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Abstract001

Large language models (LLMs) have demon-002
strated remarkable abilities in various natural003
language processing areas, but they demand004
high computation resources which limits their005
deployment in real-world. Distillation is one006
technique to solve this problem through ei-007
ther knowledge distillation or task distillation.008
Both distillation approaches train small mod-009
els to imitate specific features of LLMs, but010
they all neglect basic reading education for011
small models on generic texts that are un-012
related to downstream tasks. In this paper,013
we propose basic reading distillation (BRD)014
which educates a small model to imitate LLMs015
basic reading behaviors, such as named en-016
tity recognition, question raising and answer-017
ing, on each sentence. After such basic ed-018
ucation, we apply the small model on vari-019
ous tasks including language inference bench-020
marks and BIG-bench tasks. It shows that the021
small model can outperform or perform com-022
parable to over 20x bigger LLMs. Analysis re-023
veals that BRD effectively influences the prob-024
ability distribution of the small model, and has025
orthogonality to either knowledge distillation026
or task distillation.027

1 Introduction028

Large language models (LLMs) exhibit consistent029

performance gains across various areas (Zhao et al.,030

2023; Huang and Chang, 2023; Chang et al., 2023).031

Nevertheless, their formidable size and high com-032

putational requirements impede their real-world033

applications. Distillation is one widespread ap-034

proach to tackle this issue by distilling LLMs into035

smaller language models. It is divided into mainly036

two categories: knowledge distillation and task dis-037

tillation. Both distillation approaches adopt the038

teacher-student framework, in which the smaller039

language models act as the student models, and are040

trained to imitate specific features of LLMs, which041

act as the teacher models. Specifically, knowledge042

Figure 1: The illustration of BRD process.

distillation (Hinton et al., 2015) usually trains the 043

student models to imitate implicit features inside 044

the teacher models, while task distillation (Chen 045

et al., 2020) usually trains the student models to 046

imitate explicit behaviors of the teacher models. 047

Different to both distillation approaches, we pro- 048

pose basic reading distillation (BRD) that teaches a 049

student model basic reading abilities such as named 050

entity recognition, question raising, and question 051

answering, on general sentences. It simulates hu- 052

man reading education via interactions including 053

raising questions about parts of a sentence, answer- 054

ing the questions, extracting important informa- 055

tion such as named entities. Such basic reading 056

education on every sentence is important before 057

application on downstream tasks, while is always 058

neglected in both knowledge distillation and task 059

distillation. 060

The benefits of BRD are two-fold: Firstly, be- 061

yond only using texts for training next token pre- 062

diction, BRD educates the student model to deeply 063

understand the texts via interactions. All avail- 064

able data such as web mined corpora can be ex- 065

tended to be magnitudes larger by BRD, breaking 066

the data scale and diversity limitation criticized 067

by Gudibande et al. (2023) in the task distillation. 068

Secondly, BRD also avoids the implicit nature of 069

knowledge distillation which imitates latent fea- 070

tures such as logits (Hinton et al., 2015), hidden lay- 071
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ers (Jiao et al., 2020), and attention maps (Li et al.,072

