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Abstract
In-context learning (ICL) has emerged as a001
powerful paradigm leveraging LLMs for spe-002
cific downstream tasks by utilizing labeled ex-003
amples as demonstrations (demos) in the pre-004
condition prompts. Despite its promising per-005
formance, ICL suffers from instability with the006
choice and arrangement of examples. Addition-007
ally, crafted adversarial attacks pose a notable008
threat to the robustness of ICL. However, exist-009
ing attacks are either easy to detect, rely on ex-010
ternal models, or lack specificity towards ICL.011
This work introduces a novel transferable attack012
against ICL to address these issues, aiming to013
hijack LLMs to generate the target response014
or jailbreak. Our hijacking attack leverages a015
gradient-based prompt search method to learn016
and append imperceptible adversarial suffixes017
to the in-context demos without directly con-018
taminating the user queries. Comprehensive019
experimental results across different genera-020
tion and jailbreaking tasks highlight the effec-021
tiveness of our hijacking attack, resulting in022
distracted attention towards adversarial tokens023
and consequently leading to unwanted target024
outputs. We also propose a defense strategy025
against hijacking attacks through the use of026
extra clean demos, which enhances the robust-027
ness of LLMs during ICL. Broadly, this work028
reveals the significant security vulnerabilities029
of LLMs and emphasizes the necessity for in-030
depth studies on their robustness.031

1 Introduction032

In-context learning (ICL) is an emerging technique033

for rapidly adapting large language models (LLMs),034

i.e., GPT-4 (Achiam et al., 2023) and LLaMA2035

(Touvron et al., 2023), to new tasks without fine-036

tuning the pre-trained models (Brown et al., 2020).037

The key idea behind ICL is to provide LLMs with038

labeled examples as in-context demonstrations (de-039

mos) within the prompt context before a test query.040

LLMs are able to generate responses to queries via041

learning from the in-context demos (Dong et al.,042

2022; Min et al., 2022).043

Several existing works, however, have demon- 044

strated the highly unstable nature of ICL (Zhao 045

et al., 2021; Chen et al., 2022). Specifically, per- 046

formance on target tasks using ICL can vary wildly 047

based on the selection and order of demos, giving 048

rise to highly volatile outcomes ranging from ran- 049

dom to near state-of-the-art (Qiang et al., 2020; 050

Lu et al., 2021; Min et al., 2022; Pezeshkpour and 051

Hruschka, 2023; Qiang et al., 2024). Correspond- 052

ingly, several approaches (Liu et al., 2021; Wu 053

et al., 2022; Nguyen and Wong, 2023) have been 054

proposed to address the unstable issue of ICL. 055

Further research has examined how adversarial 056

examples can undermine the performance of ICL 057

(Zhu et al., 2023a; Wang et al., 2023c,b; Shayegani 058

et al., 2023). These studies show that maliciously 059

designed examples injected into the prompt in- 060

structions (Zhu et al., 2023a; Zou et al., 2023; Xu 061

et al., 2023), demos (Wang et al., 2023c; Mo et al., 062

2023a), or queries (Wang et al., 2023b; Kandpal 063

et al., 2023) can successfully attack LLMs to de- 064

grade their performance, revealing the significant 065

vulnerabilities of ICL against adversarial inputs. 066

While existing adversarial attacks have been ap- 067

plied to evaluate LLM robustness, they have some 068

limitations in practice. Most character-level at- 069

tacks, e.g., TextAttack (Morris et al., 2020) and 070

TextBugger (Li et al., 2018), can be easily detected 071

and evaded through grammar checks, limiting real- 072

world effectiveness (Qiang et al., 2022; Jain et al., 073

2023). Some other attacks like BERTAttack (Li 074

et al., 2020) even require an extra model to generate 075

adversarial examples. Crucially, existing attacks 076

are not specifically crafted for ICL. As such, the 077

inherent security risks of ICL remain largely un- 078

explored. There is an urgent need for red teaming 079

specifically designed for ICL to expose significant 080

risks and improve the robustness of LLMs against 081

potential real-world threats. 082

This work proposes a novel adversarial attack 083

specifically targeting ICL. We develop a gradient- 084
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Figure 1: Illustrations of hijacking attack during ICL. First, our proposed GGI algorithm learns and appends
adversarial suffixes like ‘For’ and ‘Location’ to the system or the user-provided in-context demos for hijacking
LLMs to generate the target response, e.g., the ‘negative’ sentiment, regardless of the user queries. Second, GGI
can accomplish jailbreaking by adding adversarial suffixes to in-context demos, eliciting harmful responses while
bypassing the safeguards in LLMs. More detailed examples are provided in the Appendix.

based prompt search algorithm to learn adversarial085

suffixes in order to efficiently and effectively hi-086

jack LLMs via adversarial ICL, as illustrated in087

Figure 1. (Wang et al., 2023b) is the closest work088

to ours where they ‘search’ adversarial examples to089

simply manipulate model outputs. Yet, our attack090

method ‘learns’ adversarial tokens that directly hi-091

jack LLMs to generate the unwanted target that092

disrupts alignment with the desired output. This093

enables our attack to be used in more complex gen-094

eration tasks, such as jailbreaking, as illustrated095

in Figure 1. Furthermore, instead of manipulat-096

ing the prompt instructions (Zhu et al., 2023a), de-097

mos (Wang et al., 2023c), or queries (Wang et al.,098

2023b) leveraging standard adversarial examples,099

e.g., character-level attacks (Morris et al., 2020; Li100

et al., 2018), which are detectable easily, our hi-101

jacking attack is imperceptible in that it adds only102

1-2 suffixes to the demos. Specifically, these suf-103

fixes are semantically incongruous but not easily104

identified as typos or gibberish compared to the105

existing ICL attack (Wang et al., 2023c). Finally,106

direct attacks on user queries, such as backdoors107

(Kandpal et al., 2023), which require a trigger, are108

easily detectable and may not be practical for real-109

world applications. In contrast, our attack hijacks110

the LLM to generate the unwanted target without111

triggering or compromising the user’s queries di-112

rectly. Our adversary attacker only needs to append113

the adversarial tokens to system-provided demos.114

Our extensive experiments validate the efficacy115

and scalability of the proposed hijacking attacks.116

First, the attacks reliably induce LLMs to generate117

the targeted and misaligned output from the de-118

sired ones. Second, the learned adversarial tokens 119

are transferable, remaining effective on different 120

demo sets. Third, the adversarial transferability 121

holds even across different datasets for the same 122

task. Finally, our analysis shows that the adversar- 123

ial suffixes distract LLMs’ attention away from the 124

task-relevant concepts. Our hijacking attacks pose 125

a considerable threat to practical LLM applications 126

during ICL due to their robust transferability, im- 127

perceptibility, and scalability. 128

As this work represents one of the first efficient 129

adversarial demo attacks during ICL, strategies for 130

defending against such attacks have yet to be thor- 131

oughly investigated. Recently, (Mo et al., 2023b) 132

introduced a method for defending against back- 133

door attacks at test time, leveraging few-shot demos 134

to correct the inference behavior of poisoned LLMs. 135

Similarly, (Wei et al., 2023b) explored the power 136

of in-context demos in manipulating the alignment 137

ability of LLMs and proposed in-context attack 138

and in-context defense methods for jailbreaking 139

and guarding the aligned LLMs. Consequently, we 140

explore the potential of using in-context demos ex- 141

clusively to rectify the behavior of LLMs subjected 142

to our hijacking attacks. Our defense strategy em- 143

ploys additional clean in-context demos at test time 144

to safeguard LLMs from being hijacked by adver- 145

sarial in-context demos. The experimental results 146

demonstrate the efficacy of our proposed defense 147

method against adversarial demo attacks. 148

This work makes the following contributions: 149

(1) We propose a novel stealthy adversarial attack 150

targeting in-context demos to hijack LLMs to gen- 151

erate unwanted target output during ICL. (2) We 152
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design a novel and efficient gradient-based prompt153

