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ABSTRACT

Classical point process models, such as the epidemic-type aftershock sequence
(ETAS) model, have been widely used for forecasting the event times and lo-
cations of earthquakes for decades. Recent advances have led to Neural Point
Processes (NPPs), which promise greater flexibility and improvements over clas-
sical models. However, the currently-used benchmark dataset for NPPs does not
represent an up-to-date challenge in the seismological community since it lacks a
key earthquake sequence from the region and improperly splits training and testing
data. Furthermore, initial earthquake forecast benchmarking lacks a comparison to
state-of-the-art earthquake forecasting models typically used by the seismological
community. To address these gaps, we introduce EarthquakeNPP: a collection of
benchmark datasets to facilitate testing of NPPs on earthquake data, accompanied
by a credible implementation of the ETAS model. The datasets cover a range
of small to large target regions within California, dating from 1971 to 2021, and
include different methodologies for dataset generation. In a benchmarking experi-
ment, we compare three spatio-temporal NPPs against ETAS and find that none
outperform ETAS in either spatial or temporal log-likelihood. These results indi-
cate that current NPP implementations are not yet suitable for practical earthquake
forecasting. EarthquakeNPP also provides generative evaluation metrics, enabling
broader model classes to be benchmarked and facilitating the future collaboration
between the seismology and machine learning communities.

1 INTRODUCTION

Operational earthquake forecasting by global governmental organisations such as the US Geological
Survey (USGS) necessitates the development of models which can forecast the times and locations of
damaging earthquakes. While model development is ongoing in the seismology community, recent
improvements have relied upon refinement of a spatio-temporal point process model known as the
Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988; 1998), despite significant growth
in available data (Takanami et al., 2003; Shelly, 2017; Ross et al., 2019; White et al., 2019; Mousavi
et al., 2020; Tan et al., 2021; Mousavi & Beroza, 2023).

In contrast, the machine learning community has offered promising advancements over classical point
process models like ETAS with Neural Point Process (NPP) models, showcasing greater flexibility
(Du et al., 2016; Omi et al., 2019a; Shchur et al., 2019; Jia & Benson, 2019; Chen et al., 2021; Zhou
et al., 2022; Zhou & Yu, 2024). While some initial benchmarking of these models has been conducted
on an earthquake dataset in Japan, these experiments lack relevance for stakeholders in the seismology
community. The benchmark lacks a key earthquake sequence from the region, fails to recreate an
operational setting with proper train-test splits, and doesn’t compare against state-of-the-art models
like ETAS.

Here, we introduce EarthquakeNPP: a curated collection of datasets designed for benchmarking
NPP models in earthquake forecasting, accompanied by a state-of-the-art benchmark model. These
datasets are derived from publicly available raw data, which we process and configure within our
platform to facilitate meaningful forecasting experiments relevant to stakeholders in the seismology
community. Covering various regions of California, these datasets represent typical forecasting zones
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Table 1: Comparison of EarthquakeNPP datasets with the existing NPP benchmark dataset for
earthquakes.

Dataset Chronological Complete Complete Used by
Training/Test Splits Timespan Magnitudes Local Agencies

Chen et al. (2021) Dataset ✗ ✗ ✗ ✗
EarthquakeNPP Datasets ✓ ✓ ✓ ✓

and encompass data commonly utilized by forecast issuers. Moreover, employing modern techniques,
some datasets include smaller magnitude earthquakes, exploring the potential of numerous small
events to enhance forecasting performance through flexible NPPs. To unify efforts, we present an
operational-level implementation of the ETAS model alongside the datasets, serving as a benchmark
for NPPs.

Although initial benchmarking finds that none of the 3 tested NPP implementations outperform ETAS,
EarthquakeNPP aims to serve as a platform for future NPP development. The platform facilitates the
generative evaluation procedure used for rigorous benchmarking in the seismology community. This
directs the impact of future NPPs to stakeholders in seismology and broadens the scope of models
beyond NPPs (e.g. times series models (Wang et al., 2017), Bayesian approaches (Serafini et al.,
2023)). Access to the dataset collection, along with comprehensive documentation and notebooks,
can be found at https://anonymous.4open.science/r/EarthquakeNPP-2D51.

1.1 RELATED WORK

Benchmarking by the NPP Community. Chen et al. (2021) introduced an earthquake dataset for
benchmarking the Neural Spatio-temporal Point Process (NSTPP) model using a global dataset from
the U.S. Geological Survey, focusing on Japan from 1990 to 2020. They considered earthquakes
with magnitudes above 2.5, splitting the data into month-long segments with a 7-day offset. They
exclude earthquakes from November 2010 to December 2011, deeming these sequences "too long"
and "outliers." However, this period includes the 2011 Tohoku earthquake (Mori et al., 2011), the
largest earthquake recorded in Japan and the fourth largest in the world, at magnitude 9.0. This
exclusion renders the benchmarking experiment irrelevant for seismologists, as it is precisely these
large earthquakes and their aftershocks that are crucial to forecast due to their damaging impact.
Additionally, these events are of significant scientific interest because they provide valuable insights
into the earthquake rupture process.

The dataset segments are divided for training, testing, and validation. Instead of a chronological
partitioning that mirrors operational forecasting, the segments are assigned in an alternating pattern.
This approach misrepresents a realistic forecasting scenario and inflates performance measures due to
earthquake triggering (Freed, 2005). Since the model is tested on windows immediately preceding
training windows, it exploits causal dependencies backwards it time.

Although earthquakes with magnitudes above 2.5 are considered by Chen et al. (2021), following a
change in USGS policy on global data collection, from 2009 onwards, only events above magnitude
4.0 are recorded in the dataset. For earthquake forecasting in Japan, seismologists use datasets from
Japanese data centers since they are more comprehensive and complete than global datasets. Section
A.2 describes the biases incurred from such data missingness.

Chen et al. (2021) benchmark their model against another spatio-temporal model, Neural Jump SDEs
(Jia & Benson, 2019), and a temporal-only Hawkes process, even though a spatio-temporal Hawkes
process would provide a more rigorous benchmark. Subsequent papers adopting this benchmark
(Zhou et al., 2022; Yuan et al., 2023; Zhou & Yu, 2024) similarly lack comparisons to a spatio-
temporal Hawkes process, benchmarking instead against temporal-only or spatial-only baselines or
other spatio-temporal NPPs.

