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Abstract

We derive and solve an “Equation of Motion” (EoM) for deep neural networks
(DNNs), a differential equation that precisely describes the discrete learning dynam-
ics of DNNs. Differential equations are continuous but have played a prominent
role even in the study of discrete optimization (gradient descent (GD) algorithms).
However, there still exist gaps between differential equations and the actual learn-
ing dynamics of DNNs due to discretization error. In this paper, we start from
gradient flow (GF) and derive a counter term that cancels the discretization er-
ror between GF and GD. As a result, we obtain EoM, a continuous differential
equation that precisely describes the discrete learning dynamics of GD. We also
derive discretization error to show to what extent EoM is precise. In addition, we
apply EoM to two specific cases: scale- and translation-invariant layers. EoM
highlights differences between continuous-time and discrete-time GD, indicating
the importance of the counter term for a better description of the discrete learning
dynamics of GD. Our experimental results support our theoretical findings.

1 Introduction
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Figure 1: Our approach. GF fails in describing
the learning dynamics of GD due to discretization
error. Our counter term approach successfully
cancels the discretization error between GF and
GD and hence allows for a reliable analysis of GD.

Let us first explain our primary motivation for
the present paper. In physics, one of the fun-
damental goals is to predict the dynamics of
matter and its fundamental constituents. Specif-
ically, “predict” here means to construct differ-
ential equations that best describe the physical
system under consideration and to solve them.
Such differential equations are called Equations
of Motion (EoM). An interesting question here
may be “What is the EoM for deep neural net-
works (DNNs)?” That is, to what extent can we
predict the discrete learning dynamics of DNNs
by constructing differential equations? This is
our research question.

Differential equations have played a prominent
role in studying discrete optimization (gradient
descent (GD) algorithms), although they are con-
tinuous [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20]. In the context of deep
learning, gradient flow (GF) and stochastic differential equations (SDEs) are used to analyze (stochas-
tic) gradient descent ((S)GD). Research targets include: convergence [6, 7, 8, 12, 13, 9, 14, 17],
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stability of optimization [19], optimization with constraints [19], convergent states [17, 20], flatness
of loss landscapes [17], empirical risk bounds [15], and online PCA [11]. Various techniques for
continuous analysis have been imported to the analysis of discrete GD algorithms.

However, there still exist gaps between differential equations and actual learning dynamics due
to discretization error, which is the main interest of the present paper and is often missing in the
literature above. To be specific, we focus on GF θ̇(t) = −g(θ(t)) as a continuous approximation
of GD θk+1 = θk − ηg(θ(t)), where θ(t) ∈ Rd and θk ∈ Rd are the weight parameters of a DNN
at time t ∈ R and step k ∈ Z, respectively, and g ∈ Rd is a gradient vector. η ∈ R is a learning
rate and is regarded as the discretization step size when GF is discretized with the Euler method
[21]: θ̇(t = kη) ≒ θk+1−θk

η . Due to this approximation, discretization error (or “continuation error”)
is introduced, and thus GF cannot fully explain the dynamics of GD. For instance, we show that
according to GF, the weight norm of a scale-invariant layer collapses to zero when we use weight
decay, while GD does not show such behavior (Section 5.1).

To fill the critical gap between GF and GD, we propose modifying GF to describe the learning
dynamics of GD more precisely; i.e., we add a counter term ξ ∈ Rd to the gradient g of GF that
cancels the discretization error (Figure 1). This idea is motivated by backward error analysis in
numerical analysis [21]. We derive a functional integral equation that determines the counter term and
solve it (Section 3). As a result, we obtain a more reliable differential equation, called EoM here, that
describes the discrete learning dynamics of GD. Using the counter term, we derive the leading order
of discretization error (Section 4.1) to show to what extent GF and EoM are precise in describing
GD’s dynamics. This point is often missed in the literature on the continuous approximation of
discrete GD algorithms [22, 23, 24, 11, 25, 26, 27, 28]. We further derive a sufficient condition for
learning rates for the discretization error to be small (Section 4.2). We show that EoM well explains
empirical results.