search algorithm to learn adversarial suffixes to154

demos. (3) Comprehensive experimental results155

across various generation tasks demonstrate the156

effectiveness of our hijacking attack. (4) Our ex-157

tensive experiments reveal the transferability of the158

proposed attack across demo sets and datasets. (5)159

The proposed defense strategy effectively protects160

LLMs from being compromised by our attacks.161

2 Preliminaries162

2.1 ICL Formulation163

Formally, ICL is characterized as a problem involv-164

ing the conditional generation of text (Liu et al.,165

2021), where an LLM M is employed to gen-166

erate response yQ given an optimal task instruc-167

tion I , a demo set C, and an input query xQ. I168

specifies the downstream task that M should per-169

form, e.g., “Choose sentiment from positive or170

negative” used in the sentiment generation task.171

C consists of N (e.g., 8) concatenated data-label172

pairs following a specific template S, formally:173

C = [S(x1, y1); · · · ; S(xN , yN )], ‘;’ here de-174

notes the concatenation operator. Thus, given the175

input prompt as p = [I; C; S(xQ, _)], M gener-176

ates the response as ŷQ = M(p). S(xQ, _) here177

means using the same template as the demos but178

with the label empty.179

2.2 Adversarial Attack on LLMs180

In text-based adversarial attacks, the attackers ma-181

nipulate the input x with the goal of misleading the182

model to generate inaccurate or malicious outputs183

(Zou et al., 2023; Maus et al., 2023). Specifically,184

given the input-output pair (x, y), the attackers aim185

to learn the adversarial perturbation δ adding to186

x by maximizing the model’s objective function187

but without misleading humans by bounding the188

perturbation within the “perceptual” region ∆. The189

objective function of the attacking process thus can190

be formulated as:191

max
δ∈∆

L(M(xQ + δ), yQ). (1)192

L here denotes the task-specific loss function, for193

instance, cross-entropy loss for classification tasks.194

3 The Threat Model195

3.1 ICL Hijacking Attack196

ICL consists of an instruction I , a demo set C,197

and an input query xQ, providing more potential198

attack vectors than conventional text-based adver-199

sarial attacks. This work focuses on manipulating200

C without changing I and xQ.201

Specifically, our hijacking attack learns the ad- 202

versarial suffix tokens to the in-context demos 203

to manipulate LLMs’ output via a new greedy 204

gradient-based prompt injection algorithm. Given a 205

clean demo set C = [S(x1, y1); · · · ; S(xN , yN )], 206

our hijacking attack automatically produces an ad- 207

versarial suffix for each demo in c, formally: 208

C ′ = [S(x1+δ1, y1); · · · ; S(xN+δN , yN )], (2) 209

where C ′ denotes the perturbed demo set. To make 210

it clear, the adversarial suffixes appended to each 211

demo as perturbations are different. In this case, the 212

attack or perturbation budget refers to the number 213

of tokens in each adversarial suffix. 214

As a result, our hijacking attack induces M to 215

generate an unwanted target output yT via append- 216

ing adversarial suffix tokens on the in-context de- 217

mos as yT = M(p′). In other words, M generates 218

the same or different responses for the clean and 219

perturbed prompts depending on the True or False 220

of M(p) = yT : 221{
M(p) = M(p′), True,
M(p) ̸= M(p′), False,

222

where p = [I; C; S(xQ, _)] and p′ = 223

[I; C ′; S(xQ, _)], respectively. 224

3.2 Hijacking Attack Objective 225

We express the goal of the hijacking attack as a for- 226

mal objective function. Let us consider the LLM 227

M as a function that maps a sequence of tokens 228

x1:n, with x ∈ {1, · · · , V } where V denote the 229

vocabulary size, namely, the number of tokens, to 230

a probability distribution over the next token xn+1. 231

Specifically, P(xn+1|x1:n) denotes the probabil- 232

ity that xn+1 is the next token given the previous 233

tokens x1:n. 234

Using the notations defined earlier, the hijack- 235

ing attack objective we want to optimize is sim- 236

ply the negative log probability of the target token 237

xn+1. The generated target output yT differs from 238

the ground truth label yQ for the training query 239

(xQ, yQ). Formally: 240

L(xQ) = − logP(M(yT |p′)), (3) 241

where yTneqyQ, demonstrating the attack hijacks 242

mathcalM to generate the target output. For in- 243

stance, the target output for the sentiment analysis 244

task can be set as ‘positive’ or ‘negative’. For the 245

jailbreaking task, we set the target token as ‘Sure’ 246

3



aiming to elicit the following harmful responses. In247

summary, the problem of optimizing the adversar-248

ial suffix tokens can be formulated as the following249

optimization objective:250

minimize
δi∈{1,··· ,V }|N|

L(xQ), (4)251

where i and N denote the indices and the number252

of the demos, respectively.253

3.3 Greedy Gradient-guided Injection254

A primary challenge in optimizing Eq. 4 is opti-255

mizing over a discrete set of possible token values.256

Motivated by prior works (Shin et al., 2020; Zou257

et al., 2023; Wen et al., 2024), we propose a simple258

yet effective algorithm for LLMs hijacking attacks,259

called greedy gradient-guided injection (GGI) algo-260

rithm (Algorithm 1 in the Appendix). The key idea261

comes from greedy coordinate descent: if we could262

evaluate all possible suffix token injections, we263

could substitute the tokens that maximize the adver-264

sarial loss reduction. Since exhaustively evaluating265

all tokens is infeasible due to the large candidate266

vocabulary size, we instead leverage gradients with267

respect to the suffix indicators to find promising268

candidate tokens for each position. We then eval-269

uate all of these candidate injections with explicit270

forward passes to find the one that decreases the271

loss the most. This allows an efficient approxima-272

tion of the true greedy selection. We can optimize273

the discrete adversarial suffixes by iteratively in-274

jecting the best tokens.275