Benchmarking by the Seismology Community. Model comparison has been crucial in the develop-
ment of earthquake forecasting models since their inception (Kagan & Knopoff, 1987; Ogata, 1988).
The Collaboratory for the Study of Earthquake Predictability (CSEP) (Michael & Werner, 2018; Schor-
lemmer et al., 2018; Savran et al., 2022; Iturrieta et al., 2024) (https://cseptesting.org/
) aims to unify the framework for earthquake model testing and evaluation, hosting retrospective
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and fully prospective forecasting experiments globally. CSEP benchmarks short-term models using
performance metrics that require forecasts to be generated by simulating many repeat sequences over
a specified time horizon (typically one day). These simulated forecasts are compared by discretizing
time and space intervals, with test statistics calculated for event counts, magnitudes, locations, and
times. The simulation-based approach allows the inclusion of generative models that don’t output
explicit earthquake probabilities (i.e., a likelihood), and enables evaluation of the full distribution of
entire sampled sequences.

Two existing works benchmark NPPs for earthquake forecasting within the seismology community.
The first by Dascher-Cousineau et al. (2023) extends a temporal-only NPP from Shchur et al. (2019)
to include earthquake magnitudes. The second by Stockman et al. (2023) extends another temporal-
only model by Omi et al. (2019a) to target larger magnitude events. Both models are benchmarked
against a temporal ETAS model, showing moderate improvements over the baseline. Extending these
models to include spatial data is necessary for further testing and potential operational use in the
seismological community.

1.2 SCOPE OF THIS WORK

Since generating repeated sequences over forecast horizons is computationally costly, the seismology
community uses the mean log-likelihood on held-out data for a more streamlined metric during model
development (Ogata, 1988; Harte, 2015). Our platform uses this metric in the NPP benchmarking
experiment and provides detailed guidance on CSEP’s simulation-based procedure, enabling future
NPP implementations and evaluations within CSEP experiments.

This work aims to bridge Machine Learning and seismology by establishing a baseline for com-
paring NPP models to state-of-the-art, domain-based models. Only NPPs capable of generating
log-likelihoods are within scope, as no valid score exists for models lacking this capability (e.g.
Yuan et al., 2023; Li et al., 2023). Traditional metrics like Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) are inadequate and potentially misleading for seismological predictions
(Hodson, 2022), as earthquake occurrence follows power law distributions (Kagan, 1994; Felzer &
Brodsky, 2006) that are heavy-tailed, making the errors non-Gaussian and non-Laplacian — contrary
to the assumptions underlying RMSE and MAE (see Section G). To ensure seismological relevance,
we challenge authors of NPP models to implement forecasts using CSEP’s evaluation framework and
benchmark their results against the performance of the ETAS model.

2 BACKGROUND

2.1 SPATIO-TEMPORAL POINT PROCESSES

A spatio-temporal point process is a continuous-time stochastic process that models the random
number of events N(S×(ta, tb]) which occur in a space-time interval S×(ta, tb], S ∈ R2, (ta, tb] ∈
R+. This process is typically defined by a non-negative conditional intensity function

λ(t,x|Ht) := lim
∆t,∆x→0

E [N([t, t+∆t)×B(x,∆x)|Ht]

|B(x,∆x)|
, (1)

where Ht = {(ti,xi)|ti < t} denotes the history of events preceding time t and |B(x,∆x)| is the
Lebesgue measure of the ball B(x,∆x) with radius ∆x. Given we observe a history of events up to
ti, the probability density function (pdf) of observing an event at time t and location x is given by

p(t,x|Hti) = λ(t,x|Hti) · exp
(
−
∫ t

ti

∫
S
λ(s, z|Hs)dzds

)
. (2)

Most models specify the conditional intensity function, though some (e.g. Shchur et al., 2019; Chen
et al., 2021; Yuan et al., 2023) directly model this pdf. Model parameters are typically estimated by
maximizing the log-likelihood of observed events within a training time interval [T0, T1] and spatial
region S,

log p(HT ) =

n∑
i=0

log λ(ti|Hti)−
∫ T1

T0

∫
S
λ(s, z|Hs)dzds︸ ︷︷ ︸

Temporal log-likelihood

+

n∑
i=0

log f(xi|ti,Hti)︸ ︷︷ ︸
Spatial log-likelihood

, (3)
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where the decomposition of the spatio-temporal conditional intensity function, λ(ti,xi|Hti) =
λ(ti|Hti) · f(xi|ti,Hti), allows the log-likelihood to be written as contributions from the temporal
and spatial components. In practice, this exact function is often not maximized directly during
training: for models specified through the conditional intensity function, an analytical solution to the
integral term is generally not possible and is approximated numerically.

For model evaluation and comparison, the log-likelihood of observing events in the test set can
be used as a performance metric. This is consistent with a wealth of literature in the seismology
community (see Zechar et al., 2010, and references therein) as well as the wider general point process
literature (Daley & Vere-Jones, 2004), which now includes neural point processes (Shchur et al.,
2021). The metric evaluates models that output probability distributions over their predictions and
consequently penalises models that are overconfident. Although evaluating on events in the test set,
the test log-likelihood, log p ((ti,xi)|ti ∈ [T2, T3],HT2

), may still contain dependence upon events
prior to the test window [T2, T3], typically contained in the history HT2 of the intensity function.
Comparing the mean log-likelihood per event provides the information gain from one model to
another (Daley & Vere-Jones, 2004).

Point processes are the dominant modeling approach in the seismology community, used exten-
sively in both real-time operational earthquake forecasting (Mizrahi et al., 2024a) and established
benchmarking experiments (CSEP) (Taroni et al., 2018; Rhoades et al., 2018). The point process
representation of earthquake data aligns naturally with their occurrence as discrete events in time
(Kagan, 1994). Furthermore, this modeling approach is favored over discretized forecasting models
(e.g., time series) because it eliminates the need for optimizing binning strategies and allows for
immediate updates, rather than waiting until the end of a time bin — a delay that could miss critical,
potentially damaging events.

2.2 ETAS

The Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1998) is a spatio-temporal Hawkes
process which models how earthquakes cluster in time and space. It has been adopted for operational
earthquake forecasting by government agencies in California (Milner et al., 2020), New-Zealand
(Christophersen et al., 2017), Italy (Spassiani et al., 2023), Japan (Omi et al., 2019b) and Switzerland
(Mizrahi et al., 2024b), and performs consistently well in CSEP’s retrospective and fully prospective
forecasting experiments (e.g. Woessner et al., 2011; Rhoades et al., 2018; Taroni et al., 2018; Cattania
et al., 2018; Mancini et al., 2019; 2020; 2022). The general formulation of the model is

λ(t,x|Ht; θ) = µ+
∑
i:ti<t

g(t− ti, ||x− xi||22,mi), (4)

where µ is a constant background rate of events, g(·, ·, ·) is a non-negative excitation kernel which
describes how past events contribute to the likelihood of future events and mi are the associated
magnitudes of each event. The equivalent formulation as a Hawkes branching process accompanies
a causal branching structure B. This concept broadly aligns with the understanding of the physics
of earthquake triggering and interaction, e.g. via dynamic wave triggering (Brodsky & van der Elst,
2014) and static stress triggering (Gomberg, 2018; Mancini et al., 2020).

