
Vid2Insight: A Video Specialist Architecture
Aditya Mukhopadhyaya, Ankit Kumarb, Danish Akhlaqc, Sanjay Kumard and Trupti Rushikesh

Kurambhattie

Abstract. With the rise of instructional and product-related video
content, there is a growing need for automated systems that can ex-
tract, structure, and repurpose information from multimedia streams.
We present Vid2Insight, a modular video understanding system that
constructs a multimodal knowledge base and supports downstream
business and educational applications out of many such use cases.
The pipeline ingests user-uploaded videos through a Streamlit in-
terface, splits them into visual and audio segments, and generates
detailed frame-level and transcript-level annotations using Gemini
LLM.

The resulting multimodal data is stored as structured metadata and
reused to optimize token consumption. On top of this knowledge
base, we implement four specialised nodes: Product Documenta-
tion Generator, Executive Summary Generator, MCQ Generator, and
Study Planner—using LangChain and LangGraph divided across two
subgraphs. Each agent leverages LLM prompting and is validated via
an LLM-as-a-judge approach to ensure factual and structural qual-
ity. Our system demonstrates strong alignment with expected out-
puts using BERTScore, ROUGE, and precision metrics, and offers
a scalable framework for enterprise and educational video analytics.
This analysis is placed at ingestion level & each specialist response
level as well. Our architecture is currently designed to handle free-
tier LLMs with rate limits for simple wide scale adoptions

1 Introduction

1.1 Context and Motivation

With the ever-growing volume of instructional and product-related
videos available online, there is a pressing need for automated sys-
tems that can quickly and accurately extract and organize knowl-
edge from such multimedia content. Traditional video indexing ap-
proaches rely heavily on manual annotation or simple speech-to-text
pipelines, which often miss nuances present in visual frames or lack
the flexibility to generate diverse textual outputs. Using recent ad-
vances in large language models (LLMs) and multimodal processing,
our project aims to bridge this gap: we propose an end-to-end archi-
tecture that ingests arbitrary videos, constructs a unified knowledge
base of audio and visual information, and then empowers specialized
agents to fulfill distinct business needs.

Figure 1. AI generated Project Logo

1.2 Problem Statement

We identify two primary use cases that drive our design:

1. Product Documentation Writer. Many organizations require
quick, accurate, and customizable product manuals or user guides
derived from demonstration videos. With current Product Docu-
mentation creation procedure (with a Professional Product Doc-
ument writer) being time consuming [6] with writers lacking key
resources throughout the process [5] among many other problems.

2. Student Tutor. With ever-growing lengthy and detail oriented ed-
ucational videos, learners need targeted assessments, summaries,
study plans or a simple QnA interface to reinforce their under-
standing. Often a learner might need a subset of information but
lack sufficient context to understand that subset. This often results
in prolonged knowledge gathering phase before execution.

The overarching AI problem is twofold:

• Information Extraction: Seamlessly convert raw video and audio
streams into a structured, comprehensive knowledge base.

• Knowledge Utilization: Generate accurate, context-aware textual
outputs—product documents, executive summaries, assessments,
and study plans—by querying the knowledge base through LLM-
driven agents.

1.3 Six-Step Problem-Solving Approach

To justify and guide each design choice, we adopt a framework anal-
ogous to CRISP-DM:

1. Framing the AI Problem. We formalise our goals: (i) build a
multimodal pipeline to extract and store video knowledge, and (ii)
deploy LLM-based agents capable of producing targeted text out-
puts. Success metrics include the accuracy and completeness of
the knowledge base and the quality of generated documents and
chat responses.

2. Data Gathering and Preparation. We collect publicly avail-
able, non-confidential videos. Audio streams, video frames are
separated and cleaned, deduplicated, and segmented into config-
urable chunks. This step ensures high-quality inputs for down-
stream LLM processing. This architecture also allows multipro-
cessing capabilities in production level systems; also making the
solution LLM agnostic.

3. Model Exploration and Selection. Initially, we rely on prompt
engineering with Google’s Gemini LLM to obtain satisfactory
transcripts and image captions. We record performance metrics

and leave open the possibility of fine-tuning or training custom
models to further enhance accuracy. But, current prompts provide
satisfactory responses limiting requirements to explore further.

