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ABSTRACT

Deep learning models are vulnerable to adversarial examples (AEs). Recently,
adversarial attacks that generate AEs by optimizing a multimodal function with
many local optimums have attracted considerable research attention. Quick con-
vergence to a nearby local optimum (intensification) and fast enumeration of mul-
tiple different local optima (diversification) are important to construct strong at-
tacks. Most existing white-box attacks that use the model’s gradient enumerate
multiple local optima based on multi-restart; however, our experiments suggest
that the ability to diversify based on multi-restart is limited. Therefore, we pro-
pose the multi-directions/objectives (MDO) strategy, which uses multiple search
directions and objective functions for diversification. The MDO strategy showed
higher diversification performance and promising attack performance. Efficient
Diversified Attack (EDA), a combination of MDO and multi-target strategies,
showed further diversification performance, resulting in state-of-the-art attack per-
formance against more than 90% of 41 robust models compared to Adaptive Auto
Attack (A3). EDA particularly outperformed A3 in attack performance and run-
time for models trained on ImageNet, where the MDO strategy showed higher
diversification performance. These results suggest a relationship between attack
and diversification performances, which is beneficial to constructing more potent
attacks.

1 INTRODUCTION

Deep neural networks (DNNs) with have demonstrated excellent performance in several applica-
tions are increasingly being used in safety-critical domains such as automated driving (Gupta et al.,
2021), facial recognition (Adjabi et al., 2020), and cybersecurity (Liu et al., 2022b). However,
DNNs are known to misclassify adversarial examples (AEs) generated by tiny perturbing inputs that
are imperceptible to humans (Szegedy et al., 2014). Vulnerabilities caused by AEs can have fatal
consequences, especially in safety-critical applications. Therefore, the robustness of DNNs against
AEs is extremely important. To this end, several defense mechanisms, including adversarial training
(AT) (Madry et al., 2018), which uses AEs during training and is one of the most effective defenses,
have been proposed (Zhang et al., 2019b; Carmon et al., 2019; Ding et al., 2020; Addepalli et al.,
2022). The model is expected to be more robust if more AEs are used in AT. Moreover, if AEs are
generated faster, more robust models can be trained in less time. Thus, to improve the security of
the DNNs, developing stronger and faster adversarial attacks in generating AEs is beneficial.

Adversarial attacks optimize a challenging nonconvex nonlinear function to find AEs. We focus
on white-box attacks that use gradient-based optimization algorithms, assuming access to the out-
puts and gradients of the DNN. Higher objective function values increase misclassification chances,
creating AE candidates out of local optima. The objective function of this problem is multimodal
because its maximization involves a complex DNN. Because a multimodal function has a myriad of
local optima, quick convergence to a nearby local optimum and fast enumeration of multiple differ-
ent local optima are important. These are referred to as intensification and diversification, respec-
tively (Glover & Samorani, 2019). Many existing gradient-based attacks are considered to achieve
some degree of intensification because the objective value can be improved by moving in the gradi-
ent direction within a neighborhood. While many existing attacks diversify the search based on the
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Figure 1: Illustration of the MDO strategy with two search directions and three objective functions
on a toy model. The different search directions/objective functions search for different regions.

multi-restart (Dong et al., 2013; Madry et al., 2018; Croce & Hein, 2020b; Liu et al., 2022c), few
studies have examined other diversification strategies. Therefore, further research on diversification
is needed.

Our experiments using diversification indices in section 3.1 suggests that the multi-restart strategy
does not yield high diversification performance, and different local solutions may be enumerated
using different search directions and objective functions. Inspired by this observation, we propose
the multi-directions/objectives (MDO) strategy that uses multiple search directions and objective
functions. To implement the MDO strategy, we propose the Automated Diversified Selection (ADS)
algorithm in section 3.2, which selects search directions and objective functions based on Diversity
Index (DI) (Yamamura et al., 2022), and GS+LS in section 3.3, which is a search framework explic-
itly considering the diversification/intensification phase. Figure 1 is a toy example of an attack using
MDO strategy.

We measured the effectiveness of diversification in terms of robust accuracy and the number of
queries in successful attacks. The experimental results in section 4.1 suggest that ADS contributes
to search diversification and GS+LS improves the attack performance using the MDO strategy. In
addition, the MDO strategy found AEs for some inputs in less time than the multi-target (MT) strat-
egy (Gowal et al., 2019), which is considered promising. From these results, it is expected that the
combination of MDO and MT strategies can realize stronger and faster attacks. Therefore, we ex-
perimentally investigated the attack performance of Efficient Diversified Attack (EDA) using MDO
and MT strategies. Experimental results in section 4.2 show that EDA exhibits higher diversifica-
tion performance than the attack using MDO strategy alone, resulting in better attack performance
in less computation time than the state-of-the-art (SOTA) attacks, including Adaptive Auto Attack
(A3) (Liu et al., 2022c) and Auto Attack (AA) (Croce & Hein, 2020b). Given the difference in
robust accuracy between AA and A3, the improvement in robust accuracy of EDA compared to A3

is large. The above experimental results suggest a relationship between diversification and search
performance and that improving diversification leads to improved attack.

The major contributions of this study are summarized below.
1. Multi-directions/objectives (MDO) strategy and its implementation: A novel search strategy us-
ing multiple search directions and objective functions, realized by Automated Diversified Selection
(ADS) algorithm and GS+LS.
2. Efficient Diversified Attack (EDA): A faster and stronger attack using MDO and MT strategies.

2 PRELIMINARIES

2.1 PROBLEM SETTINGS

Let g : D → RC be a locally differentiable C-classifier, xorg ∈ D be a point with c as the correct
label, and d : D×D → R be a distance function. Given ε > 0, the feasible region S is defined as the
set of points x ∈ D that are within a distance of ε from xorg, i.e., S := {x ∈ D | d(x,xorg) ≤ ε}.
Then, we define an AE as xadv ∈ S satisfying argmaxi=1,...,C gi(xadv) ̸= c. Let L be the objective
function to search for xadv. The following expression is a formulation of one type of adversarial
attack, the untargeted attack where the attacker does not specify the misclassification target.

max
x∈S

L(g(x), c) (1)
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The formulation 1 aims to reduce the probability that x is classified in class c by g. Therefore, x
with a high objective value L(g(x), c) is more likely to be misclassified by g. When d(xadv,xorg) is
small, the norm of the adversarial perturbation is also small. The targeted attack aims at maximizing
the probability that xadv is classified in a particular class t ̸= c by solving maxx∈S L (g(x), c, t).
For adversarial attacks on image classifiers, D = [0, 1]n and d(v,w) := ∥v −w∥p, (p = 2,∞) is
typically used. In this study, we focus on the untargeted attack on image classifier using d(v,w) :=
∥v −w∥∞, referred to as ℓ∞ attacks.

2.2 RELATED WORK

In the white-box attack, the initial point sampling ϕ determines x(0) first. Then, the step size update
rule ψ and the update formula δ = δ(L) updates the step size η(k) = η

(k)
ψ and the search direction

δ(k), respectively. Subsequently, the search point x(k+1) is calculated by the following formula.

x(0) ← sampled by ϕ, x(k+1) ← PS

(
x(k) + η(k)δ(k)

)
, (2)

where k is the iteration, and PS is a projection onto S. The search direction δ(k) is usually computed
based on the gradient ∇L(g(x(k)), c). According to equation 2, attack methods are characterized
by the initial point sampling ϕ, step size update rule ψ, search direction δ, and objective function L.
The tuple a = (ϕ, ψ, δ, L) is referred to as an attack a. Because the search direction δ(k) depends
on δ and L, δ and L are the most important components of the gradient-based attack.

Projected Gradient Descent (PGD) (Madry et al., 2018) is a fundamental white-box attack. PGD
uses a fixed step size (ψfix) and moves to the normalized gradient direction (δPGD). Auto-PGD
(APGD) (Croce & Hein, 2020b) is a variant of PGD using heuristic (ψAPGD) for updating step size
and moves to the momentum direction (δAPGD). In addition, some studies use cosine annealing (ψcos)
(Loshchilov & Hutter, 2017) for updating step size. Auto-Conjugate Gradient attack (ACG) (Yama-
mura et al., 2022) uses ψAPGD and moves to the normalized conjugate gradient direction (δACG).
While the sort of steepest directions, such as δPGD and δAPGD, are suitable for intensification, the
conjugate gradient-based direction is suitable for diversification. For the initial point, uniform sam-
pling from S or input points (ϕorg) are usually used. Output Diversified Sampling (ODS, ϕODS)
and its variant, which consider output diversity of the threat model (Tashiro et al., 2020; Liu et al.,
2022c), are also used. For the objective functions, cross-entropy (CE) loss (Goodfellow et al., 2015)
(LCE) and margin-based losses such as CW loss (Carlini & Wagner, 2017) (LCW), a variation of CW
loss scaled by the softmax function (LSCW), and Difference of Logits Ratio (DLR) loss (Croce &
Hein, 2020b) (LDLR) are often used. We denote the targeted version of these functions as LT , e.g.,
LTCE for targeted CE loss.

The robustness of DNNs is usually evaluated using AA, combining four different attacks, including
the MT strategy. The high computational cost of AA has motivated the research community to
pursue faster attacks for AT and robustness evaluation (Gao et al., 2022; Xu et al., 2022). Composite
Adversarial Attack (CAA) (Mao et al., 2021) combines multiple attacks by solving the additional
multi-objective optimization problem, requiring the pre-execution of candidate attack methods on
relatively large samples. Consequently, CAA is still computationally expensive. A3 demonstrated
SOTA attack performance in less computation time by improving the initial point sampling and
discarding the hard-to-attack images. Some studies have investigated how to switch either the search
direction or the objective function based on case studies to improve attack performance (Yamamura
et al., 2022; Antoniou et al., 2022). However, to the best of our knowledge, this is the first study
that investigates the combination of multiple search directions and objective functions based on
search diversification. Please refer to appendix A for details, including mathematical formulas about
existing attacks.

3 MULTI-DIRECTIONS/OBJECTIVES STRATEGY

3.1 MOTIVATION

We hypothesize that diversification contributes to attack performance. This section empirically
demonstrates that attacks with multiple search directions (δ) and objective functions (L) can achieve
more efficient diversification than attacks with a single δ and L. LetD = {δPGD, δAPGD, δACG, δNes}
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Figure 2: Violin plot of DI(X∗(x, a, 10),M). The left/right figure represent the attack with the
same objective function/search direction, respectively.

Figure 3: 2D visualization ofX∗(x, a, 10) using UMAP. Points of the same color in (a)/(b) represent
points obtained using the same objective function/search direction, respectively.

be a set of search directions, and L = {LCE, LCW, LSCW, LDLR} ∪ {LG-DLR,q | q = 4, 5, 6} a set of
objective functions. We have proposed δNes and LG-DLR,q in this study. δNes is the search direction of
Nesterov’s accelerated gradient (NAG) (Nesterov, 2004) normalized by the sign function to accom-
modate ℓ∞ attacks. We refer to LG-DLR,q as generalized-DLR (G-DLR) loss with the denominator
of DLR loss extended from gπ1

(x) − gπ3
(x) to gπ1

(x) − gπq
(x); πq ∈ Y denotes the class label

that has the q-th largest value of g(x). Mathematical expressions of δNes and LG-DLR,q can be found
in appendix B. Given an initial point selection method ϕ and a step size update rule ψ, we define
a set of attacks as A(ϕ, ψ) = {a = (ϕ, ψ, δ, L) | δ ∈ D, L ∈ L}. Let us consider an attack a that
iterates Nmax starting with R initial points to find AEs for the image xi ∈ D. Let (xi)

(k)
a,r be a

search point in the k-th iteration of an attack a starting at the r-th initial point. Then, let (xi)∗a,r be
the search point with the highest objective value obtained by an attack a from r-th initial point, and
X∗(xi, a, R) ⊂ D be the set of search points with the highest objective values found by an attack
a from R initial points. In the following paragraphs, we analyze the characteristics of the attack
a ∈ A(ϕODS, ψcos), which uses a single δ and L, based on the experimental results with Nmax = 30
and R = 10. For this experiment, we used 10,000 images from CIFAR-10 (Krizhevsky et al., 2009)
as test samples and attacked the robust model proposed by Sehwag et al. (2022). Please refer to
appendix C for more information and results of other models.

Limited diversification ability of attacks using single δ and L: We quantify the diversity of
X∗(xi, a, R) using DI to reveal the diversification ability of the attack a, which uses a single δ and
L. Figure 2 shows the violin plot of DI. DI quantifies the degree of density of any point set as a
value between 0 and 1 based on the global clustering coefficient of the graph. DI tends to be small
when the point set forms clusters. We computed DI (X∗(xi, a, R),M) for 10,000 images and all
attacks a ∈ A(ϕODS, ψcos) as well as the mean and standard deviation for the first, second, and third
quartiles of DI over the attacks. M denotes the size of the feasible region. In this study, we used
the same value of M as in Yamamura et al. (2022). The mean and standard deviation of the first,
second, and third quartiles were 0.190 ± 0.019, 0.223 ± 0.023, and 0.269 ± 0.033, respectively.
These DI values suggest that the diversity of the best point set X∗(xi, a, R) is relatively low. Thus,
the diversification ability of a seems to be limited.

Attacks using multiple δ and L can lead to efficient diversification: Figure 3 shows the best point
set X∗(xi, a, R) embedded in a two-dimensional space using Uniform Manifold Approximation
and Projection (UMAP) (McInnes et al., 2018). Dimensionality reduction methods, such as UMAP,
preserve the maximum possible distance information in high-dimensional spaces as possible. In
fig. 3 (a), the points obtained by the attack using the sameL are plotted in the same color. Figure 3 (a)
shows that sets of best search points obtained from searches with different L tend to form different
clusters. Figure 3 (b) is the same as fig. 3 (a), except that the points obtained by the attack using the
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Figure 4: (a) The procedure of ADS. The black circle represents a single search point, and DI tends
to be smaller when the search points form clusters. Regions of different colors represent different
classification classes, and the more search points are distributed around multiple regions, the higher
the degree of diversification in the output space, i.e., the value of P ei . (b) The procedure of GS. (c)
The procedure of LS. Please refer to section 3.3 for more details of (b)/(c).

same δ are depicted in the same color. Similarly, sets of best search points obtained by the attack
using different δ also tend to form different clusters. Based on these observations, it is possible to
efficiently search for different local optima using different δ and L, or an appropriate combination
of both. We name this strategy the multi-directions/objectives (MDO) strategy.

3.2 AUTOMATED DIVERSIFIED SELECTION

The analysis in section 3.1 suggests that the MDO strategy can efficiently search for different local
solutions. However, this strategy does not work well unless the combinations of δ andL are properly
determined because different attacks may search similar regions. To address this issue, we propose
the Automated Diversified Selection (ADS) algorithm, which selects the combinations of search
directions and objective functions considering the degree of diversification in input/output space.
Figure 4 (a) illustrates the procedure of ADS.

Let X∗∗(xi, e) be the set of search points with the highest LCW values obtained by the attacks
in e = {aj}na

j=1 ⊂ A(ϕ, ψ) to image xi ∈ D, and π(xi)
(k) = argmaxq ̸=ci gq((xi)

(k)
a,1) be a

class label with the highest prediction probability excluding the correct classification label. First,
NADS iterations of the attack candidate a ∈ A(ϕ, ψ) are executed on the image set J ⊂ D,
with an initial step size of η. In this study, J is 1% of the images uniformly sampled from
the entire test samples. Subsequently, the set of best search points X∗(xi, a, 1) and class labels
Πai =

{
π(xi)

(k) | k = 1, . . . , NADS
}
⊂ Y are obtained for each attack candidate a ∈ A(ϕ, ψ). Let

A =
{
{aj}na

j=1 ⊂ A(ϕ, ψ) | |{Laj}
na
j=1| = na

}
be a set of the candidate combination of na attacks.

From the observations in section 3.1, the degree of diversification may be greatly reduced when the
selected attacks employ the same objective function. Therefore, constraints are imposed on e ∈ A
so that each attack uses a different L. The weighted average of the DI is calculated for all e ∈ A to
quantify the diversity of the best point set X∗∗(xi, e) as follows:

De =
1

|J |

|J |∑
i=1

P ei ·DI(X∗∗(xi, e),M), (3)

where P ei = | ∪a∈e Πai | is the number of types of classification labels with the highest prediction
probability except the correct classification labels collected during the attack a ∈ e. M is the size
of the feasible region. A high DI indicates a high diversity of X∗∗(xi, e), and a high P ei indicates
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a high degree of diversification in the output space. Finally, ADS outputs {(δa∗j , La∗j )}
na
j=1 as the

appropriate combinations of δ and L, where {a∗j}
na
j=1 = argmaxe∈A(ϕ,ψ)D

e. The pseudocode of
ADS is provided in algorithm 3 in the appendix.