Although ETAS can be fit by maximizing the log-likelihood function directly, parameter estimation is
typically performed by simultaneously estimating the branching structure B. Veen & Schoenberg
(2008) developed an Expectation Maximisation (EM) procedure, which maximises the marginal like-
lihood over the unobserved branching structure, log

∫
p(HT1

|B, θ)p(B|θ)dB through the iteration

θ(k+1) = argmax
θ

EB∼p(·|HT1
,θ(k)) [log p(HT1 ,B|θ)] . (5)

This avoids the need to numerically approximate the integral term in the likelihood, provides more
stability during estimation and simultaneously distinguishes background events from triggered events.

The formulation of the ETAS model we present with the EarthquakeNPP datasets is implemented in
the etas python package by Mizrahi et al. (2022). It defines the triggering kernel as

g(t, r2,m) =
e−t/τ · k · ea(m−Mc)

(t+ c)1+ω ·
(
r2 + d · eγ(m−Mc)

)1+ρ , (6)
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Figure 1: Earthquakes contained in the observational datasets found in EarthquakeNPP. Colours
indicate the respective datasets, including the target region, magnitude of completeness Mc, number
of events and the time period that the dataset spans. In red is a fault map from the GEM Global
Active Faults Database (Styron & Pagani, 2020).

where r2 is the squared distance between events and k, a, c, ω, τ, d, γ, ρ are the learnable parame-
ters along with the constant background rate µ. This triggering kernel is derived from statistical
distributions found through decades of observational studies (Utsu & Seki, 1955; Utsu, 1970; Utsu
et al., 1995) and several of the learnable parameters have been linked to physical properties of the
earthquake rupture process (Utsu et al., 1995; Ide, 2013).

3 EARTHQUAKENPP DATASETS

The EarthquakeNPP datasets encompass earthquake records, including timestamps, geographical
coordinates, and magnitudes, documented within California from 1971 to 2021. California, with its
dense network and high seismic hazard, has been extensively studied, demonstrating the utility of
forecasting algorithms (Gerstenberger et al., 2004; Field, 2007; Field et al., 2021). It encompasses the
San Andreas fault plate boundary system (Zoback et al., 1987) and includes modern high-resolution
catalogs with numerous small magnitude earthquakes, offering potential for new, more expressive
models.

Notebooks to access and preprocess these public datasets along with the associated bench-
marking experiment are publicly accessible at https://anonymous.4open.science/r/
EarthquakeNPP-2D51, accompanied by more detailed documentation for each dataset. A sum-
mary of how earthquake datasets are generated, along with the associated challenges of using
earthquake catalog data can be found in Appendix A. Table 2 provides a short summary of each
EarthquakeNPP dataset.

4 BENCHMARKING EXPERIMENT

We now use EarthquakeNPP to benchmark three spatio-temporal NPPs with prior positive claims on
earthquake forecasting.

Neural Spatio-Temporal Point Process (NSTPP) (Chen et al., 2021): a pdf based NPP that
parameterizes the spatial pdf with continuous-time normalizing flows (CNFs). We use their Attentive
CNF model for its computational efficiency and overall performance versus their other model Jump
CNF (Chen et al., 2021).
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Table 2: Summary of EarthquakeNPP datasets, including: region, dataset development, magnitude
threshold (Mc), number of training (combined with validation) events, and number of testing events.
The chronological partitioning of training, validation, and testing periods is also detailed. An auxiliary
(burn-in) period begins from the Start date, followed by the respective starts of the training, validation,
and testing periods. All dates are given as 00:00 UTC on January 1st, unless noted (* refers to 00:00
UTC on January 17th). Finally, we give our purpose for including each dataset.

ComCat SCEDC White QTM

Region Whole of California Southern California San Jacinto Fault-Zone QTM_SanJac:
San Jacinto Fault-Zone,

QTM_SaltonSea:
Salton Sea

Development The U.S. Geological Survey
(USGS) National Earthquake
Information Center (NEIC)
monitors global earthquakes
(Mw 4.5 or larger) and
provides complete seismic
monitoring of the United
States for all significant
earthquakes (> Mw 3.0 or
felt). Its contributing seismic
networks have produced the
Advanced National Seismic
System (ANSS) Comprehen-
sive Catalog of Earthquake
Events and Products.

The Southern California
Seismic Network (SCSN)
has developed and main-
tained the standard earth-
quake catalog for Southern
California (Hutton et al.,
2010) since the Caltech
Seismological Laboratory
began routine operations
in 1932. Significant net-
work improvements since
the 1970s and 1980s re-
duced the catalog com-
pleteness from Mw 3.25 to
Mw 1.8.

White et al. (2019) cre-
ated an enhanced cata-
log focusing on the San
Jacinto fault region, us-
ing a dense seismic net-
work in Southern Califor-
nia. This denser network,
combined with automated
phase picking (STA/LTA),
ensures a 99% detec-
tion rate for earthquakes
greater than Mw 0.6 in a
specific subregion (White
et al., 2019).

Using data collected
by the SCSN, Ross
et al. (2019) generated
a denser catalog by
reanalyzing the same
waveform data with
a template matching
procedure that looks
for cross-correlations
with the wavetrains
of previously detected
events.

Mc Mw 2.5 SCEDC_20: Mw 2.0,
SCEDC_25: Mw 2.5,
SCEDC_30: Mw 3.0

Mw 0.6 Mw 1.0

# Train/Test
Events

79,037 / 23,059 SCEDC_20:
128,265 / 14,351,
SCEDC_25:
43,221 / 5,466,
SCEDC_30:
12,426 / 2,065

38,556 / 26,914 QTM_SanJac:
18,664 / 4,837,

QTM_SanJac:
44,042 / 4,393

Start-Train-
Val-Test-End

1971-1981-1998-2007-
2020∗

1981-1985-2005-2014-
2020

2008-2009-2014-2016-
2018

2008-2009-2014-2016-
2018

Purpose Example of data currently in
use for operational
forecasting (USGS utilizes
ComCat in aftershock fore-
casts they release to the pub-
lic.)

Three magnitude thresh-
olds (Mw 2.0, 2.5, 3.0) ex-
plore the effect of trunca-
tion on forecasting model
performance.

To explore if newly
detected low magnitude
earthquakes contain
additional predictive
information.

