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Abstract

As the size of language models increases, they deliver substantial performance improvements
across a variety of applications. However, this growth also leads to greater computational
demands, making deployment on resource-constrained devices—such as personal computers
and mobile or wearable devices—more challenging, and significantly raising inference costs
on cloud servers. To address these challenges, we introduce Basel, a method to streamline
language models by leveraging the semantic structure of their weight matrices. Specifi-
cally, Basel treats each weight matrix as a linear combination of bases, selectively retaining
those that are associated with essential semantics for the target application, pruning redun-
dant ones, and introducing new bases that enhance task performance. Experimental results
demonstrate that Basel achieves significant model size reduction compared to baseline tech-
niques, while maintaining comparable or even superior accuracy across diverse applications.

1 Introduction

Large language models (LLMs) (Touvron et al., 2023a; OpenAI et al., 2024; Google, 2023) have significantly
enhanced the performance of various applications in natural language processing, computer vision, and be-
yond. However, their large model sizes pose a bottleneck for many practical uses. The substantial computing
resources required for LLM inference make it challenging to deploy them on devices with limited capabilities,
such as personal computers and mobile/wearable devices. Moreover, even on hardware platforms with ample
computing power, deploying LLMs consumes a significant amount of energy, raising concerns about sustain-
ability. Therefore, it is essential to reduce the size of LLMs after pretraining to ease their computational
demands and lower energy consumption.

Our approach exploits the relationship between pretrained models and specific target applications. Large
language models (LLMs) are typically pretrained on vast datasets encompassing a wide range of tasks,
many of which share common characteristics. This shared pretraining fosters synergies that enhance the
performance of LLMs. However, the diversity among these tasks also introduces redundancy into the models.
As demonstrated by our results in Section 3, LLMs contain redundant components that are unnecessary for
specific target applications. By removing these redundant parts and retaining only the relevant ones, we can
reduce the model’s size while preserving its performance on the target application. Since many scenarios only
require support for a specific type of application, this approach effectively lowers the computing resource
requirements and reduces inference costs.

However, how do we identify the beneficial and redundant components of LLMs for a specific application?
In this work, we address this problem through the lens of matrix factorization. Singular value decomposition
(SVD) (Golub & Van Loan, 1996) factorizes a weight matrix W into the product of three matrices U, S,
and V, i.e., W = USV⊤ =

∑
i siuiv⊤

i , where si are (positive) singular values, and ui and vi are column
vectors of U and V with unit norms. Our results show that these column vectors ui and vi may carry
specific meanings. For instance, in the LLama 2-7B model (Touvron et al., 2023b), when factorizing the
weight matrix Wh

OWh
V of an attention head that is likely useful for code generation tasks, de-embedding

the resulting column vectors ui and vi reveals tokens like _in, <0x0A>, _and, _to, and _for. These column
vectors are evidently useful for code generation but may be less relevant for tasks such as mathematical
reasoning.
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Figure 1: Basel: Identify and select the important bases for target applications during compression.

Inspired by this observation, we propose Basel, a low-rank decomposition approach to effectively compress
LLMs for target applications. Figure 1 illustrates the key idea of Basel. We view each weight matrix
in LLMs as a linear combination of bases uivT

i with singular values si as their weights. These bases are
valuable representations stored in the pretrained model, learned from large pretraining datasets. For a target
application, some bases are advantageous while many others are not. To select the bases beneficial for the
target application, we propose retraining the singular values (i.e., the weights of the bases) while keeping the
bases fixed, using the training set of the target application. After retraining, we prune the bases associated
with small singular values, as they are less important for the target application, and retain only those with
large singular values, which are most critical for the target application. This approach allows us to eliminate
the redundant parts of the original LLMs and retain only the components essential for the target application.
To handle the data distribution differences between the pretraining dataset and the target application, we
also augment the model with new bases learned from the training set of the target application during the
pruning process. This enables us to learn the new bases necessary for the target application that are absent
in the pretrained model.

We evaluate Basel across multiple settings. First, for mathematical reasoning and code generation, we com-
press Llama 2-7B and Llama 2-13B with Basel and measure pass@1 accuracy on GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021) as well as on HumanEval (Chen et al., 2021a) and MBPP (Austin
et al., 2021). Compared to the low-rank compression baselines SVD and FWSVD (Hsu et al., 2022), Basel
achieves up to 2.7× additional model size reduction while maintaining comparable accuracy on these mod-
els and benchmarks. Second, for language modeling, we compress Llama-7B and evaluate perplexity on
WikiText-2 (Merity et al., 2016). In this case, Basel yields up to 4× greater size reduction than SVD,
FWSVD (Hsu et al., 2022), and SVD-LLM (Wang et al., 2025), while also improving performance. Third,
we examine quantization by comparing Basel with the quantization baseline QLoRA (Dettmers et al., 2023),
and we assess pruning by comparing Basel against FLAP (An et al., 2024) and Wanda (Sun et al., 2024)
under both quantized and unquantized settings. Finally, we analyze Basel’s system-level benefits, showing
improvements in token throughput and reductions in memory footprint.

This paper makes the following critical contributions:

• We analyze the relationship between pretrained models and target applications, highlighting the
opportunity and underlying rationale for using low-rank decomposition to compress large language
models while maintaining performance on target applications.

• We propose Basel, a low-rank decomposition approach to compress pretrained large language models
for target applications. Basel identifies the beneficial and redundant components of large language
models by relearning the importance (i.e., singular values) of bases using the training set of the
target application, and then selects bases based on their importance.

• We evaluate Basel across multiple tasks and models, demonstrating its superior performance in deep
compression.
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2 Related Work

Singular value decomposition (SVD) (Golub & Van Loan, 1996) has been applied to reduce the size of machine
learning models. Prior research (Xue et al., 2013; Jaderberg et al., 2014; Denton et al., 2014; Zhang et al.,
2015; Povey et al., 2018; Chen et al., 2018; Acharya et al., 2019; Noach & Goldberg, 2020) has developed
various SVD algorithms to compress different components of models, such as DNNs, CNNs, and embedding
layers for a range of applications including natural language processing, speech, and vision. The primary
distinction between our work and these prior studies is that they do not relearn the importance of bases using
the training data of target applications. Instead, they typically prune bases according to the singular values
from the original or finetuned models. FWSVD (Hsu et al., 2022) evaluates the importance of individual
weights rather than bases during SVD. Considering the importance of bases may improve performance. As
shown in Section 4, our approach surpasses FWSVD in deep compression performance.