4. Solution Assembly and Evaluation. We integrate the ingestion
pipeline and agent suite, measuring key performance indicators at
two stages: post-ingestion (transcript completeness and cohesive-
ness) and post-agent (textual fidelity and relevance). These metrics
guide iterative refinements.

5. Deployment. The full architecture is containerized and deployed
on the Google Cloud Platform. LangGraph orchestrates the data
flow and agent interactions, ensuring scalability and fault toler-
ance.

6. Monitoring and Retraining. We schedule periodic evaluations
of ingestion and agent metrics. Prompt templates are updated as
needed, and future work includes fine-tuning models based on ac-
cumulated feedback.

This structured and iterative approach ensures that our system not
only meets immediate business needs but also remains adaptable to
evolving requirements and technological advances.

2 System Architecture

Ingestion Router

Product

Document

Generator

Student

Helper

Raw Video

Youtube link

SubGraphs

Knowledge

base

Knowledege Store

&

Rule based Router
Data Collection

Free Chat

Figure 2. A High Level Architecture depicting different components.

Video Feed

Audio Feed

Youtube link

Raw

Video

Store

Raw Video

Youtube

Video

Downloader

User

choice

Store

{rawContexts,

extended Summary}

Agent

Choice
Product

Document

Generator

General
Purpose

Student

Mode

Executive

Summary

Detailed

Product Doc

PPT

(extension)

MCQ

Study

Planner

Chat

Chat

Chat

End

End

End

Point of

Evaluation

Point of

Evaluation

Window

Formation

Window

Formation

Unique

Frame

Extraction

Context

Generation

Context

Generation

Context

Generation

INGESTION KNOWLEDGE BASE SPECIALISTS

Figure 3. A Low Level Architecture depicting different subcomponents.

3 Methods and Evaluation Metrics

3.1 Data Acquisition and Preparation

The system accepts user-uploaded videos through a Streamlit-based
frontend. To ensure ethical use and reproducibility, we have tested
with publicly available content. Videos are processed one at a time,
with intermediate data cached to avoid redundant computation and
minimize LLM token usage. User can also provide their choice
of window size which helps reduce llm token usage even fur-
ther(depending on how dynamic the video content is)

3.2 Ingestion Pipeline

Each video is split into audio and visual streams. Using OpenCV and
SceneDetect, the visual stream is windowed, and scene transitions
are detected to extract distinct frames. In parallel, FFmpeg segments
the audio stream to match the visual frame windows.

For each window, audio and image segments are passed through
Google Gemini to generate transcripts and captions. A final video
summary is synthesized using all collected content. All transcripts
are stored locally and reused if the same video is reprocessed.

3.3 Knowledge Base Construction

Intermediate and final transcripts are stored as structured JSON files
in an in-memory key-value store. This design enables rapid access
and reuse, while future plans include migration to a traditional rela-
tional database for scalability.

3.4 Agent Design

Two specialized agents are implemented using LangChain and Lang-
Graph, each responsible for distinct downstream tasks. Prompts are
designed using few-shot strategies and include guardrails for struc-
tured output. Gemini generates the primary outputs, and Mistral
serves as a judge, validating factual and structural consistency of the
generated content.

3.5 Evaluation Protocol

We evaluate system performance using both reference-based and
model-based metrics:

• ROUGE to assess surface-level similarity.
• BERTScore to evaluate semantic alignment.
• LLM-as-a-Judge acceptance rate, based on Mistral’s binary eval-

uation of factual correctness and format.

Human evaluation is a planned future addition.

4 Results

Component Precision Recall F1

Ingestion 91.5 91.5 91.5
Product Documentation 82.6 84.7 83.6
Executive Summary 86.8 87.4 87.1
Product Chat 87.8 89.3 88.5
MCQ Generator 84.7 86.6 85.7
Study Planner Agent 89.9 89.0 89.4
Student Chat 88.8 85.1 86.9
General Chat 86.4 86.0 86.2

Table 1. BERTScore (Precision, Recall, F1) for each component.

Component Relevance (%) Coherence (%) Correctness (%)

Ingestion 80.0 80.0 78.0
Product Documentation 70.0 70.0 70.0
Executive Summary 70.0 50.0 70.0
Product Chat 69.0 69.0 65.0
MCQ Generator 85.0 90.0 70.0
Study Planner Agent 95.0 75.0 78.0
Student Chat 70.0 60.0 70.0
General Chat 85.0 60.0 75.0

Table 2. LLM-based human-like evaluation: Relevance, Coherence, and
Correctness.

