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Abstract

As the size of language models increases, they deliver substantial performance improvements
across a variety of applications. However, this growth also leads to greater computational
demands, making deployment on resource-constrained devices—such as personal computers
and mobile or wearable devices—more challenging, and significantly raising inference costs
on cloud servers. To address these challenges, we introduce Basel, a method to streamline
language models by leveraging the semantic structure of their weight matrices. Our analysis
reveals that the bases of these weight matrices encode distinct semantic components, some
of which are redundant for specific target applications. Our approach identifies and removes
these redundant bases, retaining only those carrying essential semantics, and introduces new
bases that enhance performance for the target tasks. Evaluations show that our method
achieves up to 2.7x greater model size reduction compared to state-of-the-art techniques
while maintaining similar or superior accuracy across diverse applications.

1 Introduction

Large language models (LLMs) have significantly enhanced the performance of various applications in natural
language processing, computer vision, and beyond. However, their large model sizes pose a bottleneck for
many practical uses. The substantial computing resources required for LLM inference make it challenging to
deploy them on devices with limited capabilities, such as personal computers and mobile/wearable devices.
Moreover, even on hardware platforms with ample computing power, deploying LLMs consumes a significant
amount of energy, raising concerns about sustainability. Therefore, it is essential to reduce the size of LLMs
after pretraining to ease their computational demands and lower energy consumption.

Our approach exploits the relationship between pretrained models and specific target applications. Large
language models (LLMs) are typically pretrained on vast datasets encompassing a wide range of tasks,
many of which share common characteristics. This shared pretraining fosters synergies that enhance the
performance of LLMs. However, the diversity among these tasks also introduces redundancy into the models.
As demonstrated by our interpretation results in Section [3] shows, LLMs contain a significant number of
redundant components that are unnecessary for a specific target application. By removing these redundant
parts and retaining only the relevant ones, we can reduce the model’s size while preserving its performance
on the target application. Since many scenarios only require support for a specific type of application, this
approach effectively lowers the computing resource requirements and reduces inference costs.

However, how do we identify the beneficial and redundant components of LLMs for a specific application? In
this work, we address this problem through the lens of matrix factorization. Singular Value Decomposition
(SVD) (Golub & Van Loan| 1996) factorizes a weight matrix W into the product of three matrices U, S,
and V, ie., W =USV' = > siuiviT, where s; are (positive) singular values, and u; and v; are column
vectors of U and V with unit norms. Our interpretation results show that these column vectors u; and
vi may carry specific meanings. For instance, in the LLaMA 2-7B model (Touvron et al., |2023b), when
factorizing the weight matrix WS WX of an attention head that is likely useful for code generation tasks,
de-embedding the resulting column vectors u; and v; reveals tokens like _in, <Ox0A>, _and, _to, and _for.
These column vectors are evidently highly useful for code generation but may be less relevant for tasks such
as mathematical reasoning.



Under review as submission to TMLR

G ) (r

Pretrained| Basel: Target
Model Select Important Bases Application
ﬂ for Target Applications ﬂ
\ w vy | upvy | o uvy Bases/ k wvi [ uv; - WV Bases j

Figure 1: Basel: Identify and select the important bases for target applications during compression.
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Inspired by this observation, we propose Basel, a low-rank decomposition approach to effectively compress
LLMs for target applications. Figure [I] illustrates the key idea of Basel. We view each weight matrix
in LLMs as a linear combination of bases u;v;' with singular values s; as their weights. These bases are
valuable representations stored in the pretrained model, learned from large pretraining datasets. For a target
application, some bases are advantageous while many others are not. To select the bases beneficial for the
target application, we propose retraining the singular values (i.e., the weights of the bases) while keeping the
bases fixed, using the training set of the target application. After retraining, we prune the bases associated
with small singular values, as they are less important for the target application, and retain only those with
large singular values, which are most critical for the target application. This approach allows us to eliminate
the redundant parts of the original LLMs and retain only the components essential for the target application.
To handle the data distribution differences between the pretraining dataset and the target application, we
also augment the model with new bases learned from the training set of the target application during the
pruning process. This enables us to learn the new bases necessary for the target application that are absent
in the pretrained model.

We evaluate Basel on two models—Llama 2-7B and Llama 2-13B (Touvron et al.| [2023b))—and two tasks—
mathematical reasoning and code generation. We evaluate the pass@1 accuracy of the compressed models on
GSMBS8K (Cobbe et al., |2021)) and MATH (Hendrycks et al., 2021)) for the mathematical reasoning task and
HumanEval (Chen et al., [2021a) and MBPP (Austin et al., 2021) for the code generation task. Compared
to state-of-the-art baselines, our approach achieves substantially better performance, improving accuracy by
up to 19% when the compression rati(ﬂ exceeds 6 for mathematical reasoning and 4 for code generation.
This also indicates that, in cases of deep compression, our method reduces model size by up to 2.7 times
while maintaining comparable accuracy to baseline methods.

