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Abstract

A central problem in biology is to understand how organisms evolve and adapt1

to their environment by acquiring variations in the observable characteristics or2

traits of species across the tree of life. With the growing availability of large-scale3

image repositories in biology and recent advances in generative modeling, there4

is an opportunity to accelerate the discovery of evolutionary traits automatically5

from images. Toward this goal, we introduce Phylo-Diffusion, a novel framework6

for conditioning diffusion models with phylogenetic knowledge represented in the7

form of HIERarchical Embeddings (HIER-Embeds). We also propose two new8

experiments for perturbing the embedding space of Phylo-Diffusion: trait masking9

and trait swapping, inspired by counterpart experiments of gene knockout and10

gene editing/swapping. Our work represents a novel methodological advance in11

generative modeling to structure the embedding space of diffusion models using12

tree-based knowledge. Our work also opens a new chapter of research in evolution-13

ary biology by using generative models to visualize evolutionary changes directly14

from images. We empirically demonstrate the usefulness of Phylo-Diffusion in15

capturing meaningful trait variations for fishes and birds, revealing novel insights16

about the biological mechanisms of their evolution.17

1 Introduction18

Given the astonishing diversity of life forms on the planet, an important end goal in biology is to19

understand how organisms evolve and adapt to their environment by acquiring variations in their20

observable characteristics or traits (e.g., beak color, stripe pattern, and fin curvature) over millions21

of years in the process of evolution. Our knowledge of species evolution is commonly represented22

in a graphical form as the “tree of life” (also referred to as the phylogenetic tree [1], see Figure 1),23

illustrating the evolutionary history of species (leaf nodes) and their common ancestors (internal24

nodes). Discovering traits that are heritable across the tree of life, termed evolutionary traits, is25

important for a variety of biological tasks such as tracing the evolutionary timing of trait variations26

common to a group of species and analyzing their genetic underpinnings through gene-knockout or27

gene-editing/swapping (e.g., CRISPR [2]) experiments. However, quantifying trait variations across28

large groups of species is labor-intensive and time-consuming, as it relies on expert visual attention29

and subjective definitions [3], hindering rapid scientific advancement [4].30

The growing deluge of large-scale image repositories in biology [5, 6, 7] presents a unique opportunity31

for machine learning (ML) methods to accelerate the discovery of evolutionary traits automatically32

from images. In particular, with recent developments in generative modeling such as latent diffusion33

models (LDMs) [8], we are witnessing rapid improvements in our ability to control the generation34

of high-quality images based on input conditioning of text or image prompts. This is facilitating35

breakthroughs in a variety of commercial use-cases of computer vision where we can analyze how36

changes in the input prompts affect variations in the generated images [9, 10, 11]. We ask the question:37
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Figure 1: Overview of Phylo-Diffusion framework. Every species in the tree of life (phylogenetic tree) is
encoded to a HIERarchical Embedding (HIER-Embed) comprising of four vectors (one for each phylogenetic
level), which is used to condition a latent diffusion model to generate synthetic images of the species. By
structuring the embedding space with phylogenetic knowledge, Phylo-Diffusion enables visualization of changes
in the evolutionary traits of a species (circled pink) upon perturbing its embedding.

can we leverage LDMs to control the generation of biological images of organisms conditioned38

on the position of a species in the tree of life? In other words, can we encode the structure of39

evolutionary relationships among species and their ancestors as input conditions in LDMs? This can40

help us analyze trait variations in generated images across different branches in the phylogenetic tree,41

revealing novel insights into the biological mechanisms of species evolution.42

Toward this goal, we introduce Phylo-Diffusion, a novel framework for discovering evolutionary traits43

of species from images by conditioning diffusion models with phylogenetic knowledge (see Figure 1).44

One of the core innovations of Phylo-Diffusion is a novel HIERarchical Embedding (HIER-Embed)45

strategy that encodes evolutionary information of every species as a sequence of four vectors, one for46

each discretized level of ancestry in the tree of life (covering different evolutionary periods). We also47

propose two novel experiments for analyzing evolutionary traits by perturbing the embedding space48

of Phylo-Diffusion and observing changes in the features of generated images, akin to biological49

experiments involving genetic perturbations. First, we introduce Trait Masking, where one or more50

levels of information in HIER-Embed are masked out with noise to study the disappearance of traits51

inherited by species at those levels. This is inspired by gene knockout experiments [12], wherein52

one or more genes are deactivated or “knocked out” to investigate the gene’s function, particularly53

its impact on the traits of the organism. Second, we introduce Trait Swapping, where a certain54

level of HIER-Embed in a reference species is swapped with the embedding of a sibling node at the55

same level, similar in spirit to gene editing/swapping experiments made possible by the CRISPR56

technology [2]. The goal of trait swapping is to visualize trait differences at every branching point in57

the tree of life that results in the diversification of species during evolution.58

Here are the main contributions of this paper. Our work represents a novel methodological advance59

in the emerging field of knowledge-guided machine learning (KGML) [13, 14, 15] to structure the60

embedding space of generative models using tree-based knowledge. Our work also opens a new61

chapter of research in evolutionary biology by using generative models to visualize evolutionary62

changes directly from images, which can serve a variety of biological use-cases. For example, Phylo-63

Diffusion can help biologists automate the discovery of synapomorphies, which are distinctive traits64

that emerge on specific evolutionary branches and are crucial for systematics and classification [16].65

Our proposed experiments of trait masking and swapping can also be viewed as novel image-based66

counterparts to genetic experiments, which traditionally take years. Our work thus enables biologists67

to rapidly analyze the impacts of genetic perturbations on particular branches of the phylogenetic68

tree–a grand challenge in developmental biology [17, 18]. We empirically demonstrate the usefulness69

of Phylo-Diffusion in capturing meaningful trait changes upon perturbing its embedding for fishes70

and birds, generating novel hypotheses of their evolution.71

2 Related Works and Background72

Interpretable ML: Discovering evolutionary traits from images involves identifying and interpret-73

ing fine-grained features in images that define and differentiate species. Several methodologies have74

recently been developed in the field of interpretable ML for localizing image regions that contain75
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discriminatory information of classes [19, 20, 21]. Despite their effectiveness and applicability across76

a wide range of applications, these methods are not directly suited for our target application of discov-77

ering evolutionary traits for two primary reasons. First, they are not designed to incorporate structured78

biological knowledge (e.g., knowledge of tree-of-life) in the learning of interpretable features, and79

thus are unable to provide biologically meaningful explanations of feature differences across groups80

of species in the phylogenetic tree, which is key to discovering evolutionary traits. Second, since81

most methods in interpretable ML are designed for classification tasks, it is non-trivial to integrate82

them into generative modeling frameworks to produce synthetic images with controlled perturbations83

in the embedding space, similar to gene knockout and gene editing/swapping experiments84

