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ABSTRACT

We analyze the performance of graph neural network (GNN) architectures from
the perspective of random graph theory. Our approach promises to comple-
ment existing lenses on GNN analysis, such as combinatorial expressive power
and worst-case adversarial analysis, by connecting the performance of GNNs to
typical-case properties of the training data. First, we theoretically characterize
the accuracy of one- and two-layer GCNs relative to the contextual stochastic
block model (cSBM) and related models. We additionally prove that GCNs can-
not beat linear models under certain circumstances. Second, we numerically map
the recoverability thresholds, in terms of accuracy, of four diverse GNN architec-
tures (GCN, GAT, SAGE, and Graph Transformer) under a variety of assumptions
about the data. Sample results of this second analysis include: heavy-tailed de-
gree distributions enhance GNN performance, GNNs can work well on strongly
heterophilous graphs, and SAGE and Graph Transformer can perform well on ar-
bitrarily noisy edge data, but no architecture handled sufficiently noisy feature
data well. Finally, we show how both specific higher-order structures in synthetic
data and the mix of empirical structures in real data have dramatic effects (usually
negative) on GNN performance.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved impressive success across many domains, including
natural language processing (Wu et al., 2023a), image representation learning (Adnan et al., 2020),
and perhaps most impressively in protein folding prediction (Jumper et al., 2021). GNNs’ success
across these fields is due to their ability to harness non-Euclidean graph topology in the learning
process (Xu et al., 2019). Despite the growing use of GNN architectures, we still grapple with a
significant knowledge gap concerning the intricate relationship between the statistical structure of
graph data and the nuanced behavior of these models. By aligning GNN designs with data distribu-
tions, we can not only unveil the underlying mechanics and behaviors of these models but also pave
the way for architectures that intuitively resonate with inherent data patterns.

While significant focus has been directed towards homophily in the context of GNN performance
(Maurya et al., 2021; Halcrow et al., 2020; Zhu et al., 2020), other critical properties of graph
data have remained relatively underexplored. Features such as degree distribution and mesoscale
structure offer important insights into the behavior of networks. Similarly, despite the depth of
theoretical advancements in graph modularity, including works such as the one by Abbe (2018),
there remains a sizable gap in their integration and applicability within the GNN domain. We seek
to explore such properties to bridge this gap. NEW

In particular, our results imply that commonly studied properties such as homophily, Gaussian feature
separation, and high dimensionality aren’t enough to explain and justify the use of certain nonlinear
GNNs, as we show that their performance is matched by linear GNN models in the cSBM setting.
This motivates research into which significant features of the data should be incorporated into the
data generation models commonly used to study GNNs.

In this paper we: NEW
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• fully characterize the accuracy of one- and two-layer GNNs satisfying certain assumptions,
as well as proving that the accuracy of certain nonlinear GNNs is bounded above by the
accuracy of a linear GNN when the graph is drawn from a broad family,

• report extensive numerical studies that map the degree to which edge and feature informa-
tion contribute to overall performance across diverse models in a variety of random graph
contexts, and

• demonstrate that the presence of higher order structures in graphs causes a dramatic (and
usually negative) change in GNN accuracy.

2 PREVIOUS WORK

As part of this work we lay out theoretical bounds for GNN architectures. Some foundational work
in our topic is as follows. Fountoulakis et al. (2023) investigated regimes in which the attention
module in the Graph (GAT) (Veličković et al., 2018) makes a meaningful difference in performance.
Following this, Baranwal et al. (2023) proved theoretically that using graph convolutions expands the
range where a vanilla neural network can correctly classify nodes. Baranwal et al. (2021) discovered
that linear classifiers on GNN embeddings generalize well to out of distribution data in stochastic
block models. Lu (2022) characterized how well a GNN can separate communities on a two-class
stochastic block model. Recently, Ma et al. (2022) rigorously identified noise regimes where GNNs NEW
perform well on heterophilous graphs and Chien et al. (2021) propose an architecture that adapts to
the modularity of a graph. Lastly, N.T. & Maehara (2019) found that a Graph Convolutional Network
(GCN) performs low pass filtering on the feature vectors and doesn’t learn non-linear manifolds.