A recent study (Sharma et al., 2024) applied SVD to large language models. Its focus is on determining
the optimal rank for each layer, while our emphasis is on basis selection. The two methods are orthogonal
but complementary and can be combined. Chen et al. (2021b); Yu & Wu (2023); Yuan et al. (2023); Wang
et al. (2025) propose reconstructing bases by minimizing the discrepancy between activations before and
after compression. These methods are also orthogonal to ours: they concentrate on basis reconstruction,
whereas we focus on basis selection. In principle, their techniques may be integrated with ours to achieve
stronger compression performance.

Beyond pruning bases, compression can also be achieved by pruning at other granularities, such as weight
pruning (An et al., 2024; Sun et al., 2024) and layer pruning (Hu et al., 2025).

3 Basel

In this section, we describe our proposed compression method, Basel.

For a linear layer y = Wx+b, Singular Value Decomposition (SVD) factorizes its weight matrix W ∈ Rn×m

as the product of three matrices U, S, and V:

W = USV⊤ (1)

where U = [u1, · · · , ur], S = diag (s1, · · · , sr), and V = [v1, · · · , vr]. The values {si ∈ R, i = 1, · · · , r} are
positive singular values.1 The vectors {ui ∈ Rn, i = 1, · · · , r} and {vi ∈ Rm, i = 1, · · · , r} are orthonormal,
i.e., L2 norms ∥ui∥2 = 1, ∥vi∥2 = 1, Euclidean inner products ⟨ui, uj⟩ = ⟨vi, vj⟩ = 0, for i ̸= j.

Therefore, we can factorize matrix W as the following series:

W =
r∑

i=1
siuiv⊤

i (2)

Let matrix Wi = uiv⊤
i , then

Frobenius norm ∥Wi∥F =
√

tr
(
W⊤

i Wi

)
=

√
tr

(
viu⊤

i uiv⊤
i

)
=

√
tr(viv⊤

i ) =
√

tr(v⊤
i vi) = 1

Frobenius inner product ⟨Wi, Wj⟩F = tr
(
W⊤

i Wj

)
= tr

(
viu⊤

i ujv⊤
j

)
= 0, if i ̸= j

Therefore,
{

uiv⊤
i , i = 1, · · · , r

}
can be seen as a group of orthonormal bases in a subspace of Rn×m, and

{si, i = 1, · · · , r} are their weights, making the weight matrix W a linear combination of these bases.

This group of bases can be viewed as a series of filters that manipulate the input signal x to produce the
output signal y:

y = Wx + b =
r∑

i=1
siuiv⊤

i x + b =
r∑

i=1
si ⟨x, vi⟩ ui + b

1We drop zero singular values and the corresponding columns of matrices U and V .
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In other words, for each basis (i.e., filter) uiv⊤
i , the similarity between the input signal x and the unit direction

vector vi is measured by their inner product. This inner product is then multiplied by the (positive) singular
value si to determine the weight for the unit direction vector ui. The output signal y is the weighted sum
of ui. Figure 2 illustrates this interpretation of the role of bases from the perspective of signal processing.
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Figure 2: An interpretation of the role of bases from the perspective of signal processing.

Large language models pretrained on diverse datasets learn bases that capture a wide range of semantic
concepts. To examine this, we factorize the Wh

OWh
V matrix from the attention layers of both the original

Llama 2-7B model and its math-finetuned counterpart. Focusing on bases associated with large singular
values, we extract the corresponding u vectors and interpret their semantics via a de-embedding process.
Specifically, we project each u vector into the vocabulary space by passing it through the output layer (i.e.,
the lm_head), yielding a logit vector over the vocabulary. We then identify the token with the highest logit
as the de-embedding result. Table 1 summarizes our findings. First, some bases are associated with semantic
content, such as concepts related to Apple, Python, programming, locations, non-English characters, and
math symbols. Second, even within the same layer, different bases may correspond to different meanings.
For example, in the math-finetuned model at layer 22, attention head 6, basis 1 corresponds to non-English
characters, while basis 3 corresponds to math symbols. Revealing the full semantic structure of these bases
requires more in-depth analysis, such as the approaches explored in (Oikarinen et al., 2025), which we leave
for future work.

Table 1: Meaning of bases in the vanilla and math-finetuned Llama 2-7B.

Domain Basis Top ten most probable tokens corresponding to the basis

Apple Vanilla model, Layer 16,
Head 25, Basis 2

_iOS _Xcode _ios _Apple _Mac
_iPhone _app _xcode _NS _App

Python Vanilla model, Layer 17,
Head 6, Basis 1 . _in <0x0A> ... _... _and Ľ _to for !

Location Vanilla model, Layer 17,
Head 25, Basis 1

_Massachusetts _Illinois _Chicago _Boston _Dan
_Harvard _Connecticut _IL _Bulg _Bulgar

Non-English Math-finetuned model,
Layer 22, Head 6, Basis 1 學 會 區 國 經 進 : Yā’ 無 設

Math Math-finetuned model,
Layer 22, Head 6, Basis 3 _{ { }{ _{r ={ _{‘ _{" ]{ _‘{ _{};

These findings suggest that some bases in the model are useful for some tasks, but may be irrelevant for
others. When these irrelevant bases are used as filters in non-target applications, two scenarios can occur: the
filter may not be activated (due to a small inner product ⟨x, vi⟩), or worse, the filter is activated, introducing
harmful information into the output and degrading performance. This indicates that pruning such bases
could reduce model size with minimal performance loss, and in some cases, even enhance performance for
the target application.