2020; Wang et al., 2021b). Such implicit nature073

leads to the deficiency of learning interpretability,074

while BRD demonstrates explicit reading behaviors075

that are easy to interpret.076

Figure 1 illustrates the process of BRD. It starts077

by prompting LLMs to generate basic reading be-078

haviors on general sentences, then proceeds with079

training the student model to imitate these behav-080

iors. Experiments on various NLP tasks, including081

language inference benchmarks and Google Big-082

bench tasks, show that although the student model083

is trained on the general data that is irrelevant to084

the downstream tasks, it can inherit teacher model085

abilities, leading to excellent downstream perfor-086

mances better than or comparable to those of larger087

models. Furthermore, after this basic education of088

the student model on general sentences, we fine-089

tune the student model for downstream tasks, and090

find that the basic reading education leads to fur-091

ther improvement on downstream tasks, achieving092

on par or better performances when compared to093

the over 20x bigger teacher model. To analyze the094

effect of BRD, we compute the cross entropy be-095

tween the student model and the teacher model, and096

find that the student model distribution approaches097

closer to the teacher model distribution after BRD,098

leading to better performances than non-educated099

ones. In summary, the main contributions are:100

• We propose BRD that educates the student101

model to imitate basic reading behaviors of102

the teacher model.103

• Experiments show that the student model ex-104

hibits excellent abilities distilled from the105

teacher model on various downstream tasks,106

achieving on par or even better performances107

against the teacher model.108

• The analysis reveals that BRD can drive109

the student model distribution closer to the110

teacher model distribution, resulting in signif-111

icant performance improvements.112

2 Related Works113

There are mainly two streams of distillation ap-114

proaches: knowledge distillation and task distilla-115

tion. Knowledge distillation focuses on teaching116

implicit features inside the teacher model, while117

task distillation focuses on teaching explicit behav-118

iors of the teacher model on downstream tasks. In119

addition, we introduce intrinsic task pre-training120

that focuses on intrinsic task data derived from the 121

training plain texts. 122

2.1 Knowledge Distillation 123

The field is pioneered by Bucila et al. (2006); Hin- 124

ton et al. (2015), followed by works using vari- 125

ous types of internal information from the teacher 126

model, including attention maps (Li et al., 2020; 127

Wang et al., 2021b), output logits (Liu et al., 2020), 128

hidden layers (Jiao et al., 2020). In the era of LLMs, 129

GKD uses advanced memory optimization methods 130

to address the memory constraint problem in distill- 131

ing LLMs (Tan et al., 2023), MiniLLM uses reverse 132

KL divergence to prevent the student model from 133

overestimating the void regions of the teacher distri- 134

bution (Gu et al., 2023a). Agarwal et al. (2024) use 135

on-policy distillation that trains the student model 136

on its self-generated mistakes. In the case that inter- 137

nal information of LLMs is not accessible and only 138

decisions of LLMs are available, Zhou et al. (2023) 139

estimate logits from the decision distributions to 140

train the student model. 141

2.2 Task Distillation 142

The task predictions or reasoning rationales made 143

by the teacher model are used to train the student 144

model in task distillation. Despite the noisy pre- 145

dictions of the teacher model, the student model 146

achieves good imitation effects in performing the 147

tasks (Chen et al., 2020; Wang et al., 2021a; Il- 148

iopoulos et al., 2022; Agrawal et al., 2023). Besides 149

the task predictions, rationales for the answers gen- 150

erated by the teacher model show efficiency in train- 151

ing the student model with less data (Hsieh et al., 152

2023; Wang et al., 2023; Ho et al., 2023; Magister 153

et al., 2023). Task distillation is closely related to 154

model imitation researches (Orekondy et al., 2019; 155

Wallace et al., 2020), which collect API outputs of 156

a a proprietary LM for some tasks, then use the out- 157

puts to fine-tune an open-source LM. Gudibande 158

et al. (2023) criticize the data scale and the lim- 159

ited diversity in model imitation. Mukherjee et al. 160

(2023) address this criticism by using explanation 161

tuning, more task data, and instructions. In compar- 162

ison, BRD can perform on every sentence, leading 163

to unlimited data resource that breaks the limitation 164

on data scale and diversity. 165

In summary, task distillation focuses on the 166

data of specific downstream tasks, while our BRD 167

mainly focuses on general sentences unrelated to 168

any specific downstream tasks, and the basic read- 169

ing behaviors in BRD are basic education resource 170
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not aiming at any specific applications.171