This paper makes the following critical contributions:

e We analyze the relationship between pretrained models and target applications, highlighting the
opportunity and underlying rationale for using low-rank decomposition to compress large language
models while maintaining performance on target applications.

e We propose Basel, a low-rank decomposition approach to compress pretrained large language models
for target applications. Basel identifies the beneficial and redundant components of large language
models by relearning the importance (i.e., singular values) of bases using the training set of the
target application, and then selects bases based on their importance.

e We evaluate Basel across multiple tasks and models, demonstrating its superior performance in deep
compression.

2 Related Work

Singular value decomposition (SVD) (Golub & Van Loan| [1996)) has been applied to reduce the size of machine
learning models. Prior research (Xue et all [2013; |Jaderberg et all 2014} Denton et al.l [2014; [Zhang et al.|

1The compression ratio is defined as the ratio of the original model size to the compressed model size.
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2015; [Povey et all [2018} |Chen et all [2018} |Acharya et al., [2019; Noach & Goldberg, 2020) has developed
various SVD algorithms to compress different components of models, such as DNNs, CNNs, and embedding
layers for a range of applications including natural language processing, speech, and vision. The primary
distinction between our work and these prior studies is that they do not relearn the importance of bases using
the training data of target applications. Instead, they typically prune bases according to the singular values
from the original or finetuned models. FWSVD (Hsu et all [2022]) evaluates the importance of individual
weights rather than bases during SVD. As highlighted in Sections [I|and [3] the bases hold significant physical
meanings. Considering importance at this level of granularity results in improved performance. As shown
in Section 4 our approach surpasses FWSVD in deep compression performance.

A recent study (Sharma et al., 2024) applied SVD to large language models. Its focus is on determining
the optimal rank for each layer, while our emphasis is on basis selection. The two methods are orthogonal
but complementary and can be combined. [Chen et al.| (2021b) and |Yu & Wul (2023) suggest reconstructing
bases based on feature mimicking. These approaches are orthogonal to ours—they concentrate on basis
reconstruction, whereas we focus on basis selection. Their methods complement ours and can be integrated
together to achieve enhanced compression results.

3 Basel

In this section, we describe our proposed compression method, Basel.

For a linear layer y = Wx+b, Singular Value Decomposition (SVD) factorizes its weight matrix W € R™*™
as the product of three matrices U, S, and V:

W =UsVv' (1)
where U = [uy, -+ ,u,], S = diag (s1, - ,$-), and V = [vy, -+ ,v;]. The values {s; e R,i=1,---,r} are
positive singular Valuesﬂ The vectors {u; € R",i=1,--- ,r} and {vi e R™,i=1,--- ,r} are orthonormal,

ie., ||111|| =1, ||V1H =1,u L uj, and vy L Vj if 4 ;é]

Therefore, we can factorize matrix W as the following series:

W= Z SV, (2)
i=1

Let matrix W; = u; v}, then

[Wil| = 4 /tr (WiTWi) = \/tr (viui Twyvi ) = \/tr(ViViT) = \/tr(ViTVi) =1

<Wi,Wj> =tr (WiTWj) = tr (ViuiTUjVjT) = 0, if ¢ %j

RTLXT)’L

Therefore, {uiv:,i =1, 77"} can be seen as a group of orthonormal bases in a subspace of , and

{si,i =1,--- ,r} are their weights, making the weight matrix W a linear combination of these bases.

This group of bases can be viewed as a series of filters that manipulate the input signal x to produce the
output signal y:

T T
y=Wx+b= ZsiuiviTx—i—b = Z‘Si (x,vi)u; +b
i=1 i=1

In other words, for each basis (i.e., filter) w;v; ', the similarity between the input signal x and the unit
direction vector v; is measured by their inner product. This inner product is then multiplied by the (positive)
singular value s; to determine the weight for the unit direction vector u;. The output signal y is the weighted
sum of u;. Figure[2illustrates this interpretation of the role of bases from the perspective of signal processing.

2We drop zero singular values and the corresponding columns of matrices U and V.
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Figure 2: An interpretation of the role of bases from the perspective of signal processing.

Large language models pretrained on diverse datasets learn bases that capture a wide range of semantic
concepts. To examine this, we factorize the W& W1 matrix from the attention layers of both the original
Llama 2-7B model and its math-finetuned counterpart. Focusing on bases associated with large singular
values, we extract the corresponding u vectors and interpret their semantics via a de-embedding process.
Specifically, we project each u vector into the vocabulary space by passing it through the output layer (i.e.,
the Im__head), yielding a logit vector over the vocabulary. We then identify the token with the highest logit as
the de-embedding result. Table [l|summarizes our findings. First, some bases encode highly specific semantic
content, such as concepts related to Apple, Python, programming, locations, non-English characters, and
math symbols. Second, even within the same layer, different bases can represent very different meanings.
For example, in the math-finetuned model at layer 22, attention head 6, basis 1 corresponds to non-English
characters, while basis 3 corresponds to math symbols. Third, fine-tuning does not necessarily remove
irrelevant bases: the non-English character basis remains present even after fine-tuning on math-focused
data.