While many have attempted to understand models through the lens of specialized data, our approach
offers a unique and deeper perspective on the subject. The monograph Abbe (2018) lays out the key
mathematical findings related to SBMs as they relate to community detection. Karrer & Newman
(2011) developed the degree-corrected SBM, which allows for heavy-tailed degree distributions.
Gao et al. (2018) derived asymptotic minimax risks for misclassification in degree-corrected SBMs
and Mehta et al. (2019) propose a variational autoencoder for SBMs. Deshpande et al. (2018)
proposed a contextual SBM (cSBM) that generates feature data alongside the graph data. This was
originally proposed to analyze specific properties of belief propagation (Bickson, 2009). Finally, Wu NEW
et al. (2023b) not only explore the characteristics of oversmoothing in GNNs through cSBMs but also
characterize how graph convolutions function both as denoising and feature-mixing mechanisms,
detailing the extent and manner in which these processes occur.

Our investigation presents a novel angle that bridges interplay between edge data and feature
data. Binkiewicz et al. (2017) explored how to use features to aid spectral clustering. Yang et al.
(2022) and Arroyo et al. (2021) used edges and features that contain orthogonal information to
better understand the relationship between the two. While the influence of motifs or higher-order
structures on GNN performance remains a hot area of exploration, our approach delves deeper into
this pressing topic. Works such as Tu et al. (2020) have proposed using graphlets to aid in learn-
ing representations. Others have utilized hypergraphs to make better predictions (Huang & Yang,
2021). Much of the work quantifying the expressive power of GNNs is achieved by relating GNNs
to the classical Weisfeiler-Leman (WL) heuristic for graph isomorphism (Li & Leskovec, 2022;
Huang & Villar, 2021). These have inspired corresponding GNN architectures that have increased
distinguishing capabilities (Hamilton, 2020)

3 BACKGROUND

In this work, we first theoretically determine nodewise accuracy for certain one- and two-layer GNNs
and identify cases where nonlinear GNNs cannot outperform linear GNN models. We map the per- FIX
formance of the Graph Convolutional Network (Kipf & Welling, 2017), Graph SAGE (Hamilton
et al., 2017), the Graph Attention Network (Veličković et al., 2018), and the Structure-Aware Trans-
former (Chen et al., 2022) on several related random graph models related to the cSBM. We will
also inject and remove higher-order structure in various contexts to see how GNN performance is
affected. We now describe some of the random graph models and GNN architectures on which our
analysis relies. Note, when referring to data generation methods we use the term generative models
while model will refer to a trained GNN.
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3.1 STOCHASTIC BLOCK MODELS

The stochastic block model is a random graph model that encodes node clusters (“classes”) in the
graph topology. The presence or absence of each edge is determined by an independent Bernoulli
draw with probability determined by the class identities of the nodes. We restrict attention to SBMs
where all classes have the same size and uniform inter-class and intra-class probabilities. The pa-
rameters for such an SBM are: the total number of nodes n, the number of equally sized classes k,
the intra-class edge probability pin, and the inter-class edge probability pout. While SBMs generate
realistic clustering patterns, without further modification they exhibit a binomial degree distribu-
tion. To more closely model many realistic classes of data, Karrer & Newman (2011) proposed the
degree-corrected SBM, which can exhibit any degree distribution, notably heavy-tailed distributions.

In this paper, we represent edge similarity using an edge information parameter, λ, which has the
following relationship to pin and pout:

pin =
d+ λ

√
d

n
, pout =

d− λ
√
d

n
,

where d is the expected average node degree. Setting λ = 0 yields identical inter- and intra-class
edge probabilities, meaning the topology of the graph encodes no information about class labels. A
positive λ indicates that nodes of the same class are more likely to connect than nodes of different
classes (homophily), while a negative λ indicates the reverse relationship (heterophily).

To generate node attributes, Deshpande et al. (2018) proposed the contextual SBM (cSBM), where
features are drawn from Gaussian point clouds with mean at a specified distance µ from the origin.
Features, X , are thus defined as X(i) = µmvi + zi, where zi a standard normally distributed
random variable, vi is the ground-truth class label of node i, and mvi is the mean for class vi.
The means are chosen to be an orthogonal set. We can then vary the level of feature separability
(feature information) by modifying µ. Setting µ = 0 makes node features indistinguishable across
classes, while a large value of µ indicates high distinguishability. We thus refer to µ as the feature
information parameter.