Component ROUGE-1 ROUGE-2 ROUGE-L

Ingestion 49.5 26.7 48.1
Product Documentation 24.4 6.1 22.8
Executive Summary 37.0 12.5 37.0
Product Chat 30.9 10.6 28.7
MCQ Generator 38.8 22.5 37.6
Study Planner Agent 51.2 22.3 49.6
Student Chat 43.4 15.7 41.8
General Chat 42.0 15.7 40.3

Table 3. ROUGE metrics (F1 scores) for each component.

Figure 4. Bert Score Calculated for all Components.

Figure 5. LLM as a judge score for all Components.

5 Demo and Code
Demo Video: Watch here
Live Application: Launch app
Code: Vid2Insight repo
Team’s Whiteboard: Lucidchart board

6 Conclusion
This project demonstrates a modular and scalable architecture for ex-
tracting actionable insights from video content through a multimodal
LLM-based pipeline. We addressed core challenges in knowledge ex-
traction and usability by focusing on three key areas.

First, we implemented token optimization strategies by caching
and reusing previously computed transcripts, thereby avoiding re-
dundant LLM calls. This not only reduced computational costs but
also improved latency and system responsiveness. Second, we built
a rich, structured knowledge base that seamlessly integrates au-
dio and visual context, enabling downstream agents to function in
a plug-and-play fashion with minimal reconfiguration. Finally, we
showcased how agents—such as the Product Documentation Gener-
ator—can support a bidirectional, iterative interaction model, simu-
lating realistic back-and-forth conversations between developers and
documentation authors.

Looking forward, the project offers several promising directions.
We plan to move beyond prompt engineering by fine-tuning spe-
cialised models for audio-visual context understanding, particularly

for technical domains. Additionally, multi-video ingestion and par-
allelised pipelines will help scale the system for enterprise use cases.
Lastly, implementing a versioned knowledge base will allow the sys-
tem to track content evolution, enabling features such as audit trails
and historical document regeneration.

Overall, this work lays the foundation for a flexible, intelligent
video understanding framework capable of adapting to diverse busi-
ness and educational needs.

References
[1] G. DeepMind. Gemini api documentation, 2025. URL https://ai.google.

dev/gemini-api/docs. Accessed: June 2025.
[2] R. Mansuy. Evaluating nlp models: A comprehensive guide to rouge,

bleu, meteor, and bertscore metrics, 2023. URL https://ai.plainenglish.io/
evaluating-the-performance-of-natural-language-processing-nlp-models-can-be-challenging-ce6f62c07c35.
Accessed: June 2025.

[3] OpenAI. Chatgpt, 2025. Accessed via https://chat.openai.com, used
DeepResearch to finetune our architecture and choose the best set of tools
to build with, June 2025.

[4] OpenAI. Openai cookbook, 2025. URL https://cookbook.openai.com/
examples/gpt_with_vision_for_video_understanding. Accessed: June
2025.

[5] C. Science. Technical documentation survey reveals top challenges
and opportunities, 2022. URL https://review.content-science.com/
technical-documentation-survey-reveals-top-challenges-and-opportunities/
#:~:text=2. Accessed: June 2025.

[6] Smrita. How much time is spent on writing documentation
versus developing rtl code?, 2023. URL http://sigasi.com/tech/
how-much-time-spent-writing-documentation-versus-developing-rtl-code/
#:~:text=measured%20in%20pages%2C%20and%20further,Minutes%
2Fhours%20based%20method%20determines%20the. Accessed: June
2025.

[7] L. Team. Langchain documentation, 2025. URL https://docs.langchain.
com/. Accessed: June 2025.