3.3 SEARCH FRAMEWORK FOR MDO STRATEGY

Considering the difference in diversification/intensification performance between PGD and CG-
based search directions reported by Yamamura et al. (2022), we propose a search framework con-
sisting of a diversification phase (global search, GS) and an intensification phase (local search, LS).
GS searches a wide area, and LS searches the nearby area around the best point obtained by GS in
more detail to improve the objective value. Figure 4 (b)/(c) illustrates the procedure of GS/LS, re-
spectively. This framework is called GS+LS. The pseudocode of GS+LS is described in algorithm 4
in the appendix.

Diversification phase: GS uses large step sizes to search a broader area. First, ADS is executed
with a step size of η = 2ε and initial point sampling ϕinit to determine the pairs {(δa∗j , La∗j )}

na
j=1,

where (a∗1, a
∗
2, . . . , a

∗
na
) ⊂ A(ϕinit, ψfix). Then, the following process is performed for each pair

(δa∗j , La∗j ). (1) Select an initial point by the initial point sampling ϕinit. (2) Perform N1 iterative
searches with initial step size of 2ε, using step size update rule ψfix. (3) PerformN2 iterative searches
starting at the point with the highest LCW value found in (2), using initial step size of ε and step size
update rule ψfix. GS ends when (1)∼(3) are executed for all selected pairs of δ and L.

Intensification phase: LS takes the solution with the highest LCW value found by the GS as the
initial point and searches for different local optimums within a range not far from the initial point.
ADS is executed with a step size of η = ε/2 to determine the pairs {(δa∗∗j , La∗∗j )}na

j=1, where
(a∗∗1 , a

∗∗
2 , . . . , a

∗∗
na
) ⊂ A(ϕbest, ψfix), and ϕbest denotes the initial point sampling that uses the solu-

tion with the highestLCW value as the initial point. Subsequently, the following process is performed
for each pair (δa∗∗j , La∗∗j ). (1) Perform N3 iterative searches with the initial point determined by
ϕbest, and the initial step size of ε/2, using step size update rule ψcos. Note that ψAPGD is used to
update the step size when the search direction δa∗∗j is equal to δACG, aiming for a better intensi-
fication performance. (2) Perform the same search as in (1) on the images with the highest LCW
values greater than or equal to −0.05 to accelerate the intensification. LS ends when (1) and (2) are
executed for all selected pairs of δ and L.

4 EXPERIMENTS

The efficacy of the proposed methods was examined through a series of experiments involving an
ℓ∞ attack against ℓ∞ defense models listed in RobustBench (Croce et al., 2021).

Dataset and models: We used 41 models and 21 different defenses1, including 25 models trained on
CIFAR-10, 11 models trained on CIFAR-100 (Krizhevsky et al., 2009), and five models trained on
ImageNet (Russakovsky et al., 2015). We performed ℓ∞ attacks on 10,000 images with ε = 8/255
for CIFAR-10 and CIFAR-100 models and on 5,000 images with ε = 4/255 for ImageNet models.
The test images were sampled in the same way as in RobustBench. Owing to the space limitation,
the experimental results for the following nine models are described in the text: 1. ResNet-18 (RN-
18) (Sehwag et al., 2022), 2. WideResNet-28-10 (WRN-28-10) (Carmon et al., 2019), 3. WRN-
70-16 (Rebuffi et al., 2021), 4. PreActResNet-18 (PARN-18) (Rice et al., 2020), 5. WRN-34-
10 (Sitawarin et al., 2021), 6. WRN-70-16 (Gowal et al., 2020), 7. RN-18 (Salman et al., 2020), 8.
RN-50 (Engstrom et al., 2019), and 9. RN-50 (Wong et al., 2020). The models 1∼3, 4∼6, and 7∼9
are trained on CIFAR-10, CIFAR-100, and ImageNet, respectively. These numbers correspond to the
“No.” column in tables. Complete results are described in the appendix D. In addition, computation
specifications are provided in appendix D.1.

Hyperparameters: The parameters of the ADS are na = 5 andNADS = 4, which are the number of
pairs of δ and L and the number of iterations, respectively. These parameters were determined based
on small-scale experiments in appendix D.2. The parameters of GS are the number of iterations
N1 = 22, N2 = 19, and the initial step size η = 2ε, ε. The parameters of LS are the number of

1The used models are publicly available as of robustbench v1.1.
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Figure 5: Violin plot of DI.
Figure 6: The difference between MTcos and
GS+LS in #queries to find AEs.

iterations N3 = 59 and the initial step size η = ε/2. The parameters in GS and LS were determined
inspired by the APGD’s step-size updating rule. Specifically, assuming N = N1+N2+N3 = 100,
N1 = ⌈0.22N⌉ and N2 = ⌈0.19N⌉ correspond to the first and second checkpoint in APGD’s
heuristic, respectively. Unless otherwise noted, the initial point sampling (ϕinit) in ADS and GS was
Prediction Aware Sampling (ϕPAS, PAS), a variant of ODS described in appendix E.

4.1 EVALUATION OF ADS AND GS+LS

This section describes the experimental results from a single run with a fixed random seed for re-
producibility. We also checked that the standard deviations of robust accuracy over five runs of
GS+LS were small as a part of the ablation study in appendix G. The key results are provided in the
following sections.

The combination of δ and L selected by ADS brings a higher degree of diversification. We
compared the attack performance of GS+LS with three selection algorithms to realize the MDO
strategy, including ADS, R-ADS, which finds the pairs minimizing equation 3, and RAND, which
uniformly samples the pair. GS+LS(ADS) in fig. 5 and table 1 represents GS+LS with the selection
algorithm ADS, and the same is applied to GS+LS(R-ADS) and GS+LS(RAND). Figure 5 shows
that the DI of the best search points obtained by GS+LS (ADS) tends to be higher than that obtained
by GS+LS (R-ADS/RAND), indicating ADS may select the pairs that enhance the diversification.
According to table 1, GS+LS(ADS) showed lower robust accuracy than GS+LS(R-ADS/RAND),
while GS+LS(R-ADS) showed significantly higher robust accuracy on some models. These results
suggest that ADS selected the pairs that diversify the search more, leading to stronger attacks.

GS+LS is one of the good implementations of the MDO strategy. To confirm that GS+LS
contribute to improvement in attack performance, we compared the robust accuracy obtained
by GS+LS(ADS) with that obtained by Naive, which independently executes the attacks aj =
(ϕPAS, ψcos, δa∗j , La∗j ) for j = 1, . . . , na. The initial step size and number of iterations of each
aj were set to 2ε and N = 100, respectively. Table 1 shows that the attack performance of
GS+LS(ADS) is higher than that of Naive in most cases. In addition, GS+LS(ADS) showed higher
attack performance than the standard version of AA2 for several models in fewer queries. These ex-
perimental results suggest that GS+LS is one of the effective implementations of the MDO strategy.
Subsequently, we compared the attack performance of GS(ADS), LS(ADS), and GS+LS(ADS) to

confirm whether the combination of GS and LS works well. Table 1 shows that GS alone or LS
alone cannot provide sufficient attack performance, but combining GS and LS can improve attack
performance. Therefore, GS+LS, the combination of GS and LS, is considered to work well.

MDO strategy tends to succeed in fewer queries attacks compared to the MT strategy. To
analyze the MDO strategy’s characteristics, we compared GS+LS and MTcos, a step size variant of
MT-PGD (Gowal et al., 2019). In our notation, MTcos is expressed as (ϕorg, ψcos, δGD, L

T
CW). For

the parameters of MTcos, the number of explored target classes was K = 9, and iterations per target
class wasNT = 56. Hence a slight difference was present between the number of queries of GS+LS
and that of MTcos. Figure 6 shows the difference between the number of queries spent by MTcos
and GS+LS for images that both succeeded in attack. The positive value means MTcos spent more
queries than GS+LS. Figure 6 indicates that GS+LS found AEs in fewer queries than MTcos on
average and much fewer queries for some images. Appendix D.5 provides further explanation.

2https://github.com/fra31/auto-attack
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Table 1: Comparison in robust accuracy. The lower the robust accuracy, the higher the attack perfor-
mance. The lowest robust accuracy is in bold, and the second lowest is underlined. The “#query”
row shows the number of queries in the worst-case per image. The robust accuracy of AA is the
value reported by RobustBench.

No. clean AA ACG Naive GS LS GS+LS GS+LS GS+LS MTcosacc 5 restarts (ADS) (ADS) (ADS) (R-ADS) (RAND)

#query 6.1k 500 501.12 206.12 296.12 502.24 502.24 502.24 504

1 84.59 55.54 56.19 55.68 55.97 56.40 55.58 55.58 55.61 55.54
2 89.69 59.53 60.10 59.70 60.13 59.92 59.46 59.53 59.56 59.54
3 88.54 64.25 64.80 64.53 65.08 64.81 64.32 64.54 64.23 64.28

4 53.83 18.95 19.48 19.08 19.30 19.67 18.97 18.99 18.98 18.99
5 62.82 24.57 25.69 24.74 24.94 25.27 24.65 24.68 24.71 24.55
6 69.15 36.88 37.84 37.19 37.46 38.04 36.96 37.53 37.05 36.95

7 52.92 25.32 26.40 25.46 25.66 25.56 25.22 25.44 25.22 25.24
8 62.56 29.22 31.54 29.64 30.42 30.14 29.20 29.26 29.56 29.34
9 55.62 26.24 28.46 26.84 27.58 28.10 26.22 26.36 26.26 26.40

Targeted loss is good at diversification, while untargeted loss succeeds in attacks by bias-
ing the search. As described in fig. 5, MTcos showed higher diversification performance than
GS+LS(ADS), while the attack performance was inconsistent. Although untargeted losses move the
search points toward decreasing the correct prediction probability, this is not necessarily the case
with targeted losses. Therefore, it is expected that multi-targeted attacks show higher diversification
performance, but sometimes untargeted attacks show higher attack performance.

4.2 COMPARISON WITH THE SOTA ATTACKS

According to the comparison of GS+LS and MTcos in section 4.1, we expected that combining
MDO and MT strategies would lead to a faster and more potent attack. The combination of MDO
and MT strategies is called Efficient Diversified Attack (EDA). We used GS+LS(ADS) for the MDO
strategy and the targeted attack at = (ϕPAS, ψAPGD, δGD, L

T
CW) withN4 = 100 iterations and a target

class T selected based on a small-scale search for the multi-target strategy. The detail of the target
selection scheme is described in appendix F. The pseudocode of EDA is described in algorithm 5 in
the appendix. The comparative experiments of EDA with the standard version of AA and A3 were
conducted to investigate the performance of EDA. The parameters of A3 were the default values in
the official code3. The key results have been discussed below.

EDA showed SOTA performance in less runtime. The summary in table 2 shows that the attack
performance of EDA exceeds that of A3 for 38 out of 41 models, and the runtime of EDA is 86.9 %
of that of A3 on average. Although the improvement in robust accuracy by EDA is approximately
0.01 ∼ 0.3%, it is sufficiently large compared to that by recent SOTA methods. We compared the
runtime of EDA with A3 because comparing the computation cost by the number of queries is dif-
ficult owing to the A3’s adaptive determination of the number of queries depending on the threat
model. Because the bottleneck of adversarial attacks is the forward/backward propagation (query),
there is a close relationship between runtime and the number of queries. We discuss the complexity
of the compared methods in the number of queries in appendix D.3 The EDA’s performance may be
further improved by considering the execution order of the attacks with selected δ and L. However,
determining the execution order requires that (na!)2 permutations be considered, which is compu-
tationally expensive. The experimental results suggest that EDA achieves a satisfactory trade-off
between the computation cost and the attack performance.

EDA specifically showed higher performance for ImageNet models. EDA showed relatively
large improvements in robust accuracy within almost half the runtime of A3 against models 7 to 9,
which were trained on ImageNet. Given that GS+LS(ADS) showed promising results against the
same models in table 1, the MDO strategy may have advantages in the attack against models trained
on ImageNet, which is more practical regarding image size and the number of classification classes.

3https://github.com/liuye6666/adaptive_auto_attack
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Table 2: Average robust accuracy, DI, and computation time over five runs. The “acc” columns
denote the accuracy; the “sec” columns denote the runtime in seconds; and the “DI” columns denote
the mean and standard deviation of DI obtained by each method over all test images. The “ratio”
column represents the ratio of the runtime of EDA to that of A3. The “∆” shows the difference in
robust accuracy after attacks by A3 and EDA. The “Summary” row summarizes the experimental
results for all 41 models. AA’s robust accuracy is the value reported by RobustBench. The lowest
robust accuracy is in bold. The “#query” is the number of queries per image in the worst-case.

No. clean AA, #query:6.1k A3, #query:1k EDA, #query:802.24 ∆

acc acc acc DI sec acc DI sec ratio acc

1 84.59 55.54 55.53 0.27±0.09 1,103 55.49 0.38±0.05 589 0.53 0.04
2 89.69 59.53 59.44 0.26±0.08 4,220 59.40 0.41±0.05 3,316 0.79 0.03
3 88.54 64.25 64.24 0.23±0.09 28,722 64.20 0.37±0.05 24,652 0.86 0.04

4 53.83 18.95 18.89 0.34±0.13 1,734 18.88 0.39±0.06 1,237 0.29 0.01
5 62.82 24.57 24.56 0.32±0.12 4,925 24.50 0.38±0.06 1,985 0.40 0.07
6 69.15 36.88 36.87 0.31±0.14 22,741 36.81 0.42±0.06 15,641 0.69 0.06

7 52.92 25.32 25.22 0.26±0.07 2,943 25.11 0.43±0.05 1,667 0.57 0.10
8 62.56 29.22 29.32 0.29±0.06 9,352 29.01 0.44±0.04 3,159 0.34 0.30
9 55.62 26.24 26.42 0.27±0.07 8,737 26.12 0.43±0.05 4,278 0.51 0.31

Summary (Total of 41 models) AA A3 EDA Average ratio

#Bolded (acc) 0/41 3/41 38/41 0.869

The higher diversification performance is one of the reasons for EDA’s performance. Accord-
ing to fig. 5, EDA showed higher DI values than GS+LS, which indicates that the MT strategy
enhanced the diversification performance of EDA. The point set with a higher value of DI is less
likely to form clusters. Thus, the DI of the best point set obtained by EDA is higher than that ob-
tained by A3 in table 2 suggesting that EDA may search a larger area than A3. Many gradient-based
methods can enhance the performance of intensification by appropriately adjusting the step size such
that intensification and diversification can be achieved simultaneously for high values of DI.

MDO strategy mainly contributed to the attack performance of EDA. We examined the ratio
of AEs generated only by GS+LS, at, and both methods to entire images that EDA succeeded but
A3 failed. In the case of CIFAR-10, the percentages of AEs generated only by GS+LS, at, and
both methods are 58.98%, 6.71%, and 34.31%, respectively. These values are averages over the
25 models trained on CIFAR-10. Similarly, the percentages are 35.02%, 8.28%, and 56.70% for
CIFAR-100 and 25.90%, 15.51%, and 58.59% for ImageNet. Here, the percentages in CIFAR-100
are averages over 11 models, and those in ImageNet over five. This analysis suggests that the MDO
strategy contributes to the attack performance more than the MT strategy and it can find AEs that
are difficult to find for existing attacks.

Additional results and ablations: Appendix G shows the result of the ablation studies, including
the hyperparameter sensitivity of EDA. Appendix D.7 describes the analysis of EDA for the model
of Ding et al. (2020), which showed different trends. The analysis using the Euclid distance-based
measure in appendix D.6 showed similar trends to DI-based analysis. EDA worked well for random-
ized defenses and transformer-based models as described in appendix H and appendix I, respectively.
EDA showed high transferability as described in appendix L.

