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Abstract

In out-of-distribution (OOD) generalization, domain relation is an important factor.1

It can provide a global view on the functionality among domains, e.g., the protein2

domain in the binding affinity task or the geographical location domain in the3

weather forecast task. Existing work lacks the utilization of the domain relation;4

yet in this work, we want to explore how to incorporate such rich information into5

solving the distribution shift problem. Therefore, we propose READ, a general6

multi-head deep learning framework that harnesses domain relation to generalize7

to unseen domains in a structured learning and inference manner. In READ, each8

training domain shares a common backbone but learns one separate head. Built9

on a proposed explicit regularization, READ simulates the generalization process10

among heads, where a weighted ensemble prediction from heads irrelevant to11

input domain is calculated via domain relation and aligned with the target. To12

improve the reliability of domain relation, READ further leverages similarity metric13

learning to update initial relation. Empirically, we evaluate READ on three domain14

generalization benchmarks. The results indicate that READ consistently improves15

upon existing state-of-the-art methods on datasets from various fields.16

1 Introduction17

Distribution shift is a universal problem in the real-world scenarios [10, 14], where the test distribution18

is different from the training distribution. Yet, recent evidence suggests that deep neural networks19

can be sensitive to distribution shifts, exhibiting a dramatic performance degradation within new20

environments [4, 21, 26]. Thus, distribution shift is a challenging but rewarding task.21

In this paper, we refer to this problem as the out-of-distribution (OOD) generalization and specifically22

focus on domain shifts. In domain shifts, the test data is from unseen domains, and a well-trained23

model should be able to possess the good generalization ability to test domains without seeing the24

data from those domains at training time. For example, in AI-aided Drug Discovery (AIDD), we25

train a model on data from a fixed set of known target proteins, which is treated as domains. Then26

we deploy the model to new targets with unseen data distribution. Recent work [12] has proven that27

existing OOD algorithms fail to generalize in this specific setting.28

To improve model robustness under domain shifts, recent studies align training domains and learn29

domain-invariant representations or predictors [3, 18, 27]. Unfortunately, most invariant learning30

approaches do not exhibit substantial improvements compared to standard ERM [30] training on31

various real-world datasets [12, 37]. One potential reason in such failure cases is that some test32

domains only correlate with a few training domains. For every test domain, involving uncorrelated33

training domains to train a model is useless or even hurts the performance. To generalize on such34

data with correlations between domains, we formulate a novel problem called relational OOD, and35

introduce another promising direction in utilizing the domain relation to solve this task.36

Thus, we propose READ, a relation-aware algorithm to harness domain relation in a structured37

learning and inference manner and improve out-of-distribution robustness. Specifically, we first38
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extract pairwise domain relations from the data source. Then, READ aims to optimize the objective39

function, which is composed of two parts: (1) the supervised loss, an empirical loss for each input and40

target pair; (2) the domain alignment regularization, an attention loss weighted by a score function41

based on both the ground-truth and learned domain relation. READ adds the second loss to mimic the42

cases where the tasks are unknown and out-of-distribution. Lastly during the test time, when given43

the new test domain, READ learns the relation between the new domain and all training domains, so44

as to weigh the objective function.45

To sum up, our main contributions are: we investigate and formalize an important yet underexplored46

problem - OOD generalization with domain relation, and propose a effective multi-head deep learning47

framework called READ, which leverages domain relation for ensemble and alignment over domains.48

We empirically demonstrate the effectiveness of READ under domain shifts. By utilizing the domain49

relation, we observe that READ outperforms prior state-of-the-art invariant learning methods.50

2 Relational Out-of-Distribution Generalization51

2.1 Problem Formulation52

In this section, we present our formulation of relational OOD problem. We focus on the domain53

shift setting, where the overall data distribution is drawn from a set of domains D. Each domain54

d ∈ D corresponds with a dataset (xi, yi, d)
Nd

i=1 sampled from the domain-specific distribution pd,55

where xi ∈ X is the input feature and yi ∈ Y is the prediction target. The relationship between56

domains is described by a domain graph with the weighted adjacency matrix A = [Aij ], where i, j57

index nodes (domains) in the graph and Aij holds the weight between i and j. The detailed data58

composition of relational OOD is shown in Appendix B. We split all domains into training domains59

Dtr and test domains Dts, where Dtr ∪ Dts = D and Dtr ∩ Dts = ∅. Our goal is to learn a robust60

and generalizable predictive model f : X ×D → Y using data from the training domains Dtr and61

the given domain relation graph A to achieve a minimum prediction error on test domains Dts:62

min
θ

E(x,y,d)∼P ts [ℓ(fθ(x, d,A), y)]. (1)

2.2 Overall Pipeline63

Figure 1: An illustration of READ. Left: Model architecture
of READ, where x is data from domain di. Right: The
behavior of READ during training and inference.