[8] L. Team. Langgraph documentation, 2025. URL https://docs.langchain.
com/docs/langgraph/. Accessed: June 2025.

https://youtu.be/Rf7Wp5wZdUs
https://team11-396563842940.europe-west1.run.app/
https://github.com/adityam-iisc/vid2insight
https://lucid.app/lucidchart/482bee1c-7521-4743-a514-290b69665ea3/edit?viewport_loc=-1661%2C1647%2C5339%2C2764%2C0_0&invitationId=inv_e450637e-c0cf-400e-aa03-2e5dae1dbafa
https://ai.google.dev/gemini-api/docs
https://ai.google.dev/gemini-api/docs
https://ai.plainenglish.io/evaluating-the-performance-of-natural-language-processing-nlp-models-can-be-challenging-ce6f62c07c35
https://ai.plainenglish.io/evaluating-the-performance-of-natural-language-processing-nlp-models-can-be-challenging-ce6f62c07c35
https://cookbook.openai.com/examples/gpt_with_vision_for_video_understanding
https://cookbook.openai.com/examples/gpt_with_vision_for_video_understanding
https://review.content-science.com/technical-documentation-survey-reveals-top-challenges-and-opportunities/#:~:text=2
https://review.content-science.com/technical-documentation-survey-reveals-top-challenges-and-opportunities/#:~:text=2
https://review.content-science.com/technical-documentation-survey-reveals-top-challenges-and-opportunities/#:~:text=2
http://sigasi.com/tech/how-much-time-spent-writing-documentation-versus-developing-rtl-code/#:~:text=measured%20in%20pages%2C%20and%20further,Minutes%2Fhours%20based%20method%20determines%20the
http://sigasi.com/tech/how-much-time-spent-writing-documentation-versus-developing-rtl-code/#:~:text=measured%20in%20pages%2C%20and%20further,Minutes%2Fhours%20based%20method%20determines%20the
http://sigasi.com/tech/how-much-time-spent-writing-documentation-versus-developing-rtl-code/#:~:text=measured%20in%20pages%2C%20and%20further,Minutes%2Fhours%20based%20method%20determines%20the
http://sigasi.com/tech/how-much-time-spent-writing-documentation-versus-developing-rtl-code/#:~:text=measured%20in%20pages%2C%20and%20further,Minutes%2Fhours%20based%20method%20determines%20the
https://docs.langchain.com/
https://docs.langchain.com/
https://docs.langchain.com/docs/langgraph/
https://docs.langchain.com/docs/langgraph/

Project Contributors

Name Contribution Area

Aditya Mukhopadhyay Architecture, Student Subgraph, UI, Report
Ankit Kumar Data collection, Ground Truth Creation, Evaluation
Danish Akhlaq Architecture, Ingestion, Report
Sanjay Kumar Graph Integration, Product Doc Subgraph, Integration Testing, Deployment
Trupti Rushikesh Kurambhatti Ingestion, Testing, Prompt Engineering

Table 4. Team member contributions.

S
an

ja
y

A
d

it
ya

D
an

is
h

T
ru

p
ti

A
n

ki
t

Week 1 (June 8th - June 14th) Week 2 (June 15th - June 21st)

Project Setup

Deployment

Evaluation

Ingestion

Ingestion

Student Helper Graph

Design & Develop UI

Product Doc Gen Graph

Agent Integration

UI Integration

Report Creation

Report Creation

Evaluation

Testing

Testing

Arch

Arch

RnD

Figure 6. Week-by-week team work distribution.

Figure 7. GitHub commit contributions over time. See Table 5 for GitHub
username-to-name mapping.

GitHub Username Contributor Name

adityam-iisc, admukhop Aditya Mukhopadhyay
anki0610 Ankit Kumar
danishakhlaq-iisc Danish Akhlaq
Trmpsanjay Sanjay Kumar
TruptiM18 Trupti Rushikesh Kurambhatti

Table 5. Mapping of GitHub usernames to contributor names.

Appendix
A Iterative Design of Prompt Templates
Prompt engineering plays a pivotal role in ensuring reliable and task-
specific responses from large language models (LLMs) throughout
the Vid2Insight pipeline. Our system leverages four distinct prompt
categories, each corresponding to a specific processing stage. This
section outlines the progression, challenges, and justifications that
shaped the current prompt strategies.

A.1 Prompt Type 1: Audio and Frame Transcription

The first category of prompts is employed during the ingestion phase,
where audio and image frames are independently transcribed using
Gemini LLM. The audio transcription prompt, largely adapted from
Gemini’s official documentation, proved satisfactory as it aligned
with our goal of producing 1:1 verbatim conversions.

