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MedicoSAM: Robust Improvement of SAM for
Medical Imaging

Anwai Archit, Luca Freckmann, Constantin Pape

Abstract— Medical image segmentation is an important
analysis task in clinical practice and research. Deep learn-
ing has massively advanced the field, but current ap-
proaches are mostly based on models trained for a specific
task. Training such models or adapting them to a new
condition is costly due to the need for labeled data. The
emergence of vision foundation models, especially Seg-
ment Anything Model (SAM), offers a path to universal seg-
mentation for medical images, overcoming these issues.
Here, we study how to improve SAM for medical images by
comparing different finetuning strategies on a large and di-
verse dataset. We evaluate the finetuned models on a wide
range of interactive and automatic semantic segmentation
tasks. We find that performance clearly improves given the
correct choice of finetuning strategies. This improvement
is especially pronounced for interactive segmentation. Se-
mantic segmentation also benefits, but the advantage over
traditional segmentation approaches is inconsistent. Our
best model, MedicoSAM, is publicly available. We show that
it is compatible with existing tools for data annotation and
believe that it will be of great practical value.

Index Terms— medical-imaging, segmentation, segment-
anything, foundation-model, finetuning

I. INTRODUCTION

Foundation models are large deep neural networks, often
based on the transformer architecture [67], trained on di-
verse datasets, either with a self-supervised or supervised
objective. They learn powerful representations that enable
different downstream tasks either through in-context learning
or finetuning. They underlay recent advances in language
processing [4] and are also gaining importance in computer
vision, thanks to the vision transformer (ViT) [13]. The first
foundation model that has gained wide-spread adoption for
image segmentation is the Segment Anything Model (SAM)
[33]. It was trained on a large dataset of natural images with
object annotations, using a supervised training objective that
mimics interactive annotation. The model supports interactive
and automatic segmentation tasks and generalizes to many
different imaging modalities. More recently, SAM2 [61] has
extended SAM to video data through architectural changes and
a large video dataset with objects tracked over time. It supports
interactive video segmentation in different modalities.

SAM has been widely studied by the medical imaging com-
munity. Initial work has evaluated it for medical segmentation
tasks (e.g. [55, 30, 22, 80, 39]). The model showed im-
pressive performance given that it was predominantly trained
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on natural images, but could not yet compete with domain
specific models, especially for difficult tasks such as spine
segmentation in MRI [55], segmentation of small organs in
CT [26], and other examples [9, 22]. Consequently, follow-
up work has improved SAM for medical images, either by
finetuning it for interactive segmentation [49, 9, 68, 43] or by
using it as a pretrained encoder for semantic segmentation
[79, 70, 8, 18, 77, 5]. The model has also been adapted
in related domains, for example to improve segmentation in
microscopy [1] and histopathology [24, 17]. Some work [49, 9,
18] also tried to build a better foundation model for medical
images, by finetuning SAM on a large medical dataset and
publishing the updated model weights. Some studies have also
investigated SAM2 for medical images [12, 83, 50]. They
found mixed results for 2D segmentation, improving over
SAM for some modalities but with worse performance for
others, and promising results for video segmentation [44].

However, a comprehensive study that compares different
approaches for improving SAM as a foundation model for
medical images is so far missing. Specifically, no prior work
has explored the impact of different finetuning strategies on
the different criteria that a foundation model for medical
segmentation should fulfill:

1) It should improve interactive segmentation. The imaging
modalities and segmentation tasks in medicine are very
diverse. Hence, a single model that can solve any medi-
cal segmentation task automatically is currently not fea-
sible1. Better interactive segmentation will enable semi-
automatic data annotation, leading to faster annotation
times, either for data analysis or model training.

2) It should improve the performance for downstream tasks,
in particular as a pretrained model for semantic seg-
mentation. This would enable automating segmentation
by supervised finetuning, potentially using annotations
generated interactively.

3) It should be compatible with the original SAM library
tools for data annotation (e.g. [46, 1]), enabling users to
benefit from improved interactive segmentation.

Previous work has only addressed one of these aspects at a
time: MedSAM [49] and SAMed2D [9] evaluate interactive
segmentation (1), Gu et al. [18] study semantic segmentation
(2). None of them explicitly study compatibility with user-
friendly tools (3).