To explore if newly de-
tected low magnitude
earthquakes contain ad-
ditional predictive infor-
mation (with different
detection methodology).

Deep Spatio-Temporal Point Process (Deep-STPP) (Zhou et al., 2022): a conditional intensity
function based NPP that constructs a non parametric space-time intensity function governed by a
deep latent process. The intensity function enjoys a closed form integration, avoiding the need for
numerical approximation.

Automatic Integration for Spatiotemporal Neural Point Processes (AutoSTPP) (Zhou & Yu,
2024): a conditional intensity function based NPP which jointly models the 3D space-time integral
of the intensity along with its derivative (the intensity function) using a dual network approach.

The benchmark is against the ETAS model defined in section 2.2, as well as a homogeneous Poisson
process. The Poisson model is fit to events in the auxiliary, training and validation windows to provide
a baseline score against which to compare all four other models.

Validation is typically not part of the estimation procedure for ETAS, so it is fit using the combined
training and validation windows. NPPs follow the standard training/validation/testing procedure of
machine learning. When possible, a model’s likelihood for training, validation, and testing can depend
on events occurring before the splits through memory in its history. The exception is NSTPP, lacking
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Figure 2: Test temporal log-likelihood scores for all the spatio-temporal point process models on
each of the EarthquakeNPP datasets. Error bars of the mean and standard deviation are constructed
for the NPPs using three repeat runs.

a direct dependency on prior events. Nonetheless, its likelihood is evaluated on the same events
as the other models. The definition of the ETAS model (equation 4) specifies how the magnitudes
of earthquakes in the history contribute towards the intensity function. This earthquake magnitude
dependence is not implemented in any of the NPPs we benchmark, since it requires modeling choices
beyond the scope of this work.

Figures 2 and 3 present the temporal and spatial log-likelihood scores of all models on the Earthquak-
eNPP datasets. The ETAS model consistently achieves the highest temporal and spatial log-likelihood
across all datasets, though some NPP models demonstrate comparable temporal performance on
the ComCat, QTM_SaltonSea, QTM_SanJac, and White catalogs. Among the NPP models,
Deep-STPP generally exhibits the best temporal log-likelihood, likely due to its formulation, which
accounts for the influence of unobserved events—a phenomenon that varies temporally in earthquake
data (see Section A.2). In contrast, AutoSTPP achieves the highest spatial log-likelihood, attributed
to its ability to capture anisotropic Hawkes kernels (see Figure 2 of Zhou & Yu (2024)), which are
often observed in earthquake data (Page & van der Elst, 2022).

The improved relative temporal performance of all NPPs compared to ETAS, particularly when the
magnitude threshold is lowered from 3.0 to 2.0 in the SCEDC dataset, indicates that low magnitude
earthquakes provide valuable predictive information for NPPs. This is further suggested by the
comparable performance of NPPs to ETAS on low-magnitude catalogs such as QTM_SaltonSea,
QTM_SanJac, and White. The stronger temporal performance of NPPs on datasets such as
ComCat, QTM_SaltonSea, QTM_SanJac, and White may also reflect their ability to model
more complex physical processes, such as earthquake swarms (Llenos & van der Elst, 2019) or
tectonic activity near the Mendocino Triple Junction (Hellweg et al., 2024). Additional datasets and
results are included in Appendix B.

5 CSEP CONSISTENCY TESTS

EarthquakeNPP also supports the earthquake forecast evaluation protocol developed by the Collabora-
tory for the Study of Earthquake Predictability (CSEP). In this procedure a model generates 24-hour
forecasts through 10, 000 repeat simulations of earthquake sequences at the beginning of every day in
the testing period. This procedure mimics how earthquake forecasts are generated in an operational
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Figure 3: Test spatial log-likelihood scores for all the spatio-temporal point process models on each
of the EarthquakeNPP datasets. Error bars of the mean and standard deviation are constructed for the
NPPs using three repeat runs.

setting (van der Elst et al., 2022). Models can then be evaluated by comparing the observed sequence
with the distribution over model simulations. Three test statistics target the temporal, spatial and
magnitude components of the forecasts, where a test is failed if the observed statistic falls within
a pre-defined rejection region (Figure 4). We demonstrate this procedure for the ETAS model and
report performance scores as a benchmark for future implementations of NPPs. A case study using
the 2019 M7.1 Ridgecrest earthquake can be for found in Appendix F.

5.1 NUMBER (TEMPORAL) TEST

The number test evaluates the temporal component of the forecast by checking the consistency of the
forecasted number of events, N with those observed in the forecast horizon, Nobs. Upper and lower
quantiles are estimated using the empirical cumulative distribution from the repeat simulations, FN ,

δ1 = P(N ≥ Nobs) = 1− FN (Nobs − 1) (7)
δ2 = P(N ≤ Nobs) = FN (Nobs). (8)

5.2 SPATIAL TEST

To evaluate the spatial component of the forecast, a test statistic aggregates the forecasted rates of
earthquakes over a regular grid,

S =

[
N∑
i=1

log λ̂(ki)

]
N−1, (9)

where λ̂(ki) is the approximate rate in the cell k where the ith event is located. Upper and lower
quantiles are estimated by comparing the observed statistic

Sobs =

[
Nobs∑
i=1

log λ̂(ki)

]
N−1

obs , (10)

with the empirical cumulative distribution of S using the repeat simulations, FS

γs = P(S ≤ Sobs) = FS(Sobs). (11)
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Figure 4: CSEP consistency tests on the ETAS model for the first day (01/01/2014) of the testing
period in the SCEDC catalog. A total of 10,000 simulations are generated to compute empirical
distributions of the test statistics for each of the three consistency tests: (a) Number test, (b) Spatial
test, and (c) Magnitude test. The test fails if the observed statistic falls within the rejection region
(red), defined by the 0.05 and 0.95 quantiles of the distribution.

The grid is constructed from {0.1◦, 0.05◦, 0.01◦} squares for ComCat, SCEDC and
{QTM_Salton_Sea, QTM_SanJac, White} respectively.

5.3 MAGNITUDE TEST

To evaluate the earthquake magnitude component of the forecast, a test statistic compares the
histogram of a forecast’s magnitudes Λ(m), against the mean histogram over all forecasts Λ̄(m),

D =
∑
k

(
log

[
Λ̄(m)(k) + 1

]
− log

[
Λ(m)(k) + 1

])2

, (12)

where Λ(m)(k) and Λ̄(m)(k) are the counts in the kth bin of the forecast and mean histograms,
normalised to have the same total counts as the observed catalog. Upper and lower quantiles are
estimated by comparing the observed statistic

Dobs =
∑
k

(
log

[
Λ̄(m)(k) + 1

]
− log

[
Λ
(m)
obs (k) + 1

])2

, (13)

with the empirical distribution of D using the repeat simulations, FD

γm = P(D ≤ Dobs) = FD(Dobs). (14)

Histogram bins of size δm = 0.1 are used across all datasets.