However, the frame-to-text prompt presented several technical
challenges. While the prompt instructed the model to faithfully de-
scribe screen content, the responses often contained problematic
tokens such as non-UTF-8 characters, improperly escaped code
blocks, or premature end-of-text identifiers. These inconsistencies
disrupted the downstream ingestion process, particularly when con-
verting the LLM outputs to JSON format. Although the prompt in-
cluded guardrails to avoid these characters, the LLM often prioritized
literal transcription over structural safety.

To mitigate this, we incorporated traditional preprocessing filters
to sanitize outputs post hoc, thus decoupling JSON parsing from
LLM response reliability. In future iterations, we anticipate that a
fine-tuned visual transcription model could resolve such structural
inconsistencies natively.

A.2 Prompt Type 2: Unified Video Summary
Generation

The second prompt stage is situated after the independent transcripts
(audio and visual) have been generated. Here, the objective is to fuse
windowed transcripts into a single cohesive video summary. As our
system currently limits input video size to 200MB, the combined
windowed context remains within typical LLM input limits, allowing
for a single pass summarization.

Initial prompt versions failed to preserve the temporal structure of
the original content, leading the model to arbitrarily reorder informa-
tion. We addressed this by explicitly instructing the LLM to respect
the chronological sequence of inputs and redesigned the payload to
reflect this structure. This significantly improved the fidelity of gen-
erated summaries.

Our design also minimizes multi-pass LLM transformations,
thereby reducing the risk of compounding hallucinations and con-
textual drift. The current summarization prompt achieves a balance
between coherence and extractiveness, critical for downstream tasks.

A.3 Prompt Type 3: Specialist Agent Instructions

Specialist prompts are designed to generate structured content tai-
lored to specific business or educational use cases—namely, product
documentation, executive summaries, MCQ generation, and study
planning.

For documentation and summaries, a single-shot prompting strat-
egy is employed, where a sample output format is included to an-
chor model responses. The ingestion summary serves as the primary

context. Over time, prompt refinements focused on increasing speci-
ficity, enhancing tone consistency, and reducing verbosity.

The MCQ generation prompt is more complex. It enforces a strict
JSON schema to ensure compatibility with UI components. The out-
put includes questions, options, correct answers, and topic coverage.
This prompt underwent multiple iterations to balance generative free-
dom with structural constraints.

Future iterations will support richer user-defined input con-
texts—such as fixed document templates or learner profiles—to en-
able cold-start control and better user alignment.

A.4 Prompt Type 4: Interactive Chat Modules

The final prompt category powers our interactive chat modules. Each
specialist chat agent (e.g., for study planning or product documen-
tation) operates within a constrained domain and is initialized with
relevant context artifacts—such as the latest executive summary or
product document—alongside the user’s message.

This setup enables a co-pilot experience, where users can modify
content in the editor and issue related instructions in the chat. The
chat prompt design supports such dynamic interactions while main-
taining domain focus.

The MCQ feedback chat uses LLMs to critique responses and sug-
gest learning improvements. Here, the context payload is program-
matically generated, and prompts are structured to elicit actionable
feedback rather than direct answers.

To support extended conversations, we employ LangChain’s con-
versation memory module. It summarizes prior interactions to main-
tain context within input token limits while preserving coherence
across sessions.

A.5 Prompt Type 5: LLM as a Judge

A critical part of our quality assurance pipeline involves the use of
an "LLM as a judge" for each specialist response. This LLM receives
two key inputs: (i) the response generated by a specialist agent, and
(ii) the summarised context constructed during the ingestion phase.

The judging prompt is designed to assess responses across multi-
ple criteria: factual accuracy, structural coherence, domain relevance,
and compliance with expected output formats. The prompt is dy-
namic and adapts slightly based on the type of specialist being evalu-
ated—for instance, the judgment of a product documentation differs
subtly in emphasis compared to that of a student planner or MCQ
generator.

One unique feature of this module is its capacity for recursive
refinement. If the judge detects issues—such as topic drift, incor-
rect prioritization of content, or stylistic inconsistencies—it provides
structured feedback and requests a revision from the corresponding
specialist node. The system is thus able to iteratively self-correct
through an internal feedback loop.

Over successive iterations, we observed specific challenges that
necessitated adjustments to both the specialist prompts and the judge
prompt. For example, early drafts of responses occasionally overem-
phasized trivial visual cues or ignored audio-based insights. These
behaviors were addressed by reinforcing both specialist and judge’s
prompts.