2.3 Intrinsic Task Pre-training172

Different to task distillation that utilizes down-173

stream task data, intrinsic task pre-training uses174

general training set to synthesize task data. PICL is175

a framework focusing on intrinsic tasks (Gu et al.,176

2023b). It posits that many paragraphs in the train-177

ing set documents contain intrinsic tasks such as178

sentiment analysis, and retrieves paragraphs of the179

same intrinsic task to compose in-context learning180

examples, but its retriever is trained on 37 down-181

stream tasks, which are opposite to the “intrinsic182

task” nature, and limit the scale and diversity of the183

composed task data. In comparison, our BRD does184

not refer to any downstream tasks, and focuses on185

the contents of the training set texts, thus keeping186

more freedom in curating the task data. In addition,187

PICL aims to train the in-context learning ability,188

while BRD is for the model distillation. The in-189

trinsic task data in PICL may not have task labels190

since the original paragraphs do not necessarily191

have both task queries and answers simultaneously,192

e.g., a sentiment expression paragraph may not193

explicitly states its positive or negative label for194

the sentiment analysis task. In comparison, BRD195

always gets education queries and responses.196

Zhang et al. (2023) propose a similar intrinsic197

task pre-training approach that transforms frag-198

mented sentences from babyLM training set into a199

cohesive paragraph (Warstadt et al., 2023). Their200

task is quite challenging to accomplish since the201

sentences in the training set are sampled from di-202

verse resources, and lack strong semantic ties with203

each other, resulting in the hardness of composing204

a cohesive paragraph. Such fiction data generation205

are different to our BRD approach, which generates206

solid basic education data on reading activities.207

3 Approach208

We use a subset of CommonCrawl (CC-100) cor-209

pus, which is usually included in LLMs pre-210

training, as the education resource to conduct the211

basic reading education. The whole education pro-212

cess contains two stages. In the first stage, for213

each sentence in the corpus, the teacher model is214

prompted to perform basic reading. In the second215

stage, we collect all basic reading behavior data to216

train the student model, and finally test the student217

model ability on various tasks.218

3.1 Basic Reading Behaviors of the Teacher 219

Model 220

We utilize the in-context learning ability of the 221

teacher model to elicit its basic reading behaviors 222

including named entity recognition, question rais- 223

ing and answering. Given the corpus, we set up 224

a prompt template consisting of task description, 225

task examples, and input sentence from the corpus. 226

Table 1 lists the named entity recognition prompt 227

and the response from the teacher model. We can 228

see that, given the few-shot examples including en- 229

tities and their types, the teacher model responses 230

with more detailed contents of the entities, such as 231

the price or size of the entities, which are beneficial 232

for educating the student model to grasp the impor- 233

tant information contained in the input sentence. 234

Table 2 lists the question raising and answering 235

prompt and the response from the teacher model. 236

In the task instruction, question is constrained to 237

be about the content, structure, or attitude of the 238

input sentence. The question raising and answering 239

embody the teacher model’s reading ability, which 240

is targeted to be transferred to the student model. 241

3.2 Training the Student Model 242

The student model is initialized by a released 243

smaller pre-trained language model. We continue 244

training the student model based on the basic read- 245

ing behavior data generated by the teacher model. 246

To stabilize the training process, we mix the basic 247

reading behavior data with the original sentences 248

of the corpus to avoid the catastrophic forgetting of 249

the pre-trained model. 250

Suppose we have a passage consisting of three 251

sentences s1, s2, and s3, we constitute the named 252

entity recognition passage: s1 <sep> NER(s1) 253

<sep> s2 <sep> NER(s2) <sep> s3 <sep> NER(s3), 254

where NER denotes the named entity recognition 255

result of the teacher model for each sentence, and 256

<sep> is the delimiter. Similarly, we constitute the 257

question raising and answering passage: s1 <sep> 258

QRA(s1) <sep> s2 <sep> QRA(s2) <sep> s3 <sep> 259

QRA(s3), where QRA denotes the question rais- 260

ing and answering result of the teacher model for 261

each sentence. The original passage is formatted as 262

s1 <sep> s2 <sep> s3. We use passage instead of 263

sentence to be consistent with the usual language 264

model pre-training that utilizes long contexts. 265

In this way, we build all original passages, de- 266

noted as DORI , all named entity recognition pas- 267

sages, denoted as DNER, and all question rais- 268
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Perform named entity recognition on a given sentence without recognizing personal pronouns in the
input sentence as human names.
Enter a sentence:
Barack Obama was the 44th President of the United States.
Output:
In this sentence, "Barack Obama" is a person name entity, and "United States" is a geopolitical entity.
Enter a sentence:
I just bought a new MacBook Pro from Apple.
Output:
In this sentence, "Apple" is an organization name entity, and "MacBook Pro" is a product name entity.
Enter a sentence:
The Eiffel Tower is a famous landmark in Paris, France.
Output:
In this sentence, "Eiffel Tower" is a landmark name entity, and "Paris" and "France" are geopolitical
entities.
Enter a sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000 square feet of luxurious
finishes and elaborate architecture on 1.28 acres.
Output:
In this sentence, "Belmont Estate" is a geographic entity, "63 million" is a numerical entity representing
the price of the estate, and "1.28 acres" is a geographic entity representing the size of the estate.

Table 1: The prompt for the teacher model to extract named entity information from an input sentence. Each
example consists of a sentence and its named entity information. The response from the teacher model is listed in
the bottom.

ing and answering passages, denoted as DQRA.269

We mix them together to build the training set270

DTRAIN , on which we train the student model271

to minimize the loss in an autoregressive manner:272

L = − 1

N

N∑
i=1

T∑
t=1

logP (yt|y<t)273

where y is the passage with length T , and N is the274

number of passages in DTRAIN .275

3.3 Testing276

For predicting the answers of the downstream tasks277

when testing the student model, we use the average278

of per-token log-probabilities of candidate answers279

as the scoring function for all downstream tasks:280

P̄ =
1

n

n∑
i=1

logPi(yi|xprompt)281

where xprompt denotes the input to the student282

model, y denotes the candidate answer for xprompt,283

and n is the total number of words in y. We select y284

with the maximal P̄ as the final answer for xprompt.285

This average computation is to cover tasks such as286

Google BIG-bench 1 (bench authors, 2023), whose287

candidate answers are phrases/sentences rather than288

single words.289

1https://github.com/google/BIG-bench

4 Experiment 290

We use the well-known LLM Vicuna-13B 2 (Chi- 291

ang et al., 2023) as our teacher model due to its high 292

efficiency in generating large volume of texts for 293

teaching. We use XGLM-564M (Lin et al., 2022) 294
3, which is the smaller language model of the same 295