Table 1: Meaning of bases in the vanilla and math-finetuned Llama 2-7B.

Domain Basis Top ten most probable tokens corresponding to the basis
Avple Vanilla model, Layer 16, | _i0S _Xcode _ios _Apple _Mac
pp Head 25, Basis 2 _iPhone _app _xcode _NS _App
Vanilla model, Layer 17
) ) . 3 ]
Python Head 6, Basis 1 . _in <0x0A> ... _... _and L _to for !
Location Vanilla model, Layer 17, | _Massachusetts _Illinois _Chicago _Boston _Dan
Head 25, Basis 1 _Harvard _Connecticut _IL _Bulg _Bulgar
Non-Enelish Math-finetuned model, | g 4 & & . oy W%
& Layer 22, Head 6, Basis 1 | ©~ = e Rt
Math-finetuned model, _ ] " ] .
Math Layer 22, Head 6, Basis 3 A0 A =0 A { D T

These findings suggest that many bases in the model are useful for specific tasks, but may be irrelevant for
others. When these irrelevant bases are used as filters in non-target applications, two scenarios can occur: the
filter may not be activated (due to a small inner product (x,v;)), or worse, the filter is activated, introducing
harmful information into the output and degrading performance. This indicates that pruning such bases
could reduce model size with minimal performance loss, and in some cases, even enhance performance for
the target application.

In our approach, Basel, we determine the importance of the bases from the pretrained model by retraining
their singular values on the training set of the target application. The weight matrix W in Basel is represented
as:

T T
W = Z vaZ'l.liVi—r + Z ﬁj{,; (3)
i—1 j=1

In the first term, u;v;' represents the original bases in the pretrained model. To assess their importance,
we initialize their weights §; with their original singular values and then retrain these weights (while keeping
the bases fixed) on the training set of the target application. The aim is that, after retraining, the bases
important for the target application will have larger singular values, whereas those that are useless or
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detrimental will have zero or very small singular values. This allows us to identify and prune the less useful
bases. Relearning the importance of bases for the target application distinguishes our approach from previous
methods. Prior approaches either use the singular values in the original model (Xue et al.l 2013} |Jaderberg
et al., |2014; Denton et all 2014} |Zhang et al., |2015; [Povey et al.l [2018; |Chen et al., |2018; |Acharya et al.|
2019; [Noach & Goldberg, |2020; |Sharma et al.; 2024) or assess the importance of weight parameters, other
than the importance of the bases, to prune them (Hsu et al.,|2022). They do not relearn the importance of
the bases specifically for the target application. From a signal processing perspective, this first term allows
us to adjust the weight for each filter, catering to the needs of the target application.

In the second term, the vectors dj and vj are learnable and serve two main purposes. First, due to distribu-
tional differences between the pretraining data and the target application, some bases essential for the latter
may be missing. These vectors are used to learn such missing bases. Second, although each pruned basis
may have little effect individually, their collective removal can lead to a noticeable performance drop. The
additional vectors help mitigate this loss. The number of learnable vectors, denoted 7, is called the additional
dimension. From a signal processing perspective, the second term introduces new filters that enhance the
model’s performance on the target task. While this term adds new parameters, they do not fully contribute
to model size growth. This is because SVD is eventually applied to the sum of the first and second terms,
reducing the rank if dependencies exist between the newly learned and original, kept bases.

Algorithm [I] presents our proposed approach. Basel operates on a pretrained or fine-tuned model as in-
put. Similar to Hsu et al| (2022)); |Sharma et al.| (2024), Basel iteratively prunes the bases of all linear
layers—excluding the embedding layer—including the Wq, Wk, Wy, and W matrices in the attention
layers, the linear layers in the feedforward layers, and the output layer. The same compression process is

Algorithm 1: Basel Algorithm

Input: Pretrained or Finetuning Model M

Output: Compressed Model M’

Data: KeepRatio, PruningTimes, KeepingEpoch, PruningEpoch, PostFineTuningEpoch

IterationsPerPruning = round (NumlterationsPerEpoch * PruningEpoch / PruningTimes);

KeepRatioPerPruning = KeepRatio(l/PruningTimes).