5.4 EVALUATING MULTIPLE FORECASTING PERIODS

Savran et al. (2020) describe how to assess a model’s performance across the multiple days in the
testing period. By construction, quantile scores over multiple periods should be uniformly distributed
if the model is the data generator (Gneiting & Katzfuss, 2014). Therefore comparing quantile scores
against standard uniform quantiles (y = x), highlights discrepancies between the observed data and
the forecast. Additional statements can be made about over-prediction or under-prediction of each test
statistic (quantile curves above/bellow y=x respectively). The Kolmogorov-Smirnov (KS) statistic
then quantifies the degree of difference to the uniform distribution for each of the tests.

Further documentation of how to perform the CSEP evaluation procedure can be found on the
platform, where we demonstrate the procedure for the ETAS model. Table 3 reports the benchmark
performance scores taken from the quantile plots in Appendix D. The performance of ETAS is higher
for the more typical higher magnitude catalogs such as ComCat and SCEDC, whereas it performs
worse at the lower magnitude catalogs of QTM_SanJac, QTM_SaltonSea and White. Spatial
prediction is consistently the best performing component of the ETAS forecast, whereas earthquake
numbers are overpredicted by the model and earthquake magnitudes are generally not well predicted
(Figure 9) . All results indicate significant room for improvement beyond the predictive performance
of the ETAS model.
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Table 3: CSEP consistency tests evaluate the calibration of all daily ETAS forecasts on EarthquakeNPP
datasets. A test is performed at the α = 0.05 significance level on each day in the testing period. The
pass rate indicates the success of ETAS across all testing days. By construction quantile scores of the
tests should be uniformly distributed if the model is the data generator. The KS-Statistic reports the
difference of the quantile distribution to uniform, taken from the quantile plots in Appendix D.

Dataset Number Test Spatial Test Magnitude Test
Pass Rate KS-Statistic Pass Rate KS-Statistic Pass Rate KS-Statistic

ComCat 62.3% 0.392 85.3% 0.128 75.3% 0.318
SCEDC 74.4% 0.161 87.5% 0.123 80.5% 0.153
QTM_SanJac 59.2% 0.461 96.7% 0.145 66.2% 0.406
QTM_SaltonSea 54.2% 0.441 82.1% 0.216 79.0% 0.311
White 17.1% 0.750 98.0% 0.373 25.0% 0.741

6 DISCUSSION AND CONCLUSION

We introduce the EarthquakeNPP datasets to facilitate the benchmarking of NPPs against a
community-endorsed ETAS model for earthquake forecasting. These datasets cover various re-
gions of California, representing typical forecasting zones and the data commonly available to
forecast issuers. Several datasets use modern methods of detection, which enables the inclusion of
much smaller magnitude earthquakes.

In a benchmarking experiment, we compared three NPP models against ETAS and a baseline Poisson
process. None of the NPP models outperformed ETAS, indicating that current NPP implementations
are not yet suitable for operational earthquake forecasting. ETAS explicitly defines how larger
earthquake magnitudes increase the likelihood of future earthquakes in both time and space, using an
empirical relationship derived from seminal observational studies (Utsu & Seki, 1955; Utsu, 1970).
This use of magnitude information is shared across all competitive short-term earthquake forecasting
models currently used operationally (Mizrahi et al., 2024a) or tested by CSEP (Taroni et al., 2018).
The lack of a direct dependence on magnitudes in the current NPP implementations likely explains
their relative under-performance compared to ETAS. Future implementations should exploit this
additional feature for improved temporal and spatial performance. Encouragingly, the comparable
temporal performance to ETAS without this additional feature suggests that incorporating magnitude
dependence would enhance NPP performance beyond that of ETAS.

EarthquakeNPP supports the earthquake forecast evaluation procedure developed by the Collaboratory
for the Study of Earthquake Predictability (CSEP). The procedure replicates how earthquakes forecasts
are generated in an operational setting, requiring models to simulate many repeat event sequences over
a day-long forecast horizon. Benchmark performance for the ETAS model enables future comparison
of NPPs that are implemented for this procedure and enables their promotion to the fully prospective
CSEP experiments. Notably, this procedure allows the evaluation of generative NPP models without
explicit likelihoods (Yuan et al., 2023; Li et al.), by assessing their performance over the full trajectory
of future events. Probabilistic seismic hazard analysis (PSHA) requires long-term prediction beyond
the next-event (Ebrahimian et al., 2014; Gerstenberger et al., 2014), therefore this approach also
offers stakeholders a more comprehensive understanding of earthquake hazard than metrics focused
on predicting the next event (e.g. RMSE). The procedure also follows the recommendation by Shchur
et al. (2021) to move away from next-event point prediction for NPPs.

The EarthquakeNPP datasets, available at https://anonymous.4open.science/r/
EarthquakeNPP-2D51, provide a platform for future NPP developments to be benchmarked
against these initial results. The platform is under ongoing development and in the future will see the
direct comparison of emerging and other existing models models developed within the seismology
community, as well as an expansion of datasets included to other seismically active global regions.
Successful NPP models on these datasets, for both log-likelihood and CSEP metrics, will be di-
rectly impactful to stakeholders in seismology, ultimately enabling their integration into operational
earthquake forecasting by government agencies.
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A EARTHQUAKE CATALOG DATA

A.1 EARTHQUAKE CATALOG GENERATION

Figure 5: Generating an earthquake catalog involves several key steps: seismic phase picking,
magnitude estimation, and the association and location of seismic sources. This process transforms
raw waveform data recorded at seismic stations to locations, times, and magnitudes of earthquakes.

Data missingness, referred to in seismology as catalog (in)completeness, is the primary challenge
faced with earthquake catalogs. It is an important and unavoidable feature, and is a result of how
earthquakes are detected and characterised. Below, we briefly overview the process of generating an
earthquake catalog to illustrate the data quality issues. In the subsequent section, we review catalog
incompleteness and its potential impact on the performance and evaluation of forecast models.

Seismometers and Seismic Networks. A seismometer is an instrument that detects and records the
vibrations caused by seismic waves (Stein & Wysession, 2009; Shearer, 2019). It consists of a sensor
to detect ground motion and a recording system to log three-dimensional ground motion over time,
typically vertical and horizontal velocities. Seismic networks, comprising multiple seismometers,
monitor seismic activity at regional, national or global scales (see, e.g., (Woessner et al., 2010) and
references therein). High-density networks with modern, sensitive equipment provide more detailed
and accurate data, enhancing the ability to detect and analyse smaller and more distant earthquakes.