In our approach, Basel, we determine the importance of the bases from the pretrained model by retraining
their singular values on the training set of the target application. The weight matrix W̃ in Basel is represented
as:

W̃ =
r∑

i=1
s̃iuiv⊤

i +
r̃∑

j=1
ũjṽ⊤

j (3)
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In the first term, uiv⊤
i represents the original bases in the pretrained model. To assess their importance, we

initialize their weights s̃i with their original singular values and then retrain these weights (while keeping the
bases fixed) on the training set of the target application. The aim is that, after retraining, the bases important
for the target application will have larger singular values, whereas those that are useless or detrimental will
have zero or very small singular values. This allows us to identify and prune the less useful bases. Relearning
the importance of bases for the target application distinguishes our approach from previous methods. Prior
approaches either use the singular values in the original model (Xue et al., 2013; Jaderberg et al., 2014;
Denton et al., 2014; Zhang et al., 2015; Povey et al., 2018; Chen et al., 2018; Acharya et al., 2019; Noach
& Goldberg, 2020; Sharma et al., 2024) or assess the importance of weight parameters, other than the
importance of the bases, to prune them (Hsu et al., 2022). They do not relearn the importance of the bases
useful for the target application. From a signal processing perspective, this first term allows us to adjust the
weight for each filter, catering to the needs of the target application.

In the second term, the vectors ũj and ṽj are learnable and serve two main purposes. First, due to distribu-
tional differences between the pretraining data and the target application, some bases essential for the latter
may be missing. These vectors are used to learn such missing bases. Second, although each pruned basis
may have little effect individually, their collective removal can lead to a noticeable performance drop. The
additional vectors help mitigate this loss. The number of learnable vectors, denoted r̃, is called the additional
dimension. From a signal processing perspective, the second term introduces new filters that enhance the
model’s performance on the target task. While this term adds new parameters, they do not fully contribute
to model size growth. This is because SVD is eventually applied to the sum of the first and second terms,
reducing the rank if dependencies exist between the newly learned and original, kept bases.

Algorithm 1: Basel Algorithm
Input: Pretrained or Finetuning Model M
Output: Compressed Model M ′

Data: Hyperparameters including KeepRatio, PruningTimes, KeepingEpoch, PruningEpoch,
PostFineTuningEpoch, r̃

1 IterationsPerPruning = round (NumIterationsPerEpoch * PruningEpoch / PruningTimes);
2 KeepRatioPerPruning = KeepRatio(1/PruningTimes);
3 Convert the weight matrix of each linear layer in M—excluding the embedding layer—into the form specified by

equation (3);
4 for i = 1 to KeepingEpoch do
5 Tune the learnable parameters in equation (3) including s̃i, ũj , ṽj , i = 1, · · · , r, j = 1, · · · , r̃;
6 end
7 for i = 1 to PruningEpoch do
8 Tune the learnable parameters;
9 if IterationID is a multiple of IterationsPerPruning then

10 for each linear layer do
11 Prune bases with smaller singular values s̃i such that after pruning, the sum of the singular values of

the remaining bases is KeepRatioPerPruning of the sum before pruning;
12 end
13 end
14 end
15 for each layer do
16 Compute the low rank matrix W̃ based on equation (3);
17 [U′, S′, V′] = SVD(W̃);
18 Use two linear layers to substitute for the original layer;
19 The first layer’s weight matrix is S′V′⊤;
20 The second layer’s weight matrix is U′;
21 end
22 for i = 1 to PostFineTuningEpoch do
23 FineTune the new model M ′;
24 end
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Algorithm 1 presents our proposed approach. Basel operates on a pretrained or fine-tuned model as in-
put. Similar to Hsu et al. (2022); Sharma et al. (2024), Basel iteratively prunes the bases of all linear
layers—excluding the embedding layer—including the WQ, WK , WV , and WO matrices in the attention
layers2, the linear layers in the feedforward layers, and the output layer. The same compression process is
applied across these components. After each pruning step, the learnable parameters s̃i, ũj , and ṽj are fine-
tuned to compensate for performance degradation. Ultimately, a new weight matrix W̃ with a smaller rank
r′ is learned. We perform a standard SVD on it, representing it as the product of matrices U′, S′, and V′⊤.
We then replace the original layer with two new layers: S′V′⊤ becomes the weight matrix of the first new
layer, and U′ becomes the weight matrix of the second new layer. This reduces the number of parameters
from nm to (n + m)r′. The new model is subsequently further finetuned to enhance its performance on the
target application.

Overhead Analysis. Basel updates only the singular values and the newly introduced bases, while keeping
the original bases frozen. Unlike full fine-tuning, Basel involves far fewer learnable parameters, substantially
reducing training overhead. Table 2 compares Basel and full fine-tuning on Llama-2-7B in terms of GPU
hours and memory consumption, evaluated on NVIDIA L40S GPUs (batch size = 32, max sequence length
= 512). Under this setting, Basel fits on a single L40S GPU, whereas full fine-tuning requires at least three
L40S GPUs due to its higher memory demand. Overall, Basel consumes only about 46% of the GPU hours
and 30% of the GPU memory used by full fine-tuning.

Table 2: GPU hours and GPU memory consumption of Basel versus full fine-tuning on Llama 2-7B using
NVIDIA L40S GPUs (batch size = 32, max sequence length = 512).

GPU Hours Per Batch Total GPU Memory Consumption (GB)
Basel 2.87 × 10−3 40.7

Full finetuning 6.19 × 10−3 136.2

4 Experiments

4.1 Evaluation Methodology

We evaluate the performance of low-rank compression algorithms on three tasks: mathematical reasoning,
code generation, and language modeling. For the mathematical reasoning task, we utilize two evaluation
datasets: GSM8K (Cobbe et al., 2021) and Hendrycks’ MATH (Hendrycks et al., 2021). The GSM8K
dataset comprises verbally described mathematical questions, containing 1,319 samples used for evaluation.
The Hendrycks’ MATH dataset covers more complex topics such as linear algebra and geometry, consisting of
5,000 question-answer pairs used for evaluation. Due to its complexity, the Hendrycks’ MATH dataset neces-
sitates more sophisticated computations and reasoning, resulting in lower accuracy compared to GSM8K. For
the code generation task, we use two evaluation datasets: MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021a). Both datasets evaluate the models’ ability to generate Python code. MBPP comprises 500
code generation questions, while HumanEval includes 164 questions. For the language modeling task, we
evaluate on WikiText-2 (Merity et al., 2016), a dataset consisting of Wikipedia articles.