We compute the linearized approximation of re-276

placing the demo xi in C by evaluating the gra-277

dient ∇e
x
j
i

L(xQ) ∈ R|V |, where e
xj
i

denotes the278

vector representing the current value of the j-th279

adversarial suffix token. Note that because LLMs280

typically form embeddings for each token, they can281

be written as functions of e
xj
i
, and thus we can282

immediately take the gradient with respect to this283

quantity (Ebrahimi et al., 2017; Shin et al., 2020).284

The key aspects of our GGI algorithm are: firstly,285

it uses gradients of the selected token candidates to286

calculate the top candidates; secondly, it evaluates287

the top candidates explicitly to identify the most288

suitable one; and lastly, it iteratively injects the289

best token at each position to optimize the suffixes.290

This approximates an extensive greedy search in a291

computationally efficient manner.292

4 The Defense Method293

Having developed the hijacking attack by incorpo-294

rating adversarial tokens into the in-context demos,295

we now present a straightforward yet potent de- 296

fense strategy to counter this attack. Initially, we 297

assume that defenders treat LLMs as black-box, 298

lacking any insight into their training processes 299

or underlying parameters. The defenders apply 300

defense on the input prompt p directly during test- 301

time evaluation. Their goal is to rectify the behav- 302

ior of LLMs and induce LLMs to generate desired 303

responses to user queries. 304

Given an input prompt p′ that includes adver- 305

sarial tokens within the demos C ′, we assume 306

that LLMs, when presented with demos containing 307

clean data for the same tasks, can understand the 308

genuine intent of the user’s query through ICL, 309

rather than being misled by the adversarial de- 310

mos. In this context, ‘clean data’ refers to data 311

without any adversarial tokens and is randomly se- 312

lected from the training set. More precisely, the 313

defenders modify the input prompt p′ into p̃ by 314

appending or inserting more clean demos into the 315

demo set C ′, as follows: p̃ = [I;C ′; C̃;S(xQ, _)]. 316

C̃ = [S(x̃1, ỹ1); · · · ; S(x̃N , ỹN )] here denotes 317

the clean demos. Through this approach, the de- 318

fender guarantees that the in-context demos align 319

with the user’s query and possess resilience against 320

adversarial attacks. In our experiments, we main- 321

tained an equal number of demos in C ′ and C̃ and 322

observed that this method resulted in effective de- 323

fense across various datasets and tasks. 324

5 Experiment Setup 325

Datasets: We evaluate the performance of our 326

LLM hijacking algorithm and other baseline al- 327

gorithms on several text generation benchmarks. 328

SST-2 (Socher et al., 2013) and Rotten Tomatoes 329

(RT) (Pang and Lee, 2005) are binary sentiment 330

analysis datasets of movie reviews. AG’s News 331

(Zhang et al., 2015) is a multi-class news topic gen- 332

eration dataset. AdvBench (Zou et al., 2023) is a 333

new adversarial benchmark to evaluate jailbreak at- 334

tacks for circumventing the specified guardrails of 335

LLMs to generate harmful or objectionable content. 336

These datasets enable us to evaluate the proposed 337

hijacking attacks across a variety of text generation 338

tasks, including both single token and long sequen- 339

tial text generation. More details of the dataset 340

statistics are provided in Table 5 of the Appendix. 341

Large Language Models: The experiments are 342

conducted using various LLMs covering a diverse 343

set of architectures and model sizes, i.e., GPT2-XL 344

(Radford et al., 2019), LLaMA-7b/13b (Touvron 345

et al., 2023), OPT-2.7b/6.7b (Zhang et al., 2022), 346
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Table 1: The performance on sentiment analysis task with and without attacks on ICL. The ‘Clean’ row in gray color
represents the accuracy with clean in-context demos. Other rows illustrate the accuracies with adversarial in-context
demos. The details of the baselines in green color are present in Section B of the Appendix. Specifically, we employ
TextAttack (TA) (Morris et al., 2020) following the attack in (Wang et al., 2023c) as the most closely related baseline
for our attack (GGI). The accuracies of positive (P) and negative (N) sentiments are reported separately to highlight
the effectiveness of our hijacking attack.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

GPT2-XL

Clean 94.7 52.2 88.6 49.4 91.6 69.0 93.3 54.7 88.6 76.9 90.2 80.5
Square 99.4 2.0 99.8 4.2 99.4 11.0 99.8 1.5 100 4.1 99.3 7.5
Greedy 100 10.8 100 6.2 100 0.2 100 5.3 100 2.8 100 0.0

TA 95.0 2.2 99.8 17.8 99.6 21.6 95.9 8.1 96.3 41.3 96.4 47.3
GGI 100 1.2 100 0.0 100 0.0 100 2.8 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

Vicuna-7b

Clean 91.4 81.2 88.2 81.4 94.6 82.6 84.8 78.4 85.9 80.5 90.4 85.4
Square 89.2 84.4 86.6 85.8 94.0 83.8 85.9 85.4 84.6 88.6 91.6 88.4
Greedy 93.0 83.4 88.4 87.0 94.6 80.0 91.2 82.8 86.9 88.7 91.9 85.9

TA 87.0 85.2 76.2 88.2 94.2 80.6 83.3 84.2 79.6 88.6 92.1 84.4
GGI 90.6 42.2 96.4 23.2 100 0.8 87.6 36.4 95.1 35.7 100 0.2

LLaMA-7b

Clean 81.4 86.3 74.4 91.9 82.7 92.4 86.0 83.6 81.9 91.6 89.3 97.8
Square 86.8 80.0 96.8 58.6 98.0 56.4 86.9 57.4 97.4 50.1 97.8 57.4
Greedy 95.0 47.6 100 0.0 100 0.0 88.9 2.8 99.8 0.0 100 0.0

TA 87.2 77.8 93.8 69.0 99.8 8.8 83.1 57.4 94.2 68.9 99.6 3.80
GGI 100 0.4 100 0.0 100 0.0 96.8 0.0 100 0.0 100 0.0

LLaMA-13b

Clean 97.8 76.4 95.6 88.0 95.8 90.0 94.2 84.8 92.7 92.1 91.4 91.9
Square 98.4 72.8 98.2 78.4 97.8 85.4 93.6 87.4 94.4 84.1 94.2 87.6
Greedy 98.0 41.4 100 3.0 100 0.0 55.9 11.3 92.9 0.0 100 0.4

TA 98.2 72.2 92.8 92.8 97.5 87.6 94.8 81.8 88.0 94.0 92.5 89.3
GGI 99.2 37.8 100 7.2 100 0.0 99.1 3.8 86.1 3.6 100 0.0

Table 2: The performance of AG’s News topic generation task with and without attacks on ICL. The clean and attack
accuracies are reported separately for the four topics. These results highlight the effectiveness of our hijacking
attacks to induce LLMs to generate the target token, i.e., “tech”, regardless of the query content.