1There exist some efforts to establish such models for specific modalities,
most notably TotalSegmentator [69, 11] for CT and MRI images.
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Fig. 1. a) Contribution overview: We finetune SAM on a large medical dataset to build MedicoSAM. We evaluate it for interactive and semantic
segmentation. The latter requires training on additional annotated data (that could be generated via interactive segmentation), for 2D and 3D data.
b) Results for interactive 2D segmentation, comparing MedicoSAM and other models derived from SAM. We report the average over 16 datasets
for segmentation with a point (green) or box (yellow) prompt and segmentation after iterative correction starting from a point (dark green) or box
(dark purple). c) Results for interactive 3D segmentation. We report the average over 6 different datasets for segmentation based on a single point
or box. d, e). Results for semantic 2D and 3D segmentation. We report the average over 6 datasets in both cases. The three best methods are
highlighted in decreasing shades of blue, darker indicates better results, gray otherwise.

Our work closes this gap by comparing different training
strategies on the dataset published by SAMed2d [9] and
evaluating their effect on (1-3). Specifically, we evaluate own
models trained with different strategies and published SAM-
derived models on challenging medical segmentation tasks
from four different categories: interactive 2D/3D segmentation
and semantic 2D/3D segmentation. Where applicable, we also
compare to SAM2 and MedSAM2 [50]. An overview of our
approach is shown in Fig. 1a and a summary of our results
in Fig. 1b-e. We find that domain specific finetuning clearly
improves interactive segmentation in 2D and 3D, given the
right training objective. For semantic segmentation, pretrain-
ing on medical data leads to improved results compared to
the original SAM model, with competitive or better perfor-
mance compared to nnU-Net [28] in 2D but worse perfor-
mance in 3D. Our software and our best model, which we
call MedicoSAM, are available at https://github.com/
computational-cell-analytics/medico-sam.

II. METHODS

We provide a summary of the contributions made by
SAM [33], focusing on its training objective (Sec. II-A). We
then describe the finetuning strategies explored in our study
(Sec. II-B), including our contribution for pre-training seman-
tic segmentation, our extension of SAM to interactive 3D
segmentation (Sec. II-C), our methods for 2D and 3D semantic
segmentation (Sec. II-D), and our evaluation methodology
(Sec. II-E).

A. Segment Anything Model

SAM [33] is a vision foundation model for segmentation
tasks. It consists of the image encoder, a ViT [13], the prompt
encoder and the mask decoder. This architecture enables the
model to solve interactive segmentation tasks based on user

input, so called prompts. The image encoder processes the
image and outputs an image representation. It contains the
majority of parameters. SAM provides three different versions
with different encoder sizes, ViT-Huge (ViT-h), ViT-Large
(ViT-l) and ViT-Base (ViT-b). The prompt encoder processes
the prompts, which can be point coordinates, either a positive
point prompt (within the object of interest) or a negative point
prompt (outside of the object of interest), a box coordinate,
or a low-resolution mask. It outputs a representation of the
prompts; point, box and mask prompts can be combined. The
mask decoder processes the outputs of image encoder and
prompt encoder to predict a mask of the object of interest
and a score that estimates the prediction quality. It has two
heads. One predicts a single mask and score, the other predicts
three masks and scores. The second head is for the case of a
single point prompt, which can result in ambiguities for part-
object segmentation. Fig. 2a shows an overview of SAM’s
architecture with additions made by us marked in orange.

SAM was evaluated for a wide range of segmentation
tasks in diverse image modalities, showing remarkable gen-
eralization. These capabilities are mainly due to two factors:
its large and diverse training set and sophisticated training
objective. The training dataset, called SA-1B, consists of
11 million images with 1 billion annotated objects. It was
generated by human annotators using SAM for semi-automatic
annotation, followed by retraining and further annotation with
the updated model, repeated multiple times. The model was
trained on this dataset using a supervised training objective
that mimics interactive object annotation and correction: For
a given ground-truth mask, the objective first samples either a
point or box prompt and then corrects the model predictions
with point prompts in multiple steps. In each step it computes
Lmask, the loss between true and predicted mask as well
as Liou, the loss between the intersection over union (IOU)
of true and predicted mask and the predicted score. These

https://github.com/computational-cell-analytics/medico-sam
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losses are accumulated and averaged at the end of a training
iteration. See Alg. 1 for the pseudo-code of a training iteration.
Besides this objective, the training proceeds as usual for deep
neural networks by updating model weights with a version of
stochastic gradient descent over multiple epochs.

Algorithm 1: The training objective of SAM [33],
according to [1]. We have added the optional joint
pretraining of the segmentation decoder (esem = 1).