We evaluate Basel against low-rank compression methods—SVD, FWSVD, and SVD-LLM—as well as ap-
proaches from other compression paradigms. SVD, a widely used technique in prior work on model com-
pression (Sharma et al., 2024; Acharya et al., 2019; Noach & Goldberg, 2020; Xue et al., 2013; Jaderberg
et al., 2014; Denton et al., 2014; Zhang et al., 2015; Povey et al., 2018), is applied in our experiments to
compress models that have already been fine-tuned on the target task. FWSVD (Hsu et al., 2022) extends
SVD by incorporating gradient-based profiling: it estimates weight importance using gradients computed on
the fine-tuning dataset and leverages this information during decomposition. SVD-LLM (Wang et al., 2025)
reconstructs weight matrices in low-rank form by minimizing the discrepancy between activations before and
after decomposition. Beyond low-rank approaches, we also compare Basel with quantization and pruning

2In our implementation, matrices WV and WO are pruned independently. Exploring alternative strategies, such as jointly
pruning WV and WO, is left for future work.
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Figure 3: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms and
pruning algorithms on the mathematical reasoning task. Exact values are listed in Tables 4 and 5 in the
appendix.
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Figure 4: Pass@1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms
and pruning algorithms on the mathematical reasoning task. Exact values are listed in Table 6 and 7 in the
appendix.

methods. QLoRA (Dettmers et al., 2023) is a quantization-based technique that improves performance by
training LoRA adapters on the fine-tuning dataset. FLAP (An et al., 2024) and Wanda (Sun et al., 2024) are
pruning-based methods that prune weights based on weight magnitudes, together with either the magnitude
(Wanda) or the variance (FLAP) of input activations profiled on the target task.

Our implementation of Basel is configured with the following key hyperparameters: KeepRatio varies from
70% to 5%, PruningTimes = 100, KeepingEpoch = 1, PruningEpoch = 2, PostFineTuningEpoch = 3, and
r̃ = 32 (see Algorithm 1 for further details).

4.2 Evaluating Low-Rank Compression Methods and Pruning Methods for Mathematical Reasoning

Figures 3 (a) and (b) depict the performance of various low-rank compression algorithms on the Llama
2-7B model (Touvron et al., 2023b) for the mathematical reasoning task. We evaluate the models’ accuracy
(Pass@1) at different compression ratios (original model size vs. compressed model size). For low compression
ratios (below 6), all low-rank compression methods achieve similar accuracy. However, our Basel method
significantly outperforms SVD and FWSVD at higher compression ratios. For instance, at a 7x compression
ratio, Basel achieves around 46% and 12% accuracy on GSM8K and MATH datasets, respectively, while
FWSVD drops below 2% accuracy on both datasets and SVD reaches only 27% and 5% accuracy on GSM8K
and MATH, respectively. We also find that Basel, at a compression ratio of 16, achieves better accuracy
on both GSM8K and MATH compared to FWSVD and SVD at a compression ratio of 6. This suggests
that Basel reduces the model size by up to 2.7 times more than SVD and FWSVD while maintaining
similar accuracy. This highlights the effectiveness of Basel for deep compression, especially when aiming for
aggressive model size reduction.
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Figure 5: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms and
pruning algorithms on the code generation task. Exact values are listed in Tables 8 and 9 in the appendix.
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Figure 6: Pass@1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms and
pruning algorithms on the code generation task. Exact values are listed in Tables 10 and 11 in the appendix.

Similar trends emerge for the larger Llama 2-13B model in Figures 4 (a) and (b). Once again, Basel
significantly outperforms SVD and FWSVD at compression ratios exceeding 6. At a 7x compression ratio,
Basel achieves 47% and 11% accuracy on GSM8K and MATH datasets, respectively, demonstrating its
advantage. This is in stark contrast to SVD’s performance (23% and 5% accuracy on GSM8K and MATH)
and FWSVD’s performance (around 2% on both datasets). These results solidify Basel’s effectiveness for
deep compression across different model sizes.

Figures 3 and 4 also compare Basel with the pruning algorithms FLAP and Wanda on GSM8K and MATH.
The results show that Basel achieves substantially greater model size reduction while preserving comparable
or superior performance.

4.3 Evaluating Low-Rank Compression Methods and Pruning Methods for Code Generation

Similar results extend to code generation tasks (Figures 5 and 6). For both Llama 2-7B and Llama 2-13B
models, all low-rank compression methods perform comparably at lower compression ratios (below 4). How-
ever, Basel exhibits clear superiority at higher compression ratios. On Llama 2-7B at a 6x compression ratio,
Basel achieves 12% and 9% accuracy on HumanEval and MBPP datasets, respectively, significantly outper-
forming SVD (5% and 2%) and FWSVD (6% and 2%). Similar trends hold for Llama 2-13B. Moreover, Basel
consistently outperforms pruning baselines FLAP and Wanda, particularly under aggressive compression.
These findings further solidify Basel’s effectiveness for deep compression across diverse tasks and model sizes.

4.4 Evaluating Low-Rank Compression Methods for Language Modeling

For the language modeling task, we compress Llama-7B using Basel and baseline methods SVD, FWSVD,
and SVD-LLM, and evaluate the resulting models in terms of perplexity. Perplexity serves as a measure
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of language modeling quality, with lower values indicating better performance. As shown in Figure 7,
Basel consistently yields lower perplexity than SVD, FWSVD, and SVD-LLM at the same compression
ratio. Conversely, for a given perplexity, Basel produces a substantially smaller model. For instance, Basel
achieves a perplexity of 10.45 at a 10× compression ratio, whereas SVD-LLM reaches a perplexity of 15.00
at only 2.5×. This demonstrates that Basel attains up to four times greater compression than SVD-LLM
(and even more than SVD and FWSVD) while delivering superior performance.
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Figure 7: Perplexity and model size of Llama-7B compressed with various low-rank algorithms on WikiText-2.
Lower perplexity indicates better language modeling performance. Results for SVD, FWSVD, and SVD-
LLM are taken from (Wang et al., 2025). Exact values are listed in Table 12 in the appendix.