5 CONCLUSION

In this study, we experimentally confirmed that different local optimums can be efficiently enumer-
ated using various search directions and objective functions. Based on this observation, we have
proposed the MDO strategy and its implementation, including ADS and GS+LS. The experiments
on 41 robust models have demonstrated that the MDO strategy realized by GS+LS has a higher
diversification ability. In addition, EDA, a combination of MDO and MT strategy, showed higher
attack and diversification performance than SOTA attacks. Though more appropriate indices may
exist, these results suggest that the attack designed based on the DI shows higher diversification
performance, resulting in a stronger attack.
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REPRODUCIBILITY

Problem setting and proposed methods. The mathematical setting of the adversarial attack is
provided in section 2.1. The details of δNes, LG-DLR, ADS, GS+LS, PAS, target selection, and EDA
are described in appendix B.1, appendix B.2, section 3.2, section 3.3, appendix E, appendix F, and
section 4.2, respectively. In addition, the pseudocode of a basic white-box attack, ADS, GS+LS,
targeted attack, and EDA are described in algorithm 1, algorithm 3, algorithm 4, algorithm 2, and
algorithm 5, respectively. The limitations and assumptions are provided in appendix J. The time
complexity of EDA is discussed in appendix D.3 In addition, the source code is provided as supple-
mentary material.

Experiments The computer specification is described in appendix D.1. We chose the hyperpa-
rameter of the proposed methods based on preliminary experiments and APGD’s heuristic step size
update. The hyperparameters and related experiments are described in section 4, appendix D.2, and
appendix G. To investigate the stability of proposed methods, we report the mean and standard de-
viation from five runs with different random seeds in section 4.2 and appendix G.2. The results in
section 4.2 and appendix G.2 suggest a stable performance of the proposed methods. Owing to the
computation cost, the remaining experiments were conducted with a single fixed random seed.
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APPENDIX

This supplementary material provides additional information as follows.

1. The summary of abbreviations and mathematical notations defined in the main text (Ta-
bles 3 and 4).

2. The pseudocode of proposed methods (Algorithms 1 to 5).

3. More information about related work (Appendix A).

4. The proposed search direction and objective function (Appendix B).

5. Additional results of the analysis in section 3.1 (Appendix C).

6. Complete results of the experiments in section 4 (Appendix D).

7. The details of Prediction Aware Sampling (Appendix E).

8. The details of the targeted attack used in EDA (Appendix F).

9. Ablation study for EDA (Appendix G).

10. Experiments on randomized defenses (Appendix H).

11. Experiments on transformer-based models (Appendix I).

12. Limitations and assumptions (Appendix J).

13. Broader impacts (Appendix K).

14. Evaluation of EDA’s transferability (Appendix L).

Table 3: Summary of abbreviations
Existing attack techniques

PGD Projected Gradient Descent
MT-PGD MultiTargeted-PGD
APGD Auto-PGD
ACG Auto Conjugate Gradient attack
AA AutoAttack
CAA Composite Adversarial Attack
A3 Adaptive Auto Attack
CE Cross-entropy
DLR Difference of Logit Ratio
ODS Output Diversified Sampling
DI Diversity Index

Proposed methods

G-DLR Generalized-DLR
NAG Nesterov’s accelerated gradient
PAS Prediction Aware Sampling
MDO Multi-directions/objectives
ADS Automated Diversified Sampling
GS+LS Global search + Local search
EDA Efficient Diversified Attack

Others

DNN Deep neural network
AE Adversarial example
AT Adversarial training
SOTA State-of-the-art
MT Multi-target
UMAP Uniform Manifold Approximation and Projection
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Table 4: Summary of mathematical notations
Defined in Section 2.1

g : D → RC Locally differentiable C-classifier.
xorg ∈ D Original input.
c ∈ Y = {1, 2, . . . , C} The correct classification label of xorg.
d : D ×D → R A distance function.
S The feasible region.
L : RC × Y → R Objective function (untargeted attack).
L : RC × Y × Y → R Objective function (targeted attack).

Defined in Section 2.2

PS : D → S Projection onto the feasible region S.
ϕ Initial point sampling.
ψ Step size update rule.
δ Update formula.
x(k) ∈ D Search point at iteration k.
η(k) ∈ R Step size at iteration k.
δ(k) ∈ Rn Search direction at iteration k.
a = (ϕ, ψ, δ, L) An attack.

Defined in Section 3.1

πq ∈ Y The class label that has the q-th largest value of g(x).
D A set of update formulas.
L A set of objective functions.

A(ϕ, ψ) A set of attacks with initial point sampling ϕ
and step size update rule ψ.

(x)
(k)
a,r ∈ D

A search point in the k-th iteration of an attack a
starting at the r-th initial point.

(x)∗a,r = argmax
k=1,...,Nmax

LCW(g((x)(k)a,r), c)
The best search point found by an attack a
starting at r-th initial point.

X∗(xi, a, R) =
{
(xi)

∗
a,r | r = 1, . . . , R

} The set of best search points found by an attack a
with R restarts.

DI(X,M)
Diversity Index of a point set X .
M is the size of feasible region.

Defined in Section 3.2

e = {aj}na
j=1 A combination of attacks.

X∗∗(xi, e) = ∪a∈eX∗(xi, a, 1)
The set of best search points
found by a combination of attacks.
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Figure 7: Relationship between Algorithms 1 to 5.

Algorithm 1 Basic white-box Attacks without muti-restart
Input: a = (ϕ, ψ, δ, L): an attack,N : maximum iteration, PS : a projection function, g: a classifier,
I: a set of images

Output: Xa: a set of best search points, F a: a set of best CW loss values, Πa: a set of classification
labels with the highest probabilities except for the correct classification class

1: for i = 1, . . . , |I| do
2: Πai ← ∅,xorg ← xi ∈ I, ci ∈ Y ← correct classification label corresponding to xi
3: x(0) ← initialize by ϕ, xadvi ← x(0), f besti ← LCW(x(0), ci)
4: for k = 0, . . . , N − 1 do
5: Update η(k) and δ(k) by update rule ψ and search direction δ.
6: x(k+1) ← PS

(
x(k) + η(k) · δ(k)

)
7: Update xadvi and f besti ▷ xadvi is equivalent to (xi)

∗
a,1 in the main paper.

8: Πai ← Πai ∪ {argmaxj ̸=ci gj(x
(k+1))}

9: end for
10: X∗(xi, a, 1)← {xadvi }
11: Xa

i ← X∗(xi, a, 1), F
a
i ← {f besti }

12: end for

Algorithm 2 TargetSelection
Input: I: a set of images, g: image classifier, PS : projection function, K: number of classification

labels explored , ϕinitial: initial point sampling method, Ns: number of iterations in small-scale
search

Output: T : Approximately easiest-to-attack classification label
1: T ← {0}|I| ▷ initialize target label of misclassification
2: at ← (ϕinitial, ψcos, δGD, L

T
CW)

3: for t = 0, . . .K do
4: Xat , F a

t

,Πa
t ← Attack(at, Ns, PS , g, I) ▷ Run targeted attack with the target class πt

5: Update Ti for images xi that replaces the past highest loss value
6: end for
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Algorithm 3 Automated Diversified Selection (ADS)
Input: J : Images, A: a set of attacks, NADS: maximum iterations, PS : projection function, g:

image classifier, M : the size of feasible region, na: number of attacks to be selected
Output: {(δa∗j , La∗j )}

na
j=1: The pairs of search direction and objective function

1: for a = (ϕ, ψ, δ, L) ∈ A do
2: Xa, F a,Πa ← Attack(a,NADS, PS , g,J ) ▷ Run the an attack a following Algorithm 1
3: end for
4: A← {e ⊂ A | |e| = na ∧ |{Laj}

na
j=1| = na}

5: for e ∈ A do
6: for i = 1, . . . , |J | do
7: X∗∗(xi, e)← ∪a∈eXa

i , P
e
i ← | ∪a∈e Πai |

8: end for
9: Compute De by equation 3

10: end for
11: e∗ = {a∗j}

na
j=1 ← argmaxe∈AD

e

12: Get {(δa∗j , La∗j )}
na
j=1 from e∗.

Algorithm 4 GS+LS
Input: I: a set of images, g: image classifier, ε: maximum norm of the adversarial perturbation,
D: a set of search directions, L: a set of objective functions, na: number of pairs to be selected,
NADS: search iterations in ADS,M : the size of feasible region, N1, N2: search iterations in GS,
N3: search iterations in LS

Output: Xadvs: adversarial examples (AEs)
1: Xadvs ← ∅
2: /* Diversification phase (GS) */
3: J ← uniformly sampled 1% images of I.
4: {(δa∗j , La∗j )}

na
j=1 ← ADS (J ,A(ϕPAS, ψfix), NADS, PS , g,M, na)

5: for j = 1, . . . , na do
6: a′ ← (ϕPAS, ψfix, δa∗j , La∗j )

7: Xa′ , F a
′
,Πa

′ ← Attack(a′, N1, PS , g, I) ▷ Run the attack a′ following Algorithm 1
8: a′′ ← (ϕbest, ψfix, δa∗j , La∗j )

9: Xa′′ , F a
′′
,Πa

′′ ← Attack(a′′, N2, PS , g, I) ▷ Run the attack a′′ following Algorithm 1
10: Update Xadvs by Xa

′′

11: Update I by excluding images succeeded in attack.
12: end for
13: /* Intensification phase (LS) */
14: Isub ← I ▷ Isub is used to filter the images to be attacked.
15: J ′ ← uniformly sampled 1% images of I.
16: {(δa∗∗j , La∗∗j )}na

j=1 ← ADS (J ′,A(ϕbest, ψfix), NADS, PS , g,M, na)

17: for j = 1, . . . , na do
18: al ← (ϕbest, ψcos, δa∗∗j , La∗∗j ) ▷ Use ψAPGD instead of ψcos when δa∗∗j = δACG

19: Xal , F a
l

,Πa
l ← Attack(al, N3, PS , g, Isub) ▷ Run the attack al following Algorithm 1

20: Update Xadvs by Xal .
21: I ′ ←

{
xi ∈ I | −0.05 ≤ F a

l

i ≤ 0
}

▷ Extract images for further intensification.
22: Isub ← Isub ∩ I ′
23: Repeat lines 18-19
24: end for
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Algorithm 5 Efficient Diversified Attack (EDA)
Input: I:a set of images, g: image classifier, ε: maximum norm of the adversarial perturbation, D:

a set of search directions, L: a set of objective functions, na: number of pairs to be selected, K:
number of classification labels to be explored, NADS: search iterations in ADS, M : the size of
feasible region, N1, N2: search iterations in GS, N3: search iterations in LS

Output: Xadvs: AEs
1: Xadvs ← ∅
2: Xadvs ← GS+LS(I, g, ε,D,L, na, NADS,M,N1, N2, N3) ▷ Algorithm 4
3: Update I by excluding images succeeded in attack.
4: /* Multi-target attack */
5: T ← TargetSelection (I, g, PS , K , ϕPAS, 10)
6: at ← (ϕPAS, ψAPGD, δGD, L

T
CW) ▷ Algorithm 2

7: Xat , F a
t

,Πa
t ← Attack(at, 100, PS , g, I) ▷ Run targeted attack with the target Ti

8: Update Xadvs by Xat .

A MORE INFORMATION ABOUT RELATED WORK

A.1 PROCEDURE OF BASIC WHITE-BOX ATTACKS

This section provides a detailed explanation of basic white-box attacks introduced in section 2 in
the main paper. We characterize the basic white-box attacks by the tuple a = (ϕ, ψ, δ, L), where
ϕ is the initial point sampling, ψ is the step size update rule, δ is the search direction, and L is the
objective function for the attack. We refer to the tuple a as an attack a. Algorithm 1 shows the
procedure of the basic white-box attacks a = (ϕ, ψ, δ, L) without multi-restart. We assume that
the basic white-box attack a returns a set of best search points Xa, a set of best CW loss values
F a, and a set of classification labels with the highest probability except for the correct classification
labels during the search Πa. The basic white-box attacks iteratively update the search point x(k) as
lines 5& 6 in algorithm 1 to search for adversarial examples. At each iterations k, the best search
point xadvi is updated if L(g(xadvi ), c) ≤ L(g(x(k)), c). After theN iterations of updates, the attack
procedure is finished.

For the attacks with a multi-restart strategy, algorithm 1 is repeated from different initial points.

A.2 SEARCH DIRECTIONS

Projected Gradient Descent Projected Gradient Descent (PGD) (Madry et al., 2018) is the most
fundamental adversarial attack based on the steepest gradient descent. The search direction of PGD
is computed as follows:

δ
(k)
PGD = sign

(
∇L(g(x(k)), c)

)
(4)

Also, Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) updates towards the same di-
rection.

Auto-PGD Auto-PGD (APGD) (Croce & Hein, 2020b) is a PGD variant that adjusts the step size
and updates towards momentum direction in addition to the PGD’s search direction. The search
direction of APGD is defined as follows.

z(k) = PS

(
x(k) + η(k)δ

(k)
PGD

)
, (5)

δ
(k)
APGD = α(z(k) − x(k)) + (1− α)(x(k) − x(k−1)), (6)

where α is a coefficient of momentum term. APGD uses α = 1 for the first iteration and α = 0.75
for the remaining iterations. The step size η(k) is halved if the following conditions are satisfied at
the wj ∈W iteration, with the initial value η(0) = 2ε.

1.
wj−1∑
i=wj−1

1L(g(x(i+1)),c)>L(g(x(i)),c) < ρ · (wj − wj−1)
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2. Lmax

(
g(x(wj−1)), c

)
= Lmax

(
g(x(wj)), c

)
and η(wj−1) = η(wj)

The sequence of checkpoints W is computed based on the following gradual equation depending on
the total number of iterations Niter. p0 = 0, p1 = 0.22, pj+1 = min(pj − pj−1− 0.03, 0.06), wj =
⌈pjNiter⌉. In our notation, ψAPGD denotes this step size updating rule.

Auto-Conjugate Gradient attack Auto-Conjugate Gradient (ACG) attack (Yamamura et al.,
2022) is inspired by the Conjugate Gradient method for nonlinear optimization problems. ACG
performs a more diversified search than the attacks based on the steepest descent. The search direc-
tion of ACG is as follows.

y(k) = ∇L(g(x(k−1)), c)−∇L(g(x(k)), c) (7)

β(k) = −∇L(x
(k), c)Ty(k)

(y(k))T δ
(k−1)
ACG

(8)

δ
(k)
ACG = ∇L(x(k), c) + β(k)δ

(k−1)
ACG (9)

Moreover, Yamamura et al. (2022) proposed the Diversity Index(DI) to quantify the degree of diver-
sification during the attacks. DI is defined as

DI(X,M) :=
1

M

∫ M

0

h(θ;X) dθ, (10)

where M = sup{∥x − y∥2 | x,y ∈ S} is the size of the feasible region, X is the set of search
points, and h(θ;X) is the function of θ based on the global clustering coefficient of the graph
G(X, θ) = (X,E(θ)) = (X, {(u, v) | u,v ∈ X, ∥u− v∥2 ≤ θ}).

A.3 OBJECTIVE FUNCTIONS

Cross-entropy loss The untargeted version of cross-entropy (CE) loss is defined as follows.

LCE(g(x), c) = −gc(x) + log

∑
j ̸=c

exp (gj(x))

 (11)

Also, the targeted version of CE loss is defined as follows.

LTCE(g(x), c, t) = gt(x)− log

∑
j ̸=t

exp (gj(x))

 , (12)

where t denotes the target label of misclassification. CE loss is known to be sensitive to the scaling
of the logit, i.e., the attack performance significantly varies depending on the scaling of the logit
(Carlini & Wagner, 2017; Croce & Hein, 2020b).

CW loss The untargeted version of CW loss is defined as follows.

LCW(g(x), c) = max
j ̸=c

gj(x)− gc(x) (13)

Also, the targeted version of CW loss is defined as follows.

LTCW(g(x), c, t) = gt(x)− gc(x), (14)

where t denotes the target label of misclassification.

Difference of Logit Ratio loss The untargeted version of the Difference of Logit Ratio (DLR) loss
is defined as follows.

LDLR(g(x), c) =
maxj ̸=c gj(x)− gc(x)

gπ1
− gπ3

, (15)

where πq denotes the classification label with q-th highest value in g(x). Also, the targeted version
of DLR loss is defined as follows.