decoder-only family, to initialize our student model. 296

To compare the student model with larger model 297

pre-trained on the same data origin, we also include 298

XGLM-7.5B for comparison. In BRD, we use one 299

million passages from CC-100 corpus to collect the 300

basic reading data generated by Vicuna-13B. 301

4.1 Baselines 302

We consider three baselines in our experiments: 303

• Knowledge distillation (KD): We use two KD 304

models released in Gu et al. (2023a)4 for the 305

comparison. One is the standard KD (SKD) 306

that uses teacher distribution to supervise the 307

student model. The other is MiniLLM that 308

uses reverse Kullback-Leibler divergence for 309

KD. 310

• Task distillation (Wang et al., 2021a; Iliopou- 311

los et al., 2022): The teacher model generates 312

the answers given the downstream task inputs, 313

2https://github.com/lm-sys/FastChat
3https://github.com/facebookresearch/fairseq/

tree/main/examples/xglm
4https://github.com/microsoft/LMOps/tree/main/

minillm
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Ask a question to the input sentence, you can ask questions about the content, structure or attitude of the
sentence, and then find the answer to the corresponding question in the original sentence. Output in the
format "Question: Answer:".
The sentence:
In order to graduate with honors, he needed to maintain a high GPA throughout college.
Question:
What did he need to do in order to graduate with honors?
Answer:
Maintain a high GPA throughout college.
The sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000 square feet of luxurious
finishes and elaborate architecture on 1.28 acres.
Question:
How much does Belmont Estate cost?
Answer:
Belmont Estate costs $63 million.

Table 2: The prompt for the teacher model to perform question raising and answering on an input sentence. Ques-
tion is limited to be about the input sentence. The response from the teacher model is listed in the bottom.

and these generated pseudo answers are used314

to supervise the student model.315

• Supervised Fine-tuning(SFT): Directly fine-316

tunes the student model on the downstream317

tasks supervised by the gold labels.318

4.2 Evaluation319

We adopt a spectrum of downstream tasks for the320

evaluation, including natural language inference321

(XNLI(Conneau et al., 2018), CB(de Marneffe322

et al., 2019), RTE(Wang et al., 2018)) , paraphras-323

ing (PAWS-X(Zhang et al., 2019)) , Boolean QA324

(BOOLQ(Clark et al., 2019)) , sentiment analy-325

sis (SST-2(Socher et al., 2013)), and Google BIG-326

bench(bench authors, 2023). In Google BIG-bench327

tasks, we only consider multiple choice QA tasks328

which have the fixed answers easy for the evalu-329

ation, resulting in a total of 73 tasks. The results330

are evaluated by the accuracy of the predicted an-331

swers. The prompts for the downstream tasks are332

presented in the appendix A.2.333

4.3 Results334

The main results are grouped into three parts as335

shown in Table 3. The top part presents the accura-336

cies of the original models, including the teacher337

model Vicuna-13B, the student model XGLM-338

564M, the large model XGLM-7.5B which has339

same origin to the student model, plus an exten-340

sion model XGLM-564M-FURTHER, which fur-341

ther trains the student model on the original one342

million passages from CC-100 corpus. The number343

of the further training steps is set 18,000.344

The middle part and the bottom part list the ac-345

curacies of various distillation or fine-tuning ap-346

proaches under two scenarios: without downstream 347

task supervision and with downstream task supervi- 348

sion, respectively. The difference between the two 349

scenarios is the availability of the downstream task 350

gold answers. 351

Results Without Downstream Task Supervision. 352

In this scenario, the downstream task gold answers 353

are not available. It is further divided into two 354

conditions. One is the blind test setting, in which 355

any task training set data is NOT accessible. It 356

is for applications of the student model on fairly 357

new tasks. The other is the relaxed test setting, in 358

which only the training set input data (without gold 359

answers) are accessible. It is for applications on 360

tasks that manual labeling for the training set input 361

data is not available. 362

• In the blind test setting, we compare our 363

XGLM-BRD with the two released KD works: 364

SKD and MiniLLM. In the multiple student 365

models of the two KD works, we select their 366

GPT-2 760M version student models for the 367

comparison due to the similar model size. The 368

results show that XGLM-BRD performs sig- 369

nificantly better than SKD and MiniLLM in 370

most tasks, demonstrating that XGLM-BRD 371

has better generalization ability to various un- 372

seen tasks. We also combine BRD with the 373

two KD works, and the results are listed in the 374

orthogonal analysis section 5.1 and Table 4. 375

Regarding the comparison between XGLM- 376

BRD and XGLM-564M, BRD significantly 377

improves the performance of the small 378

model, indicating that basic reading educa- 379

tion does enhance the ability of the small 380
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Task