Phylogeny-guided Neural Networks (Phylo-NN): A recent work closely aligned with our goal of85

discovering evolutionary traits directly from images is Phylo-NN [22]. Phylo-NN uses an encoder-86

decoder architecture to represent images of organisms as structured sequences of feature vectors87

termed “Imageomes”, that capture evolutionary information from varying levels of ancestry in the88

phylogenetic tree. While Phylo-NN shares several similarities with our proposed framework, Phylo-89

Diffusion, in terms of motivations and problem formulations, there are also prominent differences.90

The primary goal of Phylo-NN is specimen-level image reconstruction, whereas Phylo-Diffusion91

considers a different goal of controlling image generation at the species level. As a result, Phylo-NN92

learns a unique Imageome sequence for every organism, enabling us to study the variability in93

individuals from the same species. On the other hand, Phylo-Diffusion learns a unique embedding94

for every species and ancestor node in the tree of life, which serves as input conditions to generate95

distributions of synthetic images. Phylo-Diffusion thus uses hard constraints to ensure that all species96

with a common ancestor learn the exact same embeddings at their shared ancestry levels, making97

it easy to analyze trait commonalities and variations. Additionally, Phylo-Diffusion allows for98

perturbations in embedding space of generative models in biologically meaningful ways inspired by99

gene knockout and gene editing/swapping experiments, going beyond the capabilities of Phylo-NN.100

Background on Latent Diffusion Models (LDMs): Diffusion Models [23] learn a target distribu-101

tion p(x) by incrementally transforming a noisy sample x generated from a Gaussian distribution102

N (0, I) into one that is more likely to be generated from p(x) over a series of timesteps T . While103

early frameworks of diffusion models like DDPM [23], DDIM [24] and ADM [25] suffered from high104

computational costs and long training/inference times, Latent Diffusion Models (LDMs) [8] are able105

to address these concerns to a large extent by operating in a compressed latent space, significantly106

accelerating their ability to generate high-resolution images. The basic idea of LDMs is to train a107

separate auto-encoder to map an input image x into its latent representation z0 = E(x) using encoder108

E , which when fed to decoder D produces a reconstruction of the original image, x̃ = D(z̃0). LDMs109

employ diffusion models in the compressed latent space z by modeling the conditional probability110

of the reverse diffusion process as z̃t−1 ∼ pθ(z̃t−1|z̃t, y, t), where y is the input condition. This is111

implemented using a conditional denoising U-Net backbone ϵθ(zt, y, t) with learnable parameters θ.112

LDMs also pre-process y using a domain-specific encoder E = τϕ(y) trained alongside the U-Net113

backbone ϵθ to project y into the intermediate layers of ϵθ using cross-attention mechanisms. The114

learnable parameters of LDMs are trained by minimizing the following loss function:115

L(θ, ϕ) = Ezt,y,t,ϵ∼N (0,I)

[
∥ϵ̂θ(zt, τϕ(y), t)− ϵ∥2

]
(1)

3 Proposed Framework of Phylo-Diffusion116

3.1 Hierarchical Embedding (HIER-Embed)117

Phylo-Diffusion uses a novel hierarchical embedding (HIER-Embed) strategy to structure the embed-118

ding E of every species node using phylogenetic knowledge. As a first step, we consider a discretized119

version of the phylogenetic tree involving four ancestral levels, level-1 to level-4, where every level120

corresponds to a different range of time in the process of evolution. (See Appendix B for a detailed121

characterization of the four ancestry levels for fish species used in this study.) Given a set of n species,122

S = {S1, S2, S3, ..., Sn}, let us represent the position of species Si ∈ S in the phylogenetic tree at123

the four ancestry levels as {S1
i , S

2
i , S

3
i , S

4
i }, where Sl

i represents the ancestor node of Si at level-l.124

Hence, if two species Si and Sj share common ancestors till level-k, then Sl
i = Sl

j for l = 1 to k.125

We define the level-l embedding of species Si as:126

3



E1 E2 E3 E4

E1 E2 E3 X

E1 E2 X X

E1 X X X

Level 4

Level 3

Level 2

Level 1

(a) Trait Masking

E1 E2 E3 E4

Level 4

Level 3

Level 2

(b) Trait Swapping

Figure 2: Schematics of the two proposed experiments for discovering evolutionary traits using Phylo-Diffusion.

El
i = Embed(Sl

i) ∈ Rd′
, (2)

where Embed(.) is a learnable embedding layer that provides a simple way to store and look-up the127

trained embeddings of every node. The combined hierarchical embedding (HIER-Embed) of species128

Si is obtained by concatenating its embeddings across all four levels as follows:129

Ei = τ(Si) = Concat[ E1
i , E

2
i , E

3
i , E

4
i ] ∈ Rd, (3)

where Concat[.] denotes the concatenation operation and y = Si is the input condition used in130

LDMs. Note that different segments of Ei capture information about the traits of Si acquired at131

different time periods of evolution. In particular, we expect the embedding vectors learned at earlier132

ancestry levels of Ei to capture evolutionary traits of Si common to a broader group of species. On133

the other hand, embeddings learned at later ancestry levels are expected to be more specific to Si. In134

the following, we present two novel experiments for studying evolutionary traits by perturbing the135

embedding space learned by HIER-Embed.136

3.2 Proposed Experiment of Trait Masking137

The goal of this experiment is to verify if HIER-Embed is indeed able to capture hierarchical138

information in its level-embeddings such that masking information at lower levels of the embedding139

only erases traits acquired at later stages of evolution while retaining trait variations learned at earlier140

levels. In other words, we want to verify that the embeddings learned by HIER-Embed at level-l141

capture information common to all descendant species that are part of the same sub-tree at level-l.142