LTDLR(g(x), c, t) =
gt(x)− gc(x)

gπ1
− (gπ3

(x) + gπ4
(x))/2

, (16)

where t denotes the target label of misclassification.
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A.4 COMPARISON OF EXISTING ATTACKS AND EDA

Table 5 summarizes the characteristics of PGD-like attacks, Auto Attack (AA) (Croce & Hein,
2020b), Adaptive Auto Attack (A3) (Liu et al., 2022c), and EDA in terms of diversification, intensi-
fication, and computational cost. The attacks in table 5 perform well in intensification because they
include gradient-based attacks with appropriate step size management. Although PGD-like attacks
have several variations, this section describes the representative one in table 5. PGD-like attacks
and A3 use multi-restart for diversification, and both attacks spend a relatively short computational
time. However, A3 outperforms PGD-like attacks because A3 uses better initial point sampling.
AA considers multiple objective functions and multi-target attacks for diversification in addition to
multi-restart. While AA achieves a high attack success rate, AA is computationally expensive be-
cause AA consists of four attacks, including APGD with untargeted CE loss, APGD with targeted
DLR loss, FAB attack (Croce & Hein, 2020a), and square attack (Andriushchenko et al., 2020). In
the sense that AA uses different types of attacks, we can consider that AA employs the diversifica-
tion strategy based on multi-δ. However, AA uses only a single search direction to solve (2) in the
white-box setting. Therefore, we do not consider AA an attack with a diversification strategy based
on multi-δ. In contrast, EDA, the proposed attack, uses all diversification strategies listed in table 5
and achieves a higher attack success rate in a short computation time.

Table 5: Characteristics of PGD-like attacks, AA, A3, and EDA. multi-L denotes the diversification
using multiple objective functions, and multi-δ denotes the diversification using multiple search
directions.

Attacks Diversification Intensification Runtime
multi-L multi-δ multi-restart multi-target

PGD-like - - ✓ - ✓ short
AA ✓ - ✓ ✓ ✓ long
A3 - - ✓ - ✓ short

EDA ✓ ✓ ✓ ✓ ✓ short

B THE PROPOSED SEARCH DIRECTION AND OBJECTIVE FUNCTION

B.1 SEARCH DIRECTION INSPIRED BY NESTEROV’S ACCELERATED GRADIENT

Although some attacks were inspired by Nesterov’s accelerated gradient (Nesterov, 2004), most of
them apply constant value to the coefficient of momentum (Lin et al., 2020; Liu et al., 2022a). How-
ever, the original Nesterov’s accelerated gradient method determines the coefficient of momentum
term by solving the quadratic equations. So then we try to adopt Nesterov’s accelerated gradient to
ℓ∞ attacks. Mathematically, δNes is computed by the following equations.

ρ(k) is a positive solution of (ρ(k))2 = (1− ρ(k))(ρ(k−1))2 (17)

γ(k) ←
ρ(k−1)

(
ρ(k−1) − 1

)
ρ(k) + (ρ(k−1))2

(18)

x̃(k) ← x(k) + γ(k)
(
x(k) − x(k−1)

)
(19)

δ
(k+1)
Nes ← sign

(
∇L(g(x̃(k)), c)

)
(20)

B.2 GENERALIZED-DLR LOSS

We generalize DLR loss by extending the denominator of DLR loss from gπ1
(x) − gπ3

(x) to
gπ1

(x) − gπq
(x). πq ∈ Y denotes the class label that has the q-th largest value of g(x). More

precisely, LG-DLR,q is defined as

LG-DLR,q(g(x), c) = −
gc(x)− gπ2

(x)

gπ1(x)− gπq (x)
. (21)
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Figure 8: Violin plot of DI obtained by attacking the models proposed by (Sehwag et al., 2022;
Andriushchenko & Flammarion, 2020) for CIFAR-10 and (Engstrom et al., 2019; Salman et al.,
2020) for ImageNet.

C ADDITIONAL RESULTS OF THE ANALYSIS IN SECTION 3.1

C.1 DIVERSITY INDEX FOR THE SET OF BEST SEARCH POINTS

The main paper only includes the results for the model proposed by Sehwag et al. (2022). This
section describes the violin plot of DI for several models (Andriushchenko & Flammarion, 2020;
Sehwag et al., 2022; Engstrom et al., 2019; Salman et al., 2020). Figures 8 and 9 show the violin
plot of DI obtained by attacking the robust models. According to figs. 8 and 9, the best point
sets obtained by attacks with a single search direction and objective function have similar DI value
trends.

C.2 VISUALIZATION OF THE BEST SEARCH POINTS VIA UMAP

This section describes the 2D visualization of the best search points using UMAP for several mod-
els (Andriushchenko & Flammarion, 2020; Sehwag et al., 2022; Engstrom et al., 2019; Salman et al.,
2020). Figure 10 shows the 2D visualization of the best search points obtained by attacking the
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Figure 9: Violin plot of DI obtained by attacking the models proposed by (Sehwag et al., 2022;
Andriushchenko & Flammarion, 2020) for CIFAR-10 and (Engstrom et al., 2019; Salman et al.,
2020) for ImageNet.

Figure 10: 2D visualization of the best search points obtained by attacking the models proposed
by (Sehwag et al., 2022; Andriushchenko & Flammarion, 2020). The dataset is CIFAR-10. The same
color in the left/center figure represents points obtained using the same objective function/search
direction, respectively. The same color in the right figure shows the points determined by X-means
to belong to the same cluster.
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Figure 11: 2D visualization of the best search points obtained by attacking the models proposed
by (Engstrom et al., 2019; Salman et al., 2020). The dataset is ImageNet. The same color in the
left/center figure represents points obtained using the same objective function/search direction, re-
spectively. The same color in the right figure shows the points determined by X-means to belong to
the same cluster.

robust models trained on CIFAR-10. Figure 11 shows the 2D visualization of the best search points
obtained by attacking the robust models trained on ImageNet. According to figs. 10 and 11, the
best point sets obtained by attacks with different search directions and objective functions tend to
form different clusters. The points determined to belong to the same cluster due to clustering us-
ing the X-means (Pelleg & Moore, 2000) are also plotted close together in the visualization using
UMAP. These results suggest that 2D visualizations using UMAP are expected to reflect the actual
distribution of search points.

C.3 THE REASON WHY WE USED UMAP

The objective of the qualitative evaluation using UMAP is to know how the best points obtained
by attacks using different objective functions/search directions are distributed and form different
clusters. In order to achieve this goal, it is necessary to consider the distance between any two
points and the distance between clusters. We have tried quantitative evaluation. However, we finally
chose qualitative evaluation using UMAP because quantitative evaluations based on indicators such
as objective values or DI are difficult to achieve our objective for the reasons described below. First,
in adversarial attacks, distant points may show the same objective value or close points may show
very different objective values because the adversarial attack is a maximization problem with many
local optimums. Therefore, quantitative evaluation using objective values is considered difficult.
In addition, DI cannot consider the distance between clusters because DI shows low values when
a point set forms one or more clusters. Another possible evaluation method is clustering, such as
k-means, but this is a qualitative evaluation as with UMAP. UMAP is a dimensionality reduction
method that preserves the distance information in the original space as much as possible so it can
reflect important information, such as the distance between any two points or clusters. Therefore,
we think that the qualitative evaluation by UMAP provides convincing results.

D COMPLETE RESULTS OF THE EXPERIMENTS

Tables 6 and 7 are the complete results of the experiments in section 4.1 described in table 1. Table 8
shows the complete results of the experiments in section 4.2 described in table 2. Also, table 9 shows
the quantified degree of diversification of A3, GS+LS(ADS), GS+LS(R-ADS), GS+LS(RAND), and
EDA. Figure 12 shows the violin plot of DI for several models. Figure 13 shows the difference
between MTcos and GS+LS in #queries to find AEs for some models.
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Table 6: Comparisons with GS, LS, GS+LS, Naive, MTcos, and AA in robust accuracy. The
abbreviations are the same as those used in the main text.

Defense model clean acc AA GS LS GS + LS Naive MTcos

CIFAR-10

(Andriushchenko & Flammarion, 2020) PARN-18 79.84 43.93 44.29 44.65 43.95 44.12 43.96
(Addepalli et al., 2022) RN-18 85.71 52.48 52.98 52.73 52.50 52.63 52.48
(Sehwag et al., 2022) RN-18 84.59 55.54 55.97 56.40 55.58 55.68 55.54

(Engstrom et al., 2019) RN-50 87.03 49.25 50.18 50.26 49.52 49.79 49.21
(Carmon et al., 2019) WRN-28-10 89.69 59.53 60.13 59.92 59.46 59.70 59.54
(Gowal et al., 2020) WRN-28-10 89.48 62.80 63.30 63.40 62.83 62.92 62.86

(Hendrycks et al., 2019) WRN-28-10 87.11 54.92 55.20 55.45 54.87 55.09 60.80
(Rebuffi et al., 2021) WRN-28-10 87.33 60.75 61.44 61.43 60.77 60.82 57.18
(Sehwag et al., 2020) WRN-28-10 88.98 57.14 57.78 57.53 57.14 57.43 59.67
(Sridhar et al., 2022) WRN-28-10 89.46 59.66 60.14 60.06 59.59 59.89 56.38
(Wang et al., 2020) WRN-28-10 87.50 56.29 56.89 57.24 56.33 56.66 60.06
(Wu et al., 2020) WRN-28-10 88.25 60.04 60.50 60.35 59.99 60.14 41.99

(Ding et al., 2020) WRN-28-4 84.36 41.44 43.81 48.44 43.24 43.49 57.77
(Addepalli et al., 2022) WRN-34-10 88.71 57.81 58.12 58.00 57.72 57.92 53.32
(Sehwag et al., 2022) WRN-34-10 86.68 60.27 60.74 60.97 60.21 60.52 60.31

(Sitawarin et al., 2021) WRN-34-10 86.84 50.72 51.36 51.42 50.70 50.98 50.75
(Zhang et al., 2019a) WRN-34-10 87.20 44.83 45.14 45.05 44.62 44.87 44.69
(Zhang et al., 2020) WRN-34-10 84.52 53.51 54.06 53.65 53.55 53.60 53.52
(Sridhar et al., 2022) WRN-34-15 86.53 60.41 60.81 60.50 60.39 60.46 60.43
(Gowal et al., 2020) WRN-34-20 85.64 56.86 57.11 57.05 56.88 56.90 56.83
(Pang et al., 2020) WRN-34-20 85.14 53.74 54.14 54.06 53.81 54.00 53.71
(Rice et al., 2020) WRN-34-20 85.34 53.42 53.73 54.30 53.42 53.52 53.39

(Gowal et al., 2020) WRN-70-16 85.29 57.20 57.41 57.55 57.18 57.27 57.15
(Gowal et al., 2020) WRN-70-16 91.10 65.88 66.42 66.61 65.85 66.04 65.96
(Rebuffi et al., 2021) WRN-70-16 88.54 64.25 65.08 64.81 64.32 64.53 64.28

CIFAR-100

(Rice et al., 2020) PARN-18 53.83 18.95 19.30 19.67 18.97 19.08 18.99
(Hendrycks et al., 2019) WRN-28-10 59.23 28.42 28.67 29.40 28.44 28.61 28.43

(Rebuffi et al., 2021) WRN-28-10 62.41 32.06 32.49 32.98 32.08 32.22 32.07
(Addepalli et al., 2022) WRN-34-10 68.75 31.85 32.12 32.62 31.86 31.91 31.80

(Cui et al., 2021) WRN-34-10 60.64 29.33 29.45 29.12 28.99 29.20 28.99
(Sitawarin et al., 2021) WRN-34-10 62.82 24.57 24.94 25.27 24.65 24.74 24.55

(Wu et al., 2020) WRN-34-10 60.38 28.86 29.18 29.31 28.88 28.97 28.86
(Cui et al., 2021) WRN-34-20 62.55 30.20 30.39 30.22 30.01 30.15 30.03

(Gowal et al., 2020) WRN-70-16 60.86 30.03 30.21 30.93 30.05 30.11 30.00
(Gowal et al., 2020) WRN-70-16 69.15 36.88 37.46 38.04 36.96 37.19 36.95
(Rebuffi et al., 2021) WRN-70-16 63.56 34.64 35.04 35.38 34.65 34.88 34.68

ImageNet

(Salman et al., 2020) RN-18 52.92 25.32 25.66 25.56 25.22 25.46 25.24
(Engstrom et al., 2019) RN-50 62.56 29.22 30.42 30.14 29.20 29.64 29.34
(Salman et al., 2020) RN-50 64.02 34.96 35.36 35.26 34.84 35.00 34.68
(Wong et al., 2020) RN-50 55.62 26.24 27.58 28.10 26.22 26.84 26.40

(Salman et al., 2020) WRN-50-2 68.46 38.14 38.62 39.20 38.28 38.52 38.22
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Table 7: Comparisons with GS+LS(ADS), GS+LS(R-ADS), and GS+LS(RAND) in robust accuracy
to validate ADS. The abbreviations are the same as those used in the main text. The lowest robust
accuracies are in bold.

CIFAR-10 model GS+LS GS+LS GS+LS
(ε = 8/255) (RAND) (R-ADS) (ADS)

(Andriushchenko & Flammarion, 2020) PARN-18 44.09 44.02 43.95
(Addepalli et al., 2022) RN-18 52.45 52.83 52.50
(Sehwag et al., 2022) RN-18 55.61 55.58 55.58

(Engstrom et al., 2019) RN-50 49.60 49.40 49.52
(Carmon et al., 2019) WRN-28-10 59.56 59.53 59.46
(Gowal et al., 2020) WRN-28-10 62.82 62.99 62.83

(Hendrycks et al., 2019) WRN-28-10 54.94 55.02 54.87
(Rebuffi et al., 2021) WRN-28-10 60.67 60.84 60.77
(Sehwag et al., 2020) WRN-28-10 57.16 57.38 57.14
(Sridhar et al., 2022) WRN-28-10 59.63 59.76 59.59
(Wang et al., 2020) WRN-28-10 56.32 56.50 56.33
(Wu et al., 2020) WRN-28-10 60.02 60.13 59.99

(Ding et al., 2020) WRN-28-4 43.54 44.88 43.24
(Addepalli et al., 2022) WRN-34-10 57.75 57.87 57.72
(Sehwag et al., 2022) WRN-34-10 60.26 60.38 60.21

(Sitawarin et al., 2021) WRN-34-10 50.83 50.78 50.70
(Zhang et al., 2019a) WRN-34-10 44.78 44.70 44.62
(Zhang et al., 2020) WRN-34-10 53.51 53.50 53.55
(Sridhar et al., 2022) WRN-34-15 60.40 60.46 60.39
(Gowal et al., 2020) WRN-34-20 56.86 56.85 56.88
(Pang et al., 2020) WRN-34-20 53.77 53.85 53.81
(Rice et al., 2020) WRN-34-20 53.47 53.48 53.42

(Gowal et al., 2020) WRN-70-16 57.23 57.21 57.18
(Gowal et al., 2020) WRN-70-16 65.86 66.02 65.85
(Rebuffi et al., 2021) WRN-70-16 64.23 64.54 64.32

CIFAR-100 model RAND R-ADS ADS

(ε = 8/255) acc acc acc

(Rice et al., 2020) PARN-18 18.98 18.99 18.97
(Hendrycks et al., 2019) WRN-28-10 28.56 28.83 28.44

(Rebuffi et al., 2021) WRN-28-10 32.08 32.13 32.08
(Addepalli et al., 2022) WRN-34-10 31.91 32.23 31.86

(Cui et al., 2021) WRN-34-10 28.97 29.20 28.99
(Sitawarin et al., 2021) WRN-34-10 24.71 24.68 24.65

(Wu et al., 2020) WRN-34-10 28.93 29.46 28.88
(Cui et al., 2021) WRN-34-20 30.07 30.35 30.01

(Gowal et al., 2020) WRN-70-16 30.06 30.42 30.05
(Gowal et al., 2020) WRN-70-16 37.05 37.53 36.96
(Rebuffi et al., 2021) WRN-70-16 34.61 34.97 34.65

ImageNet model RAND R-ADS ADS

(ε = 4/255) acc acc acc

(Salman et al., 2020) RN-18 25.22 25.44 25.22
(Engstrom et al., 2019) RN-50 29.56 29.26 29.20
(Salman et al., 2020) RN-50 34.68 34.68 34.84
(Wong et al., 2020) RN-50 26.26 26.36 26.22

(Salman et al., 2020) WRN-50-2 38.38 38.54 38.28
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Table 8: Average robust accuracy and computation time over five runs. The lowest accuracies are in
bold. RN: ResNet, WRN: WideResNet, PARN: PreActResNet, ∆: A3-EDA. “EDA/A3” column is
the same as the “ratio” column in table 2. We report the computation time in seconds.