Model Method 4-shots 8-shots
word sports business tech word sports business tech

GPT2-XL

Clean 48.5 87.0 64.9 71.9 48.2 50.6 71.0 83.6
Square 2.0 66.0 26.8 96.0 19.6 65.6 28.0 97.2
Greedy 12.8 60.4 29.2 96.4 8.0 21.2 10.0 98.8

TA 54.8 84.0 73.2 82.4 82.0 82.4 91.2 57.6
GGI 0.0 2.0 0.4 100 0.0 0.0 0.0 100

LLaMA-7b

Clean 68.2 96.8 66.6 49.0 88.6 97.4 78.2 61.0
Square 78.4 98.0 76.0 36.8 94.4 98.0 60.0 57.6
Greedy 69.6 98.8 75.2 51.6 89.6 100 68.4 73.6

TA 42.4 94.8 67.6 32.4 95.2 96.0 39.2 24.8
GGI 0.0 20.0 0.00 98.0 29.6 56.0 0.0 100

and Vicuna-7b (Chiang et al., 2023). This enables347

us to comprehensively evaluate attack effectiveness348

on both established and SOTA LLMs.349

6 Result and Discussion350

6.1 ICL Performance351

The rows identified as ‘Clean’ in Table 1 and Ta-352

ble 2 show the ICL performance on the respective353

tasks when using clean in-context demos. In par-354

ticular, Table 1 presents the accuracies for the gen-355

eration of positive (P) and negative (N) sentiments356

in the SST-2 and RT datasets. All the tested LLMs357

perform well, achieving an average accuracy of358

83.6% on SST-2 and 86.7% on RT across various359

in-context few-shot settings. Table 2 indicates that360

LLMs with ICL also perform well in the context361

of multi-class generation on AG’s News dataset.362

The average accuracies stand at 69.1% for 4-shot363

settings and 72.3% for 8-shot settings across vari-364

ous LLMs. Additionally, LLMs with ICL exhibit 365

improved performance with an increased number 366

of in-context demos, particularly achieving best 367

results with 8-shot settings. 368

6.2 Hijacking Attack Performance 369

While LLMs utilizing ICL show strong perfor- 370

mance with clean in-context demos, Tables 1 and 371

2 reveal that hijacking attacks significantly un- 372

dermine their effectiveness. While the baseline 373

methods, i.e., Square, Greedy, and TA, deterio- 374

rate model performance on the smaller LLM, e.g., 375

GPT2-XL, they fail to effectively manipulate the 376

larger LLMs, e.g., LLaMA-7/13 b. Additionally, 377

these methods become inefficient as the number 378

of in-context demonstrations increases. Compared 379

to the baselines, our hijacking attacks successfully 380

induce LLMs to generate the targeted positive senti- 381

ment through a few shots of adversarially perturbed 382
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Table 3: The performance of the defenses using ASRs across various LLMs and datasets. Adv denotes our hijacking
attack using the adversarial demos. Adv+Clean, i.e., Pre and Pro, represents the proposed defense method, leveraging
extra clean demos with adversarial demos. Onion (Qi et al., 2020) is the defense method based on outlier word
detection and filtering.

Model
SST-2 RT AG’s News

Adv Adv+Clean Onion Adv Adv+Clean Onion Adv Adv+Clean OnionPre Pro Pre Pro Pre Pro
GPT2-XL 100 100 99.6 100 100 100 97.4 100 99.1 75.5 80.5 83.7
OPT-6.7b 98.2 44.9 52.5 59.3 99.9 50.2 57.8 74.2 65.6 23.5 22.5 14.1

LLaMA-7b 100 49.1 98.3 99.6 100 53.1 99.8 99.9 82.8 42.2 88.2 9.8

Table 4: Jailbreaking performance on 200 randomly
selected harmful queries from AdvBench.