To better leverage the rich knowledge64

in domain relation, we would like a65

method that can build strong correla-66

tion among domains. To accomplish67

this, we introduce READ to ensem-68

ble and align over domains. The key69

idea motivating READ is to explicitly70

learn a collection of diverse functions71

that are consistent with training do-72

main knowledge and link them with73

test domains via domain relation. As74

outlined in Figure 1, READ adopts75

an encoder-decoder architecture to ex-76

tract features. Then, we replace origi-77

nal single-head predictor with a multi-78

head one, where each domain is as-79

signed with a separate head. To better utilize the domain relation, we introduce a domain-relational80

learner, which is jointly trained with our prediction model. In practice, READ generates diverse81

results for each head, insert domain relations across heads, and leverage such relations for prediction.82

2.3 Relational Ensemble and Alignment among Domain-Specific Heads83

As described above, we build a specific head hi for each training domain (i.e., d ∈ Dtr). Here84

we denote the number of heads as n = |Dtr|. To support our relational ensemble, two essential85

components are the predictions from each head and learned domain relation. Therefore, we first86

extract the features and estimate the outcomes with the encoder-decoder model f and prediction87

heads hi(i ∈ [n]). Simultaneously, we produce weight wij for each domain index pair using domain88

relation learner. Next, we can ensemble and align over domains with these two components.89
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Model Learning. We train the model parameters θ by optimizing the regular supervised loss and90

additional regularization loss. For training data x from domain di, we first calculate the supervised91

loss using the i-th head. Then, we ensemble results from other heads via learned relation and mimic92

the generalization process with a domain alignment regularization forcing it to be consistent with93

target.94

Therefore, for a data point (x, y, di) and initial relation A, we have:95

Loss(x, di, y, A) = Lsup + λ · Lreg = ℓ(hi(x, di, A), y) + λ · ℓ(
∑

j ̸=i wijhj(x, dj , A)∑
j ̸=i wij

, y), (2)

where λ is the regularization weight and ℓ is the loss function dedicated to a downstream task.96

Model Inference. To infer outcomes on unseen test domain dj , we would need to produce weighted97

ensemble among all heads. Given the prediction from head hi and learned relation wij for each98

domain index pair (i, j), it is straightforward to ensemble as follows:99

ŷ =

∑n
i=1 wijhi(f(x, dj , A))∑n

i=1 wij
(3)

where x is a data point on dj , A is the initial domain relation, and f is the encoder-decoder model.100

Furthermore, since the learned domain relation is fixed in test, we only parallel calculate relations for101

all test domains once, indicating our domain relation learner brings little overhead during inference.102

2.4 Similarity-based Domain Relation Learning103

Following [17], we cast domain relation learning into a similarity metric function. As it takes domain104

representations (denoted as Z) and weighted adjacency matrix A as input and outputs a new relation105

denoted by A′, we involve a two-step process. The first step follows the multi-head weighted cosine106

similarity learning method previously used by [7], while the second step incorporates the information107

of the original relation input.108

We denote {wi}mi=1 as m independent learnable weight vectors. Without loss of generality, we109

compute the estimation for relation between domain index pair (u, v) as110

auv =
1

m

m∑
i=1

cos(wi ⊙ zu,wi ⊙ zv), (4)

where zu and zv are respectively the representations of domain du and dv .111

Next, to inherit the information from original domain relation, we combine the learned relation Atmp112

and initial relation A with smoothing parameter α to get output A′:113

A′ = α×A+ (1− α)×Atmp. (5)

We use A′ to replace A in Eqn. (2) and (3).114

3 Experiment115

In this section, we conduct comprehensive experiments to evaluate the effectiveness of READ. More116

experimental analysis can be find in Appendix G.117

3.1 Datasets and Baselines118

Following [19, 35] we evaluate READ on three benchmarks: (1) DG-15: 2D synthetic dataset, (2)119

TPT-48: weather prediction dataset, (3) ChEMBL-STRING (ChEMBL 50 and ChEMBL 100): drug120

discovery dataset. We present detailed descriptions of datasets in Appendix C.121

Our main baselines are general-purpose methods with different learning strategies and categories122

including (1) vanilla: ERM [30], (2) distributionally robust optimization: GroupDRO [24], (3) data123

augmentation: Mixup [34], (4) domain-invariant feature learning: IRM [3], DANN [9], CORAL [27]124