CIFAR-10 model clean AA A3 EDA ∆ EDA/A3

(ε = 8/255) acc acc acc time (sec) acc time (sec) acc time time

Andriushchenko & Flammarion (2020) PARN-18 79.84 43.93 43.96±0.00 382±2 43.85±0.02 513±32 0.11 -130 1.34
Addepalli et al. (2022) RN-18 85.71 52.48 52.46±0.02 434±2 52.43±0.03 625±25 0.03 -193 1.45
Sehwag et al. (2022) RN-18 84.59 55.54 55.53±0.01 1,121±68 55.49±0.01 589±36 0.04 514 0.53

Engstrom et al. (2019) RN-50 87.03 49.25 49.25±0.02 1,572±11 49.10±0.03 1,485±78 0.14 89 0.94
Carmon et al. (2019) WRN-28-10 89.69 59.53 59.44±0.01 4,223±4 59.40±0.01 3,316±65 0.03 903 0.79
Gowal et al. (2020) WRN-28-10 89.48 62.80 62.77±0.01 3,841±13 62.75±0.02 4,557±112 0.02 -718 1.19

Hendrycks et al. (2019) WRN-28-10 87.11 54.92 54.85±0.01 2,719±50 54.77±0.02 3,121±45 0.08 -354 1.13
Rebuffi et al. (2021) WRN-28-10 87.33 60.75 60.72±0.01 3,928±30 60.64±0.01 4,459±74 0.08 -521 1.13
Sehwag et al. (2020) WRN-28-10 88.98 57.14 57.14±0.02 2,662±50 57.03±0.01 3,255±64 0.11 -583 1.22
Sridhar et al. (2022) WRN-28-10 89.46 59.66 59.56±0.01 3,245±119 59.46±0.02 3,355±55 0.10 -140 1.04
Wang et al. (2020) WRN-28-10 87.50 56.29 56.28±0.01 2,732±4 56.15±0.02 3,285±78 0.12 -555 1.20
Wu et al. (2020) WRN-28-10 88.25 60.04 60.02±0.01 3,273±8 59.94±0.01 3,502±39 0.08 -222 1.07

Ding et al. (2020) WRN-28-4 84.36 41.44 41.24±0.06 2,017±90 41.74±0.06 695±29 -0.50 1,624 0.30
Addepalli et al. (2022) WRN-34-10 88.71 57.81 57.73±0.01 3,926±7 57.69±0.02 4,225±109 0.04 -295 1.08
Sehwag et al. (2022) WRN-34-10 86.68 60.27 60.22±0.01 3,858±6 60.18±0.02 4,172±18 0.04 -311 1.08

Sitawarin et al. (2021) WRN-34-10 86.84 50.72 50.69±0.02 3,845±22 50.59±0.01 3,591±103 0.10 252 0.93
Zhang et al. (2019a) WRN-34-10 87.20 44.83 44.63±0.03 3,500±12 44.51±0.02 3,219±32 0.12 280 0.92
Zhang et al. (2020) WRN-34-10 84.52 53.51 53.46±0.01 3,912±16 53.42±0.02 3,936±134 0.03 -22 1.01
Sridhar et al. (2022) WRN-34-15 86.53 60.41 60.38±0.01 6,805±14 60.32±0.01 7,785±116 0.06 -976 1.14
Gowal et al. (2020) WRN-34-20 85.64 56.86 56.81±0.01 13,463±38 56.79±0.03 14,693±284 0.02 -1,251 1.09
Pang et al. (2020) WRN-34-20 85.14 53.74 53.69±0.01 12,436±21 53.66±0.01 18,775±241 0.03 -6,392 1.52
Rice et al. (2020) WRN-34-20 85.34 53.42 53.38±0.01 12,290±5 53.34±0.01 11,255±377 0.04 991 0.92

Gowal et al. (2020) WRN-70-16 85.29 57.20 57.11±0.01 26,587±1,032 57.12±0.01 21,790±430 -0.01 4,747 0.82
Gowal et al. (2020) WRN-70-16 91.10 65.88 65.85±0.01 29,544±252 65.83±0.01 24,885±371 0.02 4,468 0.85
Rebuffi et al. (2021) WRN-70-16 88.54 64.25 64.24±0.01 29,075±887 64.20±0.03 24,652±479 0.04 4,070 0.86

CIFAR-100 model clean AA A3 EDA ∆ EDA/A3

(ε = 8/255) acc acc acc time (sec) acc time (sec) acc time time

Rice et al. (2020) PARN-18 53.83 18.95 18.89±0.00 1,531±924 18.88±0.01 497±74 0.01 1,237 0.29
Hendrycks et al. (2019) WRN-28-10 59.23 28.42 28.32±0.02 2,684±10 28.27±0.02 1,981±38 0.04 670 0.75

Rebuffi et al. (2021) WRN-28-10 62.41 32.06 32.00±0.02 3,044±8 31.94±0.03 2,701±86 0.06 331 0.89
Addepalli et al. (2022) WRN-34-10 68.75 31.85 31.81±0.02 3,046±17 31.78±0.01 2,792±95 0.03 266 0.91

Cui et al. (2021) WRN-34-10 60.64 29.33 28.84±0.02 3,002±7 28.83±0.02 3,075±27 0.01 -74 1.02
Sitawarin et al. (2021) WRN-34-10 62.82 24.57 24.56±0.03 4,935±137 24.50±0.01 1,985±40 0.07 2,940 0.40

Wu et al. (2020) WRN-34-10 60.38 28.86 28.79±0.02 3,258±58 28.76±0.01 2,360±31 0.03 902 0.72
Cui et al. (2021) WRN-34-20 62.55 30.20 29.84±0.01 9,798±8 29.85±0.01 8,027±197 -0.01 1,751 0.82

Gowal et al. (2020) WRN-70-16 60.86 30.03 29.97±0.01 21,452±701 29.96±0.01 13,060±348 0.01 8,535 0.60
Gowal et al. (2020) WRN-70-16 69.15 36.88 36.87±0.02 22,423±1,969 36.81±0.01 15,641±467 0.06 7,100 0.69
Rebuffi et al. (2021) WRN-70-16 63.56 34.64 34.62±0.01 21,546±190 34.55±0.01 15,474±404 0.08 6,403 0.71

ImageNet model clean AA A3 EDA ∆ EDA/A3

(ε = 4/255) acc acc acc time (sec) acc time (sec) acc time time

Salman et al. (2020) RN-18 52.92 25.32 25.22±0.03 2,937±10 25.11±0.02 1,667±119 0.10 1,276 0.57
Engstrom et al. (2019) RN-50 62.56 29.22 29.32±0.05 9,380±188 29.01±0.01 3,159±136 0.30 6,194 0.34
Salman et al. (2020) RN-50 64.02 34.96 34.75±0.04 9,989±234 34.52±0.02 3,525±302 0.22 6,502 0.35
Wong et al. (2020) RN-50 55.62 26.24 26.42±0.04 8,472±194 26.12±0.10 4,459±110 0.31 4,278 0.51

Salman et al. (2020) WRN-50-2 68.46 38.14 38.26±0.02 9,886±120 38.03±0.02 5,102±119 0.23 4,811 0.51
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Table 9: The quantified degree of diversification. DI denotes the Diversity Index, and E denotes the
metric defined by equation 22. RAND, R-ADS, and ADS represent GS+LS(RAND), GS+LS(R-
ADS), and GS+LS(ADS), respectively.

CIFAR-10 Models A3 RAND R-ADS ADS EDA

(ε = 8/255) DI E DI E DI E DI E DI E

Andriushchenko & Flammarion (2020) PARN-18 0.26±0.09 0.66±0.27 0.30±0.06 0.95±0.20 0.25±0.05 0.73±0.14 0.33±0.07 0.98±0.18 0.36±0.05 1.11±0.15
Addepalli et al. (2022) RN-18 0.27±0.10 0.69±0.28 0.31±0.07 0.94±0.20 0.23±0.05 0.78±0.11 0.36±0.08 1.02±0.19 0.40±0.06 1.18±0.17
Sehwag et al. (2022) RN-18 0.27±0.09 0.72±0.28 0.31±0.06 0.93±0.20 0.26±0.05 0.79±0.15 0.34±0.06 0.99±0.19 0.38±0.05 1.15±0.15

Engstrom et al. (2019) RN-50 0.28±0.09 0.72±0.27 0.33±0.06 0.99±0.19 0.25±0.05 0.76±0.15 0.37±0.07 1.04±0.19 0.39±0.05 1.17±0.16
Carmon et al. (2019) WRN-28-10 0.26±0.08 0.65±0.25 0.33±0.06 1.00±0.18 0.26±0.05 0.84±0.14 0.38±0.07 1.06±0.19 0.41±0.05 1.22±0.17
Gowal et al. (2020) WRN-28-10 0.22±0.10 0.58±0.30 0.30±0.07 0.94±0.21 0.20±0.05 0.71±0.11 0.37±0.08 1.04±0.22 0.41±0.06 1.20±0.18

Hendrycks et al. (2019) WRN-28-10 0.25±0.09 0.64±0.27 0.30±0.06 0.94±0.20 0.22±0.04 0.71±0.12 0.34±0.07 1.01±0.19 0.37±0.05 1.14±0.15
Rebuffi et al. (2021) WRN-28-10 0.24±0.10 0.63±0.30 0.30±0.06 0.89±0.21 0.24±0.05 0.75±0.12 0.34±0.07 0.97±0.18 0.37±0.05 1.09±0.16
Sehwag et al. (2020) WRN-28-10 0.25±0.08 0.64±0.26 0.33±0.06 0.99±0.19 0.23±0.04 0.75±0.11 0.38±0.07 1.09±0.20 0.43±0.05 1.24±0.19
Sridhar et al. (2022) WRN-28-10 0.25±0.09 0.64±0.26 0.33±0.06 1.00±0.18 0.24±0.04 0.76±0.10 0.37±0.07 1.05±0.18 0.41±0.05 1.24±0.16
Wang et al. (2020) WRN-28-10 0.28±0.08 0.68±0.24 0.31±0.06 0.93±0.18 0.25±0.06 0.79±0.12 0.35±0.07 0.99±0.18 0.35±0.06 1.04±0.15
Wu et al. (2020) WRN-28-10 0.25±0.09 0.64±0.27 0.32±0.06 0.98±0.19 0.23±0.04 0.76±0.10 0.38±0.07 1.08±0.19 0.43±0.06 1.25±0.16

Ding et al. (2020) WRN-28-4 0.24±0.10 0.91±0.34 0.33±0.07 0.98±0.22 0.29±0.07 0.91±0.23 0.36±0.08 1.02±0.22 0.38±0.07 1.19±0.16
Addepalli et al. (2022) WRN-34-10 0.27±0.09 0.67±0.28 0.31±0.06 0.94±0.20 0.24±0.05 0.83±0.13 0.37±0.08 1.04±0.20 0.41±0.06 1.21±0.17
Sehwag et al. (2022) WRN-34-10 0.25±0.09 0.65±0.26 0.32±0.06 0.96±0.18 0.24±0.04 0.74±0.12 0.37±0.07 1.02±0.18 0.38±0.05 1.15±0.14

Sitawarin et al. (2021) WRN-34-10 0.27±0.10 0.72±0.30 0.32±0.06 0.99±0.20 0.24±0.05 0.74±0.17 0.33±0.06 1.03±0.20 0.38±0.05 1.18±0.16
Zhang et al. (2019a) WRN-34-10 0.27±0.11 0.73±0.31 0.30±0.06 0.96±0.21 0.23±0.05 0.70±0.16 0.32±0.07 1.00±0.21 0.37±0.05 1.18±0.17
Zhang et al. (2020) WRN-34-10 0.25±0.09 0.62±0.26 0.31±0.06 0.95±0.20 0.25±0.05 0.82±0.17 0.33±0.07 0.99±0.20 0.39±0.06 1.21±0.16
Sridhar et al. (2022) WRN-34-15 0.23±0.08 0.57±0.24 0.31±0.07 0.96±0.19 0.24±0.05 0.78±0.11 0.37±0.08 1.06±0.19 0.41±0.06 1.21±0.16
Gowal et al. (2020) WRN-34-20 0.21±0.11 0.55±0.32 0.29±0.07 0.95±0.22 0.21±0.05 0.73±0.15 0.34±0.07 1.02±0.21 0.38±0.05 1.19±0.18
Pang et al. (2020) WRN-34-20 0.24±0.09 0.66±0.30 0.22±0.08 0.80±0.23 0.16±0.07 0.64±0.25 0.25±0.10 0.87±0.21 0.31±0.08 1.06±0.19
Rice et al. (2020) WRN-34-20 0.24±0.11 0.64±0.32 0.28±0.06 0.91±0.22 0.22±0.05 0.71±0.17 0.33±0.07 0.98±0.21 0.37±0.05 1.14±0.17

Gowal et al. (2020) WRN-70-16 0.22±0.10 0.56±0.30 0.30±0.06 0.94±0.20 0.21±0.05 0.71±0.12 0.38±0.08 1.04±0.20 0.39±0.05 1.18±0.17
Gowal et al. (2020) WRN-70-16 0.19±0.10 0.52±0.32 0.28±0.06 0.94±0.22 0.22±0.05 0.76±0.15 0.31±0.07 1.01±0.21 0.38±0.05 1.19±0.16
Rebuffi et al. (2021) WRN-70-16 0.23±0.09 0.59±0.29 0.30±0.06 0.88±0.20 0.23±0.05 0.74±0.12 0.34±0.07 0.96±0.17 0.37±0.05 1.09±0.16

CIFAR-100 Models A3 RAND R-ADS ADS EDA

(ε = 8/255) DI E DI E DI E DI E DI E

Rice et al. (2020) PARN-18 0.34±0.13 0.83±0.31 0.32±0.06 0.97±0.20 0.25±0.06 0.78±0.18 0.35±0.07 1.02±0.21 0.39±0.06 1.15±0.20
Hendrycks et al. (2019) WRN-28-10 0.27±0.11 0.71±0.30 0.29±0.07 0.94±0.22 0.22±0.06 0.75±0.16 0.31±0.08 0.97±0.21 0.36±0.06 1.13±0.18

Rebuffi et al. (2021) WRN-28-10 0.32±0.15 0.81±0.36 0.29±0.07 0.94±0.23 0.25±0.06 0.82±0.17 0.35±0.08 1.02±0.22 0.41±0.06 1.20±0.20
Addepalli et al. (2022) WRN-34-10 0.34±0.13 0.84±0.30 0.31±0.07 0.97±0.21 0.24±0.06 0.86±0.13 0.36±0.09 1.04±0.21 0.42±0.06 1.21±0.18

Cui et al. (2021) WRN-34-10 0.27±0.10 0.67±0.27 0.27±0.08 0.89±0.22 0.23±0.08 0.82±0.14 0.30±0.09 0.97±0.19 0.34±0.07 1.04±0.17
Sitawarin et al. (2021) WRN-34-10 0.31±0.12 0.79±0.30 0.32±0.06 0.98±0.20 0.24±0.05 0.75±0.17 0.35±0.07 1.02±0.21 0.38±0.06 1.14±0.20

Wu et al. (2020) WRN-34-10 0.28±0.12 0.73±0.32 0.29±0.07 0.95±0.22 0.24±0.05 0.79±0.15 0.32±0.08 0.99±0.21 0.37±0.06 1.16±0.18
Cui et al. (2021) WRN-34-20 0.27±0.09 0.66±0.27 0.29±0.08 0.92±0.21 0.22±0.06 0.75±0.13 0.32±0.09 0.99±0.21 0.35±0.07 1.07±0.18

Gowal et al. (2020) WRN-70-16 0.27±0.13 0.69±0.34 0.28±0.07 0.93±0.22 0.19±0.05 0.66±0.13 0.33±0.08 0.98±0.23 0.37±0.06 1.19±0.17
Gowal et al. (2020) WRN-70-16 0.31±0.14 0.79±0.33 0.31±0.07 0.94±0.22 0.23±0.06 0.73±0.14 0.33±0.08 1.01±0.21 0.40±0.06 1.21±0.17
Rebuffi et al. (2021) WRN-70-16 0.29±0.14 0.76±0.36 0.30±0.07 0.93±0.23 0.21±0.06 0.74±0.14 0.34±0.08 0.99±0.20 0.40±0.05 1.19±0.19

ImageNet Models A3 RAND R-ADS ADS EDA

(ε = 4/255) DI E DI E DI E DI E DI E

Salman et al. (2020) RN-18 0.26±0.07 2.60±0.91 0.34±0.07 3.52±0.69 0.28±0.05 2.83±0.42 0.38±0.08 3.66±0.69 0.43±0.04 4.37±0.66
Engstrom et al. (2019) RN-50 0.29±0.06 2.79±0.83 0.38±0.05 3.69±0.58 0.31±0.06 3.18±0.51 0.40±0.06 3.88±0.61 0.44±0.04 4.30±0.64
Salman et al. (2020) RN-50 0.26±0.06 2.61±0.90 0.35±0.06 3.61±0.65 0.30±0.06 3.03±0.47 0.37±0.07 3.70±0.63 0.42±0.04 4.43±0.53
Wong et al. (2020) RN-50 0.27±0.07 3.45±1.12 0.36±0.06 4.59±0.82 0.30±0.06 3.76±0.58 0.38±0.07 4.81±0.80 0.43±0.05 5.43±0.89

Salman et al. (2020) WRN-50-2 0.27±0.06 2.63±0.82 0.37±0.06 3.69±0.60 0.34±0.06 3.53±0.58 0.38±0.05 3.80±0.61 0.43±0.04 4.22±0.65
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Table 10: Results of the preliminary experiments to determine the hyperparameters of ADS. The
robust accuracy obtained by GS+LS is described. The default parameters are in bold.