Model Method ASR
2-shots 4-shots

LLaMA2-7b-chat Clean Query Only 1.5
ICA (Wei et al., 2023b) 3.5 4.0

GGI (ours) 39.5 54.5

Vicuna-7b Clean Query Only 65.0
ICA (Wei et al., 2023b) 4.0 67.5

GGI (ours) 80.0 91.5

LLaMA3-8b-chat Clean Query Only 21.0
ICA (Wei et al., 2023b) 20.0 61.0

GGI (ours) 63.5 83.5

demos, resulting in predominantly higher positive383

accuracies than the negative ones, as shown in Ta-384

bles 1. The positive test samples achieve almost385

100% accuracy. On the contrary, the negative ones386

get nearly 0% accuracy in most settings. For the387

more complex multi-class AG’s News topic genera-388

tion task, the effectiveness of those baseline attacks389

decreases significantly. Only our GGI attack suc-390

cessfully hijacks the LLMs to generate the target391

topic ‘tech’, as shown in Table 2.392

6.3 Jailbreaking Performance393

We randomly select 200 samples from AdvBench394

(Zou et al., 2023) as harmful queries to evaluate395

whether our GGI can learn adversarial tokens that396

generate harmful or objectionable responses. As397

long as LLMs generate harmful responses instead398

of refusal answers, as illustrated in Figure 12 of399

the Appendix, we consider it as a successful at-400

tack. When we input clean queries directly into the401

tested LLMs, i.e., LLaMA2-7b-chat, Vicuna-7b,402

and LLaMA3-8b-chat, their safeguards generally403

prevent the generation of harmful content, resulting404

in only a few harmful responses, as evidenced by405

the low ASRs in Table 4. Recently, (Wei et al.,406

2023b) proposed In-Context Attack (ICA), which407

employs harmful demos to subvert LLMs for jail-408

breaking, which achieves slightly higher ASRs as409

illustrated in Table 4. Furthermore, we utilize GGI410

to efficiently learn adversarial tokens from harmful411

demos and then append them to the demos during412

ICL. Our attack achieves the highest ASRs com-413

pared to the baselines, demonstrating the effective-414

ness of our hijacking attack in inducing harmful415

responses for jailbreaking, as shown in Figure 12 of416

the Appendix. The jailbreaking results further illus-417

trate the applicability of our GGI method to more 418

complex generative tasks, effectively hijacking the 419

model to generate malicious responses. 420

6.4 Defense Method Performance 421

Table 3 presents ASRs of our hijacking attack when 422

countered with the proposed defense mechanism 423

that uses additional clean demos and the baseline 424

defense Onion (Qi et al., 2020). Our proposed 425

defense method is tested in two different settings. 426

The preceding (Pre) setting places the clean de- 427

mos before the adversarial demos in the sequence 428

p̃ = [I; C̃;C ′;S(xQ, _)]. Conversely, the proceed- 429

ing (Pro) setting adds the clean demos after the ad- 430

versarial demos as p̃ = [I;C ′; C̃;S(xQ, _)]. The 431

decreases in ASRs of our hijacking attack affirm 432

the effectiveness of these defense methods. No- 433

tably, the results of Pre in considerably lower ASRs 434

compared to Pro, which relates to the mechanism 435

through which our hijacking attack induces LLMs 436

to generate target outputs, as discussed in Appendix 437

Sec G. Although the Onion method is ineffective 438

at defending against hijacking attacks in sentiment 439

analysis tasks, it successfully protects LLMs from 440

hijacking attacks in more complex topic genera- 441

tion tasks. Furthermore, the results indicate that all 442

the defense methods are ineffective on small-sized 443

LLMs, such as the GPT2-XL used in our experi- 444

ments, due to their limited emergent abilities. 445

6.5 Transferability of GGI 446

Our GGI exhibits two advanced transferabilities: 447

across different demo sets and across different 448

datasets of the same task. Firstly, the adversarial to- 449

kens derived from any demo can be used in any ICL 450

demo set. Once selected, these adversarial tokens 451

consistently hijack LLMs regardless of the demos 452

employed by developers or users, demonstrating 453

their robustness and effectiveness. As illustrated in 454

Figure 2, we evaluated the same adversarial tokens 455

on three distinct demo sets from SST-2 and RT, re- 456

spectively. Both sets resulted in high ASRs on both 457

SST-2 and RT datasets, highlighting their transfer- 458

ability across different demo sets. Furthermore, the 459

adversarial tokens, such as ‘NULL’ and ‘Remove,’ 460

as illustrated in Figure 10 of the Appendix, used in 461
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Figure 2: Transferability of GGI across different demo
sets and different datasets of the same task. The normal
and striped bars indicate the demos are from SST-2 and
RT, respectively. Different colors represent test queries
from different datasets.

sentiment analysis tasks were learned from the RT462

dataset and effectively applied to the SST-2 dataset.463

Our attack GGI achieves promising adversarial at-464

tack success rates on both SST-2 and RT datasets,465

as demonstrated by Figure 2.466

6.6 Stealthiness of GGI467
Figure 3 presents the perplexity scores for the in-468

put prompts from different attack methods. The469

perplexity scores for the word-level adversarial at-470

tacks, i.e., Greedy, Square, and Ours, exhibit non-471

significant increases compared to the clean samples,472

highlighting their stealthiness. This demonstrates473

that using a perplexity-based filter, e.g., Onion474

(Qi et al., 2020), would be challenging to defend475

against our attacks. However, the character-level476

attack TA, used in (Wang et al., 2023c), results in477

significantly higher perplexity scores than others.478

This makes it more easily detected or corrected by479

basic grammar checks, as illustrated in Figure 10480

and Figure 11 in the Appendix.481
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Figure 3: Average perplexity scores from LLaMA-7b on
100 random samples under 4-shots setting of RT derived
from three separate runs under various attacks.

7 Related Work482

7.1 In-Context Learning483

LLMs have shown impressive performance on nu-484

merous NLP tasks (Devlin et al., 2018; Lewis et al.,485

2019; Radford et al., 2019). Although fine-tuning486

has been a common method for adapting models487

to new tasks, it is often less feasible to fine-tune 488

extremely large models with over 10 billion param- 489

eters. As an alternative, recent work has proposed 490

ICL, where the model adapts to new tasks solely via 491

inference conditioned on the provided in-context 492

demos, without any gradient updates (Brown et al., 493

2020). By learning from the prompt context, ICL 494

allows leveraging massive LLMs’ knowledge with- 495

out the costly fine-tuning process, showcasing an 496

exemplar of the LLMs’ emergent abilities (Schaef- 497

fer et al., 2023; Wei et al., 2022). 498

Intensive research has been dedicated to ICL. 499

Initial works attempt to find better ways to se- 500

lect labeled examples for the demos (Liu et al., 501

2021; Rubin et al., 2021). For instance, (Liu 502

et al., 2021) presents a simple yet effective retrieval- 503

based method that selects the most semantically 504

similar examples as demos, leading to improved 505

accuracy and higher stability. Follow-up works 506

have been done to understand why ICL works (Xie 507

et al., 2021; Razeghi et al., 2022; Min et al., 2022; 508

Wei et al., 2023a; Kossen et al., 2023). (Xie et al., 509

2021) provides theoretical analysis that ICL can 510

be formalized as Bayesian inference that uses the 511

demos to recover latent concepts. Another line of 512

research reveals the brittleness and instability of 513

ICL approaches: small changes to the demo ex- 514

amples, labels, or order can significantly impact 515

performance (Lu et al., 2021; Zhao et al., 2021; 516

Min et al., 2022; Nguyen and Wong, 2023). 517

7.2 Adversarial Attacks on LLMs 518

Early adversarial attacks on LLMs apply simple 519

character or token operations to trigger the LLMs 520

to generate incorrect predictions, such as TextAt- 521

tack (Morris et al., 2020) and BERT-Attack (Li 522

et al., 2020). Since these attacks usually gener- 523

ate misspelled and/or gibberish prompts that can 524

be detected using spell checker and perplexity- 525

based filters, they are easy to block in real-world 526

applications. Some other attacks struggled with 527

optimizing over discrete text, leading to the man- 528

ual or semi-automated discovery of vulnerabilities 529

through trial-and-error (Li et al., 2021; Perez and 530

Ribeiro, 2022; Li et al., 2023c; Qiang et al., 2023; 531

Casper et al., 2023; Kang et al., 2023; Li et al., 532

2023a; Shen et al., 2023). For example, jailbreak- 533

ing prompts are intentionally designed to bypass 534

an LLM’s built-in safeguard, eliciting it to generate 535

harmful content that violates the usage policy set 536

by the LLM vendor (Shen et al., 2023; Zhu et al., 537

2023b; Chao et al., 2023; Mehrotra et al., 2023; 538
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Jeong, 2023; Guo et al., 2024; Yu et al., 2024).539