Input: Images and target masks, hyperparameters nobj ,
nsteps, pbox, pmask, esem

Output: Updated model parameters
1 Sample minibatch of images and target masks
2 Sample fixed number of object masks nobj per image
3 Predict embeddings for the images with the encoder
4 Initialize empty list L for losses
5 for mask m in minibatch do
6 Initialize empty list for prompts p
7 Sample ubox uniformly from [0, 1]
8 if ubox < pbox then

// The box can also be distorted
9 Compute bounding box of m, add as prompt to p

10 else
11 Sample random point from m, add as positive point

prompt to p

12 Apply prompt encoder to p
13 if p contains single point prompt then
14 Predict masks and IOUs with multi mask head of

mask decoder
15 Select predicted mask m̂ and IOU î with the highest

IOU value

16 else
17 Predict mask m̂ and IOU value î with single mask

head of mask decoder

18 Compute mask loss Lmask(m̂, m)
19 Compute IOU i between m̂ and m

20 Compute regression loss Liou(̂i, i)
21 Add Lmask and Liou to L
22 for j = 1 to nsteps do
23 Sample positive point from m& !m̂, add to p
24 Sample negative point from !m& m̂, add to p
25 Sample umask uniformly from [0, 1]
26 Remove mask prompt from p if present
27 if umask < pmask then
28 Add m̂ to p

29 Run lines 12-21 with current p

30 if esem then
31 Compute binary target b as union of all target masks
32 Predict binary mask b̂ with additional segmentation

decoder
33 Compute Lmask(b̂, b) and add it to L

34 Average losses in L, perform backprop
35 Update model parameters via optimizer

Recently, SAM2 [61] has adapted this approach to inter-
active video segmentation by adding a memory bank that
stores prompts and mask predictions from previous frames.
SAM2 was trained on a large annotated video dataset. While
SAM2 is promising in the medical domain to analyze videos
or volumetric data, it has so far received fewer attention. Some
studies [50, 12, 83] have evaluated it and, to our knowledge,

only MedSAM2 [50] has provided an improved version of
the model. Here, we include SAM2 and MedSAM2 in the
evaluation for interactive segmentation, but do not finetune the
model on medical data due to its recency and missing support
in tools for medical data annotation.

B. Finetuning Segment Anything

We compare, implement, and extend different approaches
for improving SAM for medical images by finetuning on a
labeled dataset of medical images using a variation of Alg. 1.
This training algorithm has not been published by SAM [33],
so each publication has used a custom implementation. The
finetuning strategies also differ in which model parts they
update, and whether an adapter-based strategy like LoRA [25]
is used.

The authors of MedSAM [49] assemble a dataset of 1.5
million masks from CT, Endoscopy, MRI, X-Ray and other
modalities, based on published data. They introduce a simple
training objective that uses only box prompts, which are de-
rived during training from the mask annotations. This objective
corresponds to nsteps = 0, pbox = 1, pmask = 0 in Alg. 1.
They use the ViT-b encoder and update all parameters of the
image encoder and mask decoder, freezing the prompt encoder.
The finetuned model is evaluated for interactive segmentation
based on box prompts. The model is publicly available.

The authors of SAM-Med2D [9] build the SA-Med2D-
20M dataset [73], which consists of 20 million masks in
5 million images. The data covers ten different modalities
(CT, Endoscopy, MRI, ultrasound, X-Ray and others) and is
collected from published data. They finetune using with a
training objective of nsteps = 8, pbox = 0.5, pmask = 1. They
deviate from Alg. 1 in two ways: they sample either 1, 3, 5 or 9
points per step instead of a single positive and negative one (cf.
lines 23-24) and they do not compute gradients for the prompt
encoder in the steps corresponding to lines 22-29. They use
ViT-b as image encoder and insert a low rank projection layer
between attention and feed-forward layer of each transformer
block, similar to [70]. Only these parameters of the image
encoder are updated, others frozen. For prompt encoder and
mask decoder all parameters are updated. In addition, they
train the model with a smaller input image size of 256 x 256
pixels instead of 1024 x 1024 pixels used by SAM. They
also study a simpler finetuning strategy called FT-SAM where
only the mask decoder is updated during training, image and
prompt encoder are frozen. The finetuned models are evaluated
for interactive segmentation and are publicly available.