NADS na

Dataset No. 3 4 5 10 3 4 5 6

CIFAR-10 1 55.56 55.58 55.65 55.67 55.63 55.66 55.58 55.57
CIFAR-10 2 56.83 56.80 56.84 56.81 56.90 56.83 56.80 56.78

CIFAR-100 3 19.01 18.87 19.03 19.01 19.16 19.10 18.87 18.90
CIFAR-100 4 24.66 24.56 24.61 24.59 24.61 24.78 24.56 24.56
ImageNet 5 29.40 29.24 29.26 29.30 29.28 29.34 29.24 29.14

D.1 COMPUTER SPECIFICATION

The experiments are conducted with two types of CPUs and a single type of GPU. The CPUs used
in the experiments are Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and Intel(R) Xeon(R) Silver
4216 CPU @ 2.10GHz. The GPU used in the experiments is NVIDIA GeForce RTX 3090. When
we compare the performance of each attack on model A and dataset B, all compared attacks are run
on the same device. Therefore, although we use different computers, the runtime comparison is fair.

D.2 HYPERPARAMETER DETERMINATION

The values of na, NADS, and Ns are determined based on the following preliminary experiments, as
they should be as small as possible regarding computational cost. The initial step size is determined
based on the step size rules of APGD, a powerful heuristic. The step size of η = 2ε allows the initial
search to move from one end of the feasible region to the other, thus allowing a broader search. The
parameters 0.22 and 0.19, which determine the allocation of the number of iterations for GS and
LS, are inspired by the checkpoints in the APGD’s step size update. N1 and N2 are the number of
iterations to be searched with a step size of 2ε and ε, respectively, in APGD with the total number of
iterations set to 100. The experiments in Yamamura et al. (2022) suggest that the CG diversification
performance is well achieved by moving in the CG direction according to this iteration allocation
and step size assignment. Therefore, we chose these values for step sizes and N1 ∼ N3.

Preliminary experiments to determine hyperparameters of ADS We conducted preliminary
experiments on the following five models to determine the hyperparameters of ADS. 1. ResNet-18
(Sehwag et al., 2022), 2. WideResNet-28-10 (Gowal et al., 2020), 3. PreActResNet-18 (Rice et al.,
2020), 4. WideResNet-34-10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom et al., 2019). These
numbers correspond to the “No.” column in table 10.

D.3 COMPARISON IN COMPUTATION COST BASED ON THE NUMBER OF QUERIES

Since the bottleneck in an adversarial attack is forward/backward (queries), we compare the number
of queries. In attack selection, CAA requires KNt×# samples = 60t× #samples ≥ 60× #samples,
where K = 20 is the population size, N = 3 is the policy length, and t ≥ 1 is the number of
iterations for the candidate attacks. Also, #samples = 4000 for CIFAR-10 and 1000 for ImageNet.
Therefore, attack selection in CAA requires more than 240000 queries for CIFAR-10 and 60000
for ImageNet. For attack selection by ADS, 2|A|NADS× #samples = 112× #samples queries are
required, where |A| = 28 is the number of candidates and NADS = 4 is the number of iterations for
candidates. Also, #samples=100 for CIFAR-10/100 and 50 for ImageNet. Therefore, ADS requires
11200 queries for CIFAR-10 and 5600 queries for ImageNet. Also, the standard AA requires queries
of 6100× #images. CAA requires at least 60t×#samples queries. EDA requires na × (N1 +N2 +
N3)×# images= 5 × 100×#images queries for GS+LS, and K × Ns + N4×# images= 190 ∼
300×#images queries for the targeted attack at. Therefore, EDA requires 692.24 ∼ 802.24×#
images queries in total. We compared the runtime of EDA with that of A3 because A3 automatically
terminates its search before the query limit.
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Figure 12: Violin plot of DI. The attacked models are Sehwag et al. (2022) and Ding et al. (2020)
for CIFAR-10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) for ImageNet.

D.4 MATHEMATICAL DEFINITION OF THE BEST POINT SETS OF A3AND EDA

Mathematically, the best point sets of A3 and EDA are defined as follows. First, the best
point set of A3 is defined as X∗(xi, aA3 , Ri), where aA3 = (ϕADI, ψcos, δGD, LCW), where
ϕADI is Adaptive Direction Initialization (ADI) proposed by Liu et al. (2022c). Subse-
quently, the best point set of EDA is defined as X∗(xi, e

∗) ∪ X∗(xi, a
t, 1), where e∗ ={

(ϕ, ψ, δa, La) | a ∈ {a∗1 . . . , a∗na
, a∗∗1 , . . . , a

∗∗
na
}
}

and at = (ϕPAS, ψAPGD, δGD, L
T
CW).
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Figure 13: The difference between MTcos and GS+LS in #queries to find AEs for some models. The
attacked models are Andriushchenko & Flammarion (2020), Sehwag et al. (2022), and Ding et al.
(2020) for CIFAR-10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) and Engstrom et al.
(2019) for ImageNet.

D.5 DETAILED EXPLANATION FOR FIGURE 6. IN THE MAIN TEXT

This analysis examines how many queries method A takes, on average, to find an adversarial ex-
ample compared to method B when method A takes more queries than method B. Figures 6 and 13
illustrate the difference in the number of queries and their averages for images where attack meth-
ods A and B successfully found adversarial examples, but took different numbers of queries. For
example, ”average (MTcos takes more queries)” in figs. 6 and 13 represents the average difference
in the number of queries required by MTcos and those by GS+LS for images where MTcos spent
more queries. Based on the comparison between ”average (MTcos takes more queries)” and ”aver-
age (MTcos takes fewer queries)”, we argue in the main text that ”Figure 6 shows that GS+LS found
adversarial examples in fewer queries on average than MTcos”.

D.6 ANALYSIS OF EDA USING AN INDEX BASED ON EUCLID DISTANCE

DI takes small values when the point set forms a cluster, even if the Euclidean distance between
any two points is large. Therefore, quantification by DI and quantification based on the Euclidean
distance between points in the point set may have different characteristics. Therefore, in this section,
to compare the diversification performance from a different perspective than DI, we consider quan-
tifying the degree of diversification of the best point set based on the average value of the Euclidean
distance between the centroid of the point set X and all points in the point set X . Mathematically,
the average Euclidean distance between all points in a point set X and the centroid of the point set
X is defined as

E(X) =
1

|X|
∑
x∈X
∥x− x̄∥2, (22)

where x̄ is the centroid of the point set X, defined as x̄ = 1
|X|

∑
x∈X x. As shown in fig. 14, the

value of equation 22 tends to be larger for EDA than for A3 in most models where EDA has higher
attack performance than A3. This difference is more pronounced than the difference in DI. While
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Figure 14: Violin plot of equation 22. The attacks models are Sehwag et al. (2022) and Ding et al.
(2020) for CIFAR-10, Cui et al. (2021) for CIFAR-100, and Salman et al. (2020) for ImageNet.
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EDA shows a similar trend for all models, A3 shows a different trend in the value of equation 22
for some models. For example, as shown in fig. 14, the value of equation 22 for A3 tends to be
larger for the model proposed by Ding et al. (2020) than for the other models. Given the high attack
performance of A3 against these models, this suggests that the A3 diversification strategy may be
more effective for these models.

D.7 ANALYSIS OF EDA FOR THE MODEL PROPOSED BY DING ET AL.

The attack performance of EDA is significantly lower for the model proposed by Ding et al. (2020)
compared to A3. This section discusses the reasons for this regarding diversification performance
and computation time. As described in the main text, the value of DI for the best point set tends
to be higher for EDA and lower for A3, similar to the results for other models. On the other hand,
the analysis in the previous section shows that for the model proposed by Ding et al. (2020), the
value of equation 22 for the best point set obtained by A3 tends to take larger values than the results
for the other models. In addition, a comparison of the computation time for EDA and A3 shows
that A3 takes more than three times longer than EDA. The above comparison suggests that the A3

can perform better diversification for the model than for other models. In summary, setting a longer
computation time and increasing the number of multi-restart are considered particularly effective in
improving the attack performance for the model proposed by Ding et al. (2020).

D.8 TRENDS OF SEARCH DIRECTIONS AND OBJECTIVE FUNCTIONS SELECTED BY ADS

Figure 15 is a bar chart displaying the number of times each search direction and objective function
pair was used by EDA. Figure 15 shows that the combination of δACG and LG-DLR,q is frequently
used in GS, and δNes is rarely used. In LS, all combinations tend to be used at least once with
δNes, LCW, and LSCW being used more often. This trend is independent of J and may reflect ACG’s
high diversification performance and NAG’s high intensification performance. The potential reasons
for these trends are: 1. P ei and DI play different roles from each other, 2. the ACG’s search
direction may be similar to the steepest for small step sizes, and 3. the difference between Nesterov’s
acceleration gradient direction and gradient direction.

The role of P ei and DI. The P ei measures the degree of diversification in the output space during
the search. Therefore, a pair with the largestP ei is expected to search for a high diversity in the output
space. In addition, from Yamamura et al. (2022), it can be assumed that the ACG direction increases
P ei , while the steepest-like direction does not. From the above, it is considered that the pair with
the maximum P ei is likely to include the ACG direction. DI measures the diversity of the best point
set obtained by the search. In our use case, DI represents the dissimilarity between the best points.
That is, we expect that pairs with the largest DI are more likely to enumerate dissimilar solutions.
Intuitively, updates in diverse directions contribute to the enumeration of dissimilar solutions. Given
that the search direction is gradient-dependent, the pair with the largest DI is likely to include a
variety of objective functions and update formulas.

ACG’s search direction may be similar to the steepest for small step sizes. The reason for this
is as follows. According to the equation 9, s(k) is close to the gradient ∇L(g(x(k)), c) when β(k)

is close to 0. From equation 8, ⟨∇L(g(x(k)), c),y(k−1)⟩ is the numerator of β(k). Therefore, as
y(k−1) approaches 0, β(k) also approaches 0. When the step size is small, ∥x(k) − x(k−1)∥ is also
small, so y(k−1) is likely to be close to 0. As a result, the ACG’s direction and the steepest direction
may be similar. The experiments conducted by Yamamura et al. (2022) also support this claim.

The difference between Nesterov’s acceleration gradient direction and gradient direction.
Nesterov’s accelerated gradient (NAG) method updates the search point using the gradient of the
point moved from the current search point to the momentum direction. Assuming that the objective
function is multimodal, the gradient at the current point is unlikely to be similar to NAG’s search
direction. Thus, if the objective function is multimodal, a search in the NAG’s direction may find
different local solutions from that in the gradient direction.
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Figure 15: The number of times each pair of search direction and objective function is used in
GS+LS(ADS).
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E PREDICTION AWARE SAMPLING (PAS)

Motivation The hypothesis behind PAS is that starting the search with an initial point near mul-
tiple decision boundaries increases the likelihood of finding an adversarial example. When maxi-
mizing the inner product of a random vector and logit, as ODS does, the distance to the decision
boundary may be farther away than the initial point. However, when moving in the direction where
the predicted probability for the correct class is as small as possible, the initial point is more likely to
be closer to the decision boundary than the original point. We hypothesized that the attack’s success
rate could be improved by starting the search at a point closer to the decision boundary.

Prediction Aware Sampling One promising initial point sampling is ODS, which considers di-
versification in the output space. However, there is room for improvement because its sampling
does not consider image-specific information. Based on the idea that the randomly sampled initial
point close to decision boundaries makes the attacks easier to succeed, we propose Prediction-Aware
Sampling (PAS), a variant of ODS. PAS maximizes the following function in the same way as ODS
to sample the initial point.

v(w, g,x) = wT g(x)× exp (−gc(x)) ,
(
w ∼ U (−1, 1)C

)
(23)

PAS samples the initial point by repeating the following updates for NPAS iterations.

x← PS

(
x+ ηPAS sign

(
∇xv(w, g,x)

∥∇xv(w, g,x)∥2

))
(24)

Same as ODS, PAS used NPAS = 2 and ηPAS = ε. Intuitively, maximizing equation 23 means
moving the initial point closer to the decision boundary by reducing the prediction probability of the
correct class c and, at the same time, moving the logit g(x) closer to the random vector w.

Experiments To test our hypothesis, we compared the success rate for each class in targeted
attacks with nine target classes, using the input point, the point sampled by ODS, and the point
sampled by PAS as initial points. In our notation, we compared the attack performance of
(ϕ, ψcos, δGD, L

T
CW), ϕ ∈ {ϕorg, ϕODS, ϕPAS} with 100 iterations for each target class and initial step

size of 2ε. The number of target classes K was set to 9. The following five models were used in
the experiments. 1. ResNet-18 (Sehwag et al., 2022), 2. WideResNet-28-10 (Gowal et al., 2020),
3. PreActResNet-18 (Rice et al., 2020), 4. WideResNet-34-10 (Sitawarin et al., 2021), 5. ResNet-
50 (Engstrom et al., 2019). These numbers correspond to the “No.” column in table 11. The
experimental results in table 11 show that the attack with PAS can achieve higher attack success
rates for many target classes than other initial point selections. The experimental results support our
hypothesis that PAS brings the starting point closer to the decision boundary, resulting in a more
successful attack. As described in appendix G.2, the ablation results for the initial point of the EDA
also indicate that the PAS contributes to the attack performance of the EDA and GS+LS.

F TARGETED ATTACK IN EDA

Motivation The motivation for using a targeted attack is to efficiently diversify the most likely
prediction class of the adversarial example away from the correct class (diversification in the output
space). CW loss and DLR loss are objective functions that generate adversarial examples misclas-
sified into the class with the highest prediction probability among classes other than the correct
class. In other words, they attempt to generate an adversarial example misclassified into the class
whose decision boundary is closest to the current point. However, it is difficult to approach the
decision boundary when the gradient is zero, even if the distance to the decision boundary is close,
because the gradient-based attack moves in the direction of the gradient. In addition, Yamamura
et al. (2022) reported that in the steepest gradient-based attacks, the class with the highest prediction
probability among classes other than the correct class hardly changes during the search. Consider-
ing these factors, diversification in the output space could be effective, especially for attacks with
untargeted losses. Some existing research also supports the effectiveness of diversification in the
output space (Tashiro et al., 2020; Gowal et al., 2019).
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Table 11: Validation of PAS. The lowest robust accuracy is in bold.
Dataset No. target input ODS PAS

CIFAR-10 1

1 57.41 57.40 57.29
2 65.33 64.82 64.28
3 67.85 66.98 66.27
4 69.06 68.21 67.52
5 69.88 68.77 67.81
6 69.66 68.59 67.88
7 69.11 68.37 67.59
8 68.08 67.47 67.10
9 67.32 66.84 66.46

CIFAR-10 2

1 57.52 57.54 57.57
2 65.93 65.79 65.33
3 68.88 68.63 68.15
4 70.62 70.34 69.33
5 71.41 70.95 70.00
6 72.37 71.82 70.71
7 72.57 71.99 70.80
8 73.09 72.49 71.31
9 72.86 72.28 71.08

CIFAR-100 3

1 20.37 20.39 20.34
2 24.71 24.67 24.46
3 26.65 26.64 26.14
4 27.70 27.49 26.99
5 28.37 28.36 27.70
6 29.02 28.98 28.33
7 29.55 29.32 28.62
8 29.83 29.68 28.95
9 29.72 29.55 28.94

CIFAR-100 4

1 27.25 27.22 27.17
2 31.87 31.74 31.50
3 33.70 33.73 33.18
4 34.92 34.72 34.17
5 36.00 35.91 35.13
6 36.55 36.50 35.58
7 36.75 36.56 35.87
8 37.34 37.20 36.39
9 37.81 37.54 36.73

ImageNet 5

1 32.66 32.62 32.42
2 38.04 37.98 37.68
3 39.64 39.64 39.22
4 41.50 41.34 40.74
5 41.68 41.48 41.00
6 42.82 42.80 42.20
7 43.10 42.92 42.46
8 43.22 43.02 42.52
9 43.20 43.12 42.58
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Table 12: Validation of targeted attack
Dataset No. EDA EDA+

CIFAR-10 1 55.49 55.49
CIFAR-10 2 56.75 56.78

CIFAR-100 3 18.86 18.87
CIFAR-100 4 24.47 24.48
ImageNet 5 29.00 29.02

Target selection Although a multi-target attack shows high performance by achieving diversifica-
tion in the output space, existing methods (Gowal et al., 2019; Croce & Hein, 2020b) are computa-
tionally expensive because they assign an equal number of iterations to each target. To reduce the
computational cost of the multi-target attack, we propose Target Selection (TS), which estimates the
easiest target class to attack based on a small-scale search. TS estimates the easiest target class to
attack based on a small-scale search to reduce the computational cost of the multi-target attack. The
objective is to reduce the computational cost by focusing the number of iterations on the selected
target. The procedure of TS is as follows: (1) Upper K classes with large logit values of initial
points are selected as target candidates. (2) Targeted attacks are performed forNs iterations for each
target candidate. (3) The output is the target candidate T with the highest objective function value.
The detailed pseudocode of target selection is provided in algorithm 2.