Model XNLI RTE CB PAWS-X BOOLQ SST-2 BIG-bench-Avg Average
Vicuna-13B 59.1 78.3 71.4 62.9 84.3 81.5 35.6 67.6
XGLM-7.5B 36.6 50.9 60.7 56.8 57.2 69.5 34.3 52.34
XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 34.0 48.0
XGLM-564M-FURTHER 34.9 46.6 51.8 51.6 51.5 59.4 34.0 47.1

Without Downstream Task Supervision
SKD 33.7 53.8 51.8 43.0 49.1 60.7 34.2 46.6
MiniLLM 34.2 58.1 73.2 44.1 55.9 62.4 34.6 51.8
XGLM-BRD 36.2 53.8 58.9 56.7 61.0 78.1 34.8 54.2
TaskDistillation 57.1 58.1 60.7 64.8 74.8 77.2 41.6† 62.0
XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 44.1† 67.1

With Downstream Task Supervision
SFT 81.4 67.1 83.9 92.4 77.5 91.5 68.3† 80.3
XGLM-BRD2-SFT 81.6 69.3 91.1 91.5 77.8 92.2 69.1† 81.8

Table 3: Main results of the teacher models, student models, and various distillation and fine-tuning approaches.
Unless otherwise specified, the student models are all initialized by XGLM-564M. BIG-bench-Avg is the accuracy
averaged over the 73 bench tasks(† denotes the averaged accuracy on the reduced set of BIG-bench tasks), and
detailed accuracies are reported in the appendix A.3.

model. Moreover, XGLM-564M-FURTHER381

performs much worse than XGLM-BRD, re-382

vealing that only using the original passages383

for further training does not yield enhance-384

ments and may even leads to decreases in385

some tasks. It is the basic reading data for fur-386

ther training that advance the student model.387

XGLM-BRD also approaches or even sur-388

passes XGLM-7.5B, which is 15x bigger, on389

the downstream tasks. There is still a gap390

between XGLM-BRD and the teacher model391

Vicuna-13B, but this gap is significantly re-392

duced or disappeared when we conduct re-393

laxed test.394

• In the relaxed test setting, we compare our395

BRD with the task distillation approach,396

which uses the teacher model to generate397

pseudo answers on the task training set for398

supervising the student model XGLM-564M.399

Because BIG-bench tasks do not divide train-400

ing, tuning, and test sets, we only consider401

tasks each of whom has more than 2K in-402

stances in the relaxed test, and finally select403

tasks that rank top-5 according to the number404

of instances as the reduced set of BIG-bench405

tasks(denoted by † in Table 3). For each task,406

we save ten percent of instances as test set, ten407

percent of instances as tuning set, and other408

instances as training set. Our approach in this409

setting uses BRD twice, that is, on the general410

data we conduct BRD to obtain the student411

model XGLM-BRD, then on the downstream412

task data, we conduct BRD again to contin-413

ual training the new student model, denoted414

as XGLM-BRD2. The results show that the415

task distillation approach establishes a strong 416

baseline that significantly outperforms both 417

XGLM-564M and KD models, demonstrating 418

that even pseudo answers can supervise the 419

student model to perform well on the down- 420

stream tasks. When BRD is introduced into 421

this process, the improvement is even more 422

pronounced by XGLM-BRD2. 423

When comparing XGLM-BRD2 with the 424

teacher model Vicuna-13B, it shows that 425

XGLM-BRD2 outperforms Vicuna-13B in 426

some tasks, and in the other tasks, the per- 427

formance gap is significantly reduced. This 428

comparison proves the effectiveness of BRD, 429

that leads to comparable or superior perfor- 430

mance to the 26x bigger teacher model. 431

Results With Downstream Task Supervision. 432

In this scenario, the downstream task gold answers 433

are available. We compare BRD with SFT, which 434

fine-tunes the student model XGLM-564M based 435

on the task supervision data. Table 3 shows that 436

with the gold supervision, SFT significantly im- 437

proves the ability of the student model, and beats 438

the 26x bigger model Vicuna-13B with a large mar- 439

gin in certain tasks. In comparison to this strong 440

baseline, we conduct BRD on the SFT data to get 441

the basic reading data of the tasks, then continue 442

training XGLM-BRD on this basic reading data. 443

The trained model is denoted as XGLM-BRD2- 444

SFT. The results show that XGLM-BRD2-SFT sur- 445

passes SFT in most tasks, demonstrating the ef- 446

fectiveness of the basic reading education for the 447

student model when the downstream task supervi- 448

sion is available. 449
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Model Approach Task
XNLI RTE CB PAWS-X BOOLQ SST-2 Average