The authors of [18] assemble a dataset comprising 100,000
masks in 300,000 images from CT, MRI, X-Ray and ultra-
sound. This dataset also contains unlabeled images used for
self-supervised training. They compare two different finetun-
ing objectives: updating the image encoder in a self-supervised
manner using MAE [21] and using a simple supervised strat-
egy with a box or a single point prompt, corresponding to
nsteps = 0, pbox = 0.5, pmask = 0. They further compare the
different model sizes (ViT-b, ViT-l, Vit-h) with and without the
use of LoRA [25]. They evaluate these models for semantic
segmentation tasks. None of the models are publicly available.
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Fig. 2. a) The SAM architecture for interactive segmentation consists of image encoder, prompt encoder (split into a part for mask prompts and
for point/box prompts), and mask decoder. For 3D interactive segmentation, we propagate prompts across the depth axes. In addition, we add a
convolutional decoder for automated segmentation (orange). This decoder is pre-trained with a binary segmentation task (blue masks), jointly with
training for interactive segmentation.
b) Adaptation for 2D/3D semantic segmentation. A convolutional decoder predicts the segmentation output (same as
”Segmentation Decoder” in a)). For 3D segmentation, additional adapters are added to the image encoder and outputs of
the segmentation decoder are computed per slice, stacked, and processed by a 3D convolution. Architecture modifications are
highlighted in orange.

In summary, prior work has studied different finetuning
objectives and different model update strategies. To analyze
the influence of the objectives we build on the versatile
implementation of Alg. 1 provided by µSAM [1], which was
developed for microscopy data. We extend this implementation
to also support simpler schemes (e.g. nsteps = 0) within the
same framework. We do not study self-supervised training and
we finetune all model parts, without the use of adapter layers.
The first choice is due to the fact that self-supervised training
would very likely lead to a loss of interactive segmentation
performance. The second choice because we want to provide
models compatible with the SAM library and tools using it.
Introducing adapter layers would make the model incompatible
and thus not practically useful, see also Sec. III-C. Conse-
quently, we study three different finetuning strategies:

• MedSAM (adapted from [49]) uses only a box prompt,
corresponding to nsteps = 0, pbox = 1, pmask = 0 in
Alg. 1.

• SimpleFT (adapted from [18]) uses a single box or a
single point prompt, corresponding to nsteps = 0, pbox =
0.5, pmask = 0 in Alg. 1.

• MedicoSAM uses the full objective with nsteps =
8, pbox = 0.5, pmask = 0.52.

2We have trained two different versions of this model, one with pmask =
0.5 and one with pmask = 0, see for details.

We set nobj = 5, use the Dice loss for Lmask and the L2
loss for Liou in all cases. We also add an option to jointly
pre-train the decoder for semantic segmentation. In this case,
the decoder predicts a binary mask and we compute a loss
between this prediction and the union of all target masks,
corresponding to esem = 1 in Alg. 1. See Sec. II-D for details
on the decoder architecture. We finetune the models on SA-
Med2D-20M [73]. We also benchmark the published models
MedSAM [49], SAM-Med2D [9], FT-SAM [9], SAM [33],
and where applicable SAM2 [61] and MedSAM2 [50]. We
use ViT-b for all models, expect for MedSAM2, where only
ViT-Tiny (ViT-t) is available.

C. Interactive 3D Segmentation

Unlike SAM2, which supports image and video segmenta-
tion, SAM can only segment 2D images. Follow-up work has
implemented interactive segmentation for videos or volumetric
data in medical images, e.g. for CT [41, 52]. Here, we use the
implementation from [1], which is based on prompt propaga-
tion. Briefly, SAM segments an object in one or multiple slices
based on given prompts. Then, the segmentation mask(s) are
projected to adjacent slices, prompts are derived from them,
and segmentation is run for these prompts. The process is
repeated until the object is segmented throughout the whole
volume or a stopping criterion based on the IOU between
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adjacent slices is met. Multiple options are provided for
deriving prompts from projected masks: using a single positive
point prompt placed at the mask’s center, using multiple point
prompts derive from the mask, using the bounding box derived
from the mask, using the bounding box and low-resolution
version of the mask, and combinations of these options. A
user can correct the segmentation by annotating slices with
manual prompts and rerunning the segmentation.

D. Semantic Segmentation
SAM itself can only be used for interactive segmentation.

In [33] a method for automatic instance segmentation, called
automatic mask generation, is proposed. However, it does not
support semantic segmentation, which is more relevant for
medical images. Conceptually, SAM does not learn explicit
semantic knowledge, since it is only trained to distinguish
individual objects in an image. To evaluate different pretrained
SAM models for semantic segmentation, we further finetune
them for specific tasks using annotated data, based on archi-
tectural changes for 2D and 3D segmentation.