Figure 2a represents a schematic diagram of the process followed for trait masking. We start with the143

combined embedding containing information at all four levels, [E1,E2,E3,E4]. To examine what144

is learned at the last level of this embedding, we mask it out by substituting it with Gaussian noise145

defined as znoise ∼ N (0, I) ∈ Rd′
. This results in the perturbed embedding [E1,E2,E3, znoise],146

effectively eliminating the species-level (or E4) information. This masking should prompt the model147

to generate images that reflect only the information learned up to the third level while obscuring148

species-level details. We can extend this experiment by incrementally introducing noise at later149

levels, e.g., at both levels 3 & 4, and so on.150

Expected Changes in Probability Distributions: Note that when all four level embeddings are151

used, i.e. [E1,E2,E3,E4], the generated images are expected to be classified to a unique species152

Si. In terms of probability distributions, the probability of predicting species Si should be distinctly153

higher than the probability of predicting any other species. However, when we mask out certain154

level embeddings (i.e., mask out information at level 4), we are intentionally removing information155

necessary to distinguish species Si from its siblings species that are part of the same sub-tree (e.g.,156

those that share a common ancestor at level 3). For this reason, we expect the generated images157

to show higher probabilities of being classified as any of the descendant species of the sub-tree,158

compared to the other species that are outside of the sub-tree. To quantify this behavior, we can159

measure the change in probability distributions for species within and outside the sub-tree after160

masking out an internal node. Since we expect probabilities to increase only for species within the161

sub-tree, the mean increase in probabilities for within-subtree species should be higher than that for162

out-of-subtree species, as empirically demonstrated later in the Results Section.163
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Figure 3: Comparing the quality of synthetic images generated by different conditioning mechanisms in LDMs.
Every row corresponds to a different species and we show two samples per species for every conditioning
mechanism. The order of species from top to bottom is Cyprinus carpio, Notropis hudsonius, Lepomis auritus,
Noturus exilis, and Gambusia affinis.

3.3 Proposed Experiment of Trait Swapping164

In trait swapping, we substitute the level-l embedding of a source species with the level-l embedding165

of a sibling subtree at an equivalent level. Figure 2b shows a schematic representation of the trait166

swapping experiment where the level-3 embedding (green) of a source species is replaced with its167

sibling level-3 embedding (yellow). Images generated for this perturbed embedding are expected168

to retain all of the traits of the source species except the swapped embedding, which should borrow169

traits from the sub-tree rooted at the sibling node. Visualizing trait differences in the generated170

images before and after trait swapping can help us understand the evolutionary traits that branched at171

a certain level (e.g., those leading to the diversification of green and yellow sub-trees at level-3 in the172

example phylogeny of Figure 2b). In terms of the probability distribution, similar to trait masking, we173

expect to see a drop in the probabilities of the source species (pink), and simultaneously, we expect an174

increase in probabilities for all the descendent species in subtree at node yellow, i.e. red and purple.175

4 Evaluation Setup176

Datasets: We use a collection of fish images as our primary dataset for evaluation. This dataset was177

procured from the Great Lakes Invasives Network (GLIN) Project [26], comprising a total of 5434178

images spanning 38 fish species. We obtained the phylogenetic tree of fish species from opentree179

[27] python package (see Appendix B for details on the phylogenetic tree). The raw museum images180

were pre-processed and resized to 256× 256 pixels and the dataset was partitioned into training and181

validation sets, following a 75-25 split. We provide additional results on the CUB-200-2011 dataset182

[28] of bird species in Appendix H.183

Baselines of Conditioning Mechanisms: (1) Class Conditional: One of the simplest ways of184

encoding information about a species class is to map class labels y ∈ [1, Nc] to a fixed d-dimensional185

embedding vector e ∈ Rd using a trainable embedding layer. Note that the resulting embeddings186

are not designed to contain any hierarchical information in contrast to HIER-Embed. (2) Scientific187

Name Encoding: The scientific name of a species contains valuable biological information typically188

comprising of a combination of the genus name and species name. Since species that share their genus189

name are likely to contain common phylogenetic traits, we use them as a baseline for conditioning190

LDMs for discovering evolutionary traits. Specifically, we employ a pre-trained frozen CLIP model191

[29] to encode the scientific names of species into fixed d-dimensional embeddings.192

Training details: We used d′ = 128 as the embedding dimension for each level of HIER-Embed,193

which when concatenated across the four levels produces the combined hierarchical embedding of194

d = 512 dimensions. Phylo-Diffusion uses this d-dimensional embedding to condition LDMs through195

cross-attention in denoising the U-Net backbone and train LDMs without classifier-free guidance.196

We used VQGAN [30] as the backbone encoder-decoder to achieve the latent representations desired197

for LDMs with a downsampling factor of 4. All the models with different encoders are trained198

for 400k iterations, employing the best model checkpoint if convergence occurs early. Additional199

hyperparameters, such as learning rate, batch size, and U-Net architecture, are detailed in Appendix A.200

5



Table 1: Quantitive comparison of generated images sampled using DDIM [24] (100 samples/class).
Model Type Method FID ↓ IS ↑ Prec. ↑ Recall ↑
GAN Phylo-NN 28.08 2.35 0.625 0.084
Diffusion Class Conditional 11.46 2.47 0.679 0.359
Diffusion Scientific Name 11.76 2.43 0.683 0.332
Diffusion Phylo-Diffusion (ours) 11.38 2.53 0.654 0.367

5 Results201

5.1 Quality of Generated Images202

Table 1 compares the quality of generated images of baselines using the metrics of Fréchet Inception203

Distance (FID) score, Inception Score (IS), and Precision, Recall calculated in the feature space as204

proposed in [31]. Our results show that Phylo-Diffusion is at par with state-of-the-art generative205

models, achieving an FID of 11.38 compared to LDM’s 11.46. We show a sample of generated206

images in Figure 3, with additional images provided in Appendix F. We also show the robustness of207

Phylo-Diffusion’s results with varying embedding dimensions and phylogenetic levels in Appendix G.208

5.2 Classification Accuracy209

Table 2: Classification F1-Score on the 100 samples
generated per class. The base classifier has an accuracy
of 85% on the test set.