From Waveforms to Phase Picking. The process of converting raw continuous seismic waveforms
into useful earthquake data begins with phase picking, which identifies the arrival times of the
primary (P) and secondary (S) waves of an earthquake. Historically, this was done manually, but
now automated algorithms, such as the STA/LTA algorithm, detect wave arrivals by analyzing signal
amplitude changes (Allen, 1982). Recent algorithms, such as machine learning classifiers (e.g. Zhu &
Beroza, 2019; Lapins et al., 2021) and template-matching (e.g. Ross et al., 2019), can process much
higher volumes of data efficiently and are often able to detect events of much smaller magnitudes.

Earthquake Association and Location After phase picking, the next step is to associate phases
from different seismometers with the same earthquake. Simple algorithms require at least four
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phase arrivals to be detected on different stations within a short time interval to declare an event.
Once phases are associated, location estimation determines the earthquake’s hypocenter and origin
time by minimizing travel-time residuals using linearized or global inversion algorithms (Thurber,
1985; Lomax et al., 2000). Given the potential for misidentified or mis-associated phase arrivals
due to low signal-to-noise of small events or the near-simultaneous occurrence during very active
aftershock sequences, an automated system typically first picks arrival times and determines a
preliminary location, which is subsequently reviewed by a seismologist (e.g. Woessner et al., 2010,
and references therein). Locations are typically reported as the geographical coordinates and depths
where earthquakes first nucleated (hypocenters), although some catalogs report the centroid location,
a central measure of the extended earthquake rupture.

Earthquake Magnitude Calculation The magnitude of an earthquake quantifies the energy released
at the source and was originally defined in the seminal paper by Richter (1935). The original
definition, now referred to as the local magnitude (ML), is calculated from the logarithm of the
amplitude of waves recorded by seismometers. This scale, however, "saturates" at higher magnitudes,
meaning it underestimates magnitudes for various reasons. This led to introduction of the moment
magnitude scale (Mw) (Hanks & Kanamori, 1979), which computes the magnitude based on the
estimated seismic moment M0, which can be related to the physical rupture process via

M0 = rigidity × rupture area × slip, (15)

where rigidity is a mechanical property of the rock along the fault, rupture area is the area of the
fault that slipped, and slip is the distance the fault moved. Mw is determined seismologically via a
spectral fitting process to the earthquake waveforms. In practice, it can be challenging to use a single
magnitude scale for a broad range of magnitudes, therefore a range of scales may be present within a
single catalog, and approximate magnitude conversion equations may be used to homogenize the
scales (e.g. Herrmann & Marzocchi, 2021, and references therein).

A.2 EARTHQUAKE CATALOG COMPLETENESS

All of the EarthquakeNPP datasets are made publicly available by their respective data centers in
raw format. However, constructing a suitable retrospective forecasting experiment from this raw
data requires appropriate pre-processing. This typically involves truncating the dataset above a
magnitude threshold Mcut and within a target spatial region to address incomplete data, known as
catalog completeness Mc (e.g., Mignan et al., 2011; Mignan & Woessner, 2012).

There are several reasons why an earthquake may not be detected by a seismic network. Small events
may be indistinguishable from noise at a single station, or insufficiently corroborated across multiple
stations. Another significant cause of missing events occurs during the aftershock sequence of large
earthquakes, when the seismicty rate is high (Kagan & Knopoff, 1987; Hainzl, 2022). Human or
algorithmic detection abilities are hampered when numerous events occur in quick succession, e.g.
when phase arrivals of different events overlap at different stations or the amplitudes of small events
are swamped by those of large events. Since catalog incompleteness increases for lower magnitude
events, typically the task is to find the value Mc above which there is approximately 100% detection
probability. Choosing a truncation threshold Mcut that is too high removes usable data. Where
NPPs have demonstrated an ability to perform well with incomplete data (Stockman et al., 2023),
typically a threshold below the completeness biases classical models such as ETAS (Seif et al., 2017).
Seismologists often investigate the biases of different magnitude thresholds by performing repeat
forecasting experiments for different thresholds (e.g. Mancini et al., 2022; Stockman et al., 2023),
which we also facilitate in our datasets.

Typically Mc is determined by comparing the raw earthquake catalog to the Gutenberg-Richter law
(Gutenberg & Richter, 1936), which states that the distribution of earthquake magnitudes follows an
exponential probability density function

fGR(m) = βeβ(m−Mc) : m ≥ Mc. (16)

where β is a rate parameter related to the b-value by β = b log 10. Histogram-based approaches,
such as the simple Maximum Curvature method (Wiemer & Wyss, 2000) as well as many others (e.g.
Herrmann & Marzocchi, 2021, and references therein), identify the magnitude at which the observed
catalog deviates from this law, indicating incompleteness (See Figure 6b).
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In practice, catalog completeness varies in both time and space Mc(t,x) (e.g. Schorlemmer &
Woessner, 2008). During aftershock sequences, Mc(t) can be very high (e.g., Agnew, 2015; Hainzl,
2016b) (See Figure 6a). Thresholding at the maximum value might remove too much data. Instead,
modelers either omit particularly incomplete periods during training and testing (Kagan, 1991; Hainzl
et al., 2008), model the incompleteness itself (Helmstetter et al., 2006; Werner et al., 2011; Omi
et al., 2014; Hainzl, 2016a;b; Mizrahi et al., 2021; Hainzl, 2022), or accept known biases from
disregarding this issue (Sornette & Werner, 2005). Spatially, catalogs are less complete farther from
the seismic network (Mignan et al., 2011), so the spatial region can be constrained to remove outer,
more incomplete areas (See Figure 6c).

Figure 6: a) the June 10, 2016 Mw5.2 Borrego Springs earthquake and aftershocks, which occurred
on the San Jacinto fault zone and is recorded in the WHITE catalog. An estimate of the magnitude of
completeness Mc(t) over time using the Maximum Curvature method reveals more incompleteness
immediately following the large earthquake. b) magnitude-frequency histograms reveal that truncating
the raw WHITE catalog to inside the target region decreases Mc. Each histogram is fit to the Gutenberg-
Richter (GR) law and an estimate of Mc for each catalog occurs where the histogram deviates from
the (GR) line. c) An estimate of Mc for gridded regions of the San Jacinto fault zone, using the raw
WHITE catalog.