For 2D segmentation we add a UNETR-like [20] convolu-
tional segmentation decoder. It processes and upsamples the
embeddings predicted by the image encoder, in this case the
pretrained ViT-b encoder, to predict a semantic segmentation.
Prompt encoder and original mask encoder of SAM are
discarded. This model is trained for semantic segmentation
with a loss between predictions and semantic labels. Here, we
use a combination of Cross Entropy and Dice loss. We also
study a variant where the segmentation decoder is pretrained,
see Sec. II-B for details. The segmentation decoder is marked
in orange in Fig. 2a. The choice of this architecture for
semantic segmentation was motivated by similar approaches
for automatic segmentation with SAM in [1, 71].

For 3D segmentation we adopt the implementation of MA-
SAM [8] to extend the image encoder to volumetric data. This
is achieved by flattening the batch and depth dimensions so
that the image patches extracted from an input volume can
all be processed by the encoder. To make use of depth infor-
mation, additional adapter layers are introduced. These layers
decrease the number of features per token, rearrange tokens
into a volumetric representation, apply a 3x1x1 convolution,
project the number of features back, and flatten the batch and
depth axis. Each transformer layer is augmented with two of
these adapters, one before and one after the attention layer. The
parameters of the adapters are randomly initialized. Unlike
MA-SAM, which re-uses SAM’s mask decoder, we use our
new 2D segmentation decoder. We apply it slice-by-slice to
the image embeddings, then stack its outputs and apply a 3D
convolution layer to predict a volumetric segmentation. This
design enables to also initialize the pretrained decoder weights.
The architecture is shown in Fig. 2b.

E. Evaluation
We compare models for interactive and semantic segmenta-

tion. For semantic segmentation (2D and 3D), we follow stan-
dard procedures and compare the predicted semantic masks
with ground-truth annotations using the Dice coefficient.

For interactive 2D segmentation we adopt the evaluation
procedure of [1]. This approach simulates iterative user-based
annotation. It requires object mask annotations. For a given
object, a single prompt is sampled, either a point or a box. The
object is then iteratively corrected by sampling point prompts
from errors in the prediction. In each iteration a positive point
prompt is sampled from the region where the prediction is
missing (prediction is negative, annotation is positive) and
a negative point prompt is sampled from the region where
the prediction should not be (prediction is positive, anno-
tation is negative). The Dice coefficient between true mask
and prediction is computed for the initial segmentation and
each correction iteration. For interactive 3D segmentation we
evaluate the initial segmentation derived from a point prompt
(randomly sampled from the object in the central slice) and
from a box prompt (also in the central slice). We do not
simulate iterative correction of the masks due to the higher
computational demand of 3D segmentation. We run a grid
search over the different options for deriving prompts, see
Sec. II-C, on separate validation data.

III. EXPERIMENTS

We finetune different models based on SAM with ViT-b
encoder, initialized with the weights from [33]: MedSAM,
SimpleFT and MedicoSAM, see Sec. II-B for the respective
training strategies. The models are trained on the publicly
available subset3 of SA-Med2D-20M [73], which contains 3.7
million images and 15.8 million masks. To compare the impact
of pbox and nsteps (see Alg. 1), we train a model for each
of the three configurations on 60% of the data (50% train,
10% val), using a stratified split over different modalities,
setting pmask = 0, esem = 0. We train another version of
MedicoSAM on the full dataset (90% train, 10% val; same
val split as before), with pmask = 0.5 and esem = 1. The
latter model is included to study the impact of masking and
semantic decoder pretraining. The smaller subset for the three
initial models is chosen to reduce training cost. The models
are trained on 8 A100 GPUs with 80GB VRAM for 300,000
iterations with a batch size of 7 per GPU, corresponding to
21 epochs for models trained with 60% data, and 11 epochs
for the model trained on the entire data. We use the AdamW
optimizer [47] with an initial learning rate of 1e − 5 and a
scheduler that reduces the learning rate by a factor of 0.9
after each epoch. We evaluate these four models, the original
SAM and SAM2 models, and published derived models for
interactive segmentation (2D and 3D), semantic segmentation
(2D and 3D), and integration with user-friendly tools.