Method F1-Score (%) ↑
Phylo-NN 47.37
Class Conditional 81.99
Scientific Name 70.16
Phylo-Diffusion (ours) 82.21

We used a separate model for species classi-210

fication, specifically a ResNet-18 model [32]211

trained using the same train/val split as Phylo-212

Diffusion. The primary objective behind build-213

ing this classifier is to verify if images gener-214

ated by Phylo-Diffusion contain sufficient dis-215

criminatory information to be classified as their216

correct species classes. Table 2 compares the217

classification F1-scores over 100 samples gen-218

erated by baseline conditioning schemes. We219

can see that the synthetic images generated by220

Phylo-Diffusion achieve the highest F1 score (82.21%), which is quite close to the F1 score of221

the base classifier on the original test images (85%). We present additional results showing the222

generalizability of Phylo-Diffusion to unseen species in Appendix G.223

5.3 Matching Embedding Distances with Phylogenetic Distances224

We investigate the quality of embeddings produced by baseline methods by comparing distances in225

the embedding space with the ground-truth (GT) phylogenetic distances computed from the tree of226

life, as illustrated in Figure 4. Ideally, we expect distances in embedding space of species pairs to be227

reflective of their phylogenetic distances. For Class Conditional, we can see that the distance matrix228

does not show any alignment with the GT phylogenetic distance matrix. In the case of Scientific229

Name Encoding, distance matrix exhibits notable similarities to the phylogenetic distances, thanks to230

the hierarchical nature of information contained in scientific names (i.e., genus & species). However,231

one limitation of this encoding is its inability to capture inter-genus similarities or differences. In232

contrast, HIER-Embed shows a distance matrix that closely aligns with the GT phylogenetic distance233

matrix, validating its ability to preserve evolutionary distances among species in its embedding space.234

5.4 Trait Masking Results235

To obtain classification probabilities or logits associated with generated images, we employ the236

classifier detailed in Section 5.2. For masked embeddings of subtrees at level 3, defined as237

[E1,E2,E3, znoise], we analyze the logits of generated images and compare them with those238

generated without masking. Figure 5 demonstrates that for a specific subtree, in this case Lepomis,239

logits for species within the subtree are higher compared to those for species outside it. This outcome240

aligns with the expectation that Phylo-Diffusion, when provided with information up to Level 3,241

can capture overarching characteristics of all species within the given subtree. Additionally, Fig-242

ure 5 presents probability distributions for species within the Lepomis subtree when the full set243
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(a) GT Phylogeny (b) Class Conditional (c) Scientific Name (d) HIER-Embed

Figure 4: Comparing Cosine distances in the embedding space of species for varying conditioning mechanisms.

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 5: Left: class probability distributions of images generated by using embeddings at all four levels for
two species Lepomis gulosus and Lepomis macrochirus (shown in green) that are part of the same sub-tree till
level 3. Right: class probability distributions of images generated by masking level 4 (descendant species that
have common ancestry till level 3 are highlighted in green)

of hierarchical encodings [E1,E2,E3,E4] are provided. It demonstrates that the probabilities are244

significantly higher for targeted class, as intended for image generation. After masking, we observe245

that generated images are very similar and capture common features of the Lepomis genus. For all246

our calculations and plots, we generate 100 images for each subtree and node. Appendix C contains247

additional histograms that detail logit distributions across all different subtrees at each level, offering248

comprehensive insights into hoe the model learns the hierarchical structures across different levels.249

Quantitative Evaluation of Probability Distrubtions: To quantitatively evaluate the ability250

of Phylo-Diffusion to capture hierarchical information and show desired changes in probability251

distributions after masking, we compute the following metrics. Let us denote the set of all species252

in the data as S and for a given sub-tree at an internal node i of level l, let us denote the subset of253

descendant species as Sl
i = {S1, S2, . . . , Sn}. We first compute the reference probabilities Pref of254

every species before masking (i.e., by using all four level embeddings). Let us denote the probability255

of predicting a generated image using all four embeddings of a descendant species Sj ∈ Sl
i into256

species class Sk as PSj
(Sk). The reference probability of a species Sk can then be given as:257

Pref (Sk) =

{
1

|Sl
i |−1

∑
Sj∈Sl

i\Sk
PSj

(Sk), if Sk ∈ Sl
i ,

1
|Sl

i |
∑

Sj∈Sl
i
PSj (Sk), if Sk ̸∈ Sl

i .
(4)

Note that when Sk is part of the sub-tree (Sk ∈ Sl
i ), we compute Pref (Sk) by averaging over |Sl

i |− 1258

probability values since we exclude the case when Sk is used to generate images. And when Sk is259

outside of the sub-tree (Sk ̸∈ Sl
i), we average over all |Sl

i | probability values. Given these reference260

probabilities values before masking, we can compute the change in probability of predicting species261

Sk after masking as Pdiff (Sk) = Pmask(Sk) − Pref (Sk), where Pmask(Sk) is the probability of262

predicting a generated image after masking to Sk. We expect Pdiff to be larger for descendant species263

Sk ∈ Sl
i compared to species that are outside the sub-tree because of the dispersion of probabilities in264

a sub-tree as a consequence of masking. We thus compute the average Pdiff for species that belong265

to subtree Sl
i as P sub

diff (i, l) and species that are outside the subtree Sl
i as P out

diff (i, l).266

Figure 6 shows the box plot of P sub
diff and P out

diff across internal nodes at levels 2 and 3. We observe267

that species within the subtree exhibit a more pronounced increase in probabilities compared to species268
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Figure 6: Box plot for mean of difference in probabilities for species within subtree and out of subtree for
level-3 & level-2.

outside the subtree, aligning with our expectations. Notably, this trend is consistently observed across269

both levels 2 and 3. More details of class-wise probability distribution shifts for each level are270

provided in Appendix C. The outcomes of these experiments affirm that Phylo-Diffusion effectively271

identifies unique features at Levels 2 and 3, and captures shared features or traits of any chosen272

subtree at the internal nodes of the phylogeny.273

5.5 Trait Swapping Results274

Figure 7 shows examples of trait swapping results enabled by Phylo-Diffusion. For the first example275

(first row of Figure 7a), we swap the level-2 embedding of source species Noturus exilis with level-2276

embedding of its sibling group Notropis/ Carassius. The goal here is to discover traits of Noturus277

exilis inherited at level-2 that differentiate it from other groups of species that branched out at this278

point of time in evolution. We can see that the generated images of the perturbed embedding (center)279

exhibit the absence of barbels (whiskers) highlighted in purple, while the caudal (or tail) fin is280

beginning to fork (or split), a trait adopted from Notropis (right). In contrast, other fins such as the281

dorsal, pelvic, and anal fins highlighted in green remain similar to those of the source species, Noturus282

exilis (left). This suggests that at level-2, the Notropis and Noturus species diverged by developing283

differences in two distinct traits, barbels and forked caudal fins while keeping other traits intact.284

