERROR_NOTICE]{error_message}
[/ERROR_NOTICE]
<|eot_id|><|start_header_id|>
assistant<|end_header_id|>
[REASONING]

1246

Initial Stage Prompt

You are a reasoning tool-calling agent
tasked with analyzing a student’s question
about the personalized feedback they re-
ceived. Students are enrolled in MOOC
courses and have received individualized
feedback on their learning progress and per-
formance.
You do not know anything about the
MOOCs or the student and are not allowed
to give any advice or information that is not
in the feedback report or the tool outputs.

Context

• Course Name: {course_name}

• Student Feedback Report:
{feedback_report}

Available Tools

{tool_schemas}
1247

22



Your Task

• Analyze the student’s question in relation
to their feedback report.

• Think about the best tool to use to answer
the student’s question.

– Use tools for behavior analysis when
the question is about the student’s
behavior.

– Use
impact_of_student_behaviors
for hypothetical or general be-
havioral questions (like time
management, catching up, or study
strategies). It does not provide
personalized information about the
student’s specific activity.

– Use tools for course content when the
question is about the course content.

– Use tools for course evaluation when
the question is about the course eval-
uation.

– Use tools for student performance
when the question is about the stu-
dent’s performance.

• Provide a reasoning to determine the
first tool needed to answer the stu-
dent’s question. Wrap your reasoning in
[REASONING] and [END_OF_REASONING]
tokens.

• Determine the single best tool from the
tools above to retrieve that information.

1248

Multi Stage Prompt

You are a reasoning tool-calling agent talk-
ing to a student and responsible for ana-
lyzing the student’s question in relation to
their personalized feedback. Students are en-
rolled in MOOC courses and receive individ-
ualized feedback on their learning progress
and performance.
You will be talking to the student and you
need to provide them with the best answer
possible.
You do not know anything about the
MOOCs or the student and are not allowed
to give any advice or information that is not

1249

in the feedback report or the tool outputs.

Context

• Course Name: {course_name}

• Student Feedback Report:
{feedback_report}

Available Tools

{tool_schemas}

Task

• Given the student’s question, previous
reasoning, tool calls, and tool outputs,
determine whether another tool call is
needed or if a final answer can be pro-
vided.

• If a tool call is needed:

– Explain why the tool call is required.
– Generate the structured tool call.

• If the final answer can be provided:

– Explain why no further tool calls are
needed.

– Generate the structured final an-
swer.

Response Format

• Always wrap reasoning in [REASONING]
... [END_OF_REASONING].

• If making a tool call, follow
reasoning with [TOOL_CALL] ...
[END_OF_TOOL_CALL].

• If providing the final answer, fol-
low reasoning with [FINAL_ANSWER] ...
[END_OF_FINAL_ANSWER].

• Stop after the tool call or final answer.
Do not generate tool outputs or explana-
tions beyond the required response.

• Do not use your own knowledge, only use
the feedback report and the tool schemas.

1250
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