4.5 Combining Low-Rank Compression and Quantization for Mathematical Reasoning

Quantization reduces the precision of weight parameters to shrink model size and is a widely used technique
for model compression. When using 8-bit quantization or higher, the performance degradation is typically
minimal. However, more aggressive quantization (e.g., 4-bit) often leads to a significant drop in accuracy. We
apply both 8-bit and 4-bit quantization to Llama 2-7B and Llama 2-13B models on mathematical reasoning.

For Llama 2-7B, the 8-bit quantized model achieves Pass@1 accuracy of 66.0% on GSM8K and 20.3% on
MATH, closely matching the unquantized model’s performance (66.4% and 20.6%, respectively, with bf16).
A similar trend holds for Llama 2-13B, where 8-bit quantization results in only a negligible accuracy drop.
In contrast, 4-bit quantization causes substantial degradation. On Llama 2-7B, accuracy drops from 66.0%
to 39.2% on GSM8K and from 20.3% to 8.8% on MATH. Llama 2-13B exhibits similarly significant losses.
These results suggest that relying solely on quantization—especially at lower bit-widths—can be detrimental
to performance.

To address this, we explore combining quantization with low-rank compression using our Basel method.
Figures 8 and 9 illustrate that combining Basel with 8-bit quantization not only achieves a smaller model
size but also significantly outperforms 4-bit quantization in accuracy. On compressing Llama 2-7B, Basel
+ 8-bit achieves 59.6% on GSM8K and 18.1% on MATH with a 3.28 GB model size, compared to 4-bit
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Figure 8: Pass@1 accuracy and model size of Llama 2-7B compressed using quantization alone, as well as
quantization combined with low-rank methods or pruning, on the mathematical reasoning task. Exact values
are provided in Table 13 in the appendix.
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Figure 9: Pass@1 accuracy and model size of Llama 2-13B compressed using quantization alone, as well
as quantization combined with low-rank methods or pruning, on the mathematical reasoning task. Exact
values are provided in Table 14 in the appendix.

quantization’s 39.2% and 8.8% with a larger 3.37 GB model. On compressing Llama 2-13B, Basel + 8-bit
yields 61.9% on GSM8K and 17.5% on MATH with a 6.13 GB size, while 4-bit quantization achieves only
52.8% and 12.5% with 6.51 GB.

We further compare Basel + 8-bit quantization against three additional approaches: (1) QLoRA with 4-
bit quantization, (2) combining 8-bit quantization with FLAP, and (3) combining 8-bit quantization with
Wanda. As shown in Figures 8 and 9, Basel + 8-bit consistently outperforms both in terms of accuracy and
size. For instance, on compressing Llama 2-7B, it improves accuracy by 5.5% on both GSM8K and MATH
compared to QLoRA, while reducing the model size by an additional 0.13 GB.

4.6 Combining Low-Rank Compression and Quantization for Code Generation

We also compare Basel + 8-bit quantization to three alternative methods on the code generation task: (1)
standard 4-bit quantization, (2) QLoRA with 4-bit quantization, (3) FLAP combined with 8-bit quantization,
and (4) Wanda combined with 8-bit quantization. Figures 10 and 11 present the results for compressing
Llama 2-7B and Llama 2-13B. On both models, Basel + 8-bit quantization consistently outperforms 4-bit
quantization while achieving smaller model sizes. For example, on Llama 2-7B, it improves accuracy by
12.8% on HumanEval and 6.4% on MBPP, with a model size similar to that of the 4-bit version. This
further highlights the benefit of combining low-rank compression with quantization.

Basel + 8-bit quantization also significantly outperforms both QLoRA (4-bit), FLAP + 8-bit quantization,
and Wanda + 8-bit quantization on Llama 2-7B and Llama 2-13B. For instance, on compressing Llama 2-7B,
it achieves 6.7% higher accuracy on HumanEval and 1.0% higher on MBPP compared to QLoRA, while also
reducing the model size by an additional 0.17 GB.
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Figure 10: Pass@1 accuracy and model size of Llama 2-7B compressed using quantization alone, as well as
quantization combined with low-rank methods or pruning, on the code generation task. Exact values are
provided in Table 15 in the appendix.
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Figure 11: Pass@1 accuracy and model size of Llama 2-13B compressed using quantization alone, as well
as quantization combined with low-rank methods or pruning, on the code generation task. Exact values are
provided in Table 16 in the appendix.

4.7 Inference

Figure 12 presents the inference throughput and memory consumption of models compressed from Llama
2-7B on a single A100 GPU, using GSM8K as the evaluation set. The results show that low-rank com-
pression methods, including SVD, FWSVD, and Basel, lead to reduced memory consumption and improved
throughput as the model size decreases. Throughput and memory usage are primarily dependent on model
size, with no significant differences between the methods at equivalent sizes. However, since our proposed
Basel method achieves a greater reduction in model size while maintaining similar accuracy to SVD and
FWSVD, it improves throughput by up to 19% and reduces memory consumption by up to 37%.
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Figure 12: Throughput and memory consumption of compressed models.

4.8 Ablation Study

We conduct a series of ablation studies to better understand the design of Basel.

Impact of hyperparameters. We first evaluate the effects of two key hyperparameters: the additional
dimension (r̃ in Equation (3)) and the number of pruning iterations. The additional dimension is intro-
duced to help recover information lost during pruning, particularly under high compression. As shown in
Figure 13, setting r̃ = 32 improves accuracy when compressing Llama 2-7B for mathematical reasoning,
especially beyond a 7× compression ratio. However, this accounts for only a small fraction of Basel’s overall
performance gain relative to baselines (Figures 3 and 13). Similarly, applying pruning gradually over many
iterations allows the model to better adapt to parameter reduction, which is especially beneficial under ex-
treme compression. Figure 14 illustrates this effect: pruning 100 times consistently yields higher accuracy
than pruning only twice when the compression ratio exceeds 4.