For the second example (Figure 7a, row 2), we swap level-2 information of Gambusia affinis (left)285

with Esox americanus (right). The generated images of the perturbed embedding (center) exhibit a286

more pointed head highlighted in purple, and a slimmer body shape resembling Esox americanus.287

Notably, the perturbed species retains discoloration at the bottom from the source species highlighted288

in green. Figure 7b presents probability distributions (or logits) of Gambusia affinis before and after289

trait swapping using the classifier detailed in Section 5.2. We observe a slight decrease in logits for290

Gambusia affinis and an increase in logits for Esox americanus, consistent with our expectations. In291

the third row of Figure 7a, we swap level-3 information of Lepomis gulosus (left) with that of Morone292

genus (right). The resulting images from the perturbed embedding (center) capture the horizontal293

line pattern characteristic of Morone genus, and the dorsal fin highlighted in purple begins to split.294

Note that our experiments are most effective at levels near the species nodes, specifically at levels 2295

& 3, since phylogenetic signal is known to diminish as we move toward the root of the tree [33, 34].296

Additional visualizations for trait swapping are provided in Appendix D.297

Comparisions with Phylo-NN: Figure 8 compares trait swapping results of Phylo-Diffusion and298

Phylo-NN for the same set of example species. Figure 8a shows trait swapping at level-3 for the299

source species of Lepomis gulosus (top) and target sub-tree of the Morone genus (bottom). In300

Phylo-NN, images generated by perturbing the Imageome sequences appear blurry (red circle), while301

Phylo-Diffusion effectively captures the splitting of dorsal fin (purple circle) and the horizontal stripe302

pattern of the Morone genus, while maintaining the fin structure of Lepomis gulosus (green circle).303

Similarly, Figure 8b compares trait swapping for Noturus miurus (top) with the target sub-tree of304

Notropis genus (bottom) at level-2. For Phylo-NN, the perturbed images are almost identical to the305

source species. However, Phylo-Diffusion shows visible trait differences such as the absence of306

barbels and the caudal (or tail) fin beginning to fork or split (purple circle), which are traits picked307

from the target sub-tree of Notropis genus. Note that we had considered the same target sub-tree308

in Figure 7a row 1 and observed similar trait differences in the generated images after perturbation,309

further validating the ability of Phylo-Diffusion to discover consistent evolutionary traits. We provide310

additional results comparing Phylo-Diffusion and Phylo-NN trait swapping results in Appendix E.311
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Generated images 
without perturbation 

(source)

Generated images 
after perturbation

Sample Images 
of species from 

swapped subtree

(a) Examples of traits swapping for species at level-2 (first two
rows) and level-3 (last row). The order of species from top to
bottom is Noturus exilis swapped with Notropis and Gambusia
affinis swapped with Esox americanus. The third row shows trait
swapping at level-3 for Lepomis gulosus swapped with Morone.

Before Perturbations After Perturbations

(b) For Row 2 of Figure 7a, we show that the probability distribution of
Gambusia affinis decreases after the swapping traits at level-2, with an
increase in the probability distribution of Esox americanus.

Figure 7: Examples of trait swapping results.

(a) Swapping L3 traits: Lepomis gulosus with
Morone

PhyloNN Phylo-Diffusion

Generated images 
without perturbation 

(source)

Sample Images 
of species from 

swapped subtree

Generated images 
after perturbation

(b) Swapping L2 traits: Notorus mirurus with
Notropis

Figure 8: Comparing Phylo-NN with Phylo-Diffusion for examples of trait swapping.

6 Conclusions and Future Work312

In this work, we introduced Phylo-Diffusion, a novel framework for discovering evolutionary traits313

from images by structuring the embedding space of diffusion models using tree-based knowledge. In314

the future, our approach can be extended to work on other applications involving image data linked315

with phylogenies or pedigrees. Our work also has limitations, as the current method is limited to316

working on discretized trees with a fixed number of levels. Future work can focus on discovering317

evolutionary traits at every internal node of the phylogenetic tree at varying levels. Future works318

can also attempt to capture convergent changes in evolution, i.e., changes that occur repeatedly in319

different branches of the tree, and perform ancestral state reconstruction with uncertainty estimates.320
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Supplementary Materials417

Here is a summary of additional details and experiments included in the Appendices.418

1. Appendix A: Hyperparameter Settings and Training Details419

2. Appendix B: Details about Phylogenetic Tree420

3. Appendix C: Additional Details about Trait Masking Experiments421

4. Appendix D: Additional Examples for Trait Swapping Experiments422

5. Appendix E: Additional Comparisons with PhyloNN423

6. Appendix F: Additional Samples of Generated Images424

7. Appendix G: Ablation Results425

8. Appendix H: CUB Dataset Results426

A Hyperparameter Settings and Training Details427

Table 3 lists all the hyperparameters for the models trained. We used cross-attention as the condi-428

tioning mechanism for all the models and all the models were trained from scratch. At the inference429

stage, we used DDIM [24]sampling with 200 steps. For computing metrics like FID, IS, , we use430

ADM’s [25] TensorFlow evaluation script.431

Table 3: Hyperparameter settings of the baselines and Phylo-Diffusion.
Model Class Conditional Scientific Name Phylo-Diffusion

z-shape 64 × 64 × 3 64 × 64 × 3 64 × 64 × 3
Diffusion Steps 1000 1000 1000
Noise Schedule linear linear linear
Model Size 469M 902M 469M
Channels 224 224 224
Depth 2 2 2
Channel Multiplier 1,2,3,4 1,2,3,4 1,2,3,4
Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8
Number of Heads 32 32 32
Dropout - - -
Batch Size 8 8 8
Iterations 400k 400k 400k
Learning Rate 4e-5 4e-5 4e-5
Scale 1 1 1
Embedding Dimension 1 x 512 77 x 768 1 x 512
Transformers Depth 1 1 1

All diffusion models require about 7 days to train on a single A100 GPU for both bird and fish datasets.432

Inference throughput is 0.9 samples/sec using DDIM with 200 steps computed over generating 100433

images per class. We do not have any additional overheads in training and inference time compared434

to LDMs.435

B Details about Phylogenetic Tree436

Figure 9 shows the phylogeny tree for all the species in the fish dataset along with the information of437

the four discrete levels used in our study (marked by different colored circles). Table 4 and 5 list out438

all the groupings (subtrees) made after discretizing the tree into four levels where the fourth level is439

the species itself.440
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Figure 9: Phylogeny tree for fishes for all 38 species. Filled circles show nodes of the subtrees defined
at each of the four levels after discretization.