A. Interactive Segmentation
We evaluate ten different models for interactive 2D seg-

mentation. We use 16 datasets that are not part of our training
dataset to evaluate generalization capabilities. These datasets
represent a variety of medical segmentation tasks from CT [57,
3, 58], dermoscopy [14], endoscopy [64, 53], MRI [51, 16],
ophthalmology [35], ultrasound [38, 48, 32], and X-Ray [29,
40, 7, 78]. Here, 3D dataset are split into separate images.

3The dataset contains a private test set of 920k images and 4 million masks.
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Fig. 3. a) Overall results for interactive 2D segmentation. We report the Dice coefficient for simulated interactive segmentation. Each bar
corresponds to the result of a correction iteration, starting either from a point (green) or a box (yellow) prompt. The result after correction is
highlighted in dark green / dark purple. We compare 10 different models. Models trained by us are marked with a * and the model trained on
the entire dataset is marked in bold font. The same model notation is used in all figures. b) Interactive segmentation results for 16 individual
datasets. We report the absolute difference of the Dice coefficient compared to the original SAM and report only the results for the initial and final
segmentation.
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The results averaged over all datasets are shown in Fig. 3 a).
We report the results for initial prompt-based segmentation and
correction iterations, see also Sec. II-E, using a point or box
as initial prompt. Fig. 3 b) shows the results for individual
datasets, where we only report the results for the initial
and final segmentation, corresponding to the last correction
iteration. We report the difference in the Dice coefficient
compared to SAM. MedicoSAM is the only model that clearly
improves upon SAM in all settings. The other finetuned
models either only improve for the segmentation with a single
prompt (MedSAM*, SimpleFT*, MedSAM2) or lead to an
overall worse segmentation. Models trained with nsteps = 0
yield worse results for an increasing number of prompts.
SAM2 performs slightly worse compared to (original) SAM.

A qualitative comparison of results and image embeddings
for different models is shown in Fig. 5. We also study
the statistical reliability based on five random seeds on a
single dataset in Fig. 6a, where we observe that the standard
deviation of results is low compared to differences in the
model performance. We perform an additional study to further
understand the effect of nsteps and pmask in Fig. 7.

We evaluate interactive 3D segmentation with a single
point or box derived from segmentation annotations for 6
different external datasets from MRI [56, 51], CT [23, 65],
and ultrasound [32, 36]. We compare six different models.
For the models based on SAM, we use the method described
in Sec. II-C and we find the best setting with a grid search
on a separate validation set. SAM2 supports interactive 3D
segmentation as is (by interpreting the 3D data as a video),
and we do not perform a grid search to optimize parameters for
inference (same for MedSAM2). The overall results are shown
in Fig. 1 c) (except for SimpleFT) with results for individual
datasets in Fig. 4. Only MedicoSAM improves consistently.
The fact that SAM2 and MedSAM2 are used as is, without
optimizing parameters in a grid search, may disfavor them.

B. Semantic Segmentation

We evaluate different pretrained SAM models for seman-
tic segmentation in 2D and 3D, using the implementations
described in Sec. II-D. For 2D segmentation we use 6 ex-
ternal datasets from dermoscopy [10], mammography [40],
narrow band imaging [64], optical coherence tomography [74],
panoramic radiographs [63], and X-Ray angiography [7]. For
3D segmentation we use 6 external datasets from CT [65],
MRI [51, 54, 56], and ultrasound [32, 36]. We use separate
splits for training and evaluation. The results are shown in
Fig. 8. We also report the results for nnU-Net [28] and
Swin UNETR [19] trained on the same splits, using the
default nnU-Net v2 setup and the MONAI [6] implementation,
respectively. We also report the results for BiomedParse [81],
a foundation model for text-based segmentation trained on
a large biomedical imaging dataset. We apply it to the 2D
datasets for which we could find a modality prompt matching
the training data of BiomedParse.

Here, we see an advantage in using specifically pretrained
backbones (MedSAM, SimpleFT, MedicoSAM) compared to
the initial SAM model. We also see an advantage in using the

pretrained segmentation decoder. These findings are consistent
across 2D and 3D datasets. In 2D, SAM-derived models
are competitive or slightly better than nnU-Net and better
than Swin UNETR. In 3D, nnU-Net is the best method, in
particular due to the poor performance of SAM-based models
on two of the datasets. Note that nnU-Net and Swin UNETR
are trained from scratch, whereas SAM-derived models are
initialized with a pretrained encoder and in one case also a
pretrained decoder. BiomedParse is applied to without further
training and where applicable performs at-par with the best
MedicoSAM model.