(See Appendix D for more detail). For fair comparison, we adopt the same model architectures and125

same input x, y, d to the model (Eqn. (1)) for all approaches. All hyperparameters are selected via126

cross-validation. We list all hyperparameters in Appendix in E.127
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3.2 Experiment Results128

DG-15. The performance of READ and prior methods on DG-15 is reported in Table 1. READ has129

an unparalleled advantage over all baselines with an outperformance of more than 30%. Moreover,130

previous methods perform even worse than random guess (50% accuracy), indicating the necessity of131

incorporating domain relation to transfer information among domains with high correlation.132

Table 1: Results of domain shift on DG-15. Averaged accuracy is reported. See full table with
standard deviation in Appendix F.1. We bold the best results and underline the second best results.

Algorithm ERM GroupDRO Mixup IRM DANN CORAL READ (ours)

Accuracy 44.0% 47.1% 41.3% 43.9% 43.1% 43.5% 77.5%

For further understanding on how READ works on DG-15, Figure 2 visualizes data distribution on133

DG-15 and the corresponding predictions from GroupDRO and READ. Train/test split is depicted134

in Figure 2a. The comparison between Figure 2b with Figure 2c shows that GroupDRO learns a135

linear decision boundary that overfits the training domains under domain shift. In contrast, READ136

successfully generalize to test domains in Figure 2d except one without nearby training domain.137
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Figure 2: Visualization on DG-15. (a): Train/test split; (b): Label distribution; (c) Predictions from
GroupDRO (our best baseline); (d) Predictions from READ.
TPT-48. Table 2 presents the MSE of our algorithm and previous methods on TPT-48. The results138

shows that Mixup, IRM and DANN achieve negative performance, highlighting the difficulty of139

tackling domain shift among geographic-related states. In comparison, READ achieves the lowest140

MSE, indicating its suitability for regression tasks. We present the full results in Appendix F.2.
Table 2: Results of domain shift on TPT-48. We report the average MSE here.

Algorithm ERM GroupDRO Mixup IRM DANN CORAL READ (ours)

MSE 0.108 0.096 0.179 0.135 0.122 0.103 0.091
141
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Figure 3: Results of domain shifts on
ChEMBL 50 and ChEMBL 100. Left: ROC-
AUC score; Right: Average accuracy.

ChEMBL-STRING. Figure 3 shows the results of142

various methods on ChEMBL-STRING. READ out-143

performs previous methods in both ROC-AUC score144

and average accuracy, illustrating the effectiveness145

of READ. Therefore, READ provides a fast way to146

transfer knowledge to new proteins in drug discovery.147

We also observe that in this task, all previous OOD148

algorithms except CORAL exhibit no clear improve-149

ment over the simple ERM algorithm.150

4 Conclusion151

In this paper, we investigate relational OOD, a natural extension of classical domain shift problem.152

We propose an effective and efficient algorithm called READ to tackle this problem. READ aims153

to leverage ensemble and alignment domain-specific heads via domain relation. We evaluate the154

effectiveness of READ on three domain shift benchmarks from different fields, demonstrating its155

promise. Besides, detailed analyses verify that the performance gains caused by READ result from156

our proposed domain alignment regularization and relation learner.157
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A Related Work261

Here, we discuss related approaches that solve the OOD generalization from the following two categories:262

Learning Invariant Representations. Inspired by unsupervised domain adaptation [5, 9], the first category of263

works aligns representations across domains to learn invariant representations. The major research line of this264

category aims to eliminate the domain dependency by minimizing the divergence of feature distributions with265

different distance metrics, e.g., maximum mean discrepancy [20, 29], an adversarial loss [9, 18], Wassertein266

distance [40]. Follow-up works applied data augmentation to (1) generate more domains and enhance the267

consistency of representations during training [25, 33, 34, 36, 38, 41] or (2) generate new domains in an268

adversarial way to imitate the challenging domains without using training domain information [23, 31, 39].269

Instead of feature distributions, READ focuses on alignment among logits using domain relation, providing a270

fresh perspective to the field of domain alignment.271

Learning Invariant Predictors.272

Beyond using domain alignment to learning invariant representations, recent work aims to further enhance273

the correlations between the invariant representations and the labels [15], leading to invariant predictors.274