C Additional Details about Trait Masking Experiments441

C.0.1 Additional Visualizations of Changes in Probability Distributions after Masking:442

Figure 10, 11, 12, 13 and 14 show additional examples of changes in probability distributions when443

level-4 information is replaced with noise. In each figure, the first two plots display probability distri-444

butions (or logits) of images generated using embeddings from all four levels, i.e. [E1,E2,E3,E4],445

of two representative species sharing a common ancestry up to level-3 (highlighted in green). We446

show that the logits are higher for the targeted species as expected. The third plot logits after masking447

level-4 embeddings, leading to a dispersion of probabilities across all descendant species within the448

subtree up to level-3 (highlighted in green). The only exception is Figure 13, where there is some449

skewness in the logits of descendant species, which is likely due to the data imbalance across classes450

at higher levels of the tree and also due to biases in the classifier (classifier test accuracy is 85% as re-451

ported in sec:classifier). In this case, the classifier sometimes misclassifies Notropis boops as Notropis452

blennius in the first plot and Notropis dorsails as Notropis buccatus in the second plot. Consequently,453

the third plot for the Notropis subtree shows a higher probability for Notropis blennius. Similarly,454

Figure 15, 16 and 17 provide examples of trait masking where both Level 3 and 4 are replaced with455

noise, i.e. [E1,E2, znoise, znoise]. We observe a similar trend in the dispersion of probabilities456

across all descendant species within the same subtree at level-2. In all trait masking visualizations,457
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Table 4: Phylogenetic groupings of fish species included in this study at different ancestry levels.
Level Node at level Species groupings

3 Node 0 Alosa chrysochloris

Node 1 Carassius auratus, Cyprinus carpi

Node 2 Esox americanus

Node 3 Gambusia affinis

Node 4 Lepisosteus osseus, Lepisosteus platostomus

Node 5 Lepomis auritus, Lepomis cyanellus, Lepomis gibbosus, Lepomis gulosus,
Lepomis humilis, Lepomis macrochirus, Lepomis megalotis, Lepomis
microlophus

Node 6 Morone chrysops, Morone mississippiensis

Node 7 Notropis atherinoides, Notropis blennius, Notropis boops, Notropis bucca-
tus, Notropis buchanani, Notropis dorsalis, Notropis hudsonius, Notropis
leuciodus, Notropis nubilus, Notropis percobromus, Notropis stramineus,
Notropis telescopus, Notropis texanus, Notropis volucellus, Notropis wick-
liffi, Phenacobius mirabilis

Node 8 Noturus exilis, Noturus flavus, Noturus gyrinus, Noturus miurus, Noturus
nocturnus

2 Node 0 Alosa chrysochloris

Node 1 Carassius auratus, Cyprinus carpio, Notropis atherinoides, Notropis
blennius, Notropis boops, Notropis buccatus, Notropis buchanani,
Notropis dorsalis, Notropis hudsonius, Notropis leuciodus, Notropis nu-
bilus, Notropis percobromus, Notropis stramineus, Notropis telescopus,
Notropis texanus, Notropis volucellus, Notropis wickliffi, Phenacobius
mirabilis

Node 2 Esox americanus

Node 3 Gambusia affinis, Lepomis auritus, Lepomis cyanellus, Lepomis gibbosus,
Lepomis gulosus, Lepomis humilis, Lepomis macrochirus, Lepomis mega-
lotis, Lepomis microlophus, Morone chrysops, Morone mississippiensis

Node 4 Lepisosteus osseus, Lepisosteus platostomus

Node 5 Noturus exilis, Noturus flavus, Noturus gyrinus, Noturus miurus, Noturus
nocturnus

we consistently observe that logits of generated images of species within the subtree (highlighted in458

green) are higher than for species outside the subtree. This demonstrates Phylo-Diffusion’s ability to459

effectively capture hierarchical information at various levels of the phylogenetic tree.460
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Table 5: Phylogenetic groupings of species included in this study at different ancestry levels (contin-
ued from Table 4)

Level Node at level Species groupings

1 Node 0 Alosa chrysochloris, Carassius auratus, Cyprinus carpio, Notropis atheri-
noides, Notropis blennius, Notropis boops, Notropis buccatus, Notropis
buchanani, Notropis dorsalis, Notropis hudsonius, Notropis leuciodus,
Notropis nubilus, Notropis percobromus, Notropis stramineus, Notropis
telescopus, Notropis texanus, Notropis volucellus, Notropis wickliffi, No-
turus exilis, Noturus flavus, Noturus gyrinus, Noturus miurus, Noturus
nocturnus, Phenacobius mirabilis

Node 1 Esox americanus, Gambusia affinis, Lepomis auritus, Lepomis cyanel-
lus, Lepomis gibbosus, Lepomis gulosus, Lepomis humilis, Lepomis
macrochirus, Lepomis megalotis, Lepomis microlophus, Morone chrysops,
Morone mississippiensis