C. Tool Integration

An important practical aspect in improving SAM as a foun-
dation model is the integration with tools for data annotation.
Hence, models should not introduce changes to the architecture
that make it incompatible with the SAM library and tools using
it. We check this for three models, MedSAM, SAM-Med2D
and MedicoSAM, and four different tools: two napari plugins
[15, 1] and two 3D Slicer extensions [46, 75]. Tab. I shows
the compatibility. We find that SAM-Med2D does not work
in any of the tools because it uses adapters and changes the
image input size. MedSAM and MedicoSAM work in all of
the tools with at most small code changes. We qualitatively
compare the models for data annotation with these tools in
Fig. 9.

Tool / Model MedSAM SAM-Med2D MedicoSAM
SegmentWithSAM ✓ × ✓∗

SAMM ✓ × ✓∗

napari-sam ✓ × ✓∗

µSAM ✓ × ✓

TABLE I
COMPATIBILITY WITH USER-FRIENDLY TOOLS, FOR THREE MODELS AND

FOUR GRAPHICAL TOOLS SUPPORTING SAM FOR DATA ANNOTATION.
THE * REPRESENTS MINOR CODE CHANGES NECESSARY TO ADAPT A

FILE PATH OR URL TO LOAD DIFFERENT WEIGHTS.

IV. CONCLUSION AND DISCUSSION

We have comprehensively studied how to improve SAM
[33] as a foundation model for medical images, by evaluating
the impact of different finetuning objectives on interactive and
semantic segmentation. We found that interactive segmentation
improved clearly, compared to original SAM and SAM2 [61],
but critically dependent on the choice of objective. For seman-
tic segmentation, we found that domain specific pretraining
also provides a benefit. However, the segmentation quality is
only modestly better than nnU-Net [28] in 2D and worse in
3D; despite nnU-Net not being pretrained. We also argued
that models based on SAM should adhere to the original
architecture to enable integration with user-friendly tools. This
is especially important due to their improvement in interactive
segmentation, which relies on such tools for practical value.
We have published our best model, MedicoSAM, and believe
that it will be of great practical value for data annotation.
Furthermore, we believe that our findings will also prove
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Fig. 4. Results for interactive 3D segmentation for 6 different datasets. We report the difference in Dice score compared to SAM for four other
models. Segmentations are derived from a single point (green) or box (yellow) prompt placed in the central slice for each object in the respective
dataset. We use the implementation of [1] for methods using SAM, determining the best method for prompt propagation on a separate validation
set, see also Sec. II-C. SAM2 supports 3D segmentation by default.

Fig. 5. a) Qualitative results for interactive 2D segmentation. We compare interactive segmentation based on a single point or single box
prompt (cyan) with SAM, MedSAM and MedicoSAM for nine different datasets. For each image, we show prompts with a large improvement
of MedicoSAM over SAM and the corresponding MedSAM result. b) Outputs of the image encoder from the three different models on different
datasets, additionally Abdominal CT [62] and Brain MRI [59] visualized by their three main PCA components. MedSAM and MedicoSAM seem to
learn a more discriminative representation with clearer distinction of background.



ARCHIT et al.: MedicoSAM 9

Fig. 6. a) Statistical analysis of interactive segmentation on the
ABUS data for breast tumor segmentation in ultrasound images [2] with
three models. We run each interactive segmentation experiment five
times with different random seeds and report standard deviations as
error bars. The deviations are small compared to differences in model
performance. b) Statistical analysis of semantic segmentation (same
data as a)). We run the training for each of the four models five times
with different random seeds. The deviations are larger than performance
differences, the model with pretrained decoder shows a lower deviation.)
The methods are colored in decreasing shades of blue, darker indicates
better results.

valuable to adapt recent and future foundation models, e.g.
SAM2, to medical imaging.

Our main goal was the comparison of different objectives
for finetuning SAM on large medical data. We found that it
is crucial to use an objective that trains segmentation with
box and mask prompts for multiple training iterations, i.e.
0 < pbox < 1 and nsteps > 0 (Alg. 1). Otherwise we observed
a catastrophic forgetting-like effect, where the model did not
yield accurate results for interactive segmentation with a point
prompt or with multiple prompts, see results for MedSAM and
FT-SAM in Fig. 3. This observation is especially important
since MedSAM, the most cited SAM version for medical im-
ages, performs worse than the original SAM in many settings
due to its choice of objective, which has been independently
reproduced, e.g. by MedSAMix [72]. While not explicitly
studying other values than pbox = {0.5, 1}, we assume that
values smaller than 0.5 would favor the performance with
point prompts and vice versa, but would likely not yield to
catastrophic forgetting. A value of 0 would likely result in a
model that yields poor results in response to box prompts. We