Convert the weight matrix of each linear layer in M—excluding the embedding layer—into the form specified by
equation equation

for i =1 to KeepingEpoch do

‘ Tune the learnable parameters in equation equation
end
for i =1 to PruningFEpoch do
Tune the learnable parameters;
if IterationID is a multiple of IterationsPerPruning then
for each linear layer do
Prune bases with smaller singular values §; such that after pruning, the sum of the singular values of
the remaining bases is KeepRatioPerPruning of the sum before pruning;
end
end
end
for each layer do
Compute the low rank matrix W based on equation equation ,
[U', 8", V'] = SVD(W);
Use two linear layers to substitute for the original layer;
The first layer’s weight matrix is S'V'7T;
The second layer’s weight matrix is U’;

end

for i =1 to PostFineTuningFEpoch do
‘ FineTune the new model M’;

end




Under review as submission to TMLR

applied across these components. After each pruning step, the learnable parameters 3;, G1;, and v; are fine-

tuned to compensate for performance degradation. Ultimately, a new weight matrix W with a smaller rank
r' is learned. We perform a standard SVD on it, representing it as the product of matrices U’, §’, and V' T
We then replace the original layer with two new layers: SV’ T becomes the weight matrix of the first new
layer, and U’ becomes the weight matrix of the second new layer. This reduces the number of parameters
from nm to (n + m)r’. The new model is subsequently further finetuned to enhance its performance on the
target application.

4 Experiments

4.1 Evaluation Methodology

The performance of low-rank compression algorithms is evaluated on two tasks: mathematical reasoning
and code generation. For each task, Llama 2-7B and Llama 2-13B models (Touvron et al.l [2023b|) are first
finetuned on a training dataset and then compressed using a compression algorithm. The compressed models
are further finetuned before evaluation.

For the mathematical reasoning task, we utilize two evaluation datasets: GSM8K (Cobbe et al., |2021) and
Hendrycks’ MATH (Hendrycks et al.,|2021)). The GSM8K dataset comprises verbally described mathematical
questions, containing 1,319 samples used for evaluation. The Hendrycks’ MATH dataset covers more complex
topics such as linear algebra and geometry, consisting of 5,000 question-answer pairs used for evaluation.
Due to its complexity, the Hendrycks” MATH dataset necessitates more sophisticated computations and
reasoning, resulting in lower accuracy compared to GSMSK.

For the code generation task, we use two evaluation datasets: MBPP (Austin et al. [2021) and Hu-
manEval (Chen et al.,|2021a). Both datasets evaluate the models’ ability to generate Python code. MBPP
comprises 500 code generation questions, while HumanEval includes 164 questions.

We evaluate our proposed Basel method against state-of-the-art low-rank compression techniques, including
SVD and FWSVD. SVD has been widely used in prior work on model compression (Sharma et al. 2024;
Acharya et all], [2019; [Noach & Goldberg] 2020} [ Xue et al.l 2013} [Jaderberg et al., [2014; [Denton et al., 2014}
Zhang et al.l 2015} Povey et al., 2018]), and in our experiments, it is applied to compress a model that has
been fine-tuned on the target task. FWSVD (Hsu et al.,|2022)) extends SVD by incorporating gradient-based
profiling: it estimates weight importance using gradients computed on the fine-tuning dataset of the target
task and leverages this information during decomposition. In addition to low-rank methods, we also compare
Basel with leading approaches from other compression paradigms, including QLoRA (Dettmers et al., 2023)),
a quantization-based method, and FLAP (An et al.l 2024]), a pruning-based method. QLoRA improves
performance by training LoRA adapters on the target task’s fine-tuning dataset. FLAP prunes weights
based on their magnitudes and the variance of each input activation dimension, profiled on the target task.

4.2 Evaluating Low-Rank Compression Methods for Mathematical Reasoning

Figures [3| (a) and (b) depict the performance of various low-rank compression algorithms on the Llama
2-7B model for the mathematical reasoning task. We evaluate the models’ accuracy (Pass@1) at different
compression ratios (original model size vs. compressed model size). For low compression ratios (below 6), all
methods achieve similar accuracy. However, our Basel method significantly outperforms SVD and FWSVD
at higher compression ratios. For instance, at a 7x compression ratio, Basel achieves around 46% and 12%
accuracy on GSM8K and MATH datasets, respectively, while FWSVD drops below 2% accuracy on both
datasets and SVD reaches only 27% and 5% accuracy on GSM8K and MATH, respectively. We also find
that Basel, at a compression ratio of 16, achieves better accuracy on both GSM8K and MATH compared to
FWSVD and SVD at a compression ratio of 6. This suggests that Basel reduces the model size by up to 2.7
times more than the baseline methods while maintaining similar accuracy. This highlights the effectiveness
of Basel for deep compression, especially when aiming for aggressive model size reduction.