Freezing basis vectors. Basel freezes the basis vectors and updates only the singular values (and any
additional bases) during compression. To evaluate this design choice, we compare Basel with a variant
that also updates the basis vectors. As shown in Figure 15, freezing the bases results in better accuracy
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Figure 13: Ablation study: Impact of varying the additional dimension in Basel on the compression of
Llama 2-7B for the mathematical reasoning task. Exact values are listed in Table 19 in the appendix.
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Figure 14: Ablation study: Impact of varying the pruning times in Basel on the compression of Llama 2-7B
for the mathematical reasoning task. Exact values are listed in Table 20 in the appendix.

on Llama 2-7B for mathematical reasoning. This strategy also reduces compression time by 33%, since
backpropagation involves fewer trainable parameters.

Inclusion of L1 regularization. Finally, we examine the effect of adding an L1 penalty on the learnable
singular values s̃i. The goal is to encourage sparsity in s̃i, thereby enabling additional compression. We
experiment with two regularization weights, λ = 0.02 and λ = 0.1. Figure 16 reports the results. With
λ = 0.02, performance is similar to standard Basel; however, a larger weight (λ = 0.1) degrades performance
under deep compression.

4.9 Compression vs. Training from Scratch

In many real-world LLM deployment scenarios, compute and hardware constraints impose a target model
size tailored to a specific application, which may not match any existing pretrained models. For example,
Llama-2 offers 7B, 13B, and 70B variants, but no 4B option. To obtain a model of the required size for
the target application, one can either (1) train a new model from scratch or (2) compress a nearby larger
model. The first approach is often impractical due to high computational costs—training Llama reportedly
requires up to one million A100 GPU hours Touvron et al. (2023a)—and limited access to pretraining data.
In contrast, model compression is far more efficient; low-rank methods such as Basel typically require less
than 0.01% of the pretraining compute.

Table 3: Pass@1 accuracy and model size of Llama 3.2-3B compression via Basel for mathematical reasoning.

3B 1B Basel-compressed-3B
Model Size (billion) 3.21 1.24 1.24
GSM8K Acc (%) 72.5 54.4 55.3
MATH Acc (%) 26.1 17.6 16.7
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Figure 15: Ablation study: Pass@1 accuracy and size of Llama 2-7B compressed by Basel (proposed) and
Basel (free basis) on mathematical reasoning. Exact values are listed in Table 21 in the appendix.
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Figure 16: Ablation study: Pass@1 accuracy and model size of Llama-2-7B compressed with Basel, with
and without L1 regularization, on the mathematical reasoning task. Exact values are reported in Table 22
in the appendix.

To assess the effectiveness of compression, we compare a fine-tuned Llama 3.2-1B model with a compressed
version of Llama 3.2-3B reduced to 1B parameters using Basel. As shown in Table 3, the compressed model
achieves similar performance on mathematical reasoning. This indicates that, in this setting, compression can
serve as a viable alternative to training from scratch—offering substantial savings in compute and eliminating
the need for pretraining data. These results demonstrate the potential of Basel to support efficient model
scaling under deployment constraints.

5 Conclusion

The significant size of large language models leads to high inference costs and demands substantial comput-
ing resources. To mitigate these issues, we focus on compressing large language models to meet the specific
requirements of target applications. Our approach involves examining these models through the lens of ma-
trix factorization. By viewing the weight matrix of large language models as a linear combination of a group
of bases, we have identified that pretrained models often contain many redundant bases that are less useful
for target applications. To address this, we propose Basel, a compression algorithm that evaluates the im-
portance of each base for target applications and prunes those that are less significant. Experimental results
demonstrate that Basel significantly outperforms baseline low-rank compression algorithms in achieving deep
compression. Basel greatly reduces the inference cost of large language models, making them more accessible
and practical for a wider range of applications. This advancement has the potential to democratize the use
of large language models, facilitating their adoption and integration across diverse fields and industries.
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A Appendix

Table 4: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms on
the mathematical reasoning task.

SVD
Model Size (billion) 6.74 5.02 3.18 1.73 1.11 0.56
GSM8K Acc (%) 66.4 63.0 61.0 53.9 32.9 11.9
MATH Acc (%) 20.6 18.3 17.4 13.7 5.3 2.8

FWSVD
Model Size (billion) 6.74 4.79 2.95 1.54 0.96 0.47
GSM8K Acc (%) 66.4 62.7 62.5 56.5 1.5 1.9
MATH Acc (%) 20.6 19.2 17.6 14.2 1.8 1.5

Basel
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.8 61.6 56.2 50.2 40.2 34.2
MATH Acc (%) 20.6 19.7 17.6 15.5 13.4 10.0 7.8
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Table 5: Pass@1 accuracy and model size of Llama 2-7B compressed with various pruning algorithms on the
mathematical reasoning task.

FLAP
Model Size (billion) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
GSM8K Acc (%) 66.4 55.0 40.7 24.8 9.10 0 0
MATH Acc (%) 20.6 14.5 8.4 4.2 1.5 0 0

Wanda
Model Size (billion) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
GSM8K Acc (%) 66.4 61.0 44.6 19.0 0.5 0.3 0
MATH Acc (%) 20.6 16.7 12.1 3.5 0.1 0.1 0

Table 6: Pass@1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms on
the mathematical reasoning task.