Node 2 Lepisosteus osseus, Lepisosteus platostomus

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 10: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Cyprinus carpio and Carassius auratus (shown in green) that are part of the
same sub-tree till level 3. Right: class probability distributions of images generated by masking level
4 (descendant species that have common ancestry till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 11: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Lepisosteus osseus and Lepisosteus platostomus (shown in green) that are part
of the same sub-tree till level 3. Right: class probability distributions of images generated by masking
level 4 (descendant species that have common ancestry till level 3 are highlighted in green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 12: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Morone chrysops and Morone mississippiensis (shown in green) that are part of
the same sub-tree till level 3. Right: class probability distributions of images generated by masking
level 4 (descendant species that have common ancestry till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 13: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Notropis boops and Notropis dorsalis (shown in green) that are part of the same
sub-tree till level 3. Right: class probability distributions of images generated by masking level 4
(descendant species that have common ancestry till level 3 are highlighted in green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Figure 14: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Noturus exilis and Noturus falvus (shown in green) that are part of the same
sub-tree till level 3. Right: class probability distributions of images generated by masking level 4
(descendant species that have common ancestry till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Figure 15: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Notropis dorsalis and Phenacobius mirabilis (shown in green) that are part of
the same sub-tree till level 2. Right: class probability distributions of images generated by masking
level 3 and level 4 (descendant species that have common ancestry till level 2 are highlighted in
green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Figure 16: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Lepomis megalotis and Lepomis auritus (shown in green) that are part of the
same sub-tree till level 2. Right: class probability distributions of images generated by masking level
3 and level 4 (descendant species that have common ancestry till level 2 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Figure 17: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Noturus exilis and Noturus flavus (shown in green) that are part of the same
sub-tree till level 2. Right: class probability distributions of images generated by masking level 3 and
level 4 (descendant species that have common ancestry till level 2 are highlighted in green)
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C.0.2 Additional Quantitative Results of Trait Masking:461

Tables 6 and 7 show the change in probabilities for different nodes at levels 3 and 2, respectively. We462

can see that indeed P sub
diff is larger than P out

diff for all internal nodes at levels 2 and 3 (except node 5 at463

level 2), indicating that Phylo-Diffusion is capturing the necessary hierarchical information required464

for the dispersion of probabilities after masking. Figure 6 in the main paper shows the box plots of465

Tables 6 and 7. Table 8 summarizes this information by showing the average P sub
diff and P out

diff for all466

nodes at a given level. It is important to note that for this experiment, we focus on nodes that have467

more than one species in the defined subtree.468

Table 6: Average change in probability distributions for every node at Level 3.
Node Subtree Out-of-Subtree

Node 1 0.1988 0.0018
Node 4 0.0952 0.0051
Node 5 0.0753 0.0007
Node 6 0.0903 0.0076
Node 7 0.0346 0.0006
Node 8 0.1472 0.0003

Table 7: Average change in probability distributions for every node at Level 2.
Node Subtree Out-of-Subtree

Node 1 0.0299 0.0023
Node 3 0.0449 0.0062
Node 4 0.0952 0.0051
Node 5 -0.0434 0.0292

Table 8: Average change in probability distributions across all nodes at a certain level.
Levels Subtree Out-of-Subtree
Level 3 0.1070 0.0027
Level 2 0.0316 0.0107

D Additional Examples for Trait Swapping Experiments469

D.0.1 Additional Visualizations of Trait Swapping Experiments:470

Figure 18 illustrates trait swapping for the source species Noturus exilis (left), where the information471

at Level-2 is swapped with that of a sibling subtree at Node B (right). The image in the center is472

generated using the trait swapped embedding. This visualization of the perturbed species helps us473

study the trait changes that would have branched out at level-2 between Node A and Node B.In the474

generated image (center), we observe the absence of barbels(whiskers), and the caudal fin (tail) is475

getting forked (or split) highlighted in pink, which are traits adopted from species in the subtree476

at B (Notropis). Whereas other fins like the dorsal, pelvic, and anal fin still resemble the source477

species Noturus exilis highlighted in green. The same is also reflected in the change of probability478

distribution after perturbations; the probability distribution of source species Noturus exilis decreases479

and the probability of it being a Notropis increases slightly.480

Similarly in Figure 19, for the studied species Lepomis gulosus (left), the information at Level 3 is481

swapped with subtree at Node B (Morone). The perturbed species generated (center) captures traits482

from both lineages. The spotted pattern in the body and fins is retained from Lepomis (Node A) but483

these spots now start to follow the horizontal stripes pattern observed in Morone (species at Node484

B). Additionally, the dorsal fin highlighted in pink starts to split into two, with the left half retaining485

the spiny structure from Lepomis highlighted in green. This observation suggests that the species at486

Node A and B possess distinct traits at this level-3 branching node. The same is reflected in the shift487

in probability distributions towards species in Node B after trait swapping.488
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Generated images 
without perturbation 

(Source)

Sample image of 
species from 
subtree at B

Generated images after 
perturbation 

(swapping A to B)

Before Perturbations After Perturbations

Figure 18: Visualization of changes in traits after swapping information at Level 2 (Node A) for
Noturus exilis (left) with its sibling subtree at Node B(right) to generate perturbed species (center).
Traits shared with the source species are outlined in green, whereas those shared with the sibling
subtree at Node B are outlined in pink.
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Generated images 
without perturbation 

(Source)

Sample image of 
species from 
subtree at B

Generated images after 
perturbation 

(swapping A to B)

Before Perturbations After Perturbations

Figure 19: Visualization of changes in traits after swapping information at Level 2 (Node A) for
Lepomis gulosus (left) with its sibling subtree at Node B(right) to generate perturbed species (center).
Traits shared with the source species are outlined in green, whereas those shared with the sibling
subtree at Node B are outlined in pink.
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E Additional Comparisons with PhyloNN489

Figure 20 compares the trait swapping experiment for Phylo-Diffusion with the PhyloNN baseline,490

where level-2 information of Gambusia affinis is replaced with that of Esox americanus. In the491

highlighted pink circle, the face of the image generated after perturbations (center) becomes more492

pointed, and the body shape flattens to resemble Esox americanus. This perturbed image also retains493

traits like the caudal (tail) fin and the black-spotted pattern towards the bottom (highlighted in494

green) from the source species, Gambusia affinis. The differences observed with Phylo-Diffusion are495

notable, whereas the PhyloNN generates a perturbed image nearly identical to the original, showing496

no significant changes.497

Similarly, Figure 21 shows a comparison after replacing level-2 information of Notropis husonius498

with that of Noturus. For Phylo-Diffusion, the caudal (tail) fin is vibily joining highlighted in499

pink, resembling the caudal fins of Noturus. This change is analogous to Figure 18, where level-2500

information of Noturus was replaced with Notropis (vice-versa), resulting in the caudal (tail) fin501

getting forked or split. Hence, this helps us understand that at Level-2, the two species diverged to502

develop different caudal fins. However, for PhyloNN, the generated image after trait-swapping is503

blurry, and most of the traits still closely resemble close the source species, which is unlikely given504

that the level-2 embeddings have been replaced.505

Figure 20: Comparison of PhyloNN with Phylo-Diffusion (ours) for trait swapping where the Level-2
information (Node A) of Gambusia affinis is swapped with its sibling subtree at Node B to generate
perturbed species (center). Traits shared with the source species are outlined in green, whereas those
shared with the sibling subtree at Node B are outlined in pink.
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Figure 21: Comparison of PhyloNN with Phylo-Diffusion (ours) for trait swapping where the Level-2
information (Node A) of Notropis husonius is swapped with its sibling subtree at Node B to generate
perturbed species (center). Traits shared with the source species are outlined in green, whereas those
shared with the sibling subtree at Node B are outlined in pink.
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F Additional Samples of Generated Images506