B ADDITIONAL DATASETS

Beyond the official EarthquakeNPP datasets, we include 3 further datasets that either provide
additional scientific insight or continuity from previous benchmarking works.

Synthetic ETAS Catalogs. We simulate a synthetic catalog using the ETAS model with parameters
estimated from ComCat, at Mc 2.5, within the same California region. A second catalog emulates
the time-varying data-missingness present in observational catalogs by removing events using the
time-dependent formula from Page et al. (2016),

Mc(M, t) = M/2− 0.25− log10(t), (17)
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Table 4: Summary of additional datasets, including: magnitude threshold (Mc), number of training
events, and number of testing events. The chronological partitioning of training, validation, and
testing periods is also detailed. An auxiliary (burn-in) period begins from the "Start" date, followed
by the respective starts of the training, validation, and testing periods. All dates are given as 00:00
UTC on January 1st, unless noted (* refers to 00:00 UTC on January 17th).

Catalog Mc Start-Train-Val-Test-End Train Events Test Events

ETAS 2.5 1971-1981-1998-2007-2020∗ 117,550 43,327

ETAS_incomplete 2.5 1971-1981-1998-2007-2020∗ 115,115 42,932

Japan_Deprecated 2.5 1990-1992-2007-2011-2020 22,213 15,368

where M is the mainshock magnitude. Events below this threshold are removed using mainshocks of
Mw 5.2 and above. The inclusion of these datasets allows us to test whether NPPs are inhibited by
data missingness to the same extent that ETAS is.

Deprecated Catalog of Japan. To provide continuity from the previous benchmarking for NPPs
on earthquakes, we also provide results on the Japanese dataset from Chen et al. (2021), however
with a chronological train-test split and without removing any supposed outlier events. To reflect our
recommendation not to use this dataset in any future benchmarking following the dataset completeness
issues mentioned above, we name this dataset Japan_Deprecated.

Figures 7 and 8 report the temporal and spatial log-likelihood scores of all the benchmarked models
on additional datasets. On synthetic data generated by the ETAS model the performance of NPPs
mirrors the results on the observational data (Figures 2 and 3). The performance of NPPs is more
comparable to ETAS in terms of temporal log-likelihood however they cannot capture the distribu-
tion of earthquake locations. Change in temporal performance of models between the ETAS and
ETAS_incomplete datasets reveal each model’s robustness to the missing data typically present
in earthquake catalogs (See section A.2). Auto-STPP and ETAS reduce in performance upon the
removal earthquakes during aftershock sequences, whereas DeepSTPP and NSTPP maintain the same
performance indicating a robustness to the data missingness.

On the Japan_Deprecated dataset, whilst ETAS remains the best performing model for spatial
prediction, for temporal prediction it performs comparably to NSTPP and is even marginally out-
performed by DeepSTPP. This performance can be attributed to the data completeness issues of the
Japan_Deprecated dataset (see section 1.1), where the test period is missing all earthquakes
bellow magnitude 4.0.
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Figure 7: Test temporal log-likelihood scores for all the spatio-temporal point process models on
each of the additional datasets. Error bars of the mean and standard deviation are constructed for the
NPPs using three repeat runs.
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Figure 8: Test spatial log-likelihood scores for all the spatio-temporal point process models on each
of the additional datasets. Error bars of the mean and standard deviation are constructed for the NPPs
using three repeat runs.

C COMPUTATIONAL EFFICIENCY

C.1 TRAINING

Table 5 reports the training times for each model across all datasets. We ran all the NPP models using
a HPC node with Nvidia Ampere GPU with 4x Nvidia A100 40GB SXM “Ampere” GPUs and AMD
EPYC 7543P 32-Core Processor “Milan” CPU using torch==1.12.0 and cuda==11.3.

Dataset # Training Events ETAS Deep-STPP AutoSTPP NSTPP Poisson

ComCat 79,037 08:59:04 00:15:35 01:34:09 3 days, 05:10:17 <1 second

QTM_SaltonSea 44,042 07:28:28 00:26:46 01:45:34 2 days, 00:26:45 <1 second

QTM_SanJac 18,664 00:32:40 00:09:31 00:37:03 1 day, 22:06:33 <1 second

SCEDC_20 128,265 13:42:30 00:38:10 02:54:51 3 days, 02:20:40 <1 second

SCEDC_25 43,221 03:09:14 00:09:34 00:56:05 2 days, 16:33:55 <1 second

SCEDC_30 12,426 00:42:25 00:02:44 00:16:01 1 day, 16:39:04 <1 second

White 38,556 03:55:40 00:08:21 01:10:51 2 days, 01:03:57 <1 second

Japan_Deprecated 22,213 06:09:08 00:13:45 01:02:07 2 days, 05:32:03 <1 second

ETAS 117,550 00:33:25 00:15:24 01:10:22 3 days, 03:09:17 <1 second

ETAS_incomplete 115,115 00:35:14 00:15:29 01:09:43 3 days, 11:39:51 <1 second

Table 5: Training times for each model across all datasets, including the number of training events.
Times are formatted as HH:MM:SS, with days included for durations exceeding 24 hours. The
Poisson model consistently requires less than 1 second.

ETAS training scales O(n2) with the total number of events, since for every event a contribution to
the intensity function is computed from a summation over all previous events. This scaling, coupled
with the lack of parallelization in the current implementation, results in long training times for larger
datasets. Poorer scaling will likely hinder ETAS if dataset sizes continue to grow in the future
(Stockman et al., 2024).

Encouragingly, both Deep-STPP and AutoSTPP are significantly faster to train due to GPU acceler-
ation and their use of a sliding window of the most recent k = 20 events. While exact complexity
analyses are not provided in Zhou et al. (2022) or Zhou & Yu (2024), we can infer that Deep-STPP
likely scales as O(kn) since it benefits from a closed-form expression for the likelihood. AutoSTPP,
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though requiring automatic integration to compute the likelihood, still scales with O(kn) because the
additional integration cost does not affect the overall scaling.

NSTPP, on the other hand, incurs significant training costs, rendering it impractical for real-time
forecasting. Unlike the sliding window mechanism used in Deep-STPP and AutoSTPP, NSTPP
partitions the event sequence into fixed time intervals, leading to sequences that are much longer
than the k = 20 events used by the other models (as shown in Figure 11 of Chen et al. (2021)).
Furthermore, solving an ODE for each event time adds a significant computational burden, even with
the use of their faster attentive CNF architecture.