Hyperparameters The parameters of the targeted attack are the number of candidate targets in
target selection K = 9, 14, 20, the number of iterations Ns = 10, and the number of iterations in
targeted attack N4 = 100. We chose N4 = 100 because the number of iterations per targeted attack
in AA is set to 100, which achieves a reasonable trade-off between computational cost and attack
performance.

Experiments To investigate the validity of this target selection, we compare the attack perfor-
mance of EDA+, which executes a normal targeted attack after GS+LS, with that of EDA. In this
experiment, we performed (ϕPAS, ψcos, δGD, L

T
CW) with 100 iterations for each target class and initial

step size of 2ε. The following five models were used in the experiments. 1. ResNet-18 (Sehwag
et al., 2022), 2. WideResNet-28-10 (Gowal et al., 2020), 3. PreActResNet-18 (Rice et al., 2020), 4.
WideResNet-34-10 (Sitawarin et al., 2021), 5. ResNet-50 (Engstrom et al., 2019). These numbers
correspond to the “No.” column in table 12. While the targeted attack with a single target class
selected by TS requires Ns ×K +N4 = 10K + 100 queries per image, the normal targeted attack
requires K × N4 = 100K queries. Given the parameter of K = 9, 14, 20 ≥ 2, the targeted attack
with a single target class selected by TS requires fewer queries than the normal targeted attack. Con-
sidering the results described in table 12, target selection may reduce runtime without significantly
degrading the attack performance of EDA.

G ABLATION STUDY

G.1 HYPERPARAMETER SENSITIVITY OF EDA

We investigated the impact of hyperparameter values on EDA’s performance. In this experiment, the
following five models were used. 1. ResNet-18 (Sehwag et al., 2022), 2. WideResNet-28-10 (Gowal
et al., 2020), 3. PreActResNet-18 (Rice et al., 2020), 4. WideResNet-34-10 (Sitawarin et al., 2021),
5. ResNet-50 (Engstrom et al., 2019). Tables 13 to 15 show the robust accuracy obtained by EDA
with each parameter value. Although the attack performance of GS+LS is different among different
hyperparameters as described in table 10, the EDA’s performance is stable regardless of the hyperpa-
rameter setting. These experimental results imply that the attacks composed by different strategies
could be robust to the hyperparameter settings. In addition, we tested the EDA’s performance with
several targeted attacks. As described in table 16, the search directions based on the steepest di-
rection performed better than the conjugate gradient-based direction. Also, the margin-based losses
showed higher performance than the CE loss.
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Table 13: Ablation study of EDA. The default parameter is in bold.
Ns # sampled images

Dataset No. 5 10 15 1% 3% 5% 7%

CIFAR-10 1 55.59 55.49 55.49 55.49 55.47 55.48 55.50
CIFAR-10 2 56.73 56.76 56.76 56.76 56.81 56.81 56.79

CIFAR-100 3 18.85 18.86 18.86 18.86 18.87 18.88 18.87
CIFAR-100 4 24.46 24.47 24.48 24.47 24.49 24.49 24.47
ImageNet 5 29.04 29.04 29.04 29.04 29.04 29.08 29.04

Table 14: Ablation study of EDA. The default parameter is in bold.
initial stepsize NADS

Dataset No. ε/4 ε/2 ε 2ε 3 4 5 10

CIFAR-10 1 55.50 55.48 55.51 55.49 55.47 55.49 55.50 55.51
CIFAR-10 2 56.78 56.78 56.78 56.75 56.78 56.76 56.77 56.76

CIFAR-100 3 18.92 18.92 18.87 18.86 18.88 18.86 18.89 18.89
CIFAR-100 4 24.49 24.50 24.50 24.47 24.47 24.47 24.49 24.48
ImageNet 5 29.10 29.08 29.08 29.00 29.00 29.04 29.02 29.04

Table 15: Ablation study of EDA. The default parameter is in bold.
na N1 and N2

Dataset No. 3 4 5 6 N1:22 30 10 10 30
N2:19 10 30 10 30

CIFAR-10 1 55.50 55.48 55.48 55.49 55.49 55.51 55.52 55.49 55.48
CIFAR-10 2 56.77 56.82 56.76 56.76 56.75 56.81 56.73 56.77 56.80

CIFAR-100 3 18.87 18.90 18.89 18.86 18.86 18.89 18.88 18.91 18.87
CIFAR-100 4 24.48 24.49 24.48 24.47 24.47 24.48 24.48 24.51 24.51
ImageNet 5 29.06 29.04 29.04 29.02 29.00 29.04 29.06 29.04 29.04

Table 16: Ablation for the targeted attack. The default setting is in bold.
δGD δCG δAPGD

Dataset No. LT
CW LTCE LTDLR LTCW LTDLR LTDLR

CIFAR-10 1 55.49 55.57 55.48 55.50 55.50 55.48
CIFAR-10 2 56.76 56.89 56.81 56.81 56.83 56.79

CIFAR-100 3 18.86 18.96 18.90 18.93 18.94 18.91
CIFAR-100 4 24.47 24.63 24.50 24.53 24.53 24.50
ImageNet 5 29.00 29.18 29.02 29.08 29.06 29.00

38



Under review as a conference paper at ICLR 2024

G.2 THE IMPACT OF THE MDO AND MT STRATEGIES AND PAS ON EDA PERFORMANCE

To investigate the contribution of the MDO and MT strategies and PAS to the performance of EDA,
we compare the robust accuracy obtained in the presence and absence of these components. Table 18
shows the robust accuracy obtained by each setting, and ∆ represents the averaged difference over
the 41 models between robust accuracy obtained by EDA and that by each method. The negative
∆ indicates lower attack performance than EDA. ID 9 in table 18 is the EDA. The ID columns in
Table 18 indicate the presence and absence of PAS, GS+LS, and targeted attack, corresponding to
table 17.

Table 17: Mapping of IDs to the presence or absence of the three diversification strategies.
ID 1 2 3 4 5 6 7 8 9

initial point ϕorg ϕODS ϕPAS ϕorg ϕODS ϕPAS ϕorg ϕODS ϕPAS
G&L search ✓ ✓ ✓ - - - ✓ ✓ ✓
multi-target - - - ✓ ✓ ✓ ✓ ✓ ✓

Table 18: Robust accuracy of the ablation study for EDA.
CIFAR-10 model ID

(ε = 8/255) 1 2 3 4 5 6 7 8 9

(Andriushchenko & Flammarion, 2020) PARN-18 43.96±0.03 44.05±0.07 43.95±0.02 43.96±0.00 43.96±0.00 43.95±0.00 43.85±0.02 43.86±0.01 43.85±0.02
(Addepalli et al., 2022) RN-18 52.50±0.03 52.66±0.12 52.49±0.03 52.49±0.00 52.47±0.00 52.46±0.00 52.41±0.01 52.45±0.02 52.43±0.03
(Sehwag et al., 2022) RN-18 55.62±0.03 55.60±0.02 55.56±0.02 55.55±0.00 55.56±0.00 55.57±0.00 55.49±0.01 55.50±0.01 55.49±0.01

(Engstrom et al., 2019) RN-50 49.40±0.03 49.34±0.06 49.43±0.09 49.23±0.00 49.25±0.00 49.28±0.00 49.11±0.01 49.10±0.01 49.10±0.03
(Carmon et al., 2019) WRN-28-10 59.49±0.03 59.62±0.03 59.49±0.03 59.53±0.00 59.51±0.00 59.55±0.00 59.40±0.01 59.45±0.02 59.40±0.01
(Gowal et al., 2020) WRN-28-10 62.84±0.02 62.99±0.05 62.82±0.03 62.84±0.00 62.84±0.00 62.85±0.00 62.75±0.01 62.78±0.02 62.75±0.02

(Hendrycks et al., 2019) WRN-28-10 54.87±0.03 54.84±0.01 54.85±0.04 54.83±0.00 54.84±0.00 54.87±0.00 54.77±0.01 54.77±0.01 54.77±0.02
(Rebuffi et al., 2021) WRN-28-10 60.78±0.04 60.83±0.07 60.75±0.03 60.78±0.00 60.78±0.00 60.75±0.00 60.69±0.02 60.69±0.02 60.64±0.01
(Sehwag et al., 2020) WRN-28-10 57.11±0.03 57.22±0.05 57.11±0.02 57.17±0.00 57.17±0.00 57.16±0.00 57.01±0.02 57.07±0.03 57.03±0.01
(Sridhar et al., 2022) WRN-28-10 59.62±0.02 59.68±0.10 59.55±0.03 59.64±0.00 59.63±0.00 59.63±0.00 59.48±0.03 59.52±0.03 59.46±0.02
(Wang et al., 2020) WRN-28-10 56.48±0.06 56.52±0.24 56.29±0.02 56.32±0.00 56.34±0.00 56.36±0.00 56.18±0.01 56.20±0.04 56.15±0.02
(Wu et al., 2020) WRN-28-10 60.01±0.02 60.11±0.09 60.00±0.02 60.03±0.00 60.02±0.00 60.03±0.00 59.94±0.01 59.97±0.03 59.94±0.01

(Ding et al., 2020) WRN-28-4 43.33±0.16 43.69±0.13 43.32±0.12 42.27±0.00 42.63±0.00 42.58±0.00 41.70±0.04 41.84±0.03 41.74±0.06
(Addepalli et al., 2022) WRN-34-10 57.78±0.01 58.01±0.09 57.75±0.03 57.76±0.00 57.76±0.00 57.77±0.00 57.70±0.01 57.74±0.01 57.69±0.02
(Sehwag et al., 2022) WRN-34-10 60.27±0.02 60.30±0.02 60.27±0.05 60.25±0.00 60.31±0.00 60.31±0.00 60.17±0.01 60.18±0.02 60.18±0.02

(Sitawarin et al., 2021) WRN-34-10 50.72±0.04 50.69±0.03 50.72±0.03 50.73±0.00 50.73±0.00 50.73±0.00 50.59±0.02 50.60±0.02 50.59±0.01
(Zhang et al., 2019a) WRN-34-10 44.62±0.03 44.65±0.04 44.65±0.06 44.65±0.00 44.71±0.00 44.63±0.00 44.51±0.02 44.52±0.02 44.51±0.02
(Zhang et al., 2020) WRN-34-10 53.53±0.03 53.56±0.03 53.50±0.03 53.49±0.00 53.50±0.00 53.47±0.00 53.43±0.01 53.44±0.03 53.42±0.02
(Sridhar et al., 2022) WRN-34-15 60.43±0.02 60.44±0.11 60.38±0.03 60.40±0.00 60.37±0.00 60.40±0.00 60.31±0.02 60.32±0.03 60.32±0.01
(Gowal et al., 2020) WRN-34-20 56.89±0.02 57.08±0.05 56.86±0.02 56.83±0.00 56.86±0.00 56.88±0.00 56.79±0.01 56.81±0.01 56.79±0.03
(Pang et al., 2020) WRN-34-20 53.85±0.03 53.80±0.03 53.82±0.03 53.73±0.00 53.73±0.00 53.72±0.00 53.64±0.00 53.67±0.01 53.66±0.01
(Rice et al., 2020) WRN-34-20 53.47±0.02 53.56±0.09 53.46±0.04 53.35±0.00 53.39±0.00 53.41±0.00 53.33±0.01 53.34±0.01 53.34±0.01

(Gowal et al., 2020) WRN-70-16 57.21±0.02 57.28±0.05 57.18±0.02 57.15±0.00 57.17±0.00 57.17±0.00 57.12±0.00 57.14±0.01 57.12±0.01
(Gowal et al., 2020) WRN-70-16 65.92±0.04 65.91±0.05 65.87±0.01 65.90±0.00 65.89±0.00 65.91±0.00 65.81±0.03 65.81±0.02 65.83±0.01
(Rebuffi et al., 2021) WRN-70-16 64.31±0.04 64.36±0.06 64.30±0.05 64.26±0.00 64.24±0.00 64.25±0.00 64.20±0.01 64.20±0.02 64.20±0.03

CIFAR-100 model ID

(ε = 8/255) 1 2 3 4 5 6 7 8 9

(Rice et al., 2020) PARN-18 18.97±0.01 19.04±0.09 18.98±0.01 18.92±0.00 18.90±0.00 18.92±0.00 18.87±0.01 18.86±0.01 18.88±0.01
(Hendrycks et al., 2019) WRN-28-10 28.46±0.02 28.60±0.13 28.41±0.02 28.37±0.00 28.35±0.00 28.38±0.00 28.28±0.01 28.28±0.02 28.27±0.02

(Rebuffi et al., 2021) WRN-28-10 32.22±0.03 32.45±0.23 32.07±0.04 32.03±0.00 32.05±0.00 32.04±0.00 31.97±0.01 31.99±0.01 31.94±0.03
(Addepalli et al., 2022) WRN-34-10 31.90±0.03 32.01±0.16 31.87±0.02 31.79±0.00 31.81±0.00 31.83±0.00 31.78±0.01 31.78±0.01 31.78±0.01

(Cui et al., 2021) WRN-34-10 29.00±0.04 29.14±0.23 28.96±0.05 28.91±0.00 28.92±0.00 28.91±0.00 28.85±0.02 28.84±0.02 28.83±0.02
(Sitawarin et al., 2021) WRN-34-10 24.61±0.04 24.67±0.07 24.66±0.03 24.55±0.00 24.56±0.00 24.58±0.00 24.50±0.01 24.48±0.01 24.50±0.01

(Wu et al., 2020) WRN-34-10 28.95±0.04 29.17±0.19 28.89±0.04 28.82±0.00 28.83±0.00 28.84±0.00 28.76±0.01 28.77±0.01 28.76±0.01
(Cui et al., 2021) WRN-34-20 30.06±0.02 30.11±0.10 30.00±0.02 29.92±0.00 29.91±0.00 29.93±0.00 29.86±0.01 29.86±0.01 29.85±0.01

(Gowal et al., 2020) WRN-70-16 30.13±0.03 30.29±0.21 30.07±0.01 29.99±0.00 30.00±0.00 30.00±0.00 29.97±0.01 29.99±0.01 29.96±0.01
(Gowal et al., 2020) WRN-70-16 37.06±0.04 37.17±0.15 36.96±0.04 36.88±0.00 36.91±0.00 36.87±0.00 36.81±0.01 36.83±0.01 36.81±0.01
(Rebuffi et al., 2021) WRN-70-16 34.69±0.04 34.81±0.09 34.64±0.03 34.62±0.00 34.66±0.00 34.63±0.00 34.57±0.02 34.58±0.02 34.55±0.01

ImageNet model ID

(ε = 4/255) 1 2 3 4 5 6 7 8 9

(Salman et al., 2020) RN-18 25.31±0.05 25.48±0.21 25.25±0.02 25.18±0.00 25.18±0.00 25.22±0.00 25.12±0.02 25.10±0.01 25.11±0.02
(Engstrom et al., 2019) RN-50 29.29±0.06 29.77±0.48 29.27±0.07 29.04±0.00 29.06±0.00 29.06±0.00 29.01±0.01 29.00±0.02 29.01±0.01
(Salman et al., 2020) RN-50 34.67±0.09 35.13±0.30 34.73±0.07 34.60±0.00 34.58±0.00 34.60±0.00 34.54±0.03 34.54±0.03 34.52±0.02
(Wong et al., 2020) RN-50 26.41±0.12 26.71±0.34 26.32±0.13 26.26±0.00 26.30±0.00 26.32±0.00 26.13±0.12 26.14±0.08 26.12±0.10

(Salman et al., 2020) WRN-50-2 38.42±0.04 39.36±0.10 38.31±0.06 38.06±0.00 38.08±0.00 38.10±0.00 38.04±0.02 38.03±0.03 38.03±0.02

∆: Average of ID 9 − ID k -0.19 -0.33 -0.15 -0.09 -0.11 -0.11 -2.7×10−3 -0.02 -
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Table 19: Comparison in robust accuracy of EDA with GS+LS(ADS). This table shows the
extracted data from Table 18 to directly compare the attack performance between EDA and
GS+LS(ADS).