These red teaming efforts craft malicious prompts540

in order to understand LLM’s attack surface (Gan-541

guli et al., 2022). However, the discrete nature of542

text has significantly impeded learning more effec-543

tive adversarial attacks against LLMs.544

Recent work has developed gradient-based op-545

timizers for efficient text modality attacks. For546

example, (Wen et al., 2023) presented a gradient-547

based discrete optimizer that is suitable for attack-548

ing the text pipeline of CLIP, efficiently bypassing549

the safeguards in the commercial platform. (Zou550

et al., 2023), building on (Shin et al., 2020), de-551

scribed an optimizer that combines gradient guid-552

ance with random search to craft adversarial strings553

that induce LLMs to respond to the questions that554

would otherwise be banned. More recently, (Zhao555

et al., 2024) proposed poisoning demo examples556

and prompts to make LLMs behave in alignment557

with pre-defined intentions.558

Our hijacking attack algorithm falls into this559

stream of work, yet we target few-shot ICL instead560

of zero-shot queries. We use gradient-based prompt561

search to automatically learn effective adversarial562

suffixes rather than manually engineered prompts.563

Importantly, we show that LLMs can be hijacked564

to output the targeted unwanted output by append-565

ing optimized adversarial tokens to the ICL demos,566

which reveals a new lens of LLM vulnerabilities567

that prior approaches may have missed.568

7.3 Defense Against Attacks on LLMs569

The existing literature on the robustness of LLMs570

includes various strategies for defense (Liu et al.,571

2023; Xu et al., 2024; Wu et al., 2024). How-572

ever, most of these defenses, such as those involv-573

ing adversarial training (Liu et al., 2020; Li et al.,574

2023b; Formento et al., 2024; Wang et al., 2024)575

or data augmentation (Qiang et al., 2024; Yuan576

et al., 2024), need to re-train or fine-tune the mod-577

els, which is computationally infeasible for LLM578

users. Moreover, restricting many closed-source579

LLMs to only permit query access for candidate580

defenses introduces new challenges.581

Recent studies focus on developing defenses582

against attacks on LLMs that utilize adversarial583

prompting. (Jain et al., 2023) and (Alon and Kam-584

fonas, 2023) have suggested using perplexity filters585

to detect adversarial prompts. While the filters are586

effective at catching the attack strings that contain587

gibberish words or character-level adversarial to-588

kens with high perplexity scores, they fall short589

in detecting more subtle adversarial prompts, like 590

the ones used in our adversarial demo attacks with 591

as low perplexity as clean samples shown in Fig- 592

ure 3. Recently, (Mo et al., 2023b) introduced a 593

method to mitigate backdoor attacks at test time by 594

identifying the task and retrieving relevant defen- 595

sive demos. These demos are combined with user 596

queries to counteract the adverse effects of triggers 597

present in backdoor attacks. This defense strategy 598

eliminates the need for modifications or tuning of 599

LLMs. Its objective is to re-calibrate and correct 600

the behavior of LLMs during test-time evaluations. 601

Similarly, (Wei et al., 2023b) investigated the role 602

of in-context demos in enhancing the robustness 603

of LLMs and highlighted their effectiveness in de- 604

fending against jailbreaking attacks. The authors 605

developed an in-context defense strategy that con- 606

structs a safe context to caution the model against 607

generating any harmful content. 608

So far, defense mechanisms against adversarial 609

demo attacks have not been extensively explored. 610

Our approach introduces a test-time defense strat- 611

egy that uses additional clean in-context demos to 612

safeguard LLMs from adversarial in-context ma- 613

nipulations. In line with prior works (Mo et al., 614

2023b; Wei et al., 2023b; Wang et al., 2024), this 615

defense strategy avoids the necessity for retrain- 616

ing or fine-tuning LLMs. Instead, it focuses on 617

re-calibrating and correcting the behavior of LLMs 618

during evaluations at test time. 619

8 Conclusion 620

This work reveals the vulnerability of ICL via 621

crafted hijacking attacks. By appending impercep- 622

tible adversarial suffixes to the in-context demos 623

using a greedy gradient-based algorithm, our attack 624

GGI effectively hijacks the LLMs to generate the 625

unwanted target outputs by diverting their attention 626

from the relevant context to the adversarial suffixes. 627

Furthermore, GGI can accomplish jailbreaking by 628

adding adversarial suffixes to in-context demos, 629

eliciting harmful responses while bypassing the 630

safeguards in LLMs. The advanced transferabil- 631

ity of GGI makes it significantly more efficient 632

and scalable for real-world applications. GGI’s 633

imperceptibility and stealthiness highlight the diffi- 634

culty of defending against it with simple grammar 635

checks and perplexity-based filters. We propose a 636

test-time defense strategy that effectively protects 637

LLMs from being compromised by our attack. We 638

will continue studying novel attack and defense 639

techniques for more robust ICL approaches. 640
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9 Limitations and Risks641

This work uncovers a potential vulnerability of642

LLMs during in-context learning. By inserting ad-643

versarial tokens, which our algorithm has learned,644

into in-context demos, we can make the LLM gen-645

erate undesired target outputs without the need for646

a trigger in the query nor contaminating the user’s647

queries.648

This work represents a purple teaming effort to649

discover LLM’s vulnerabilities during in-context650

learning and defend against attacks. It offers a uni-651

fied platform that enables both the red team and652

blue team to collaborate more effectively. More-653

over, it facilitates a seamless knowledge transfer654

between the teams. As such, it will not pose risks655

for natural users or LLM vendors. Rather, our find-656

ings can be utilized by these stakeholders to guard657

against malicious uses and enhance the robustness658

of LLMs to such threats.659
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A Experiments Details1006

Dataset Statistics: We show the dataset statistics1007

in Table 5. Specifically for the SST-2 and RT sen-1008

timent analysis tasks, we employ only 2 training1009

queries to train adversarial suffixes using our GGI1010

method. We use 4 training queries for the more1011

complex multi-class topic generation tasks, i.e.,1012

AG’s News. We randomly select 1,000 samples as1013

user queries for testing. Similarly, we utilize 4 train-1014

ing queries from Advbench (Zou et al., 2023) for1015

the jailbreaking task and evaluate the attack success1016

rate on 200 randomly selected harmful queries.1017

Table 5: Statistics of the training queries used in Algo-
rithm 1 and test queries for the three datasets.

Datasets Training Queries Test Queries
SST-2 2 1,000

RT 2 1,000
AG’s News 4 1,000
AdvBench 4 200

ICL Settings: For ICL, we follow the setting in1018

(Wang et al., 2023c) and use their template to in-1019

corporate the demos for prediction. The detailed1020

template is provided in Figure 9. We evaluate the1021

2-shot, 4-shot, and 8-shot settings for the number1022

of demos. Specifically, for each test example, we1023

randomly select the demos from the training set and1024

repeat this process 5 times, reporting the average1025

accuracy over the repetitions.1026

Evaluation Metrics: Several different metrics eval-1027

uate the performance of ICL and hijacking attacks.1028

Clean accuracy evaluates the accuracy of ICL on1029

downstream tasks using clean demos. Attack accu-1030

racy evaluates the accuracy of ICL given the per-1031

turbed demos. Defense accuracy demonstrates the1032

accuracy of ICL with the defense method against1033

the hijacking attack. We further evaluate the effec-1034

tiveness of hijacking attacks using attack success1035

rate (ASR). Given a test sample (x, y) from a test1036

set D, the clean and perturbed prompts are denoted1037

as p = [I;C;x] and p′ = [I;C ′;x], respectively.1038

For the general generation tasks, such as sentiment1039

analysis and news topic generation, ASR is calcu-1040

lated as1041

ASR =
∑

(x,y)∈D

1(M(p′) = yT )

1(M(p) = y)
, (5)1042

where 1 denotes the indicator function and yT ̸= y.1043

For the jailbreaking task, ASR is calculated as:1044

ASR =
∑

(x,y)∈D

1(M(p′) = yH)