GPT-2 120M

SKD 35.9 44.4 57.1 52.1 47.6 68.8 51.0
+BRD 37.0 54.5 66.1 56.8 62.2 76.9 58.9

MiniLLM 35.9 48.0 67.9 57.0 53.1 53.8 52.6
+BRD 35.1 51.6 71.4 48.5 60.9 79.1 57.8

GPT-2 340M

SKD 33.6 46.9 51.8 54.2 48.8 63.3 49.8
+BRD 34.2 55.2 67.9 53.8 64.6 78.1 59.0

MiniLLM 32.8 46.6 50.0 57.0 56.9 55.3 49.0
+BRD 32.7 56.3 67.9 53.4 64.1 74.4 58.1

GPT-2 760M

SKD 33.7 53.8 51.8 43.0 49.1 60.7 48.7
+BRD 34.7 52.3 64.3 56.4 62.1 68.5 56.7

MiniLLM 34.2 58.1 73.2 44.1 55.9 62.4 54.7
+BRD 35.2 52.0 76.8 50.8 60.5 67.3 57.1

XGLM-564M TaskDistillation 57.1 58.1 60.7 64.8 74.8 77.2 65.5
+BRD 58.1 61.0 71.4 63.1 74.4 81.1 68.2

Table 4: Results of combining BRD with various distillation approaches. The models for initializing the student
models are listed in the model column.

XNLI RTE CB PAWS-X BOOLQ SST-2 BIG-bench-Avg
XGLM-564M 461.7 64.8 13.2 1065.6 1098.7 55.6 145.1
XGLM-BRD 407.5 66.2 12.8 892.4 1001.1 37.0 112.2

Table 5: Cross entropy between the distributions of the teacher model and small models. The lower the better for
measuring the consistency.

5 Analysis450

5.1 Orthogonality of BRD to Knowledge451

Distillation and Task Distillation452

Since BRD focuses on basic reading education for453

the student model without referring to any implicit454

model features or downstream tasks, it is orthog-455

onal to either knowledge distillation or task dis-456

tillation. So, we combine BRD with knowledge457

distillation by further training the student model of458

knowledge distillation on our general basic reading459

data, or combine BRD with task distillation by fur-460

ther training the student model of task distillation461

on the basic reading data of the downstream tasks.462

Table 4 lists the combination results.463

It shows that combining BRD in most cases sig-464

nificantly improves the performances of the two465

distillation approaches, which proves the orthogo-466

nality of BRD to either knowledge distillation or467

task distillation.468

5.2 Effectiveness Verification Based on Cross469

Entropy Evaluation470

BRD educates the student model via explicit basic471

reading behaviors. We study if such education can472

effectively influence the probability distribution of473

the student model. We compute the cross entropy,474

which is often used to measure the consistency475

between the teacher distribution and the student476

distribution, for the teacher model Vicuna-13B and 477

the student model XGLM-BRD: 478

−
N∑
i=1

p(y)logq(y′) 479

where p is the teacher model probability, q is the 480

student model probability, y and y′ are subword 481

sequences of the same text according to the teacher 482

model and the student model, respectively. N is 483

the number of the texts. Since y and y′ have dif- 484

ferent lengths, we set p and q as sequence-level 485

probabilities averaged over y and y′, respectively. 486

We use the texts from the downstream tasks for 487

computing the cross entropy. For the considered 488

73 tasks in BIG-bench, we randomly choose 1K 489

instances from each task for the computation, and 490

report the cross entropy averaged over the tasks. 491

We include the original XGLM-564M to compute 492

q for comparison. 493

Table 5 shows the comparison result in the blind 494

test. Lower cross entropy means better consistency 495

between the teacher model and the student model. 496

It shows that on most downstream tasks, XGLM- 497

BRD approaches more closer to the teacher model 498

than the original XGLM-564M does, demonstrat- 499

ing significant advantage in shaping the student 500

model probability distribution towards that of the 501

teacher model. 502
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Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3
PassageLevel 36.2 53.8 58.9 56.7 61.0 78.1 57.5

SentenceLevel 34.1 55.6 55.4 53.6 58.9 76.0 55.6

Table 6: The comparison between the passage level
training and the sentence level training evaluated by the
blind test.