Furthermore, to show the benefits of EoM, we apply it to two specific cases: scale-invariant layers
[29, 30] and translation-invariant layers [31, 32] (Section 5). For scale-invariant layers, we show that
a better description of GD’s discrete dynamics requires modifications to the decay rate of weight
norms that is previously derived in the continuous regime (SDEs) [33]. In addition, we show that
EoM successfully reproduces the limiting dynamics (t → ∞) of weight norms and angular update
[34] that are previously derived in the discrete regime, while GF cannot reproduce this result. For
translation-invariant layers, we show that EoM rather than GF dramatically matches empirical results,
indicating the importance of the counter term. To the best of our knowledge, no study analyzes the
temporal evolution of translation-invariant layers except for [31] and [32], where only the sum of
weights is their focus, while we derive the dynamics of the whole weights.

Our contribution is four-fold. Our code1 and detailed experimental results are given as supplementary
materials.

1. To fill the critical gap between GF and GD, we derive a counter term for GF that cancels the
discretization error, and as a result, we obtain EoM, a continuous differential equation that
precisely describes the discrete learning dynamics of GD.

2. To show to what extent GF and EoM are precise in describing discrete GD dynamics,
we derive the leading order of discretization error, as is often missed in the literature on
the continuous approximation of discrete GD algorithms. We further derive a sufficient
condition for learning rates for the discretization error to be small.

3. We apply EoM to two specific cases: scale-invariant layers and translation-invariant layers,
indicating the importance of the counter term for a better description of the discrete learning
dynamics of GD.

4. Our experimental results support our theoretical findings.

Our work is the first step toward answering this research question: to what extent can we predict the
discrete learning dynamics of DNNs by constructing differential equations (EoM for DNNs)? Also,
our work helps researchers import continuous analysis to the discrete analysis of GD algorithms. In
this sense, our work bridges discrete and continuous analyses of GD algorithms.

1See Supplementary Materials at https://openreview.net/forum?id=qq84D17BPu .
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2 Related Work

The idea of approximating discrete-time stochastic algorithms with continuous equations dates back
to stochastic approximation theory [1, 2, 3, 4, 5]. Their primary focus is convergence analysis for
discrete-time algorithms, while our focus is to predict the learning dynamics (temporal evolution)
of weight parameters, such as the decay rates of weight norms and effective learning rate of scale-
invariant layers. Our idea of the counter term is inspired by the backward error analysis developed
for numerical analysis [35]. This idea is now used to analyze discrete optimization [22, 23, 24, 11,
25, 26, 27, 28]. [18] is a pioneering work on discretization error analysis between GF and GD that
is based on the numerical analysis of the Euler method [21]. They derive a sufficient condition for
learning rates for the discretization error to be small. This analysis is based on a bound (inequality),
while we derive an explicit relationship between learning rates and discretization error as an equality.

Neural mechanics and Noether’s learning dynamics [31, 32] provide a solution to a part of the afore-
mentioned problem: to what extent can we predict the learning dynamics of DNNs by constructing
differential equations? They derive (the breaking of) conservation laws of weight parameters using
differential equations and provide the temporal evolution of the conserved quantities. The present
work is inspired by these studies but has crucial differences: 1) our focus is on the temporal evolution
of all of the network parameters, not only the conserved quantities, 2) the gradient’s correction for
canceling the discretization error is not limited to the first order, but all orders, and 3) the discretization
error is explicitly provided in the present paper. See Appendix G for more related studies.

3 Equation of Motion for Deep Neural Networks

In the following sections, we define EoM by modifying GF (Section 3.1). We show that the counter
term satisfies a functional integral equation (Section 3.2), and then we solve it (Section 3.3).

3.1 Our Approach and Definitions

We begin with a simple idea: add a counter term to GF to cancel discretization error, i.e.,

θ̇(t) = −g(θ(t))− ηξ(θ(t)) , (1)

where θ(t) ∈ Rd is the vectorized weight parameters of a DNN at time t ∈ R, d ∈ N is the
dimension of the weight, and θ̇(t) denotes dθ(t)/dt. Gradient g(θ(t)) is defined as g(θ(t)) :=
∇f(θ(t)) + λθ(t), which consists of a loss function f(θ(t)) and weight decay term λθ(t), where
λ > 0 controls the strength of weight decay. η > 0 is a small learning rate, and ξ(θ(t)) ∈ Rd is
the counter term. Throughout this paper, we assume all functions are sufficiently smooth. We call
Equation (1) the Equation of Motion (EoM) for DNNs, or simply EoM.