Figure 22 shows additional examples of generated images for different species using Phylo-Diffusion.507

Each row of the figure depicts the generated images for the same species while the different rows508

represent distinct species. Notably, we observe inter-class variations among species belonging to the509

same class, such as differences in fish orientation and size.510

Figure 22: Comparison of images of different species generated by HEIR-Embed where the generated
images for a given row depict variations for the same species while the different rows represent distinct
species. The order of species from top to bottom is Lepisosteus osseus, Morone chrysops, Lepomis
gulosus, Esox americanus, Carassius auratus, Notropis blennius, Noturus exilis, Phenacobius
mirabilis

G Ablation Results511

G.1 Generalization to Unseen Species: Leave-three-out512

As an additional ablation experiment, we conduct a leave-three-out experiment by excluding three513

species from different subtrees during training to test the model’s ability to generalize to new species514

and situate them in the phylogeny. This experiment involves training the model excluding three515

species, Notropis blennius, Noturus gyrinus, and Lepomis humilis that belong to different subtrees as516

seen in Table 4. The generated images from the three subtrees after trait masking closely resemble517

the actual images of the 3 species, with an F1 score of 95.6 on a classifier trained to discriminate the518

3 species. This experiment underscores the robustness and accuracy of Phylo-Diffusion in embedding519

and generating phylogenetically consistent images.520

G.2 Effect of Varying the Number of Levels in Phylo-Diffusion521

To demonstrate the robustness of Phylo-Diffusion, we perform ablation experiments with varying522

numbers of levels in the discretization of the phylogeny tree. We show that the choice of the number523

of levels depends on the depth of the phylogenetic tree and the internal nodes to be studied. We train524

models with {2, 4, 6, 8} levels on the phylogeny shown in Figure 9. Table 9 demonstrates that the525

model is robust to the choice of the number of levels.526

Table 9: Quantitative results for Phylo-Diffusion with varying number of levels in the discretized
phylogeny tree.

# levels FID ↓ IS ↑ Prec. ↑ Recall ↑
2 11.84 2.45 0.67 0.36
4 11.38 2.53 0.65 0.37
6 11.41 2.49 0.66 0.37
8 11.77 2.50 0.67 0.37
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G.3 Effect of Varying Embedding Dimensions in Phylo-Diffusion527

We further evaluate the effect of varying the number of embedding dimensions used in HIER-528

Embed on the performance of Phylo-Diffusion. In this experiment, we trained Phylo-Diffusion by529

varying HIER-Embed’s dimension in the following range of values: {16, 32, 64, 128, 256, 512, 1024}.530

Table 10 shows that Phylo-Diffusion is quite robust to the choice of embedding dimension with531

minimal drop in performance as we reduce the embedding dimension even to small values.532

Table 10: Quantitative results for Phylo-Diffusion with varying embedding dimensions of hierarchical
embeddings.

Embedding Dim. FID ↓ IS ↑ Prec. ↑ Recall ↑
16 11.23 2.45 0.66 0.36
32 11.25 2.45 0.66 0.38
64 11.56 2.47 0.66 0.37

128 11.31 2.45 0.67 0.37
256 11.53 2.42 0.67 0.35
512 11.38 2.53 0.65 0.37
768 11.69 2.49 0.65 0.37

1024 11.51 2.48 0.67 0.36

H CUB Dataset Results533

To show the applicability of our approach on other datasets with larger and deeper phylogenies, we534

perform additional experiments on 190 bird species from the CUB-200-2011 dataset (see Table 11).535

We selected the set of bird species based on whether we are able to obtain their phylogenetic536

knowledge from Bird Tree, which are pre-processed similar to the fishes. We removed the background537

of these images using segmentation masks to focus only on the body of the birds.538

Table 11: Quantitative results on the new birds dataset (30 samples/class). The classifier has a base
accuracy of 76% on the test set.

Method FID ↓ IS ↑ Prec. ↑ Recall ↑ F1 ↑
Class Conditional 6.8 3.2 0.70 0.49 0.68
Scientefic Name 8.5 3.1 0.65 0.48 0.18
Phylo-Diffusion (ours) 6.7 3.1 0.72 0.49 0.64

H.0.1 Trait Masking:539

Similar to fishes, Figure 23 shows the changes in probability distributions when Level 3 & 4540

information is replaced with noise. The first two plots show the logits of images generated for541

Black-footed albatross and Sooty albatross using embeddings from all the four levels. The third plot542

shows the dispersion of logits across the three descendant species that are part of the sub-tree defined543

till level 2, i.e., masking level 3 & 4. We see similar results for CUB as well where the probability of544

classifying the generated images into any of the descendant species that share a subtree (highlighted545

in green) is generally greater than the species outside the subtree.546

H.0.2 Trait Swapping:547

Figure 24 shows an example of the trait swapping experiment on the birds dataset, similar to the548

experiments for fishes in the main paper. We see that the image generated from the perturbed549

embedding (center) picks up the trait of black coloration around the eye (purple circle) that is shared550

by the target sub-tree (right) while traits like pointed beak (green circle) are retained from the source551

species (left).552
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Figure 23: Left: class probability distributions of images generated by using embeddings at all four
levels for two species Black-footed albatross and Sooty albatross (shown in green) that are part of the
same sub-tree till level 2. Right: class probability distributions of images generated by masking level
3 and level 4 (descendant species that have common ancestry till level 2 are highlighted in green).

Generated images 
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(Source)

Sample image of 
species from 
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Generated images 
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Figure 24: Visualization of changes in traits after swapping information at Level 2 for Clark
nutcracker (left) with its species from its sibling subtree (right) to generate perturbed species (center).
Traits shared with the source species are outlined in green, whereas those shared with the sibling
subtree at Node B are outlined in pink.
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