5.3 Comparison to Sentence Level Training503

In building the BRD training data presented in sec-504

tion 3.2, we divide a passage into sentences, then505

annotate each sentence with basic reading behav-506

iors by using the teacher model, and finally com-507

pose all sentences and their annotations into a pas-508

sage according to the original sentence order. To509

check whether this passage level training has the510

positive effect, we abandon the last composing step511

and leave the sentences and their annotations un-512

ordered. Then we conduct the sentence level train-513

ing on this dataset to compare with the passage514

level training. Table 6 presents the comparison515

result.516

It shows that the sentence level training gener-517

ally performs worse than the passage level training.518

Since the downstream tasks are mostly the tasks519

with multiple sentences as input, the passage level520

training is more suitable for the downstream tasks521

than the sentence level training due to its multiple522

sentence training nature.523

5.4 Ablation of Different Basic Reading524

Behaviors.525

We test the contribution of the different basic read-526

ing behaviors by deleting either NER or QRA data527

of the downstream tasks in training XGLM-BRD2.528

Table 7 lists the ablation results in the relaxed test.529

It shows that deleting the QRA data impacts the530

performance more significantly than deleting the531

NER data in most tasks. QRA focuses on the sen-532

tence understanding, thus contributing more in the533

basic reading education.534

The coordination between NER and QRA is re-535

lated to the multi-task learning (Chen et al., 2024)536

that boosts the model ability through training on537

multiple tasks with potential generalization to other538

tasks. Different to the multi-task learning that pre-539

defines a fixed set of tasks, BRD focuses only on540

the basic reading education that has flexible con-541

tents changing from sentence to sentence. This542

flexibility empowers the distilled model to perform543

well on various downstream tasks.544

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 70.9
−NER 58.0 61.4 71.4 64.1 74.3 81.4 68.4
−QRA 58.3 61.0 67.9 63.9 74.9 80.5 67.8

Table 7: The effects of deleting different basic reading
behaviors for XGLM-BRD2 in the relaxed test.

Figure 2: The performance curve along with different
BRD data sizes (in million passages).

5.5 The Impact of BRD Data Size 545

We investigate how performance varies along with 546

different BRD data sizes in the blind test. Figure 547

2 shows the curve. Most tasks exhibit a steady 548

improvement as BRD data gets bigger, and the 549

performance plateaued when BRD data size arrives 550

at more than one million passages. 551

6 Conclusion 552

In this paper, we propose to distill the basic reading 553

abilities of LLMs into small models. In particular, 554

we collect basic reading behaviors of LLMs such as 555

NER or question raising and answering about parts 556

of an input text at first, then we train small models 557

based on the collected behaviors. Through such 558

basic education on general texts, the small models 559

are well educated to perform better on the down- 560

stream tasks. Experiments on various tasks includ- 561

ing language inference benchmarks and Google 562

Big-Bench tasks show that the small models after 563

such distillation can surpass or perform compara- 564

ble to LLMs that are 20x bigger. Verification by 565

the cross entropy shows that such basic reading 566

education can drive small model distribution closer 567

to its teacher model distribution, leading to better 568

performances than non-educated ones. Analysis 569

also reveals that BRD has orthogonality to either 570

knowledge distillation or task distillation. 571
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Limitations572

In the distillation approach, we acknowledge cer-573

tain limitations in the coverage of language models.574

We only use Vicuna-13B as our teacher model due575

to its high efficiency in generating large volume of576

texts. Calling the recent proprietary LLMs through577

API or using larger released LLMs incurs high cost578

in time and deployment for the massive distillation.579

It represents an area for potential future exploration580

to provide a more comprehensive understanding of581

using larger LLMs as the teacher model for the582

distillation.583

Ethics Statement584

We honor the Code of Ethics. We do not use any585

private data or non-public information in this work.586

The language models used in this paper are freely587

downloadable from web. The corpus for generating588

basic reading behaviors by the teacher model is589

commonly used in most LLMs pretraining, and is590

freely released. The downstream task data are also591

freely downloadable from web. The distillation592

process does not involve any personally sensitive593

information.594
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A Appendix830