Our aim is to find ξ that makes Equation (1) more reliable to precisely approximate GD θk+1 =
θk−ηg(θk), where θk ∈ Rd is the weight at step k ∈ Z≥0. To do so, we first define the discretization
error between GF (1) and GD at step k:

ek := θ(kη)− θk ∈ Rd (2)

and find ξ that makes ek small. Throughout this paper, we use the standard Euler method to discretize
GF: θ̇(t) ≒ (θ(t+ η)− θ(t))/η and t = kη; thus, η is identified with the discretization step size.

3.2 How to Determine Counter Term

We show that the leading order of ek with respect to η is controlled by the counter term (Theorem
3.2), and as a result, the counter term is determined via a functional integral equation (Equation (6)).

Our first theorem shows what the counter term should cancel.
Theorem 3.1 (Recursive formula for discretization error). Discretization error ek satisfies:

ek+1 − ek = −η
(
g(θ(kη))− g(θ(kη)− ek)

)
+ η2

∫ 1

0

dsθ̈(η(k + s))(1− s)− η2ξ(θ(kη))

(3)
=: −η (g(θ(kη))− g(θ(kη)− ek)) +Λ(θ(kη)) . (4)
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Here, we defined Λ(θ(kη)) := η2
∫ 1

0
dsθ̈(η(k + s))(1 − s) − η2ξ(θ(kη)) ∈ Rd. The proof is

based on Taylor’s theorem and is given in Appendix A.1. The right-hand side of Equation (3) tells us
that the counter term (third term) should cancel the first and second terms. However, the following
theorem states that the first term gives only subleading contributions with respect to η.
Theorem 3.2 (Leading order of discretization error). Suppose that Λ(θ(kη)) = O(ηγ) and e0 =
O(ηγ) for some γ > 0. Then ek = O(ηγ) and −η(g(θ(kη)) − g(θ(kη) − ek)) = O(ηγ+1).
Therefore, the first term in the right-hand side of Equation (3) is negligible compared with Λ:

ek+1 = ek +Λ(θ(kη))− η(g(θ(kη))− g(θ(kη)− ek))
= ek +Λ(θ(kη)) +O(ηγ+1) (k = 0, 1, 2, ...) . (5)

The proof is by induction and given in Appendix A.2. Therefore, the leading order of discretization
error is O(ηγ) and given by:

Λ(θ(kη)) = O(ηγ) ⇐⇒
∫ 1

0

ds θ̈(η(k + s))(1− s)− ξ(θ(kη)) = O(ηγ−2) . (6)

This is a functional equation of ξ because θ̈(t) contains ξ via Equation (1). A solution to Equation
(6) for a large γ gives a small Λ and thus gives a small ek via Equation (5).

3.3 Solution to Equation 6

How can we solve Equation (6)? It is not easy to find an exact solution because Equation (6) is a
functional integral equation [36, 37, 38, 39, 40]; therefore, we assume a power series solution with
respect to η:

ξ(θ(kη)) =

∞∑
α=0

ηαξα = ξ0(θ(kη)) + ηξ1(θ(kη)) + η2ξ2(θ(kη)) + · · · . (7)

In the following theorem, we successfully find a solution for all orders of η.
Theorem 3.3 (Solution of Equation 6). The solution to Equation (6) of form (7) is given by

ξα(θ) = ξ̃α(θ) :=

α+2∑
i=2

∑
k1+···+ki=α−i+2

(−1)i

i!
Dk1

· · ·Dki−1
Ξki

(8)

for α = 0, 1, 2, ..., where we use differential operators (Lie derivatives) Dα := ξα−1(θ) · ∇ (α =
1, 2, ...) and D0 := g(θ) ·∇ and also defined Ξα(θ) := ξα−1(θ) (α = 1, 2, ... ) and Ξ0(θ) := g(θ).