SVD
Model Size (billion) 13.02 9.70 6.10 3.27 2.07 1.01
GSM8K Acc (%) 72.7 69.5 63.5 50.0 26.9 6.7
MATH Acc (%) 22.2 20.8 17.8 10.8 5.2 2.2

FWSVD
Model Size (billion) 13.02 9.24 5.67 2.93 1.79 0.83
GSM8K Acc (%) 72.7 67.9 63.9 51.9 2.4 3.9
MATH Acc (%) 22.2 20.3 18.0 12.4 1.2 1.9

Basel
Model Size (billion) 13.02 9.75 6.13 3.32 2.14 1.12 0.68
GSM8K Acc (%) 72.7 67.9 64.4 55.0 50.3 41.8 37.9
MATH Acc (%) 22.2 20.9 18.7 15.5 13.1 10.4 8.0

Table 7: Pass@1 accuracy and model size of Llama 2-13B compressed with various pruning algorithms on
the mathematical reasoning task.

FLAP
Model Size (billion) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
GSM8K Acc (%) 72.7 60.7 51.2 4.6 0.2 0 0
MATH Acc (%) 22.2 14.5 10.2 4.5 0.4 0 0

Wanda
Model Size (billion) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
GSM8K Acc (%) 72.7 66.0 50.3 0.1 0 0 0
MATH Acc (%) 22.2 17.9 12.0 0.4 0.1 0 0

Table 8: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms on
the code generation task.

SVD
Model Size (billion) 6.74 5.02 3.18 1.73 1.11 0.56
HumanEval Acc (%) 23.8 20.7 20.1 9.1 4.9 3.7
MBPP Acc (%) 27.4 21.8 18.6 9.6 2.0 0.4

FWSVD
Model Size (billion) 6.74 4.84 3.01 1.58 0.99 0.49
HumanEval Acc (%) 23.8 22.0 20.1 11.6 4.9 0
MBPP Acc (%) 27.4 24.4 17.4 10.4 0 0.6

Basel
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
HumanEval Acc (%) 23.8 22.0 20.7 14.6 12.8 7.9 7.3
MBPP Acc (%) 27.4 26.6 18.6 12.2 8.8 7.4 4.0
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Table 9: Pass@1 accuracy and model size of Llama 2-7B compressed with various pruning algorithms on the
code generation task.

FLAP
Model Size (billion) 6.74 5.40 4.72 4.04 3.37 2.70 1.35
HumanEval Acc (%) 23.8 17.7 9.1 4.3 1.2 0.6 0
MBPP Acc (%) 27.4 22.0 14.4 2.8 1.4 0.2 0

Wanda
Model Size (billion) 6.74 5.40 4.72 4.04 3.37 2.70 1.35
HumanEval Acc (%) 23.8 18.9 15.9 3.7 0 0 0
MBPP Acc (%) 27.4 24.4 19.4 7.2 0 0 0

Table 10: Pass@1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms on
the code generation task.

SVD
Model Size (billion) 13.02 9.70 6.10 3.27 2.07 1.01
HumanEval Acc (%) 27.4 18.9 18.3 3.0 3.7 0.6
MBPP Acc (%) 30.0 25.4 18.2 10.6 1.4 0.6

FWSVD
Model Size (billion) 13.02 9.31 5.73 2.97 1.83 0.85
HumanEval Acc (%) 27.4 26.2 20.1 8.5 3.7 0
MBPP Acc (%) 30.0 27.2 21.6 12.2 0.8 0

Basel
Model Size (billion) 13.02 9.75 6.13 3.32 2.14 1.12 0.68
HumanEval Acc (%) 27.4 26.2 22.0 15.2 12.8 7.9 7.3
MBPP Acc (%) 30.0 27.8 20.6 13.6 10.8 6.4 3.6

Table 11: Pass@1 accuracy and model size of Llama 2-13B compressed with various pruning algorithms on
the code generation task.

FLAP
Model Size (billion) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
HumanEval Acc (%) 27.4 17.1 15.9 5.5 2.4 0.6 0
MBPP Acc (%) 30.0 20.8 16.0 5.6 2.8 0.6 0

Wanda
Model Size (billion) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
HumanEval Acc (%) 27.4 16.5 12.2 0 0 0 0
MBPP Acc (%) 30.0 21.8 13.8 0 0 0 0

Table 12: Perplexity and model size of Llama-7B compressed with various low-rank algorithms on WikiText-
2. The results of SVD, FWSVD, and SVD-LLM are cited from (Wang et al., 2025).

SVD
Model Size (billion) 6.74 5.10 3.88 2.68 1.29
Perplexity 5.68 20061 52489 105474 687291

FWSVD
Model Size (billion) 6.74 5.10 3.88 2.68 1.29
Perplexity 5.68 1727 18156 32194 96872

SVD-LLM
Model Size (billion) 6.74 5.10 3.88 2.68 1.29
Perplexity 5.68 7.73 9.27 15.00 31.79

Basel
Model Size (billion) 6.74 5.15 4.08 3.21 1.83 1.22 0.67
Perplexity 5.68 6.11 6.68 6.99 7.93 9.21 10.45
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Table 13: Pass@1 accuracy and model size of Llama 2-7B compressed and 8-bit-quantized by various algo-
rithms for mathematical reasoning.

8-bit FLAP
Model Size (GB) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
GSM8K Acc (%) 66.0 53.4 39.1 22.7 7.4 0 0
MATH Acc (%) 20.3 13.5 7.2 4.4 1.0 0 0

8-bit Wanda
Model Size (GB) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
GSM8K Acc (%) 66.0 59.7 44.4 15.8 0.3 0.2 0
MATH Acc (%) 20.3 16.3 11.3 2.7 0.1 0 0

8-bit Basel
Model Size (GB) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.0 62.1 59.6 54.1 49.7 41.1 35.3
MATH Acc (%) 20.3 18.2 18.1 15.7 13.1 10.1 7.5

Table 14: Pass@1 accuracy and model size of Llama 2-13B compressed and 8-bit-quantized by various
algorithms for mathematical reasoning.