3.2 GRAPH NEURAL NETWORKS

As stated before, we analyze the performance of four diverse and influential architectures: GCN
Kipf & Welling (2017), SAGE Hamilton et al. (2017), GAT Veličković et al. (2018), and Graph-
Transformer Chen et al. (2022). In our numerical work, we also assess the performance of a standard
feedforward neural network and spectral clustering (von Luxburg, 2007), which are useful points of
comparison as they are agnostic to the graph and feature structures, respectively. Lastly we also use
graph-tool (Peixoto, 2014) to evaluate feature-agnostic performance on heterophilous graphs.

4 THEORETICAL RESULTS

We now derive analytically the performance of GNN architectures when the data-generating process
is known. Section 4.1 covers the one-layer case for a GCN architecture and cSBM-generated data,
and section 4.2 handles the two-layer case in for a more general class of GNN architecture as well as
a broader class of generating processes. We introduce the following notation first: for a given node
i, nin(i) is the number of neighbors in the same class as i, and nout(i) is the number of neighbors in FIX

FIXother classes. N (i) is the one-hop neighborhood of i. vi is the ground-truth class label of i. erf is
the Gaussian error function. Both subsections assume a binary classification setting. The results in NEW
4.1 are at least partly known in other literature (e.g. Lemma 1 from Wu et al. (2023b)), but they are
included here for completeness.

4.1 ACCURACY ESTIMATES FOR SINGLE-LAYER GCNS

In the one-layer case, we assume the GNN is of the simple form y[X] = sign(AXW ), that the
final embedding is into R, and that A and X are generated by a cSBM, with no self-loops (but see
remark 2). We also make a slight modification to the cSBM setup so that the means are diametrically
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opposed rather than orthogonal. That is,

X(i) =

{
µm+ zi if node i is in class 1
−µm+ zi if node i is in class 2.

This requires no loss of generality, since all choices of two means may be translated to fit this
assumption. We then have the following proposition:

Proposition 1. Under the preceding assumptions, we have

1. For each i, (AXW )i has the distribution FIX
FIX

µ(nin(i)− nout(i))m ·W︸ ︷︷ ︸
neighborhood signal

+

 ∑
j∈N (i)

zj

 ·W

︸ ︷︷ ︸
noise

.

2. If W ̸= 0, the generalization accuracy, conditioned on the graph structure is, FIX

P (y[X](i) = 1 | nin(i), nout(i), vi = 1) =
1

2

(
erf

(
µ(nin(i)− nout(i))√
2(nin(i) + nout(i))

cos θ

)
+ 1

)
,

where θ is the angle between W and m. FIX
3. The maximum expected accuracy for an arbitrary node in the homophilous regime is

achieved when θ = π. In the heterophilous regime, θ = 0 is the maximizer.

Proof. See appendix A.

Remark 1. Part three of this proposition shows that, in the one-layer case, optimal performance
is achieved simply by aligning the learned parameters with the axis separating the means of the
distributions. The proof consists largely of manipulations of the probability densities, together with
calculus. A similar alignment result applies in the two-layer case, but in that case, the fastest way
forward is to rely on the symmetries of the distribution and GNN, as shown below.

Remark 2. The analysis with self-loops is nearly identical, with the exception that it is possible
that the maximizing parameters may possibly differ in the extremely dense, slightly heterophilous
case, but this is not the regime in which GNNs are typically used. Extremely dense refers to the case NEW
where almost all edges are present. See the proof for full details.

4.2 ANALYSIS OF TWO-LAYER GCNS NEW

In this section, we make two claims about the effectiveness of a class of GNNs given certain symme-
tries in the model space. These symmetry assumptions are satisfied by the cSBM, and both results
make precise that the effectiveness of nonlinear GNNs cannot be explained by cSBM-type data mod-
els. First, given a certain symmetry about the origin, we claim the cost of the model y is no smaller
than the cost of a linear model. Second, given an additional symmetry about any subspace S of the
feature space, we claim the cost of the linear model is no smaller than the cost of a projection of the
linear model.

4.2.1 SET-UP FIX

We define a 2-class attributed random graph model to be a probability space (Ω, P ) of tuples
(G, i, v,X) where G is a graph, i is a node in G, and v and X are functions mapping each node
in the graph to its class and its feature vector, respectively. That is,

v : G→ {−1, 1}
X : G→ Rmfeat

As a notational convenience, let v(x) denote the class of the node corresponding to a tuple x ∈ Ω. FIX
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A model y on a 2-class attributed random graph model assigns to each x ∈ Ω a real number y(x) ∈ R
that corresponds to the estimated probability that the node corresponding to x is of class 1. More
concretely, the predicted probability is given by

P (v(x) : y(x)) =

{
σs(y(x)) v(x) = 1
1− σs(y(x)) v(x) = −1.

where σs : R → (0, 1) is is the logistic sigmoid σs(z) = (1+e−z)−1. According to maximum likelihood
learning, the cost function of the model y is

C(y) = Ex∼Ω[− logP (v(x) : y(x))].