The proof follows from the definition of the Lie derivative and is given in Appendix A.3. The first
two orders of the solution are given by:

ξ̃0(θ) =
1

2
(g(θ) · ∇)g(θ) =

1

4
∇||g(θ)||2 (9)

ξ̃1(θ) =
1

2
(ξ̃0(θ) · ∇)g(θ) +

1

6
(g(θ) · ∇)ξ̃0 . (10)

Discussions. As can be inferred from Equations (8–10), ξ̃α contains the α+ 2nd-order derivative
of the loss function. Therefore, the higher-order counter terms cancel the higher-order smoothness of
the discretization error.

Here, we note that Equation (8) can be found, e.g., in [35], as a higher-order backward error analysis.
However, our derivation above has independent contributions: 1) we clarify that the counter term
cancels the leading order of discretization error (Theorem 3.2), and 2) we find that the discretization
error itself is also given by the counter term (Corollary 4.1 in the next section).

Equation (9) often appears in the literature on backward error analysis [21, 35] and its related topics
in machine learning, e.g., [41, 23, 24, 27, 28, 31]. Typically, ξ̃0 is added to gradients of continuous
equations (e.g., SDE) to close the gap between continuous equations and discrete algorithms (e.g.,
SGD) by canceling (at least first-order) discretization error. However, higher-order discretization
error is neglected in these studies. In contrast, our solution (8) cancels all orders of discretization
error.
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4 Discretization Error

The question here is to what extent the continuous approximation (1, 8) is precise; this point is often
missed in the literature on continuous approximation [22, 23, 24, 11, 25, 26, 27, 28]. In this section,
we use the counter term (8) and quantify discretization error as a function of the loss function and its
derivatives (Section 4.1). We find that our result well explains empirical results. We further derive a
sufficient condition for learning rates for the discretization error to be small (Section 4.2).

4.1 Counter Term Gives Leading Order of Discretization Error

We show that the counter term gives the leading order of discretization error between GD vs. GF and
EoM. The proof follows from Theorem 3.2 and 3.3 and is given in Appendix A.4.

Corollary 4.1 (Leading order of discretization error is given by ξ̃α). Suppose that we use ξ up to
O(ηγ−1), i.e., ξ = ξ̃0 + ηξ̃1 + · · ·+ ηγ−1ξ̃γ−1 for γ ∈ Z>0 (ξ := 0 for γ = 0). Then,

ek+1 = ek +Λ(θ(kη)) +O(ηγ+3) = ek + ηγ+2ξ̃γ +O(ηγ+3) . (11)

First, Corollary 4.1 implies that the higher the orders of the counter term we use (large γ), the more
precise EoM (1) is (small ek). Thus, GF (ξ = 0) gives larger discretization error than EoM (ξ ̸= 0).
Second, Corollary 4.1 gives the equality of the leading order of discretization error at arbitrary steps.
This is not a bound [18] nor an asymptotic analysis (k → ∞). Third, let us give an intuition by
considering ξ = 0 (GF). Then, Corollary 4.1 gives:

ek+1 = e0 +

k∑
s=0

η2

2
(H(θ(sη)) + λI)(∇f(θ(sη)) + λθ(sη)) +O(η3) , (12)

where H(θ) ∈ Rd×d is the Hessian of the loss function f with respect to θ and I ∈ Rd×d is the
identity matrix. Equation (12) suggests that 1) large learning rates lead to a large discretization error
and 2) steep loss functions (along the trajectory) lead to a large discretization error.

𝒆100

𝒆100

Figure 2: Theoretical prediction of discretiza-
tion error of GF and GD (Equation (12)) vs.
actual discretization error of GF and GD. The
larning rate and weight decay are 10−2 and 10−2.
See Appendix F.2 for more results and details. See
Section 6 for experimental settings.

