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ABSTRACT

Previous research in Federated learning (FL) have emphasized privacy protection,
model optimization, and so on, meanwhile, they overlooked how to choose the
appropriate FL algorithm for a new federation with preserving data privacy. In
our study, we provide a formal problem formulation for algorithm selection in FL
and present a novel approach that involves leveraging trained federations to aid
with algorithm selection. Empirical results prove the effectiveness of our method.

1 INTRODUCTION

Federated Learning (FL) was proposed to learn a global model through multiple data owners (feder-
ation) who are coordinated by a centralized server without sharing raw data (McMahan et al., 2017).
Researchers have emphasized communication efficiency, data heterogeneity, and so on. However,
they overlooked an essential part of the whole FL service: what kind of FL algorithm should be
used for a new federation without privacy leakage. Some studies have conducted performance eval-
uations of different FL algorithms and given some guides about how to select an appropriate FL
algorithm according to the kind of data heterogeneity and the demand of federation (Nilsson et al.,
2018; Mulay et al., 2020; Li et al., 2022). However, existing guides for selecting FL algorithms do
not apply to unknown heterogeneous situations due to data privacy. Therefore, this paper proposes
an under-explored problem in FL: how to choose the most suitable FL algorithm for an unseen par-
ticular federation? Then, we design a novel method for selecting the optimal FL algorithm for a
federation. To the best of our knowledge, this is the first work to propose this direction in federated
learning, and the pipeline is shown in Figure 1.
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Figure 1: Pipeline for Algorithm Selection

2 METHODOLOGY

Suppose there is a set of trained federations K, where |K| = K. Each federation k ∈ K has
a client set Nk and the data set Dk, where |Nk| = nk represents the number of clients in that
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federation. Within each federation k, we define the client ∀i ∈ Nk has the data set Dk,i and thus
Dk = {Dk,i}nk

i=1. With an assumption that ∀k ∈ K, we have its best FL algorithm A∗
k, which trains

the model achieving the highest accuracy on the global test set Dtest among various algorithms.
Given a new federation j ̸∈ K without a trained model, our objective is to find the best FL algorithm
A∗

j based on the federation set K.

It is straightforward for federation j to try all of the algorithms in {A∗
k}Kk=1 and choose the one

achieving the best accuracy on the test data set. However, this brute-force comparison makes the
process expensive in computation and communication. In intuition, the performance of the model
averaged from two clients could reflect the relationship between them. For example, the aggregated
performance of two clients with similar data distributions is better than two clients with heavily
heterogeneous data distributions. It shows the aggregated performance of clients is related to the
relationship between data distribution. Therefore, it is feasible to leverage statistical information of
the aggregated performance of various client subsets to express the inner characteristic of a federa-
tion, concretely, the discrepancy of clients, which can be considered as federation representation.
Through federation representation, our goal is to find the most similar federation in K and its algo-
rithm for the new federation j.

Let V t
k (S) denote the performance of aggregated model from a client subset S ⊆ Nk in the t-th

round. We define U
(ℓ)
k as the variance of performance of all subsets with ℓ clients in federation k

such that U (ℓ)
k = Var

(
{V t

k (S), S ⊆ S(ℓ)}
)
, 1 ≤ ℓ ≤ nk, where S(ℓ) = {S, S ⊆ Nk∧|S| = ℓ}, and

the statistics are incorporated as representation of federation k as Uk = [U
(1)
k , U

(2)
k , · · · , U (nk)

k ].

Given K target federations {Uk,A∗
k}Kk=1, and a query federation j with Uj , we measure the similar-

ity between federation j and k via d(Uj , Uk) =
∑m

ℓ=1 U
(ℓ)
j × U

(ℓ)
k /

√
(
∑m

ℓ=1(U
(ℓ)
j )2) × (

∑m
ℓ=1(U

(ℓ)
k )2) ,

where m = min(nj , nk). Then, we choose the algorithm for federation j based on A∗
j =

argmaxA∗
k

d(Uj , Uk). However, the time complexity of computing Uk could be O(2nk) which
is a very expensive cost as nk increases. Therefore, we introduce a threshold τ to limit the maximal
size of the set S(ℓ). Specifically, if the size of set S(ℓ) is larger than τ , we sample τ subsets from
S(ℓ) to decrease computation costs.

3 EXPERIMENT RESULTS

Target
Query F3 ▲ F4 ▼

F1 ▲ 0.956(FedDyn) 0.890
F2 ▼ 0.916 0.973(FedRS)

Table 1: The results of algorithm selection.