A.1 Training Configuration831

The student model is trained with learning rate =832

0.0003, batch size = 8, and max input length =833

2048, for a maximum of 40000 steps. We save834

the model every 1000 steps. Four A100 GPUs are835

used in both the data synthesis and the distillation836

training.837

A.2 Prompts for The Downstream Tasks838

The prompt templates for the downstream tasks are839

listed in table 8. For the 73 tasks in BIG-bench, we840

follow the general instruct with the task prefix and841

input as the prompt.842

A.3 Detailed Accuracies on BIG-bench 843

Figure 3 presents the accuracy comparison between 844

the distilled model XGLM-BRD and the baseline 845

model XGLM-564M on the 73 tasks in BIG-bench 846

in the blind test. The results of ten tied tasks are not 847

listed in the figure. It shows that XGLM-BRD im- 848

proves the performances on about 2/3 tasks, demon- 849

strating better ability generalized to a wide range 850

of tasks than the baseline. 851

In the relaxed test and the setting with the down- 852

stream task supervision, we select tasks that rank 853

top-5 according to the number of instances for the 854

sufficiency consideration of dividing training, tun- 855

ing, and test sets on these tasks. The five tasks are 856

movie dialogue, formal fallacies and syllogisms 857

with negation, Shakespeare dialogue, VitaminC, 858

and WinoWhy. Table 9 presents the results on this 859

reduced BIG-bench set. It shows that BRD models 860

perform superior to the corresponding baselines no 861

matter the supervisions are available or not. 862

A.4 Layer-wise Probing 863

Inserting probes can reveal the interpretable aspects 864

hidden in the neural networks (Belinkov, 2022). 865

We insert probes layer-wisely to check the effi- 866

cacy of the distilled student model. In particular, 867

for each downstream task, we extract the repre- 868

sentation by averaging vectors per layer for each 869

sentence in the training set, and train the probing 870

classifier per layer based on the representation. The 871

training loss is the regularized cross-entropy loss 872

of the task prediction against the true label of the 873

sentence. Through inserting probes layer-wisely, 874

we can check how well each layer prepares for the 875

downstream tasks. 876

Figure 4 presents the results of probing XGLM- 877

564M and XGLM-BRD in the blind test. It is clear 878

that XGLM-BRD outperforms XGLM-564M on al- 879

most all layers for all downstream tasks. Although 880

XGLM-BRD is trained on the general corpus that 881

is not related to the downstream tasks, basic read- 882

ing education influences deep layers of the model, 883

empowering each layer with enhanced downstream 884

task prediction ability. 885

A.5 The Impact of Sentiment-related 886

Questions and Answers 887

Since our QRA data include questions and answers 888

about the attitude of a sentence, which are related 889

to the SST-2 task, we exclude such data for training 890

XGLM-BRD by deleting the questions about the 891
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Task Template Candidate Answers

XNLI

{premise}

Yes | No | MaybeQuestion: Does this imply that "{hypothesis}"?
Yes, no or maybe?
Answer:

RTE Question: Can we infer that "{hypothesis}" ?

CB {premise}
Yes | No | MaybeAnswer:

PAWS-X

Sentence 1: {sentence1}

Yes | No
Sentence 2: {sentence2}
Question: Do Sentence 1 and Sentence 2 express
the same meaning?
Answer:
{passage}

BOOLQ Question: {question} Yes | No
Answer:

SST-2

Question: Does the following sentence have a
positive or negative sentiment? positive | negativeSentence: {sentence}
Answer:

Table 8: The prompt templates for the downstream tasks.

Figure 3: The accuracy comparison between BRD and the baseline on BIG-bench tasks.

attitude or the answers containing words of pos-892

itive/negative/neutral. The objective is to check893

whether the performance improvement is due to894

the presence of such data.895

Table 10 shows the result in the blind test. Ex-896

cluding the sentiment-related data does influence897

SST-2 performance significantly, resulting in a de-898

crease of 4 points compared to training XGLM-899

BRD on full data. Thanks to the remaining data for900

training XGLM-BRD, it still performs significantly901

better than XGLM-564M by a large margin on SST-902

2 task. On XNLI task, excluding the sentiment-903

related data obtains a significant improvement over904

XGLM-BRD trained on full data. This indicates905

that the sentiment-related data is not fit for the lan-906

guage inference task.907
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Task

Model MovieDialog FormalFallacies ShakespeareDialogue VitaminC WinoWhy Average
Relaxed Test

TaskDistillation 46.7 50.0 42.2 13.6 55.2 41.6
XGLM-BRD2 50.1 50.0 49.8 13.8 56.9 44.1

With Downstream Task Supervision
SFT 69.2 69.9 69.3 55.9 76.9 68.3
XGLM-BRD2-SFT 70.6 69.3 70.2 56.0 79.1 69.1

Table 9: Results on the reduced BIG-bench set.

Figure 4: The results of probing XGLM-564M and XGLM-BRD layer-wisely on the downstream tasks in the blind
test. The horizontal axis represents the specific layer in the model, and the vertical axis is the prediction accuracy
(%) for each task.

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3

XGLM-BRD 36.2 53.8 58.9 56.7 61.0 78.1 57.5
−SentData 39.2 54.5 57.1 51.5 59.1 74.2 55.9

Table 10: The result of training XGLM-BRD based on
the data excluding the sentiment-related questions and
answers, denoted by −SentData, in the blind test.
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