Empirical result. We find Equation (12) well
explains our empirical result. We compare Equa-
tion (12) (up to O(η2)) with the actual discretiza-
tion error of GD and GF in Figure 2. First, the
gap between our theoretical prediction of dis-
cretization error (orange curve) and the actual
discretization error (red curve) is small because
the range of relative error (||ek||/||θk||) in this
plot is only 0–0.01 (see also Figure 11 in Ap-
pendix F). Second, most of the discretization
error for Theory (orange curve) and Experiment
(red curve) is produced within the first 100 steps.
We can understand this phenomenon with the
help of Equation (12). It suggests that discretiza-
tion error can be enhanced when the loss func-
tion is non-smooth along the learning trajectory,
which is likely to occur at the beginning of train-
ing due to random initialization. Therefore, a
large part of discretization error is produced in
the early stage of training. Third, we see that
most of the gap between Theory (orange curve)
and Experiment (red curve) also comes from the first 100 steps; in fact, the green curve shows that
there is a much smaller enhancement of the gap after the 100th step. The source of the gap is the
higher-order term O(η3) in Equation (12). It consists of higher-order derivatives of the loss function
(Theorem 8 and Corollary 4.1) and thus can be large when the loss function is non-smooth along the
learning trajectory. Therefore, by the same logic as above, the early stage of training tends to produce
a gap between Theory (orange curve) and Experiment (red curve).
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4.2 Discretization Error Bounds

We provide a sufficient condition (an upper bound for η) for GF and EoM to follow GD up to a given
step k, which helps us infer desired learning rates (step sizes) for the discretization error to be small.
We first consider ξ = 0 (GF).
Corollary 4.2 (Learning rate bound for ξ = 0). Let ξ = 0 and assume that e0 = O(η3). Let ϵ and t
be arbitrary positive numbers. If the step size satisfies

η <

√
ϵ

k

√√√√ 2

max
0≤t′≤t

{||(H(θ(t′)) + λI)g(θ(t′))||}
, (13)

for some k ∈ {1, 2, ..., ⌊ t
η ⌋}, then the discretization error can be arbitrarily small:

||ek|| < ϵ+O(ϵ
3
2 ) . (14)

The proof follows from Equation (12) and is given in Appendix A.5. We see that 1) there is no
guarantee that the discretization error is small unless the learning rate is sufficiently small, 2) we
need small learning rates to keep the discretization error small for a long period, and 3) we need
small learning rates to keep the discretization error small for non-smooth loss landscapes. This is
consistent with our empirical results in Figure 3 and 4; in fact, 1) the discretization error blows up for
a large learning rate (η = 10−1 in Figure 3), 2) it increases as the number of steps increases (Figure
4), and 3) most of it is produced in the early phase of training, where the objective function tends to
be non-smooth, and the gradients tend to be large.

We compare our bound (13) with a bound given in [18] because, to our knowledge, only [18] provides
a bound for the step size with respect to discretization error in the context of deep learning. In [18],
it is proved that in essence, η ≲ ϵ/βtϵγtϵct, where βtϵ and γtϵ measure the non-smoothness of the
loss function, and ct depends on the spectrum of the Hessian. These factors are hard to compute
analytically unless the loss function and network are simple, but the qualitative behavior of this bound
is the same as ours (13); i.e., both bounds become tight when the loss function is non-smooth.

We also derive a learning rate bound for ξ = ξ̃0 (EoM) and the full statement is given in Corollary
A.1 in Appendix A.6, which states that if η < O( 3

√
ϵ
k ), then ||ek|| < ϵ+O(ϵ

4
3 ). Therefore, larger

step sizes are now allowed compared with Corollary 4.2 (GF) because of the non-zero counter term.
Furthermore, we can show larger bounds for higher-order counter terms in a similar way.

Figure 3: Discretization error explodes for large
learning rate (10−1). LR means learning rate.
Weight decay is 10−3. Curves include both GF and
EoM. Relative discretization error is also shown
in Appendix F. See Section 6 for experimental
settings.

+

+

Figure 4: Discretization error of GF and EoM.
Figure 3 is magnified. The counter term reduces
discretization error as expected, and smaller learn-
ing rates give smaller discretization errors.

5 Application: Scale- and Translation-invariant Layers

To show the benefits of EoM, we finally apply our theory to two specific cases: scale-invariant layers
[29, 30] and translation-invariant layers [31, 32]. Additionally, Appendix B provides an application
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to broken conservation laws [31]. In the following, we simply focus on ξ = 0 and ξ = ξ̃0 to analyze
the differences between ξ = 0 and ξ ̸= 0.