Similar trends emerge for the larger Llama 2-13B model in Figures [4| (a) and (b). Once again, Basel
significantly outperforms SVD and FWSVD at compression ratios exceeding 6. At a 7x compression ratio,
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Figure 3: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms on
the mathematical reasoning task. Exact values are listed in Table |§| in the appendix.
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Figure 4: Pass@1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms on
the mathematical reasoning task. Exact values are listed in Table E| in the appendix.

Basel achieves 47% and 11% accuracy on GSM8K and MATH datasets, respectively, demonstrating its
advantage. This is in stark contrast to SVD’s performance (23% and 5% accuracy on GSM8K and MATH)

and FWSVD’s performance (around 2% on both datasets). These results solidify Basel’s effectiveness for
deep compression across different model sizes.

4.3 Evaluating Low-Rank Compression Methods for Code Generation

Similar results extend to code generation tasks (Figures [5| and @ For both Llama 2-7B and Llama 2-13B
models, all methods perform comparably at lower compression ratios (below 4). However, Basel exhibits
clear superiority at higher compression ratios. On Llama 2-7B at a 6x compression ratio, Basel achieves 12%
and 9% accuracy on HumanEval and MBPP datasets, respectively, significantly outperforming SVD (5%
and 2%) and FWSVD (6% and 2%). Similar trends hold for Llama 2-13B. These findings further solidify
Basel’s effectiveness for deep compression across diverse tasks and model sizes.

30 30
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Compression Ratio Compression Ratio
(a) HumanEval (b) MBPP

Figure 5: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms on
the code generation task. FExact values are listed in Table [5[in the appendix.
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Figure 6: Pass@]1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms on
the code generation task. FExact values are listed in Table |§| in the appendix.
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Figure 7: Pass@1 accuracy and model size of Llama 2-7B compressed using quantization alone, as well as
quantization combined with low-rank methods or pruning, on the mathematical reasoning task. Exact values
are provided in Table |§| in the appendix.

4.4 Combining Low-Rank Compression and Quantization for Math Reasoning

Quantization reduces the precision of weight parameters to shrink model size and is a widely used technique
for model compression. When using 8-bit quantization or higher, the performance degradation is typically
minimal. However, more aggressive quantization (e.g., 4-bit) often leads to a significant drop in accuracy. We
apply both 8-bit and 4-bit quantization to Llama 2-7B and Llama 2-13B models on mathematical reasoning.

For Llama 2-7B, the 8-bit quantized model achieves Pass@1 accuracy of 66.0% on GSM8K and 20.3% on
MATH, closely matching the unquantized model’s performance (66.4% and 20.6%, respectively, with bfl6).
A similar trend holds for Llama 2-13B, where 8-bit quantization results in only a negligible accuracy drop.
In contrast, 4-bit quantization causes substantial degradation. On Llama 2-7B, accuracy drops from 66.0%
t0 39.2% on GSMS8K and from 20.3% to 8.8% on MATH. Llama 2-13B exhibits similarly significant losses.
These results suggest that relying solely on quantization—especially at lower bit-widths—can be detrimental
to performance.

To address this, we explore combining quantization with low-rank compression using our Basel method.
Figures [7] and [§] illustrate that combining Basel with 8-bit quantization not only achieves a smaller model
size but also significantly outperforms 4-bit quantization in accuracy. On compressing Llama 2-7B, Basel
+ 8-bit achieves 59.6% on GSMS8K and 18.1% on MATH with a 3.28 GB model size, compared to 4-bit
quantization’s 39.2% and 8.8% with a larger 3.37 GB model. On compressing Llama 2-13B, Basel + 8-bit
yields 61.9% on GSMS8K and 17.5% on MATH with a 6.13 GB size, while 4-bit quantization achieves only
52.8% and 12.5% with 6.51 GB.

We further compare Basel + 8-bit quantization against two additional approaches: (1) QLoRA with 4-bit
quantization and (2) combining 8-bit quantization with FLAP, a state-of-the-art pruning technique. As
shown in Figures [7] and [8] Basel + 8-bit consistently outperforms both in terms of accuracy and size. For
instance, on compressing Llama 2-7B, it improves accuracy by 5.5% on both GSM8K and MATH compared
to QLoRA, while reducing the model size by an additional 0.13 GB.
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Figure 8: Pass@l accuracy and model size of Llama 2-13B compressed using quantization alone, as well
as quantization combined with low-rank methods or pruning, on the mathematical reasoning task. Exact
values are provided in Table @ in the appendix.
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Figure 9: Pass@]1 accuracy and model size of Llama 2-7B compressed using quantization alone, as well as

quantization combined with low-rank methods or pruning, on the code generation task. Exact values are
provided in Table [11}in the appendix.