1(M(p) = y)
, (6)1045

where y represents a refusal response by safeguards 1046

and yH here denotes the harmful response. 1047

B Baseline Attacks 1048

Greedy Search: We consider a heuristics-based 1049

perturbation strategy, which conducts a greedy 1050

search over the vocabulary to select tokens, max- 1051

imizing the reduction in the adversarial loss from 1052

Eq. 3. Specifically, it iteratively picks the token 1053

that decreases the loss the most at each step. 1054

Square Attack: The square attack (An- 1055

driushchenko et al., 2020) is an iterative algorithm 1056

for optimizing high-dimensional black-box 1057

functions using only function evaluations. To find 1058

an input x + δ in the demo set C that minimizes 1059

the loss in Eq. 3, the square attack has three steps: 1060

Step 1: Select a subset of inputs to update; Step 1061

2: Sample candidate values to substitute for those 1062

inputs; Step 3: Update x + δ with the candidate 1063

values that achieve the lowest loss. The square 1064

attack can optimize the hijacking attack objective 1065

function without requiring gradient information 1066

by iteratively selecting and updating a subset of 1067

inputs. 1068

Text Attack: We also utilize TextAttack (TA) (Mor- 1069

ris et al., 2020), adopting a similar approach to the 1070

attack described by (Wang et al., 2023c), which 1071

serves as the most closely related baseline for our 1072

hijacking attack. Unlike our word-level attack, the 1073

use of TA at the character level includes minor mod- 1074

ifications to some words in the in-context demos 1075

and simply flips the labels of user queries, as de- 1076

picted in Figure 8. In our experiments, we employ a 1077

transformation where characters are swapped with 1078

those on adjacent QWERTY keyboard keys, mim- 1079

icking errors typical of fast typing, as done in Tex- 1080

tAttack (Morris et al., 2020). Specifically, we use 1081

the adversarial examples for the same demos in our 1082

hijacking attack during the application of TA. 1083

C Attack Performance 1084

In addition to the attack accuracy performance pro- 1085

vided in Table 1 and 2, we present ASRs for various 1086

attacks across the three datasets. As outlined in Ta- 1087

ble 6, our GGI attack achieves the highest ASRs, 1088

substantiating its highest effectiveness in hijack- 1089

ing the LLM to generate the targeted output. In 1090

sentiment analysis tasks like SST-2 and RT, some 1091

attacks exhibit high ASRs. Meanwhile, for the 1092

more complex multi-class topic generation task, 1093

such as AG’s News, only our GGI attack achieves 1094
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Table 6: ASR among different datasets, models, and attack methods. Best scores are in bold.

Model Method SST-2 RT AG’s News
2-shots 4-shots 8-shots 2-shots 4-shots 8-shots 4-shots 8-shots

GPT2-XL

Square 98.0 97.8 94.2 98.7 97.9 95.9 64.9 65.2
Greedy 94.6 96.9 99.9 97.4 98.6 100 68.3 87.3

TA 89.6 91.0 89.0 85.9 77.5 74.6 15.1 15.9
GGI 99.4 100 100 98.6 100 100 99.1 100

LLaMA-7b

Square 48.1 65.9 70.6 48.4 69.9 69.7 10.3 15.9
Greedy 64.2 100 100 64.3 99.8 100 14.3 22.1

TA 48.2 59.5 95.4 45.8 58.0 97.8 9.3 6.8
GGI 97.7 100 100 90.7 99.9 100 82.8 77.9

Vicuna

Square 49.1 46.4 53.1 45.5 44.9 49.3 7.4 13.8
Greedy 52.5 47.4 55.0 51.4 45.8 51.0 7.8 13.4

TA 47.1 39.8 54.4 43.3 41.2 51.3 3.9 7.7
GGI 65.3 82.6 99.6 61.3 88.9 99.8 14.1 15.0

LLaMA-13b

Square 62.8 59.9 56.2 52.8 55.0 53.1 14.2 19.5
Greedy 75.9 98.4 100 36.6 91.4 91.8 12.1 19.7

TA 63.0 50.0 54.8 56.3 46.7 51.5 18.4 19.1
GGI 79.7 96.3 100 95.2 81.5 100 54.2 65.6

4-shots 8-shots
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Figure 4: Impact of LLM size on adversarial robustness.
ASRs on the AG’s News topic generation task using
different sizes of OPT models, i.e., OPT-2.7b and OPT-
6.7b, with two different few-shot settings.

high ASRs. This further emphasizes the potential1095

effectiveness of our hijacking attack on more com-1096

plex generative tasks, such as question answering.1097

D Impact of Number of In-context Demos1098

We extend our investigation to explore the impact1099

of in-context demos on adversarial ICL attacks.1100

We observe a substantial impact on the attack per-1101

formance in ICL based on the number of demos1102

employed. As indicated in Tables 1 and 2, an in-1103

crease in the number of in-context demos correlates1104

with a higher susceptibility of the attack to hijack1105

LLMs, resulting in the generation of target outputs1106

with greater ease. Specifically, in the 8-shot setting,1107

LLMs consistently exhibit significantly lower accu-1108

racies in negative sentiment generation, demonstrat-1109

ing a higher rate of successful attacks compared1110

to the 2-shot and 4-shot settings. Moreover, the1111

attacks demonstrate higher ASRs as the number of1112

in-context demos used in ICL increases, as shown1113

in Table 6.1114

E Impact of Sizes of LLMs 1115

Results in Table 6 reveal that the ASRs on GPT2- 1116

XL are significantly higher than those on LLaMA- 1117

7b, suggesting that hijacking the larger LLM is 1118

more challenging. Here, we continue examining 1119

how the size of LLMs influences the performance 1120

of hijacking attacks. Table 7 illustrates the perfor- 1121

mance of sentiment analysis tasks with and without 1122

attacks on ICL using different sizes of OPT, i.e., 1123

OPT-2.7b and OPT-6.7b. These results further high- 1124

light that the smaller LLM, i.e., OPT-2.7b, is much 1125

easier to attack and induce to generate unwanted 1126

target outputs, such as ‘positive’, in the sentiment 1127

analysis tasks. Figure 4 illustrates our proposed 1128

hijacking attack performance using ASR on two 1129

OPT models of varying sizes in AG’s News topic 1130

generation task. It clearly shows that attacking the 1131

smaller OPT2-2.7b model achieves a much higher 1132

ASR in both settings, confirming our finding and 1133

others (Wang et al., 2023a) that larger models are 1134

more resistant to adversarial attacks. 1135

F Comparison of Hijacking Attacks 1136

In contrast to baseline hijacking attacks, i.e., 1137

Square and Greedy, our GGI exhibits superior per- 1138

formance in generating targeted outputs, as evi- 1139

denced by the results in Table 1 and 2, along with 1140

the highest ASRs highlighted in Table 6. This un- 1141

derscores the effectiveness of GGI as a more potent 1142

method of attack. 1143

To further illustrate the efficiency of our GGI, 1144

we present the objective function values of Eq. 3 1145

in Figure 5 for various attack methods. Since our 1146

GGI attack enjoys the advantages of both greedy 1147

and gradient-based search strategies as depicted 1148

in Algorithm 1, the values of the object function 1149

decrease steadily and rapidly, ultimately reaching 1150
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Table 7: The performance of sentiment analysis task with and without attacks on ICL using different sizes of OPT.