In this section, we will focus on 2-layer models consisting of linear aggregators interspersed by the
non-linear ReLU function σ. More concretely, a graph aggregator maps a graph and its features to a
new set of features on the graph:

ϕ : (G,X) → X ′

where X ′ : G→ Rl for some l. We write ϕG = ϕ(G, ·). A linear aggregator (without bias) satisfies

ϕG(X1 +X2) = ϕG(X1) + ϕG(X2)

for all graphs G and features X1, X2. Linear aggregators include the standard sum and mean aggre-
gators, but they also include more general aggregators such as applying the sum aggregator after
adding self-loops with a custom weight. A generalized 2-layer graph convolutional network (GCN)
without bias is then given by

y(x) = (ϕ′
G ◦ σ ◦ ϕG)[X](i)

where ϕ and ϕ′ are linear aggregators, ϕ′ maps into R, and σ is the ReLU function.

4.2.2 PRINCIPAL CLAIMS FIX

In this section, we make two claims on the effectiveness of these generalized GCNs given certain
symmetries in the model space Ω. First, given a certain symmetry about the origin, we claim the cost
of the model y is no smaller than the cost of the linear model L[y]:

L[y](x) =
1

2
(ϕ′

G ◦ ϕG)[X](i)

Second, given an additional symmetry about any subspace S of the feature space, we claim the cost
of the linear model L[y] is no smaller than the cost of the projection of the linear model PS [L[y]]:

PS [L[y]](x) =
1

2
(ϕ′

G ◦ ϕG ◦ PS)[X](i)

where PS is simply the projection on the subspace S. For example, if ϕ′ and ϕ are both simply the
classical right-multiplication by a weight matrix followed by summing the features of neighbors, then
model y becomes

y(x) =
∑

j∈N (x)

σ

 ∑
k∈N (j)

X(k)W

 · c

for some weight matrix W and weight vector c. If the symmetries mentioned above hold for the
subspace S = span{m⃗} for some vector m⃗ (as is the case with a cSBM), then the above claims
assert the cost of the model y is no smaller than the cost of the model,

PS [L[y]](x) =
1

2

∑
j∈N (x)

∑
k∈N (j)

PS(X(k))W · c = K
∑

j∈N (x)

∑
k∈N (j)

X(k) · m⃗

for some K ∈ R. FIX

The first symmetry is defined using the negation of element of Ω. If x = (G, i, v,X) ∈ Ω, we define
the negation of x to be the tuple −x = (G, i,−v,−X). In other words, x has the same graph with
all of the classes and features negated. We similarly define the negation of a subset F ⊂ Ω by
−F = {−x : x ∈ F}. We say a 2-class attributed random graph model is class-symmetric about the
origin if P (F ) = P (−F ) for all measurable F ⊂ Ω. Heuristically, this means that in the distribution
of graphs, the nodes of the two classes have the same topological distribution (which still allows for
homophily/heterophily) and that the feature distribution of of class -1 is equal to the feature distribution
of class 1 reflected across the origin. A cSBM with an equal number of nodes in both classes satisfies
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this symmetry, but this property is also held by graph models having non-Gaussian noise so long as
there is symmetry across the origin. FIX

The second symmetry concerns the feature distribution alone. If S is subspace of the feature space
and RS is the reflection across S, then the reflection of x ∈ Ω is defined by RS(x) = (G, i, v, RS ◦X).
In other words, x has the same graph with all the features reflected across S. We similarly define
the reflection of a subset F ⊂ Ω by RS(F ) = {RS(x) : x ∈ F}. We say a 2-class attributed random
graph model is symmetric about S if P (F ) = P (RS(F )) for all measurable F ⊂ Ω. Heuristically, this
means the feature distribution is symmetric about the subspace S.

Theorem 1. Let Ω be a 2-class attributed random graph model and let y be any two-layer general-
ized GCN without bias on Ω. If Ω is class-symmetric about the origin then,

C(L[y]) ≤ C[y].