Once the LLM judge approves a response, it is marked as final
and proceeds to post-processing or user display. This mechanism not
only enforces a baseline of output quality but also ensures modular
accountability and scalable evaluation for multi-agent systems.

A.6 Conclusion

The evolution of our prompt design reflects a careful balance be-
tween automation, structure, and user guidance. Each prompt type
has undergone targeted iterations to address context sensitivity, for-
matting robustness, and application-specific needs. Future work will
incorporate user feedback loops, dynamic prompt tuning, and adap-
tive templates for improved personalization and reliability.

B Structured Payload Design and Evolution

A key design objective during system development was to de-
fine structured, extensible, and interpretable payloads that facilitate
smooth transitions across pipeline stages. While several architectural
decisions underwent refinement over time, our JSON-based payload
formats were relatively stable and designed early in the process. This
section documents the core data structures used for communication
between ingestion, summarization, and specialist agents.

B.1 Audio Transcript Payload

The audio transcript payload was kept minimal, focusing on speaker
tagging and utterance segmentation. The goal was to create a
speaker-aware transcript stream that could be easily concatenated or
merged into downstream contexts.

"audio_transcript": {
"transcript": [

{
"speaker": "Speaker 1",
"text": "..."

}
]

}

B.2 Frame Transcript Payload

To capture the visual dimension of the video, frame-level transcrip-
tion was conducted using image-to-text prompting. Each windowed
segment stores references to frame files and associated textual inter-
pretations. This will help us achieve the next iteration on presenting
a product documentation with relevant screenshots.

"frame_transcript": {
"titles": [

"000/segment_0_frame_0.jpg"
],
"details": [

{
"raw_text": "...",
"explanation": "...",
"transcript": "..."

}
]

}

This structure accommodates both low-level OCR-style transcrip-
tion and higher-level interpretation, allowing flexibility in rendering
scene content.

B.3 Final Transcript Payload

All window-level audio and visual transcripts are combined into a
unified knowledge context for further processing. The ingestion stage
outputs a hierarchical payload where each segment contains detailed
multimodal metadata, and a combined summary string is prepared
for specialist modules.

{
"video_id": "abcd",
"combined_transcript": [

{
"combined_transcript": "..."

}
],
"segment_transcripts": {

"000": {
"audio_transcript": { ... },
"frame_transcript": { ... }

}
// Additional segments omitted for brevity

}
}

This JSON format enables targeted segment review during debug-
ging, as well as streamlined access for downstream agents.

B.4 Specialist Agent Payloads

The combined transcript is passed to four specialist modules, each
generating domain-specific outputs. The product documentation spe-
cialists (i.e, executive summary, product documentation) return out-
puts in Markdown format for structured rendering in the UI.

However, the MCQ generation module outputs a structured JSON
payload to support interactive learning interfaces:

{
"topics": ["Topic 1", "Topic 2", "Topic 3"],
"questions": [

{
"question": "What is X?",
"options": ["Option A", "Option B"],
"correct_option": "Option B",
"topics_covered": ["Topic 1", "Topic 2"]

},
...

]
}

and for Student Planner, the output structure has been decided as
such. This is to improve readability in the UI.

{
"topics": ["Topic 1"],
"summary": "...",
"study_plan": [

{
"day": 1,
"focus": "Intro to Topic 1",
"activities": [
"Read summary section",
"Take notes",

"Write a self-explanation"
]

},
{

"day": 2,
"focus": "...",
"activities": [

"Review notes",
"Research examples",
"Create a mind map"

]
}

],
"prerequisites": ["Concept A", "Term B"]

}

The payloads ensure content modularity and personalized pro-
gression for students, enabling back-end adaptability for user pref-
erences.

B.5 LLM-as-a-Judge Feedback Payload

For every specialist response, a feedback mechanism is triggered us-
ing an LLM acting as a judge. This agent assesses factual correctness,
structural completeness, and relevance, issuing corrective feedback
or approval.

{
"is_modification_required": true,
"feedback": "..."

}

The judge has the authority to reject or approve the response. If
modifications are requested, the specialist regenerates the content ac-
cordingly. This feedback loop enhances quality assurance and system
self-correction.