Representatively, motivated by casual inference, invariant risk minimization (IRM) [3] and its variants [2, 11, 13]275

aim to find a predictor that performs well across all domains through regularizations. Other follow-up works276

leverage regularizers to penalize the variance of risks across all domains [16], to align the gradient across277

domains [15], to smooth the cross-domain interpolation paths [8], or to involve game-theoretic invariant278

rationalization criterion [6].In contrast, READ encourages its prediction heads correlated to domains and279

ensembles them with domain relation to generate a test-domain-related predictor.280

B Problem Formulation281

In Figure 4, we provide an illustration of our relation OOD. Let X be the input (feature) space, Y be the target282

(label) space and D be the domain space, the dataset can be decomposed into several samples (x, y, d) from283

X × Y ×D, and a weighted adjacency matrix A representing the domain relation graph.284

Figure 4: An illustration of our problem formulation. Each color represents one domain. The
transparency of edges indicates domain relation, with low transparency meaning close relation and
vice versa.

C Detailed Description of Dataset285

DG-15. Following [35], We start with a synthetic 2D binary classification dataset with 15 domains called286

DG-15. In each domain i, we randomly sample one point pi = (xi, yi) in the 2-dimensional space. The domain287

embedding is the angle of each point (i.e., di = arctan ( yi
xi
)). Next, 50 positive and 50 negative data points288

are generated from two different 2-dimensional Gaussian distributions N (pi, I) and N (−pi, I) respectively.289

In DG-15, we directly use the included angle of the two half-lines starting from the origin point and passing290

through pi, pj to construct the relation between domain i and j (i.e., Aij = arctan (
yj
xj

)− arctan ( yi
xi
)). The291

number of training, validation and test domains are 5, 5, 5 respectively.292

TPT-48. TPT-48 is a real-world weather prediction dataset from the National Oceanic and Atmospheric293

Administration’s Climate Divisional Database (nClimDiv) and Gridded 5km GHCN-Daily Temperature and294

Precipitation Dataset (nClimGrid) [32], where the monthly average temperature for the 48 contiguous states in295

the US from 2008 to 2019 is collected. We process the data following Washington Post [1] and focus on the296

regression task that forecasts the next 6 months’ temperature based on previous first 6 months’ temperature. The297

embedding of domain i is defined as the latitude and longitude of state i-th geographic center, which can be298

denoted as di = (Lati, Lngi). In TPT-48, we use a 0/1 adjacency matrix as the domain relation, and domain299
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i, j are connected (i.e., Aij = 1) if they are adjacent states. We split all 48 states into 24 training, 12 validation300

and 12 test domains.301

ChEMBL-STRING. We also consider a scientific dataset from the chemistry field. ChEMBL [22] is a dataset302

for the binding affinity task, which records the interaction between a small molecule and a target protein. Namely,303

each data point is a molecule, and each task is to predict if the molecule can interact with the protein accordingly.304

We cluster all tasks into several domains using their protein sequences. ChEMBL-STRING [19] was recently305

proposed. It adds the domain relation (i.e., the protein relation) on ChEMBL by adopting the proteins using306

protein-protein interaction (PPI) scores from STRING [28]. The intuition is that the PPI is able to provide a large307

knowledge base that can be expected to connect the unseen proteins with the training proteins, enabling the fast308

knowledge generalization/transfer. Due to the sparsity of the domain relation in ChEMBL (i.e, the PPI scores309

of most protein pairs are 0), we densify the relation graph by iteratively filtering out proteins whose number310

of nonzero PPI is lower than a certain threshold. By setting the threshold value to 50 and 100, we obtain two311

relatively dense benchmark subsets called ChEMBL 50 and ChEMBL 100. The detailed statistics of ChEMBL312

50 and 100 are listed in Table 3.313

Table 3: Statistics about ChEMBL 50 and 100 datasets, where we use proteins as domains. Sparsity
here is defined as the ratio of zero values in the relation graph.

Dataset # Samples # Proteins Sparsity # Train Proteins # Valid Proteins # Test Proteins

ChEMBL 50 87908 141 0.914 93 19 29
ChEMBL 100 58823 122 0.911 74 24 24

D Detailed Description of Baselines314

In this work, we compare READ with several invariant learning approaches, i.e., ERM [30], GroupDRO [24],315

Mixup [34], IRM [3], DANN [9], CORAL [27]. GroupDRO optimizes the worst-domain loss. Inter-domain316

Mixup performs ERM on linear interpolations of examples from random pairs of domains and their labels. IRM317

learns invariant predictors that perform well across different domains. DANN employs an adversarial network to318

match feature distributions. CORAL matches the mean and covariance of feature distributions.319

E Detailed Hyperparameters320

Table 4: Hyperparameters for READ on all datasets.