Definitions Let us first introduce our notation. A transformationψ of θ ∈ Rd with parameter α ∈ R
is said to be a symmetry transformation of loss function f if f(ψ(θ, α)) = f(θ). 1A ∈ {0, 1}d
denotes the indicator vector of subspace A ⊂ Rd (e.g., A is a linear layer in the DNN). For a scalar
α ∈ R, we define αA := α1A + 1Ac ∈ R, where Ac is the complement of A. For a vector θ ∈ Rd,
we define θA := θ ⊙ 1A ∈ Rd, where ⊙ is the Hadamard element-wise product. For the gradient
operator ∇ = (∂/∂θ1, ..., ∂/∂θd)

⊤, we define ∇A := 1A ⊙ ∇. We also define rA := ||θA|| and
θ̂A := θA/rA.

5.1 Learning Dynamics of Scale-invariant Layers

In this section, we focus on scale-invariant layers. A scale-invariant layer A is defined as a subspace
that is invariant under the scale transformationψ(θ, α) := αAθ = αθA+θAc (α > 0). For example,
a linear layer immediately before a batch normalization layer is scale-invariant. We see that for a
better description of GD’s discrete dynamics, we need modifications to the decay rate of rA that
is previously derived in the continuous regime [33]. In addition, we show that EoM successfully
reproduces the limiting dynamics of rA and angular update [34] at t → ∞ that are previously
derived in the discrete regime, while GF cannot. In Appendix C, we additionally show that there
are crucial differences between GD and GF via the effective learning rate of scale-invariant layers
[29, 42, 30, 43, 44, 33, 45, 34, 46, 47].

EoM for r We construct the EoM for rA (the EoM for θ̂A is given in Appendix C for completeness).

Theorem 5.1 (EoM for rA and solution). EoM (1) gives ˙r2A(t) = −2λr2A(t)− 2 η θA(t) · ξ(θ(t)).
Specifically, this is equivalent to:

˙r2A(t) = −2λr2A(t) ⇐⇒ r2A(t) = r2A(0)e
−2λt (15)

for ξ = 0 (GF) and

˙r2A(t) = −2(λ+
ηλ2

2
)r2A(t) +

η

r2A(t)
||∇Af(θ̂A(t) + θAc(t))||2 (16)

⇐⇒ r2A(t) = r2A(0)e
−2λ(1+ ηλ

2 )t + η

∫ t

0

dτe−2λ(1+ ηλ
2 )(t−τ) ||∇Af(θ̂A(τ) + θAc(τ))||2

r2A(τ)
(17)

for ξ = ξ̃0 (EoM).

The proof is based on Equations (1, 9) and given in Appendix A.7. Equation (15) gives r2A(kη) =
r2A(0)e

−2ηλk (k ∈ Z≥0) at discretization; therefore, ηλ is regarded as the decay rate of rA (intrinsic
learning rate [33]). This is originally discussed in the continuous regime (SDE) [33]; however, we
find that for a better description of the discrete dynamics of GD, the decay rate needs to be modified
from ηλ to ηλ(1 + ηλ

2 ) (see the exponent of Equation (17)). This means that rA in GD decays faster
than expected from a naive continuous dynamics (GF (15) and SDE [33]). See Appendix G for
higher-order corrections.

Limiting dynamics. We next derive the limiting dynamics (t → ∞) of rA.

Corollary 5.1 (rA at equilibrium). When ξ = 0 (GF), rA collapses to zero as t → ∞. When ξ = ξ̃0

(EoM), assume that there exist two constants rA∗ ≥ 0 and c∗ ≥ 0 such that rA(t)
t→∞−−−→ rA∗ and

||∇Af(θ̂A(t) + θAc(t))|| t→∞−−−→ c∗. Then r2A∗ =
√

η
2λ+ηλ2 c∗.

The proof follows from Theorem 5.1 and is given in Appendix A.8. The non-zero counter term
successfully reproduces r2A∗ ∼

√
η/2λ c∗ [29, 34], which is originally derived in the discrete regime

(SGD), although our approach is continuous (EoM (1)). Without the counter term, we cannot explain
this behavior because GF gives rA(t)

t→∞−−−→ 0( ̸=
√
η/2λ c∗).

We next derive the limiting dynamics of angular update [34], which is designed to measure the
temporal evolution of scale-invariant networks. It is originally defined in the discrete regime:
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cos∆k := θ̂Ak · θ̂Ak+1, where θ̂Ak := 1A⊙θk

||1A⊙θk|| . That is, ∆k represents a single-step angular
change in the weight parameters of the scale-invariant layers A. In the continuous regime, we can
define cos∆(t) := θ̂A(t) · θ̂A(t+ η).