Furthermore, if Ω is symmetric about S then,

C(PS [L[y]]) ≤ C(L[y])

Proof. See appendix B. The main idea is to use the symmetries of the space together with the
convexity of the objective to invoke Jensen’s inequality.

NEW
We note that similarity between the previous theorem and ideas from Wu et al. (2023b). Our work

focuses on models with a stacked non-linearity, while the latter deals primarily with linear models.

In light of the the preceding theorem, linear GCNs are optimal over the binary cSBM. Carefully
analyzing the linear case, we obtain an explicit formula for the optimal accuracy of any GCN over
cSBM data. Although difficult to analyze theoretically, the accuracy can calculated empirically using NEW
the following formula (see the remark afterward for an intuitive explanation):

Theorem 2. In the large node limit of a cSBM, the linear model

y(x) = K
∑

j∈N (x)

∑
k∈N (j)

X(k) ·m

has accuracy
∞∑

nin,nout,n2−in,n2−out=0

P (nin, nout, n2−in, n2−out)Φ

(
ψ

(
sgn(K)µσ , nin, nout, n2−in, n2−out

))
where Φ is the cdf of the standard normal distribution and the following definitions apply:

P (nin, nout, n2−in, n2−out)

= p(nin, din) · p(nout, dout) · p(n2−in, dinnin + doutnout) · p(n2−out, doutnin + dinnout),

p(k, λ) =
λke−λ

k!
, and

ψ(c, nin, nout, n2−in, n2−out) = c
1 + 3nin − nout + n2−in − n2−out√

(nin + nout + 1)2 + 4(nin + nout) + (n2−in + n2−out)
.

Proof. See appendix B.

Remark 3. In the theorem, the indices nin, nout, n2−in, and n2−out refer to the number of distance
1 and 2 nodes with the same and the opposite class of the base node. The function P represents the FIX
probability of the graph structure having such characteristics, while the function Φ ◦ψ is the accuracy
at the base node given such characteristics. The function p is the p.m.f. of the Poisson distribution.

5 EMPIRICAL EXPLORATION OF DATA REGIMES

In section 5.1 and section 5.2, we present results from our simplest set of experiments in detail to
illustrate the interplay between edges and features. Then, in section 5.3 we compare performance
across each of the four architectures. Finally, we contrast how GNNs performed on degree-corrected
and non-degree-corrected graphs in section 5.4. See also our full code online to extend this work to
other architectures and parameter ranges:
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5.1 EXPERIMENTAL DESIGN

To better understand how GNN architectures harness information embedded in the features or edges,
we evaluated them across a variety of graphs. Each of our architectures was comprised of one input
layer, a hidden layer of size 16 (with ReLU activation functions), and an output layer (with softmax).
As baselines, we trained a feedforward neural network, with one hidden layer of size 16, on the
feature data. Our exploration also encompassed a variety of methods for feature-agnostic methods
such as graph-tool (Peixoto, 2014), Leidenalg (python package), Louvian (python package), and
Spectral clustering (Pedregosa et al., 2011). In doing so we found that spectral clustering worked
the best for assortative graphs (edge information from [0,3]) and graphtool performed the best on
dissasortative graphs (edge information from [-3,0)).

We generated graph data using a cSBM with average degree d = 10; the number of nodes n =
1, 000; the number of features mfeat = 10; the number of classes c = 2; and standard deviation of
the Gaussian clouds .2. These hyperparameters were selected to be representative of a large variety
of datasets without being too computationally expensive (specifically when using transformers). We
observed that 1, 000 nodes was large enough to get statistical regularity and that using larger graphs
(up to 40,000 nodes) didn’t introduce major deviations. With these hyperparameters, we vary λ
(edge separation in cSBMs) between −3 and 3 and vary feature separation (cloud distance from
origin) from 0 to 2 to obtain 121×200 (how finely we discretized the interval) possible sets of graph
data. This data ranges from being highly disassortative to highly assortative.

To train each architecture, we used an Adam optimizer (PyTorch) with a learning rate of 0.01 for
400 epochs (typically where the model ceased improving). We evaluated the final accuracy on a
separate graph, with the same graph parameters to prevent overfitting.