Hyperparameters DG-15 TRT-48 ChEMBL 50 ChEMBL 100

Learning Rate 1e-5 1e-4 1e-4 1e-4
Weight Decay 5e-4 5e-4 0 0
Batch Size 10 64 30 30
Epochs 30 40 100 100
Warm Start Epochs 5 10 10 10
Regularization Weight λ 0.5 0.5 0.5 0.5
Relation keep Ratio α 0.8 0.8 0.5 0.5

F Additional Experiment Results321

F.1 Full Results on DG-15322

Table 5: Full results of domain shift on DG-15.
Algorithm ERM GroupDRO Mixup IRM DANN CORAL READ (ours)

Accuracy 44.0 ± 4.6% 47.1±9.0% 41.3±3.9% 43.9±5.1% 43.1±4.5% 43.5±1.5% 77.5±2.5%
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F.2 Full Results on TPT-48323

Table 6: Full results of domain shift on TPT-48.
Algorithm ERM GroupDRO Mixup IRM DANN CORAL READ (ours)

MSE 0.108 ± 0.002 0.096 ± 0.001 0.179 ± 0.012 0.135 ± 0.003 0.122 ± 0.019 0.103 ± 0.004 0.091 ± 0.003

F.3 Full Results on ChEMBL-STRING324

Table 7: Full results of domain shifts on ChEMBL 50 and 100.
ChEMBL 50 ChEMBL 100

ROC-AUC Accuracy ROC-AUC Accuracy

ERM 73.43 ± 0.40% 71.47 ± 0.10% 70.99 ± 0.61% 70.62 ± 0.42%
GroupDRO 72.99 ± 0.43% 69.54 ± 0.20% 71.75 ± 0.37% 69.03 ± 0.23%
Mixup 71.57 ± 1.06% 71.77 ± 0.17% 69.20 ± 1.04% 70.41 ± 0.41%
IRM 50.39 ± 2.62% 64.01 ± 0.40% 52.91 ± 1.05% 65.76 ± 0.48%
DANN 70.31 ± 0.35% 68.93 ± 0.80% 71.00 ± 0.67% 70.51 ± 0.18%
CORAL 75.60 ± 0.33% 72.11 ± 0.21% 72.69 ± 0.37% 70.91 ± 0.42%

READ (ours) 77.98 ± 0.30% 74.07 ± 0.27% 75.56 ± 0.11% 73.02 ± 0.16%

G Analysis325

Finally, we do analysis on ChEMBL-STRING to understand the effect of each module in READ.326

Table 8: Comparison between ensemble
strategies. ROC-AUC is reported.

ChEMBL 50 ChEMBL 100

Uniform Ensemble 75.29 ± 0.21% 73.33 ± 0.12%
Weighted Ensemble 78.42 ± 0.90% 75.85 ± 0.04%

How do domain relation benefits ensemble inference?327

We compare our weighted ensemble using domain relation328

with a simple uniform ensemble strategy during inference in329

Table 8. The performance gap shows the effectiveness of our330

strategy. In addition, we observe that the uniform ensemble331

strategy also outperforms ERM, indicating the potential of332

READ in scenarios that only relation between training domains is available.333
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Figure 5: Sensitivity for regularization weight λ.
ROC-AUC and Accuracy are reported.

Does regularization improve performance?334

By finetuning the regularization weight λ from 0 to 2,335

we analyze the effect of domain alignment regulariza-336

tion and test the model’s sensitivity. The correspond-337

ing ROC-AUC and accuracy are respectively shown338

in Figure 5. First, when λ = 0 (i.e., no regulariza-339

tion), READ’s performance is lower than those with340

a positive λ, confirming the effectiveness of the rela-341

tional alignment. Moreover, when we vary λ between342

0.5 and 2, λ around 0.5 achieves the best results, indi-343

cating that too large λ will result in weaker correlation344

between each domain and its corresponding head.345
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Figure 6: Analysis of relation keep ratio α on
ChEMBL-STRING. Here we report ROC-AUC
and Accuracy.

Why we need to learn domain relation?346

In Figure 6, we analyze the effect of domain relation347

learner. By increasing the value of relation keep ratio348

α from 0 to 1, we enforce our model to rely more349

on initial relation. As we can see, the single usage350

of either initial or learned domain relation leads to a351

decrease in performance, proving the significance of a352

combined relation. We conjecture that this is because353

the original relation is relatively accurate while the354

learned one is more task-related. Thus, combining355

these two relations guarantees a more comprehensive356

relation and improves the robustness of READ.357
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