CIFAR-10 model GS+LS EDA(ε = 8/255) (ADS)

(Andriushchenko & Flammarion, 2020) PARN-18 43.95±0.02 43.85±0.02
(Addepalli et al., 2022) RN-18 52.49±0.03 52.43±0.03
(Sehwag et al., 2022) RN-18 55.56±0.02 55.49±0.01

(Engstrom et al., 2019) RN-50 49.43±0.09 49.10±0.03
(Carmon et al., 2019) WRN-28-10 59.49±0.03 59.40±0.01
(Gowal et al., 2020) WRN-28-10 62.82±0.03 62.75±0.02

(Hendrycks et al., 2019) WRN-28-10 54.85±0.04 54.77±0.02
(Rebuffi et al., 2021) WRN-28-10 60.75±0.03 60.64±0.01
(Sehwag et al., 2020) WRN-28-10 57.11±0.02 57.03±0.01
(Sridhar et al., 2022) WRN-28-10 59.55±0.03 59.46±0.02
(Wang et al., 2020) WRN-28-10 56.29±0.02 56.15±0.02
(Wu et al., 2020) WRN-28-10 60.00±0.02 59.94±0.01

(Ding et al., 2020) WRN-28-4 43.32±0.12 41.74±0.06
(Addepalli et al., 2022) WRN-34-10 57.75±0.03 57.69±0.02
(Sehwag et al., 2022) WRN-34-10 60.27±0.05 60.18±0.02

(Sitawarin et al., 2021) WRN-34-10 50.72±0.03 50.59±0.01
(Zhang et al., 2019a) WRN-34-10 44.65±0.06 44.51±0.02
(Zhang et al., 2020) WRN-34-10 53.50±0.03 53.42±0.02
(Sridhar et al., 2022) WRN-34-15 60.38±0.03 60.32±0.01
(Gowal et al., 2020) WRN-34-20 56.86±0.02 56.79±0.03
(Pang et al., 2020) WRN-34-20 53.82±0.03 53.66±0.01
(Rice et al., 2020) WRN-34-20 53.46±0.04 53.34±0.01

(Gowal et al., 2020) WRN-70-16 57.18±0.02 57.12±0.01
(Gowal et al., 2020) WRN-70-16 65.87±0.01 65.83±0.01
(Rebuffi et al., 2021) WRN-70-16 64.30±0.05 64.20±0.03

CIFAR-100 model GS+LS EDA(ε = 8/255) (ADS)

(Rice et al., 2020) PARN-18 18.98±0.01 18.88±0.01
(Hendrycks et al., 2019) WRN-28-10 28.41±0.02 28.27±0.02

(Rebuffi et al., 2021) WRN-28-10 32.07±0.04 31.94±0.03
(Addepalli et al., 2022) WRN-34-10 31.87±0.02 31.78±0.01

(Cui et al., 2021) WRN-34-10 28.96±0.05 28.83±0.02
(Sitawarin et al., 2021) WRN-34-10 24.66±0.03 24.50±0.01

(Wu et al., 2020) WRN-34-10 28.89±0.04 28.76±0.01
(Cui et al., 2021) WRN-34-20 30.00±0.02 29.85±0.01

(Gowal et al., 2020) WRN-70-16 30.07±0.01 29.96±0.01
(Gowal et al., 2020) WRN-70-16 36.96±0.04 36.81±0.01
(Rebuffi et al., 2021) WRN-70-16 34.64±0.03 34.55±0.01

ImageNet model GS+LS EDA(ε = 4/255) (ADS)

(Salman et al., 2020) RN-18 25.25±0.02 25.11±0.02
(Engstrom et al., 2019) RN-50 29.27±0.07 29.01±0.01
(Salman et al., 2020) RN-50 34.73±0.07 34.52±0.02
(Wong et al., 2020) RN-50 26.32±0.13 26.12±0.10

(Salman et al., 2020) WRN-50-2 38.31±0.06 38.03±0.02

The impact of PAS: In table 18, IDs 1, 4, and 7 take the input point as the initial point, and the rest
employ random sampling. Table 18 shows that attacks that use input point as the initial point tend to
display higher attack performance than attacks with ODS and lower attack performance than attacks
with PAS. These trends suggest that the PAS positively impacts the attack performance of EDA.

Impacts of MDO strategy: In table 18, IDs 4 to 6 are attacks that do not use the MDO strategy,
whereas IDs 7 to 9 are attacks that use the MDO strategy. Table 18 shows that the attack with the
MDO strategy has higher attack performance than those not using the MDO strategy. Therefore, the
MDO strategy is considered to affect the attack performance of EDA positively.

Impact of multi-target attack: In table 18, IDs 1 through 3 are without multi-target attacks, and
IDs 7 through 9 are with multi-target attacks. Comparing IDs 1 with 7, 2 with 8, and 3 with 9, IDs
with the multi-target attack exhibit higher attack performance in all cases. That is, the multi-target
attack positively affects EDA’s attack performance.
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Table 20: Robust accuracy of randomized defenses. The lowest robust accuracy is in bold.
CIFAR-10 (ε = 8/255) AA A3 EDA

Defense Model clean acc sec acc sec acc sec

RNA RN-18 84.48 62.13 5,094 65.99 1,342 46.13 743
RNA WRN-32 86.49 64.53 30,560 69.70 16,087 46.57 4,764
DWQ PARN-18 82.11 53.81 6,469 56.63 3,161 48.00 897
DWQ WRN-34 81.56 58.05 46,058 60.21 7,043 50.32 5,856

SVHN (ε = 8/255)

DWQ PARN-18 81.97 31.90 4,117 38.80 1,802 28.53 676
DWQ WRN-34 88.65 37.20 29,969 43.87 5,438 35.23 4,027

CIFAR100 (ε = 8/255)

RNA RN-18 56.75 42.78 2,378 47.55 1,921 30.67 426
RNA WRN-32 60.19 41.94 15,296 45.98 17,575 30.71 1,851
DWQ PARN-18 55.96 32.61 3,559 33.72 1,491 26.51 607
DWQ WRN-34 55.94 36.77 25,539 37.82 4,658 29.64 3,311

ImageNet (ε = 4/255)

DWQ RN-50 (free) 49.44 35.62 2,386 45.08 109 24.18 829
DWQ RN-50 (fgsmrs) 62.18 39.08 21,994 40.72 4,854 33.72 3,773

These results suggest that each component greatly impacts EDA’s attack performance in the follow-
ing descending order with or without: a multi-target attack, MDO strategy, and PAS.

H EDA’S PERFORMANCE AGAINST RANDOMIZED DEFENSES

We investigated the efficacy of EDA against two randomized defenses, including Double-Win Quant
(DWQ) (Fu et al., 2021) and Random Normalization Aggregation (RNA) (Dong et al., 2022). For the
models trained on CIFAR-10/100 and SVHN (Netzer et al., 2011), we used ε = 8/255 and 10,000
test images. For the ImageNet, we used ε = 4/255 and 5,000 images, the same as the RobustBench.
Due to the computation cost, we report the results of a single run with a fixed random seed. For
consistency with AA, we calculated the robust accuracy using generated adversarial examples when
the attack terminated and compared these values because the model with randomized defense may
produce different outputs with each inference. Official implementations of AA and EDA calculate
robust accuracy in this way, but the official implementation of A3 calculates differently. Therefore,
we slightly modified the implementation of A3 to calculate robust accuracy in the same way. The
parameters of the compared attacks were the same as in the main text. Table 20 shows the robust
accuracy and runtime of the standard version of AA, A3, and EDA. From table 20, EDA showed
higher attack performance in less computation time. Although these are the results of a single run,
EDA is expected to be effective for randomized defenses.

I EDA’S PERFORMANCE AGAINST TRANSFORMER-BASED ARCHITECTURES

We investigated the performance of EDA against robust models trained on ImageNet including
transformer-based architectures. We used ε = 4/255 and 5,000 images, the same as RobustBench.
Due to the computation cost, we report the results from a single run with a fixed random seed. The
parameters of the compared models were the same as in the main text. Table 21 shows the robust
accuracy and runtime. The robust accuracy of AA is the value reported in RobustBench. Although
the improvement in robust accuracy by EDA was smaller than those for CNNs reported in the main
text, EDA showed the SOTA attack performance in less computation time for all models.
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Table 21: The comparison in the robust accuracy against robust models trained on ImageNet, in-
cluding transformer-based architectures. The lowest robust accuracy is in bold.

Defense Model clean AA A3 EDA

acc acc acc sec acc sec

(Liu et al., 2023a) ConvNeXt-B 76.02 55.82 55.84 37,437 55.78 14,073
(Liu et al., 2023a) Swin-B 76.16 56.16 56.06 20,620 56.04 13,988

(Debenedetti et al., 2022) XCiT-L12 73.76 47.60 47.54 20,044 47.44 12,705
(Debenedetti et al., 2022) XCiT-M12 74.04 45.24 45.22 11,067 45.14 7,884
(Debenedetti et al., 2022) XCiT-S12 72.34 41.78 41.74 6,560 41.60 5,548

(Singh et al., 2023) ConvNeXt-B+ConvStem 75.90 56.14 56.14 35,422 56.02 14,399
(Singh et al., 2023) ConvNeXt-S+ConvStem 74.10 52.42 52.38 24,512 52.30 10,601
(Singh et al., 2023) ConvNeXt-T+ConvStem 72.72 49.46 49.44 19,391 49.38 7,311
(Singh et al., 2023) ViT-B+ConvStem 76.30 54.66 55.02 17,141 54.62 11,962
(Singh et al., 2023) ViT-S+ConvStem 72.56 48.08 48.08 5,928 48.02 5,355

J LIMITATIONS AND ASSUMPTIONS

This study has the following assumptions and limitations. EDA assumes to be able to access the
outputs and gradients of the attacked models. Same as the A3, EDA assumes to attack the set
of images. Thus, EDA cannot apply to a single image. The number of combinations of search
directions and objective functions grows exponentially. Thus, the number of search directions and
objective functions to be selected should be manageable.

Expected situations in EDA work well This study experimentally verifies the performance of
EDA, focusing on image classifiers using deterministic defenses such as adversarial training. Al-
though EDA was tested with images of different resolutions, domains, and models of different ar-
chitectures, EDA worked in most settings. Therefore, it can be assumed that EDA has some gen-
eralization performance for image classifiers using deterministic defenses. Similar to AA, EDA is
applicable to the models whose gradients are available. However, the performance of EDA against
models out of image classifiers needs further investigation.

Expected situations in EDA do not work well EDA contains gradient-based attacks as some
components. Therefore, EDA’s performance may be degraded for models which cause incorrect
gradient calculations. As reported by Croce & Hein (2020b), existing techniques like expectation
over transformation might help improve the attack performance on these models. Also, the perfor-
mance of EDA may be degraded when the MDO and MT strategies do not work well.

K BROADER IMPACTS

Deep neural networks are known to be vulnerable to adversarial examples. A promising defense
mechanism to address this vulnerability is adversarial training, where training is performed using
adversarial examples. Many adversarial examples generated by strong attack methods are required
to produce robust models through adversarial training. Therefore, developing strong and fast adver-
sarial attacks helps improve the robustness of DNNs. The EDA attack method, which is the main
proposal of this research, can generate a larger number of adversarial examples in a shorter time and
can be used for both the robustness evaluation of defense methods and data generation in adversarial
training. Therefore, this research significantly contributes to the security of DNNs. The positive im-
pact of this research is twofold. First, we can make DNNs more robust through adversarial training
using the data generated by the strong attack method EDA. Second, we can more accurately evaluate
the robustness of the models. The potential negative impact of this research includes possible attacks
by malicious users on systems containing DNNs. However, EDA is a white-box attack that assumes
the accessibility of model gradients. In addition, it is difficult to access the model gradients involved
in a real system. Therefore, it is unsuitable to use EDA to attack a real system. As described above,
research benefits are more significant than the potential negative effects. This study helps to improve
the robustness of DNNs, allowing them to be more safely applied to a broader range of domains,
including safety-critical domains.
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Table 22: Comparison in robust accuracy for transfer setting. “source→target” indicates that the
transfer attack from source model to the target model. The robust accuracy with a superscript ∗

represents the value reported by Liu et al. (2023b).
CIFAR-10

source→target clean acc AA CAA AutoAE A3 EDA(target model)

Carmon et al. (2019)→Ding et al. (2020) 84.36 71.79∗ 72.96∗ 70.61∗ 74.53 60.33
Carmon et al. (2019)→Gowal et al. (2020) 91.10 - - - 81.28 69.07
Ding et al. (2020)→Carmon et al. (2019) 89.69 83.58∗ 84.99∗ 82.52∗ 85.34 80.13
Ding et al. (2020)→Gowal et al. (2020) 91.10 - - - 88.04 83.05

Gowal et al. (2020)→Carmon et al. (2019) 89.69 - - - 76.65 71.84
Gowal et al. (2020)→Ding et al. (2020) 84.36 - - - 76.57 69.22

CIFAR-100

Rice et al. (2020)→Cui et al. (2021) 62.55 - - - 58.54 56.31
Rice et al. (2020)→Rebuffi et al. (2021) 63.56 - - - 59.85 57.81

Cui et al. (2021)→Rice et al. (2020) 53.83 - - - 46.68 41.29
Cui et al. (2021)→Rebuffi et al. (2021) 63.56 - - - 55.98 52.10
Rebuffi et al. (2021)→Rice et al. (2020) 53.83 - - - 47.04 40.44
Rebuffi et al. (2021)→Cui et al. (2021) 62.55 - - - 53.27 47.90

ImageNet

Salman et al. (2020)→Engstrom et al. (2019) 62.52 - - - 56.24 52.52
Salman et al. (2020)→Wong et al. (2020) 55.64 - - - 48.36 44.84

Engstrom et al. (2019)→Salman et al. (2020) 68.64 - - - 64.84 61.98
Engstrom et al. (2019)→Wong et al. (2020) 55.64 - - - 46.74 43.08
Wong et al. (2020)→Salman et al. (2020) 68.64 - - - 65.66 64.00

Wong et al. (2020)→Engstrom et al. (2019) 62.52 - - - 57.90 55.40

L EVALUATION OF EDA’S TRANSFERABILITY

We investigated the transferability of EDA between models with different defenses and sizes. The
experimental setup is identical to that described in the main text. We mainly use A3 as a baseline
for comparison. For further evaluation, we compare the other methods reported in Liu et al. (2023b)
for some models. AA (AutoAttck), CAA (Composite Adversarial Attack), and AutoAE are all
ensembles of attack methods. AutoAE runs 32 iterations of APGD with CE loss, 63 iterations of
APGD with DLR loss, 160 iterations of FAB, and 378 iterations of MultiTargeted attack with nine
target classes. According to the official implementation of AutoAE, the MultiTargeted attack runs
378 iterations for each target class. Therefore, AutoAE requires 32 + 63 + 160 + 378× 9 = 3, 657
queries for the adversarial attack. The experimental results in Table table 22 show that EDA has
higher transferability than the baseline methods in all scenarios.
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