To simulate different federations, we combined
two datasets (CIFAR-10 and CIFAR-100s) and
two data splits (dirichlet sampling and label
sampling) resulting in four federations F1-
F4. The federation F1 and F2 which is con-
structed on CIFAR-10 are considered as tar-
get federations whose best algorithm has been
identified by exhaustive searching among three
algorithms including FedAvg (McMahan et al., 2017) , FedDyn (Acar et al., 2021) and FedRS (Li &
Zhan, 2021), while F3 and F4 are constructed on CIFAR-100s and considered as query federations.
▲ and ▼ denotes dirichlet sampling and label sampling, respectively. Following (Acar et al., 2021;
Li & Zhan, 2021), we uniformly use a two-layer convolutional network (LeCun et al., 1998). More
details are shown in Appendix A.2. As shown in Table 1, our method can correctly match the query
federation with the target federation whose data distribution is as same as its. Through trying out
three algorithms, the best algorithm of the query federation is as same as the one of matched target
federation. It proves that our method can help a federation to choose an appropriate algorithm.

4 CONCLUSION

We propose an under-explored problem of selecting a suitable algorithm for a new federation without
privacy leakage. To accomplish this, we extract query and trained federations representations by
utilizing the statistics of aggregated performance from various client subsets within the federation.
Then, we select the algorithm of the most similar federation to the query one. Our experiment results
prove the feasibility of our method.
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A APPENDIX

A.1 RELATED WORKS

A.1.1 FEDERATED LEARNING ALGORITHMS

As society increasingly emphasizes privacy and safety of client data, it becomes difficult to learn
a well-performed model due to insufficient data. To address this issue, federated learning was first
proposed by (McMahan et al., 2017) to enable multiple clients to jointly train a shared model co-
ordinated by a centralized server without exposing their local data. Following (McMahan et al.,
2017), many researchers have made progress on improving the efficiency and effectiveness of algo-
rithm (Li et al., 2020; Karimireddy et al., 2020; Acar et al., 2021; Li & Zhan, 2021) and preserving
the privacy of client data (Agarwal et al., 2018; Zhu et al., 2020). (Li et al., 2020) claimed that
FedAvg can not converge well when the data distributions of clients are heterogeneous, and pro-
posed FedProx which adds a proximal loss term to FedAvg for alleviating this data heterogeneity.
(Karimireddy et al., 2020; Acar et al., 2021) respectively introduced control variates and a dynamic
regularizer to solve the misalignment of optimization goals between the global model and local mod-
els of clients. (Li & Zhan, 2021) proposed to ”Restricted Softmax” to limit classification weights of
missing classes in scenarios where there are missing classes in clients. Unlike the aforementioned
works, we focus mainly on the initial stage of the federated process, which involves selecting an
appropriate FL algorithm for a new federation.

A.2 EXPERIMENTS

A.2.1 EXPERIMENT SETUP

To construct different federations, we adapt two datasets: CIFAR-10 and CIFAR-100s (Krizhevsky
et al., 2009). We refer to previous works on FL (Acar et al., 2021) and use a two-layer CNN for
CIFAR-10 and CIFAR-100s, both of which are used to image classification tasks. CIFAR-100s
is created by randomly selecting ten classes from the original CIFAR-100 dataset. Moreover, we
choose two non-IID data sampling ways including dirichlet sampling (Hsu et al., 2019) and label
sampling (McMahan et al., 2017). The former samples the distribution of clients from a dirichlet
distribution to ensure different label ratios on clients. The latter randomly assigns two classes to
each client. The detailed information of federations is listed in Table 2 and the data distributions in
each federation are shown in Figure 4.

In the part of extracting representation, we conduct 10 rounds via FedAvg and use t = 10 round to
compute V t

k (S) for the representation of federation k. When round t becomes larger, the statistics
Uk becomes more stable. For two target federations, we try out three FL algorithms including
FedAvg (McMahan et al., 2017) , FedDyn (Acar et al., 2021) and FedRS (Li & Zhan, 2021). The
best performance of FedAvg, FedDyn and FedRS on target federations are shown in Figure 2. The
best performance of FedDyn and FedRS on query federations are shown in Figure 3
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Figure 2: Performance on two target federations
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Figure 3: Performance on two query federations

federation client numbers dataset data split

F1 10 CIFAR-10 dirichlet sampling
F2 10 CIFAR-10 label sampling
F3 20 CIFAR-100s dirichlet sampling
F4 20 CIFAR-100s label sampling

Table 2: Details of four federations
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Figure 4: Detailed data distribution of four federations
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