Corollary 5.2 (∆(t) at equilibrium). Let us use ξ = ξ̃0. Suppose that the assumptions in Corollary
5.1 are satisfied. The angular update at equilibrium, denoted by ∆∗, is given by cos∆∗ = 1−ηλ

1−η2λ2/2 +

O(η3), and thus, ∆∗ =
√
2ηλ+O((ηλ)3/2).

The proof is based on Corollary 5.1 and is given in Appendix A.10. EoM successfully reproduces
∆∗ ∼

√
2ηλ [34], which is originally derived in the discrete regime (SGD), although EoM is

continuous itself. On the other hand, GF cannot explain the limiting dynamics of ∆(t) because
when ξ = 0, r(t) goes to zero as t → ∞ (Equation (15)), and thus, cos∆(t) = θA(t)

rA(t) ·
θA(t+η)
rA(t+η) is

ill-defined. In summary, there are gaps between GF and GD, and our discussion above indicates that
the counter term is inevitable to describe the actual dynamics of GD.

5.2 Learning Dynamics of Translation-invariant Layers

Next, we apply EoM to translation-invariant layers. To the best of our knowledge, no study analyzes
the temporal evolution of translation-invariant layers except for [31] and [32], where only the sum of
weights is their focus, while we derive the dynamics of the whole weights. A translation-invariant
layer A is defined as a layer that is invariant under the translation transformationψ(θ, α) := θ+α1A
(α ∈ R). For example, a linear layer immediately before the softmax layer is translation-invariant. In
the following, we derive EoM and show that its theoretical prediction of decay rates dramatically
matches empirical results, indicating the importance of the counter term. In Appendix D, we
additionally discuss the differences between GF and GD in translation-invariant layers.

For convenience, we first decompose θA to two vectors (Figure 5); θA⊥ is orthogonal to ∇f(θ),
and θA∥ is orthogonal to θA⊥. Here, note that ∇f(θ) is orthogonal to 1A because of translation
invariance; in fact, differentiating both sides of f(θ + α1A) = f(θ) with respect to α and setting
α = 0, we have 1A · ∇f(θ) = 0 (see also Lemma A.7 in Appendix A.11). Formally, we define θA⊥,
θA∥, and the projection matrix P as θA⊥ := PθA = 1A·θA

dA
1A, θA∥ := (I − P )θA = θA − θA⊥,

and P := 1
dA
1A1

⊤
A, where dA is the dimension of A.

We construct the EoM for θA⊥ (the EoM for θA∥ is given in Appendix D for completeness).

Theorem 5.2 (EoM for θA⊥). EoM (1) gives θ̇A⊥(t) = −λθA⊥(t) − ηPξ(θ(t)). Specifically,
this is equivalent to θ̇A⊥(t) = −λθA⊥(t) ⇐⇒ θA⊥(t) = θA⊥(0)e

−λt for ξ = 0 (GF) and

θ̇A⊥(t) = −(λ+ ηλ2

2 )θA⊥(t) ⇐⇒ θA⊥(t) = θA⊥(0)e
−(λ+ ηλ2

2 )t for ξ = ξ̃0 (EoM).

The proof is based on Equations (1, 9) and is given in Appendix A.11. θA⊥ monotonically collapses
to zero as t → ∞ in either case of ξ = 0 or ξ ̸= 0; thus, as t increases, the dynamics is restricted
onto the subspace orthogonal to θA⊥ (Figure 5). The decay rate is corrected by the counter term from
ηλ to ηλ+ η2λ2

2 , as is also done for rA in Section 5.1. Therefore, the θA⊥ of GD decays faster than
that of GF. Figure 6 and Table 1 support our findings. In particular, Table 1 shows that the decay rates
predicted by EoM dramatically match those of GD, indicating the importance of the counter term.

Table 1: Decay rates of ||θA⊥||. The theoretical predictions by EoM (third column) dramatically
match experimental results of GD (fourth column) much better than GF (second column), indicating
the importance of the counter term. LR and WD mean learning rate and weight decay, respectively.
The colors correspond to those in Figure 6. See Section 6 for experimental settings.