4.5 Combining Low-Rank Compression and Quantization for Code Generation

We also compare Basel + 8-bit quantization to three alternative methods on the code generation task:
(1) standard 4-bit quantization, (2) QLoRA with 4-bit quantization, and (3) FLAP combined with 8-bit
quantization. Figures [0] and [I0] present the results for compressing Llama 2-7B and Llama 2-13B. On both
models, Basel 4 8-bit quantization consistently outperforms 4-bit quantization while achieving smaller model
sizes. For example, on Llama 2-7B, it improves accuracy by 12.8% on HumanEval and 6.4% on MBPP, with

a model size similar to that of the 4-bit version. This further highlights the benefit of combining low-rank
compression with quantization.

Basel 4 8-bit quantization also significantly outperforms both QLoRA (4-bit) and FLAP + 8-bit quantization
on Llama 2-7B and Llama 2-13B. For instance, on compressing Llama 2-7B, it achieves 6.7% higher accuracy

on HumanEval and 1.0% higher on MBPP compared to QLoRA, while also reducing the model size by an
additional 0.17 GB.

4.6 Inference

Figure[l1]| presents the inference throughput and memory consumption of models compressed from Llama-7B
on a single A100 GPU, using GSM8K as the evaluation set. The results show that low-rank compression
methods, including SVD, FWSVD, and Basel, lead to reduced memory consumption and improved through-
put as the model size decreases. Throughput and memory usage are primarily dependent on model size,
with no significant differences between the methods at equivalent sizes. However, since our proposed Basel
method achieves a greater reduction in model size while maintaining similar accuracy to SVD and FWSVD,
it improves throughput by up to 19% and reduces memory consumption by up to 37%.
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Figure 10: Pass@1 accuracy and model size of Llama 2-13B compressed using quantization alone, as well
as quantization combined with low-rank methods or pruning, on the code generation task. Exact values are
provided in Table [12]in the appendix.
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Figure 11: Throughput and memory consumption of compressed models.

4.7 Ablation Study

To assess the impact of key parameters in Basel, we conduct ablation studies on two components: the
additional dimension (7 in Equation equation [3)) and the pruning times. The additional dimension helps
recover information lost during pruning, especially at high compression. As shown in Figure setting
7 = 32 improves accuracy when compressing Llama 2-7B for mathematical reasoning, particularly beyond a
7x compression ratio. However, this accounts for only a small portion of the overall performance gain over
baselines, as seen in Figures [3] and

Similarly, performing light pruning multiple times allows the model to gradually adapt to parameter reduc-
tion, which is especially helpful for extreme compression. Figure [I3]illustrates this effect by comparing two
pruning strategies—100 times versus 2. The model pruned 100 times consistently achieves higher accuracy
at compression ratios greater than 4.

Basel freezes the basis vectors and updates only the singular values (and any additional bases) during
compression. To evaluate the benefit of this design choice, we compare it with a variant of Basel where the
basis vectors are also updated. Figure[I4]presents the performance of both approaches on compressing Llama
2-7B for mathematical reasoning. Freezing the bases results in better accuracy. It also reduces compression
time by 33%, as backpropagation involves fewer trainable parameters.

4.8 Compression vs. Training from Scratch

In many real-world LLM deployment scenarios, compute and hardware constraints impose a target model
size tailored to a specific application, which may not match any existing pretrained models. For example,
Llama-2 offers 7B, 13B, and 70B variants, but no 4B option. To obtain a model of the required size for
the target application, one can either (1) train a new model from scratch or (2) compress a nearby larger
model. The first approach is often impractical due to high computational costs—training Llama reportedly
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Figure 12: Ablation study: Impact of varying the additional dimension in Basel on the compression of
Llama 2-7B for the mathematical reasoning task. Exact values are listed in Table |Z| in the appendix.
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Figure 13: Ablation study: Impact of varying the pruning times in Basel on the compression of Llama 2-7B
for the mathematical reasoning task. Exact values are listed in Table |§| in the appendix.

requires up to one million A100 GPU hours [Touvron et al.| (2023a)—and limited access to pretraining data.

In contrast, model compression is far more efficient; low-rank methods such as Basel typically require less
than 0.01% of the pretraining compute.

To assess the effectiveness of compression, we compare a fine-tuned Llama 3.2-1B model with a compressed
version of Llama 3.2-3B reduced to 1B parameters using Basel. As shown in Table 2] the compressed model
achieves similar performance on mathematical reasoning. This indicates that, in this setting, compression can
serve as a viable alternative to training from scratch—offering substantial savings in compute and eliminating

the need for pretraining data. These results demonstrate the potential of Basel to support efficient model
scaling under deployment constraints.

Table 2: Pass@1 accuracy and model size of Llama 3.2-3B compression via Basel for mathematical reasoning.