Model Method
SST-2 RT

2-shots 4-shots 8-shots 2-shots 4-shots 8-shots
P N P N P N P N P N P N

OPT-2.7b

Clean 98.5 38.6 85.6 62.8 58.4 76.4 98.1 36.6 81.2 68.4 57.8 89.6
Square 100 0.0 100 0.0 100 1.8 100 1.3 100 0.0 99.6 7.5
Greedy 100 0.0 100 0.0 100 0.0 100 0.4 100 0.2 100 0.0

TA 99.6 13.8 99.8 26.8 99.0 7.2 97.6 52.9 97.2 59.7 99.4 6.8
GGI 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0 100 0.0

OPT-6.7b

Clean 69.4 87.8 70.2 93.8 77.8 93.0 84.4 91.4 84.4 93.1 88.6 92.8
Square 99.2 31.4 93.8 72.2 99.6 29.0 98.1 42.2 97.0 68.7 99.4 33.2
Greedy 100 25.0 97.8 39.0 100 2.0 99.4 31.7 99.8 4.7 100 0.8

TA 94.8 80.8 54.8 98.6 91.6 89.4 92.5 86.1 77.6 96.4 94.0 86.3
GGI 100 0.0 98.4 2.0 100 0.2 100 2.6 99.8 0.0 100 0.2

Figure 5: An illustration of the learning objective values
during iterations among different attacks on SST2 using
GPT2-XL with 8-shots.

the minimum loss value. On the other hand, both1151

the Square and Greedy attacks use a greedy search1152

strategy, with fluctuating results that increase and1153

decrease the loss value, unable to converge to the1154

minimum loss value corresponding to the optimal1155

adversarial suffixes.1156

G Diverting LLM Attention1157

Attempting to interpret the possible mechanism of1158

our hijacking attacks, we show an illustrative exam-1159

ple using attention weights from LLaMA-7b on the1160

SST2 task with both clean and perturbed prompts.1161

As depicted in Figure 6b, the model’s attention for1162

generating the sentiment token of the test query has1163

been diverted towards the adversarial suffix tokens1164

‘NULL’ and ‘Remove’. Compared to the attention1165

maps using the clean prompt (Figure 6a), these two1166

suffixes attain the largest attention weights repre-1167

sented by the darkest green color. This example1168

illuminates a possible mechanism for why our hi-1169

jacking attack can induce the LLM to generate the1170

targeted outputs - the adversarial suffixes divert the1171

LLMs’ attention away from the original query.1172

Additionally, Figure 7 illustrates the attention1173

distribution for the perturbed prompts after apply- 1174

ing the preceding and proceeding defense meth- 1175

ods. Notably, in the demos, the model primarily 1176

focuses on the front segments of demos, which 1177

are indicated by a darker green color. Therefore, 1178

the model converts its attention to the front seg- 1179

ments, which are the extra clean samples, in the 1180

preceding method. These clean samples effectively 1181

re-calibrate and rectify the model’s behavior, lead- 1182

ing to a significant reduction in ASRs, as shown 1183

in Table 3. In contrast, the first few demos remain 1184

adversarial in the proceeding method, rendering 1185

it ineffective in defending against the adversarial 1186

demo attack. 1187

Overall, these attention maps visualize how the 1188

adversarial suffixes distract LLMs from focusing 1189

on the relevant context to generate the unwanted 1190

target output and how our proposed defense meth- 1191

ods rectify the behavior of LLMs given the extra 1192

clean demos. 1193

H More Results 1194

Figure 9 illustrates the prompt template employed 1195

in ICL for various tasks. For the SST2/RT dataset, 1196

the template is structured to include an instruction, 1197

a demo set composed of reviews and sentiment 1198

labels, and the user query. Similarly, the AG’s 1199

News dataset template comprises the instruction, 1200

the demo set with articles and topic labels, and 1201

the user query. The AdvBench template includes 1202

instructions, a demo set of harmful queries and 1203

responses, and a user’s harmful query. Additionally, 1204

examples are provided in Figure 10, Figure 11, and 1205

Figure 12 to enhance understanding. 1206
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(a)

(b)

Figure 6: Attentions maps generated using (a) clean and (b) adversarial perturbed prompts. In (b), the adversarial
suffix tokens, i.e., ‘NULL’ and ‘Remove’, are underlined in red. Darker green colors represent larger attention
weights. The prompts are tokenized to mimic the actual inputs to the LLMs. Best viewed in color.

(a)

(b)

Figure 7: Attentions maps generated using (a) Preceding and (b) Proceeding defense methods. Best viewed in color.
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Figure 8: Illustrations of ICL using clean prompt and adversarial prompt. Given the clean in-context demos, LLMs
can correctly generate the sentiment of the test queries. The previous attacks (Wang et al., 2023c) at the character
level involve minor edits in some words, such as altering ‘so’ to ‘s0’ and ‘film’ to ‘fi1m’, of these in-context
demos, leading to incorrect sentiment generated for the test queries. However, ours learns to append adversarial
suffixes like ‘For’ and ‘Location’ to the in-context demos to efficiently and effectively hijack LLMs to generate the
unwanted target, e.g., the ‘negative’ sentiment, regardless of the test query content. It is important to highlight
that the adversary attacker only needs to append the adversarial tokens to either the system or the user-provided
demos without compromising the user’s queries directly.

Algorithm 1: Greedy Gradient-guided Injection (GGI)
Input : Model: M, Iterations: T , Batch Size: b, Instruction: I , Demos: C, Query: (xQ, yQ)

Target: yT
Initialization: p′0 = [I; [S(x1 + δ1, y1); · · · ; S(xN + δN , yN )]; S(xQ, yT )]
repeat

for i ∈ N do
[δi1 ; ...; δik ] = Top−k(−∇p′L(M(ŷ|p′t−1), yT )) /* Compute top-k substitutions */

K = {[δi1 ; ...; δik ] | i = 1, ..., N}
B = {(δi1, . . . , δib) | (δi1, . . . , δik) ∈ K} /* Introducing variability by selecting different

subsets of substitutions in each iteration

helps avoid local minima */

for i ∈ N do
δ⋆i = δij , where j = argminδibL(M(ŷ|p′t−1), yT ) /* Compute best replacement */

∆ = [δ⋆1 ; ...; δ
⋆
N ]

p′t = [I; [S(x1 + δ⋆1 , y1); · · · ; S(xN + δ⋆N , yN )]; S(xQ, yT )] /* Update prompt */

until T times;
Output :Optimized prompt suffixes [δ⋆1 , · · · , δ⋆N ]
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Figure 9: Template designs for all the datasets used in our experiments. We also provide examples for these datasets
to ensure a better understanding.
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Figure 10: Visualization of an adversarial example generated by baseline and our attacks on SST-2 via attacking
LLaMA-7b.
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Figure 11: Visualization of an adversarial example generated by baseline and our attacks on AG’s News via attacking
LLaMA-7b.
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Figure 12: Visualization of an adversarial example generated by baseline and our attacks on AdvBench via attacking
LLaMA2-7b-chat.
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