(LR, WD) Theory (GF) Theory (EoM: Ours) Experiment (GD)
(10−1, 10−2) (blue) 10−3 1.0005× 10−3 1.0005003484995967× 10−3

(10−1, 10−3) (orange) 10−4 1.00005× 10−4 1.0000500182363355× 10−4

(10−2, 10−2) (green) 10−4 1.00005× 10−4 1.0000499809795858× 10−4

(10−2, 10−3) (red) 10−5 1.000005× 10−5 1.0000049776814671× 10−5

(10−3, 10−2) (purple) 10−5 1.000005× 10−5 1.0000050475312426× 10−5

(10−3, 10−3) (yellow) 10−6 1.0000005× 10−6 1.0000005475009833× 10−6
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Transla�on-invariant layer

Decay

Decay

Figure 5: Learning dynamics of
translation-invariant layer. Here,
θA = (θA1, θA2)

⊤. θA⊥ decays to 0
(also shown in Figure 6). The decay of
GD is faster than that of GF (Theorem
5.2). As t increases, the dynamics is re-
stricted onto the subspace orthogonal to
θA⊥.

||
𝜽
𝐴
⊥
||

Figure 6: Decay of ||θA⊥|| (GD). ||θA⊥|| monotonically de-
cays to zero, as suggested by Theorem 5.2. A is translation-
invariant layer. LR and WD mean learning rate and weight
decay, respectively. Note that the orange and green curves
(LR1e-1, WD1e-3 and LR1e-2, WD1e-2) and the red and
purple curves (LR1e-2, WD1e-3 and LR1e-3, WD1e-2) to-
tally overlap. The decay rates of all curves are given in Table
1. See Section 6 for experimental settings.

6 Experiment

We explain our experimental settings for Figures 2–6 and Table 1. Our network consists of a first
linear layer, swish activation [48], second linear layer, batch normalization [49], third linear layer,
and last softmax layer. Cross-entropy is used for the loss function. We note that the second linear
layer is scale-invariant, and the last linear layer is translation invariant. The batch normalization
uses fixed statistics to keep the scale invariance of the second linear layer. Swish is chosen to ensure
differentiability. None of the linear layers have a bias term. The dataset is the training set of MNIST
[50], and thus, the batch size is 60,000. Gradient descent is used for the optimizer. We use 64-bits
of precision for all computations. To simulate GF and EoM, we use a sufficiently small learning
rate (10−5). The results are produced from only one random seed to save on computational costs,
but we confirm that different random seeds lead to similar results. More detailed information is
given in Appendix E and our code. In all experiments, we use ξ = ξ̃0 for EoM. We do not include
higher-order counter terms, such as ξ̃1, because they require third and higher order derivatives of the
loss function and are thus extremely memory-consuming. We could circumvent this issue, e.g., by
applying Hessian-free optimization [51], but this is out of our current scope.

7 Conclusion and Limitations

In this work, to fill the critical gap between GF and GD, we add a counter term to GF and obtain
EoM, a continuous differential equation that precisely describes the discrete learning dynamics of
GD. To show to what extent GF and EoM are precise in describing GD’s discrete dynamics, we
derive the leading order of discretization error, as is often missed in the literature on the continuous
approximation of discrete GD algorithms. We further derive a sufficient condition for learning
rates for the discretization error to be small. We apply our theory to two specific cases, scale- and
translation-invariant layers, indicating the importance of the counter term for a better description of
the discrete learning dynamics of GD. Our experimental results support our theoretical findings.

Throughout this paper, we focus only on GD and GF to expose the ideas simply, and our study does
not include stochasticity (e.g., SGD and SDE), acceleration methods (e.g., momentum and Nesterov
[52]), or adaptive optimizers (e.g., Adam [53]). Nonetheless, they could be combined with our
analysis, for example, using error analysis of SDEs [23, 24], continuous-time accelerated methods
[7, 54, 9, 13, 14, 55, 16], and continuous-time Adam [56]. See Appendix G for more discussions.
Therefore, our study could be extended to import continuous analysis to the discrete analysis of
various GD algorithms. In this sense, our work bridges discrete and continuous analyses of GD
algorithms.
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