8-bit FLAP
Model Size (GB) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
GSM8K Acc (%) 72.7 59.5 53.9 6.1 0.2 0 0
MATH Acc (%) 21.8 13.9 9.4 4.8 0.1 0 0

8-bit Wanda
Model Size (GB) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
GSM8K Acc (%) 72.7 66.4 50.5 0.2 0 0 0
MATH Acc (%) 21.8 17.0 10.7 0.5 0.1 0 0

8-bit Basel
Model Size (GB) 13.02 9.75 6.13 3.32 2.14 1.12 0.68
GSM8K Acc (%) 72.7 67.4 61.9 53.4 51.3 40.7 35.9
MATH Acc (%) 21.8 19.3 17.5 14.2 12.5 9.6 7.7

Table 15: Pass@1 accuracy and model size of Llama 2-7B compressed and 8-bit-quantized by various algo-
rithms for code generation.

8-bit FLAP
Model Size (GB) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
HumanEval Acc (%) 23.8 16.5 9.1 3.7 1.2 0 0
MBPP Acc (%) 26.2 20.8 12.4 3.4 1.2 0.2 0

8-bit Wanda
Model Size (GB) 6.74 5.39 4.72 4.04 3.37 2.70 1.35
HumanEval Acc (%) 23.8 16.5 13.4 3.7 0 0 0
MBPP Acc (%) 26.2 22.2 18.2 4.6 0 0 0

8-bit Basel
Model Size (GB) 6.74 5.14 3.28 1.21 0.67 0.43
HumanEval Acc (%) 23.8 20.1 19.5 11.6 9.1 7.3
MBPP Acc (%) 26.2 22.4 17.2 8.2 4.6 3.2
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Table 16: Pass@1 accuracy and model size of Llama 2-13B compressed and 8-bit-quantized by various
algorithms for code generation.

8-bit FLAP
Model Size (GB) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
HumanEval Acc (%) 25.0 17.7 7.9 4.9 3.2 0.6 0
MBPP Acc (%) 29.0 18.8 12.0 6.8 3.2 0.4 0

8-bit Wanda
Model Size (GB) 13.02 10.41 9.11 7.81 6.51 5.21 3.90
HumanEval Acc (%) 25.0 16.5 12.2 0 0 0 0
MBPP Acc (%) 29.0 20.6 14.2 0 0 0 0

8-bit Basel
Model Size (GB) 13.02 9.75 6.13 3.32 2.14 1.12 0.68
HumanEval Acc (%) 25.0 25.0 15.9 12.2 11.0 9.1 6.1
MBPP Acc (%) 29.0 26.4 18.4 10.4 9.2 5.4 3.4

Table 17: Pass@1 accuracy and model size of Llama 2-7B and -13B 4-bit-quantized by QLoRA for mathe-
matical reasoning and code generation.

Model Task Model size (GB) Accuracy (%)

4-bit QLoRA 7B

GSM8K 3.45 54.1
MATH 3.45 12.6
HumanEval 3.45 12.8
MBPP 3.45 16.2

4-bit QLoRA 13B

GSM8K 6.63 58.8
MATH 6.63 13.2
HumanEval 6.63 13.4
MBPP 6.63 18.6

Table 18: Pass@1 accuracy and model size of 4-bit-quantized Llama 2-7B and Llama 2-13B for mathematical
reasoning and code generation.

Model Task Model size (GB) Accuracy (%)

4-bit-quantized 7B

GSM8K 3.37 39.2
MATH 3.37 8.8
HumanEval 3.37 6.7
MBPP 3.37 10.8

4-bit-quantized 13B

GSM8K 6.51 52.8
MATH 6.51 12.5
HumanEval 6.51 8.5
MBPP 6.51 14.2

Table 19: Ablation study: Impact of varying the additional dimension in Basel on the compression of
Llama 2-7B for the mathematical reasoning task.

Addt’l Dim 32
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.8 61.6 56.2 50.2 40.2 34.2
MATH Acc (%) 20.6 19.7 17.6 15.5 13.4 10.0 7.8

Addt’l Dim 0
Model Size (billion) 6.74 5.06 3.20 1.75 1.13 0.59
GSM8K Acc (%) 66.4 64.4 61.6 55.4 48.3 34.9
MATH Acc (%) 20.6 19.3 17.4 15.1 12.2 7.1
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Table 20: Ablation study: Impact of varying the pruning times in Basel on the compression of Llama 2-7B
for the mathematical reasoning task.

100 times
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.8 61.6 56.2 50.2 40.2 34.2
MATH Acc (%) 20.6 19.7 17.6 15.5 13.4 10.0 7.8

2 times
Model Size (billion) 6.74 5.11 3.27 1.82 1.20 0.65
GSM8K Acc (%) 66.4 62.9 59.1 54.4 47.2 32.1
MATH Acc (%) 20.6 18.6 18.1 14.5 11.0 6.2

Table 21: Ablation study: Pass@1 accuracy and model size of Llama 2-7B Basel (proposed) and Basel (free
basis) on the mathematical reasoning task.

Basel (Proposed)
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.8 61.6 56.2 50.2 40.2 34.2
MATH Acc (%) 20.6 19.7 17.6 15.5 13.4 10.0 7.8

Basel (Free Basis)
Model Size (billion) 6.74 5.14 4.14 2.51 1.21 0.67 0.43
GSM8K Acc (%) 66.4 61.6 59.8 56.7 44.7 29.0 16.8
MATH Acc (%) 20.6 17.9 17.1 14.9 10.3 6.3 2.6

Table 22: Ablation study: Impact of incorporating L1 regularization in Basel on the compression of Llama 2-
7B for the mathematical reasoning task.

Basel (Proposed)
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.8 61.6 56.2 50.2 40.2 34.2
MATH Acc (%) 20.6 19.7 17.6 15.5 13.4 10.0 7.8

Basel (L1 norm, λ = 0.02)
Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 61.8 61.2 55.2 49.4 39.3 33.7
MATH Acc (%) 20.6 18.8 17.8 15.3 12.5 8.9 8.1

Basel (L1 norm, λ = 0.1)
Model Size (billion) 6.74 5.13 3.28 1.83 1.21 0.67 0.43
GSM8K Acc (%) 66.4 63.2 61.9 54.1 50.0 40.9 21.2
MATH Acc (%) 20.6 19.5 17.5 15.0 12.4 8.8 3.8
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