B.6 Conclusion

The above payload structures reflect a deliberate focus on modularity,
interpretability, and consistency across processing stages. By defin-
ing these schemas early in the design lifecycle, the system main-
tained robustness and extensibility, supporting varied downstream
applications without structural conflicts.

C Scene-Detection & Segmentation Parameters
In designing the video ingestion pipeline, several approaches were
explored and iteratively refined to balance fidelity, efficiency, and
modularity. This section outlines the design evolution and technical
rationale behind the current scene segmentation strategy.

C.1 Initial Approach: Direct Video-to-LLM Parsing

As a straightforward implementation, we first followed Gemini’s
documentation by directly passing the entire video stream into the
LLM for transcription and captioning. While conceptually simple,
this approach introduced two significant limitations:

• The parsing was limited to a fixed rate of 1 frame per second (fps),
which proved to be suboptimal. For videos with little motion, this
was too frequent, introducing redundant frames and inflating to-
ken usage. Conversely, for dynamic or fast-paced content, 1 fps
was too sparse, missing key transitions or actions.

• The strategy tightly coupled the pipeline to Gemini’s interface and
assumptions. This reduced portability, as other LLMs might use
different processing strategies or input constraints, thereby limit-
ing the flexibility of our system.

Given these constraints, we moved away from this approach in favor
of more granular and model-agnostic segmentation strategies.

C.2 Intermediate Approach: Fixed-Interval Frame
Sampling

Next, we implemented a configurable sampling technique, where the
video was split by selecting every nth frame, with n settable by the
user. While this offered improved control, it was still limited in key
ways:

• The burden of choosing an appropriate n fell on the user, making
the interface less intuitive and increasing the likelihood of poor
configuration.

• The method remained naive in its handling of redundant content.
Sampling every nth frame does not account for the semantic simi-
larity between adjacent frames, especially in largely static scenes.

• There was no guarantee that only informative or unique frames
would be selected, meaning redundant or irrelevant data could still
be sent to the LLM, inflating cost and latency.

C.3 Final Approach: Windowed Scene Detection with
Frame Hashing

To address these limitations, our current pipeline adopts a hybrid
technique:

• The video is first divided into temporal windows of configurable
size.

• Within each window, we apply scene detection using the
scenedetect Python library. This library compares frames us-
ing perceptual hashing, identifying significant visual changes and
filtering out duplicates.

• Only distinct (non-redundant) frames from each window are
passed to the LLM for captioning.

This method significantly reduces the number of redundant frames
processed by the LLM, resulting in lower token usage and faster re-
sponse times, particularly important in production environments with
limited API quotas or tight latency constraints.

C.4 Future Work: Task-Specific Frame Relevance
Modeling

Looking forward, we envision incorporating a fine-tuned model that
learns to identify and select "important" frames based on the down-
stream task context:

• For example, in product documentation use cases, the model could
prioritize frames where a tool or function is demonstrated.

• In educational videos, it might favor slides, diagrams, or on-screen
writing.

• For interview analysis or human behavior modeling, it could em-
phasize frames showing facial expressions, gestures, or scene tran-
sitions.

Such task-aware frame selection would improve both efficiency and
contextual relevance, enabling more accurate and tailored outputs for
different business applications.

D Evaluation Methodology and Metrics
This appendix details the design, methodology, and interpretation of
the evaluation process employed in our system. Given the modular
nature of the architecture and its reliance on LLM-generated content,
evaluation plays a critical role in ensuring output quality and guiding
iterative refinements.

D.1 Evaluation Design and Execution Points

The evaluation pipeline was designed to assess the system at two
critical junctures:

1. Post-Ingestion Stage: Evaluation of the audio and frame tran-
scripts along with the final summary generated via LLM.

2. Post-Specialist Stage: Evaluation of the textual outputs from each
agent module, including product documentation, executive sum-
maries, student planners, and MCQ generators.

Although ideally evaluation could be applied after every LLM
call, we strategically chose only two checkpoints to reduce token
usage and request overhead. Given that most prompts were deter-
ministic with guardrails and minimal chain-of-thought reasoning, the
marginal gain from per-response evaluation was deemed unnecessary
at this stage.

A dedicated flow was constructed to compute evaluation metrics
separately and periodically. This strategy also allows future integra-
tion of human-in-the-loop feedback and drift tracking across tempo-
ral versions of the same video.