Fig. 7. a) Ablation study for the influence of nsteps in Alg. 1. We run in-
teractive segmentation with 32 correction iterations, two with nsteps =
0 (MedSAM, SimpleFT), two with nsteps = 8. The former show a
degrading performance with further prompts, the latter show increasing
performance, but plateau after 6-8 iterations. b) Ablation study for the
influence of pmask, comparing models trained with pmask = 1, 0,
0.5 (SAM, MedicoSAM*, MedicoSAM*) and interactive segmentation
without and with use of the previous mask prediction as prompt for
the next iteration. SAM and MedicoSAM* perform slightly better in the
setting corresponding to their training, MedicoSAM* is robust.

found that models trained with a value of nsteps = 8 were
robust to segmentation with a larger number of prompts, i.e.
their performance did not decrease with increasing number
of prompts as is the case for nsteps = 0. However, their
performance plateaus. See Fig. 7a. Training with a larger
nsteps value could potentially delay the onset of this plateau
and increase its height, i.e. lead to better segmentation with
more prompts. Finally, we also studied the effect of pmask,
where we found that models trained with pmask = 0 perform
better without a mask prompt in interactive segmentation,
models trained with pmask = 1 perform better with a mask
prompt, and models trained with pmask = 0.5 are robust.
See Fig. 7b. While this trend is expected, interestingly, the
difference in performance is not very pronounced, i.e. a model
trained with pmask = 1 does not learn to rely on the presence
of a mask prompt and vice versa.

We also studied the effect on semantic segmentation by
finetuning adapted architectures for specific segmentation
tasks. Here, we found that SAM-derived models performed
modestly better than SAM, but that the exact objective used
for pretraining them on the large medical dataset did not have
a big impact (similar results for MedSAM, MedicoSAM and
SimpleFT). A further modest improvement could be gained
by using a pretrained segmentation decoder. See results in
Fig. 1 d,e and Fig. 4. Note that the best SAM-derived model
performs only modestly better than nnU-Net [28] in 2D
segmentation and worse than in 3D, despite the fact that nnU-
Net was not pretrained. This highlights that the advantages
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Fig. 8. Semantic segmentation results for 2D and 3D segmentation. The names in italic font indicate 2D data and in bold font 3D data. We compare
different pretrained models, original SAM, MedSAM, SimpleFT and MedicoSAM in three versions: trained on the reduced training set, trained on
the entire training set (bold font) and trained on the entire training set and using decoder initialization (bold font, subscript ”Dec”). The three best
SAM-derived methods are colored in decreasing shades of blue, darker indicates better results, gray otherwise. Results for reference methods are
indicated by horizontal lines. The dotted horizontal line indicates a case where only a subset of classes could be segmented with BiomedParse.

of SAM-derived models for semantic segmentation in medical
images are not yet clear, at least with our implementation.
In this context, the finding of [27] that transformer-based
segmentation architectures generally do not perform better
than nnU-Net is also relevant. Further improvements would
likely require updates of the adaptation strategy, especially an
extension to 3D pretraining for volumetric segmentation.

Another important emergent trend are foundation models
that can segment images based on text prompts. They are
especially promising for semantic segmentation without the
need for further training. We have included a comparison to
one such model, BiomedParse [81] in selected experiments.
There are further models, in many cases based on the CLIP
[60] architecture, for medical imaging [82, 42, 45]. MedCLIP-
SAM [34] combines CLIP and SAM for text based segmen-
tation. Hence, a promising future avenue of research is the
combination of such a model with our findings, to obtain a
foundation model that can address both SAM-style interactive
and text-based segmentation.

Other related research, e.g SAM-REF [76], has investigated

the effect of late and early fusion of image features and
prompts. SAM uses a late fusion approach. Early fusion can
lead to better segmentation of fine-grained structures, while
being less efficient because it couples image and prompt pro-
cessing. Hybrid approaches can provide a good trade-off. This
work could profit from our findings on finetuning objectives,
as these are orthogonal to the feature alignment mechanism.
Furthermore, recent work on parameter efficient finetuning of
SAM for biomedical images has found that strategies like
LoRA do not provide better segmentation quality, but can lead
to more efficiency [66]. These findings likely directly apply to
semantic segmentation finetuning in our case.
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