C.2 SIMULATION

Real-time earthquake forecasting and CSEP model evaluation require simulating many repeat se-
quences (at least 10,000 for adequate distributional coverage) over the forecasting horizon. While
ETAS training scales as O(n2) with the number of training events, its simulation scales more ef-
ficiently at O(n log n). This improved scaling is due to its equivalent formulation as a Hawkes
branching process (see Section 2.2). Both Deep-STPP and AutoSTPP are also based on Hawkes
processes, which theoretically allows for fast simulation. However, as these models currently only
have an intensity function implementation, simulating events would require a slower thinning pro-
cedure (Ogata, 1981), limiting their simulation efficiency. In contrast, NSTPP benefits from fast
simulation, owing to its design using continuous-time normalizing flows. Events can be generated by
passing samples from a base distribution through learned transformations, resulting in a much faster
simulation process.

D CSEP CONSISTENCY TESTS
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Figure 9: Quantile-quantile plots showing the calibration of all daily ETAS forecasts on a) ComCat,b)
SCEDC, c) QTM_San_Jac, d) QTM_Salton_Sea, e) White. By construction quantile scores
over multiple periods should be uniformly distributed if the model is the data generator. Comparing
quantile scores against standard uniform quantiles (y = x), highlights discrepancies between the
observed data and the forecast. Pass rates of each test are indicated in the legend. The Kolmogorov-
Smirnov statistic, quantifies the degree of difference to the uniform distribution.
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E FURTHER DATASET FIGURES

E.1 COMCAT

Figure 10: Times and magnitudes of events in the ComCat dataset (with key events labeled). The
size of the points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and
testing periods are indicated by colour and a further cumulative count of events is indicated in red.

Figure 11: Locations of events in the ComCat dataset, labeled by their partition into auxiliary,
training, validation and testing periods.
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E.2 SCEDC

Figure 12: Times and magnitudes of events in the SCEDC dataset (with key events labeled). The
size of the points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and
testing periods are indicated by colour and a further cumulative count of events is indicated in red.

Figure 13: Locations of events in the SCEDC dataset, labeled by their partition into auxiliary, training,
validation and testing periods.
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E.3 WHITE

Figure 14: Times and magnitudes of events in the White dataset (with key events labeled). The
size of the points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and
testing periods are indicated by colour and a further cumulative count of events is indicated in red.

Figure 15: Locations of events in the White dataset, labeled by their partition into auxiliary, training,
validation and testing periods.
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E.4 QTM_SANJAC

Figure 16: Times and magnitudes of events in the QTM_SanJac dataset. The size of the points are
plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods are
indicated by colour and a further cumulative count of events is indicated in red.

E.5 QTM_SALTONSEA

Figure 17: Times and magnitudes of events in the QTM_SaltonSea dataset. The size of the points
are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods are
indicated by colour and a further cumulative count of events is indicated in red.
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Figure 18: Locations of events in the QTM_SanJac and QTM_SaltonSea datasets, labeled by
their partition into auxiliary, training, validation and testing periods.

F 2019 M7.1 RIDGECREST EARTHQUAKE CASE STUDY

The 2019 Ridgecrest earthquake sequence (Figure 19) was the most powerful seismic event to strike
Southern California in the past 20 years. Centered near the town of Ridgecrest and the Naval Air
Weapons Station China Lake, the sequence began with a magnitude 6.4 foreshock on July 4, 2019, at
17:33:49 UTC, followed by a more powerful magnitude 7.1 mainshock on July 6, 2019, at 03:19:53
UTC, both along the Eastern California Shear Zone. The earthquakes caused widespread surface
rupture, with displacements along multiple faults, and triggered tens of thousands of aftershocks over
the following months.

The impacts of the sequence were substantial. In Ridgecrest and surrounding areas, the shaking
damaged homes, businesses, and infrastructure, including roads, water lines, and electrical systems.
Fires broke out due to ruptured gas lines, exacerbating the destruction. The mainshock caused over
$1 billion in damages, including significant damage to the China Lake Naval facility, which was
temporarily evacuated and declared "not mission capable." Despite the severity of the shaking, no
fatalities occurred, largely due to the remote location and earthquake-resistant construction in the
region.

Using the CSEP evaluation procedure (Section 5), we isolate the performance of a model during the
sequence to identify its strengths and weaknesses. Here, we apply this analysis to the ETAS model,
illustrating how similar evaluations can be conducted for future implementations of NPPs or other
machine learning-based models.

Figure 20 presents the results of the Number Test over the initial days of the sequence. ETAS forecasts
consistently underestimate the number of aftershocks during the most seismically active phase of
the sequence. It is only 4 days after the M7.1 Ridgecrest mainshock, that ETAS begins to provide
accurate earthquake rate forecasts. Figure 21a shows the spatial forecast for the day after the M7.1
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mainshock. While the forecasts successfully trace the likely aftershock zone, they are over-dispersed
and exhibit an isotropic distribution around a centroid. This prevents the forecasts from accurately
capturing the elongated and clustered orientation of seismicity along the fault, causing it to fail the
Spatial Test (Figure 21b).

(a) (b)

Figure 19: The 2019 Ridgecrest earthquake sequence began with the M6.4 Searles Valley foreshock
on July 4, 2019, at 17:33:49 UTC, followed by the M7.1 Ridgecrest mainshock on July 6, 2019, at
03:19:53 UTC. (a) The times and magnitudes of events in the sequence. (b) Events in the sequence
are plotted on a map of modeled faults in California.
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Figure 20: Forecasted earthquake number distribution using the ETAS model during the first 10 days
of the Ridgecrest earthquake sequence. The number distributions are generated through 10,000 repeat
simulations of earthquake sequences from the beginning of the day. The 95% confidence interval
of the forecasted counts, generated at the start of each day, is compared to the observed number of
events recorded by the end of the day.
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Figure 21: (a) The forecasted rates of earthquakes on July 7 (the day after the M7.1 Ridgecrest
earthquake) using the ETAS model. Rates are calculated through 10,000 repeat simulations of
earthquake sequences from the beginning of the day, which are aggregated to estimate a rate per
spatial grid cell. In red are the observed earthquakes that occurred that day. (b) The results of the
Spatial Test for July 7. Since the observed statistic is well outside the forecast distribution, the test is
failed.
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G ERROR DISTRIBUTIONS & NEXT-EVENT METRICS

Figure 22: The distribution of errors (Yobs − Ypred) for the Normal(0, 1), Exponential(1), and
Pareto(2.5) distributions. Maximum likelihood estimation is used to fit Normal and Laplace dis-
tributions to each error histogram. Normal errors (Normal × Normal) are best approximated by
the Root Mean Square Error (RMSE), while Laplacian errors (Exponential × Exponential) are best
approximated by the Mean Absolute Error (MAE). However, neither RMSE nor MAE effectively
capture the errors for the heavy-tailed Pareto distribution.
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