D.2 Ground Truth Curation Strategy

A significant component of the evaluation process was the manual
curation of high-quality ground truth for each module:

• Audio Transcript: Derived from publicly available YouTube cap-
tions to maintain consistency with actual spoken content.

• Frame Transcript: Manually written based on selected frames,
describing visual content in a structured format.

• Combined Transcript: Synthetically constructed from both the
above inputs to act as a reference for overall semantic fidelity.

• Specialist Outputs: Hand-authored markdown documents for the
product documentation and executive summary, as well as struc-
tured JSON payloads for student planners and MCQs.

• Chat Responses: Crafted reply sets to standard queries for each
chat module, enabling targeted comparisons.

This multi-tier ground truth setup ensured robust reference points
across modalities and downstream tasks.

D.3 Metrics and Interpretation

We employed three distinct classes of evaluation metrics to triangu-
late the system’s performance:

D.3.1 ROUGE Scores

• ROUGE-1, ROUGE-2, and ROUGE-L F1 scores were cal-
culated to measure n-gram and sentence-level overlap with the
ground truth. Given the generative nature and multimodal input
diversity, these scores were expectedly modest, reflecting lexical
variation across responses.

D.3.2 BERTScore

• Precision, Recall, and F1 components of the BERTScore were
used to measure semantic similarity using contextual embed-
dings. These values remained consistently high, indicating strong
content-level alignment between system outputs and human-
authored references.

D.3.3 LLM-as-a-Judge Evaluation

• We used Mistral to evaluate outputs across six qualitative dimen-
sions: Correctness, Relevance, Coherence, Fluency, Helpfulness,
and Harmlessness.

• This metric acted as a soft surrogate for human judgment and was
especially useful for assessing structural and stylistic quality.

D.4 Results and Insights

The ROUGE scores across components were moderate, which aligns
with expectations for a system with layered generative stages, par-
ticularly in multimodal contexts where visual descriptions can vary
widely. Conversely, high BERTScore values affirmed the semantic
robustness of the system’s outputs.

LLM-as-a-Judge scores were slightly below par on average, re-
flecting minor inconsistencies in tone, coverage, or structural conven-
tions. These issues were within acceptable bounds and were largely
mitigated by iterative prompt refinement and human review.

D.5 Future Evaluation Directions

We plan to introduce fine-tuned models optimized for task-specific
video contexts. This evolution will necessitate richer evaluation
strategies, potentially including:

• BLEU and METEOR scores for stylistic and lexical fluency.
• Context-sensitive feedback loops integrated with user behavior

tracking.
• Online evaluation strategies where live user feedback directly

informs prompt tuning or model adjustment.

This roadmap ensures the system remains responsive to evolving
application requirements while maintaining rigorous evaluation stan-
dards.

	Introduction
	Context and Motivation
	Problem Statement
	Six‐Step Problem‐Solving Approach

	System Architecture
	Methods and Evaluation Metrics
	Data Acquisition and Preparation
	Ingestion Pipeline
	Knowledge Base Construction
	Agent Design
	Evaluation Protocol

	Results
	Demo and Code
	Conclusion
	Appendix
	Iterative Design of Prompt Templates
	Prompt Type 1: Audio and Frame Transcription
	Prompt Type 2: Unified Video Summary Generation
	Prompt Type 3: Specialist Agent Instructions
	Prompt Type 4: Interactive Chat Modules
	Prompt Type 5: LLM as a Judge
	Conclusion

	Structured Payload Design and Evolution
	Audio Transcript Payload
	Frame Transcript Payload
	Final Transcript Payload
	Specialist Agent Payloads
	LLM-as-a-Judge Feedback Payload
	Conclusion

	Scene-Detection & Segmentation Parameters
	Initial Approach: Direct Video-to-LLM Parsing
	Intermediate Approach: Fixed-Interval Frame Sampling
	Final Approach: Windowed Scene Detection with Frame Hashing
	Future Work: Task-Specific Frame Relevance Modeling

	Evaluation Methodology and Metrics
	Evaluation Design and Execution Points
	Ground Truth Curation Strategy
	Metrics and Interpretation
	ROUGE Scores
	BERTScore
	LLM-as-a-Judge Evaluation

	Results and Insights
	Future Evaluation Directions