3B 1B Basel-compressed-3B

Model Size (billion) 3.21 1.24 1.24
GSMSK Acc (%) 725 54.4 55.3
MATH Acc (%) 26.1 17.6 16.7

5 Conclusion

The significant size of large language models leads to high inference costs and demands substantial computing
resources. To mitigate these issues, we focus on compressing large language models to meet the specific
requirements of target applications. Our approach involves examining these models through the lens of
matrix factorization. By viewing the weight matrix of large language models as a linear combination of a
group of bases, we have identified that pretrained models often contain many redundant bases that are less
useful for target applications. To address this, we propose Basel, a compression algorithm that evaluates
the importance of each base for target applications and prunes those that are less significant. Experimental
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Figure 14: Ablation study: Pass@1 accuracy and size of Llama 2-7B compressed by Basel (proposed) and
Basel (free basis) on mathematical reasoning. Exact values are listed in Table [13[in the appendix.

results demonstrate that Basel significantly outperforms state-of-the-art low-rank compression algorithms
in achieving deep compression. Basel greatly reduces the inference cost of large language models, making
them more accessible and practical for a wider range of applications. This advancement has the potential
to democratize the use of large language models, facilitating their adoption and integration across diverse
fields and industries.
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A Appendix

Table 3: Pass@1 accuracy and model size of Llama 2-7B compressed with various low-rank algorithms on
the mathematical reasoning task.

Model Size (billion) 6.74 5.02 3.18 1.73 1.11 0.56

SVD GSMSK Acc (%)  66.4 63.0 610 53.9 329 11.9
MATH Acc (%) 206 183 174 137 53 28
Model Size (billion) 6.74 4.79 295 1.54 0.96 0.47
FWSVD

GSMBK Acc (%) 664 62.7 625 565 1.5 1.9
MATH Acc (%) 206 192 176 142 1.8 15

Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43

Basel  “GSMSK Acc (%) 664 638 61.6 562 50.2 40.2 34.2
MATH Acc (%) 206 197 17.6 155 134 10.0 7.8
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Table 4: Pass@]1 accuracy and model size of Llama 2-13B compressed with various low-rank algorithms on
the mathematical reasoning task.

Model Size (billion) 13.02 9.70 6.10 3.27 2.07 101

SVD GSMSK Acc (%) 727 695 63.5 50.0 26.9 6.7
MATH Acc (%) 222 208 178 108 52 2.2
Model Size (billion) 13.02 9.24 567 293 179 0.83

FWSVD ~ GsM8K Ace (%) 727 679 639 519 24 39
MATH Acc (%) 222 203 180 124 12 1.9
Model Size (billion) 13.02 9.75 6.13 3.32 214 112 0.68

Basel " GSMSK Ace (%) 727 67.9 644 550 50.3 41.8 37.9
MATH Acc (%) 9222 209 187 155 13.1 104 80

Table 5: Pass@]1 accuracy and model size of Llama 2-7B compressed with various

the code generation task.

low-rank algorithms on

Model Size (billion) 6.74 5.02 3.18 1.73 1.11 0.56

SVD HumanEval Acc (%) 23.8 207 201 91 49 3.7
MBPP Acc (%) 274 218 186 9.6 20 0.4
Model Size (billion)  6.74 4.84 3.01 158 099 0.49

FWSVD HumanEval Ace (%) 238 220 201 116 49 0
MBPP Acc (%) 274 244 174 104 0 0.6
Model Size (billion)  6.74 514 3.28 183 121 0.67 043

Basel HumanEval Acc (%) 23.8 22.0 20.7 146 128 7.9 7.3
MBPP Acc (%) 274 266 186 122 88 74 4.0

Table 6: Pass@1 accuracy and model size of Llama 2-13B compressed with various

the code generation task.

low-rank algorithms on

Model Size (billion)  13.02 9.70 6.10 3.27 2.07 1.01

SVD HumanEval Acc (%) 27.4 189 183 3.0 3.7 0.6
MBPP Acc (%) 300 254 182 106 14 0.6
Model Size (billion)  13.02 9.31 573 2.97 1.83 0.85

FWSVD  HumanEval Ace (%) 274 262 201 85 37 0
MBPP Acc (%) 300 27.2 216 122 08 0
Model Size (billion) ~ 13.02 9.75 6.13 3.32 214 112 0.68

Basel  pumanBval Acc (%) 274 262 220 152 128 7.9 7.3
MBPP Acc (%) 300 27.8 206 13.6 108 64 3.6

Table 7: Ablation study: Impact of varying the additional dimension in Basel on the compression of Llama 2-
7B for the mathematical reasoning task.

Model Size (billion) 6.74 5.4 3.28 1.83 121 0.67 043

AddtTDim 32 “GoVISK Ace (%) 664 63.8 616 562 502 40.2 34.2
MATH Acc (%) 206 197 17.6 155 134 10.0 7.8
Model Size (billion) 6.74 5.06 3.20 1.75 1.13 0.59

AddFTDIM 0 “GoVSK Ace (%) 664 644 616 554 483 349
MATH Acc (%) 206 193 174 151 122 7.1
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Table 8: Ablation study: Impact of varying the pruning times in Basel on the compression of Llama 2-7B
for the mathematical reasoning task.

Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43

100 times ~ GOMSK Ace (%) 664 63.8 616 56.2 502 402 34.2
MATH Acc (%) 206 197 17.6 155 134 100 7.8

Model Size (billion) 6.74 5.11 3.27 1.82 1.20 0.65

2Himes  GQMSK Ace (%) 664 629 591 544 472 321
MATH Acc (%) 206 18.6 181 145 110 6.2

Table 9: Pass@1 accuracy and model size of Llama 2-7B compressed and 8-bit-quantized by various algo-
rithms for mathematical reasoning.

Model Size (GB) 6.74 5.39 4.72 4.04 3.37 270 1.35

§-bit FLAP " GMSK Ace (%) 66.0 534 39.1 227 7.4 00 0.0
MATH Ace (%) 203 135 7.2 44 10 00 0.0

Model Size (GB) 6.74 5.14 3.28 1.83 1.21 0.67 0.43

8-bit Basel “GOMSK Ace (%) 66.0 62.1 59.6 541 49.7 411 35.3
MATH Acc (%) 203 182 181 157 131 101 7.5

Table 10: Pass@l accuracy and model size of Llama 2-13B compressed and 8-bit-quantized by various
algorithms for mathematical reasoning.

Model Size (GB) 13.02 1041 9.11 7.81 6.51 521 3.90

§bit FLAP " (oMSK Ace (%) 727 595 539 6.1 61 00 0.0
MATH Acc (%) 218 139 94 48 03 00 0.0
Model Size (GB) 13.02 975 6.13 332 214 112 0.68
8-bit Basel

GSMS8K Acc (%) 727 674 619 534 513 40.7 359
MATH Acc (%) 21.8 193 175 142 125 96 7.7

Table 11: Pass@1 accuracy and model size of Llama 2-7TB compressed and 8-bit-quantized by various algo-
rithms for code generation.

Model Size (GB) 6.74 539 472 404 337 270 135
8-bit FLAP "y manEval Ace (%) 238 165 91 37 12 00 0.0
MBPP Acc (%) 262 208 124 34 12 02 0.0
Model Size (GB) 6.74 514 328 121 067 0.43
8-bit Basel HmanEval Ace (%) 238 201 195 116 9.1 7.3
MBPP Acc (%) 262 224 172 82 46 3.2

Table 12: Pass@l accuracy and model size of Llama 2-13B compressed and 8-bit-quantized by various
algorithms for code generation.

Model Size (GB) 13.02 1041 911 7.8 651 521 3.90
§bit FLAP 'y panBval Ace (%) 250 177 7.9 49 32 06 0.0
MBPP Acc (%) 200 188 120 68 32 04 0.0
Model Size (GB) 13.02 975 613 332 214 112 0.8
8-bit Basel pyanEval Ace (%) 250 250 159 122 110 91 6.1
MBPP Acc (%) 200 264 184 104 92 54 34
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Table 13: Pass@1 accuracy and model size of Llama 2-7B Basel (proposed) and Basel (free basis) on the
mathematical reasoning task.

Model Size (billion) 6.74 5.14 3.28 1.83 1.21 0.67 0.43

Basel (Proposed) " “GoNRK Ace (%) 664 638 61.6 562 50.2 40.2 34.2
MATH Ace (%) 206 197 17.6 155 134 100 7.8

Model Size (billion) 6.74 5.14 4.14 251 1.21 0.67 0.43

GSMS8K Acc (%) 66.4 61.6 ©59.8 56.7 44.7 29.0 16.8
MATH Acc (%) 206 179 171 149 103 6.3 26

Basel (Free Basis)

Table 14: Pass@1 accuracy and model size of Llama 2-7B and -13B 4-bit-quantized by QLoRA for mathe-
matical reasoning and code generation.

Model Task Model size (GB)  Accuracy (%)
GSM8K 3.45 54.1
A-bit QLoRA 7B MATH 3.45 12.6
HumanEval 3.45 12.8
MBPP 3.45 16.2
GSM8K 6.63 58.8
Lbit QLoRA 135 MATH 6.63 13.2
HumanEval 6.63 13.4
MBPP 6.63 18.6

Table 15: Pass@]1 accuracy and model size of 4-bit-quantized Llama 2-7B and Llama 2-13B for mathematical
reasoning and code generation.

Model Task Model size (GB)  Accuracy (%)
GSMBK 3.37 39.2

4-bit-quantized 7B MATH 3.37 8.8
HumanEval 3.37 6.7

MBPP 3.37 10.8

GSMS8K 6.51 52.8

/ =4 =4

4-bit-quantized 13B MATH 6-51 12.5
HumanEval 6.51 8.5

MBPP 6.51 14.2
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