In addition to the class count of two, we ran the architectures across class counts of three, five, and
seven each with both a degree-corrected case and a binomial case. As each test was averaged/maxed
over 10 trials, the number of tests totals 320 different tests with 15, 488, 000 accuracy scores gener-
ated (more than .25 petaflops used in total). We note that we used two hidden layers and Gaussian NEW
distributions for simplicity, but more complex distributions and additional layers merit future research.

5.2 EXAMPLE: BINARY NODE CLASSIFICATION WITH GRAPH TRANSFORMER

Figure 1: (Left) Transformer’s performance on a five-class non-degree-corrected cSBM, with color
gradients indicating accuracy levels. To the right and below, performance curves for the feedforward
neural network (graph-blind) and graph-based (feature-blind) methodologies are displayed respec-
tively. (Right) A comparison of the top-performing model among the Graph Transformer, feedfor-
ward neural network, and graph-based clustering. White space indicates where one model was not
consistently better than the others. The Transformer predominantly excels when edge and feature
information were moderately noisy. The graph based method is able to surpass the transformer if
we have a combination of high feature noise and low edge noise.

Our experiments with the Transformer architecture elucidate its robustness across a wide parameter
space (see fig. 1). Remarkably, the Transformer consistently delivers superior performance across
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most scenarios, with exceptions only in cases where both the feature and edge information are heav-
ily compromised by noise. An intriguing capability of the Transformer is its potential to achieve
flawless accuracy even when presented with solely noisy edge information. This implies an in-
nate adaptability within the Transformer to sift through the noise, selectively emphasizing pertinent
features over less informative edges. Message-passing GNNs seem to struggle with this (Bechler-
Speicher et al., 2023) as seen in fig. 2.

The Transformer performs well on heterophilous graphs as well, most clearly seen in fig. 2. Such NEW
proficiency makes the Transformer an excellent candidate for tasks demanding the assimilation of
diverse or opposing sets of information. A marked limitation is observed in the Transformer’s abil-
ity to process noisy feature scenarios, where spectral clustering performs better. The Transformer’s
somewhat dependent relationship with feature information, even when suboptimal, necessitates fur-
ther investigation.

5.3 PERFORMANCE OF GCN, GAT, SAGE, AND TRANSFORMER ARCHITECTURES

Figure 2: Comparison performance on non-degree-corrected and degree-corrected SBMs for GCN,
GAT, SAGE and Transformer architectures. Notice the GCN and GAT consistently perform worse
when the edge information is roughly zero, but the other two models achieve perfect accuracy given
enough feature information. This could be due to SAGE and Transformer learning a more global
context for each node. In this regime we see that almost all of the models did better on the heavy
tailed graphs. GCN achieved higher accuracy on such graphs when the edges were just noise. The
accuracy of the GAT improved as well in the regime of very noisy edges and features. All values are
the best of 10 trials, with a 5× 5 convolutional filter applied for visual clarity.

We now juxtapose the performances of four distinct architectures, particularly considering the in-
fluence of heavy-tailed degree distributions. Refer to fig. 2 for insights on the three-class scenario, FIX
while an exhaustive analysis is cataloged in appendix C.1 and appendix C.2. Generally, both Graph-
Transformer and SAGE stand out for their resistance to edge and feature noise, demonstrating their
robustness in noisy regimes. In a three-class, non-degree-corrected cSBM setting, SAGE and Graph- NEW
Transformer consistently outperform the other two models, GAT and GCN. This is shown by their
strong resistance to feature noise and their ability to classify accurately even without edge informa-
tion. Such performance highlights SAGE’s use of global information from random walks and graph
embeddings, while the Transformer simply ignores the graph embedding.

Each architecture performs differently, as shown by their varying weak areas (seen as blue areas
in fig. 2) and how they compare to neural network and spectral clustering benchmarks (detailed in
appendix C.2). The GAT and GCNs weak area is especially prominent with no edge information,
showing it relies heavily on clear features. Interestingly, both Transformer and GAT perform bet-
ter with degree correction, especially in heterophilous settings. For a more in depth comparison of NEW
different models see appendix C.2
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5.4 DEGREE-CORRECTED SBMS

We found that all models performed better on scale-free graphs. We believe this occurs due to a
filtering out of bad neighbors. Most nodes in the heavy-tailed data have relatively few neighbors,
this allows for fewer confusing neighbors to contribute misleading information in the aggregation
step than in the binomial degree distribution. This is similar to ideas from Albert et al. (2000).

The scale free graphs affected the models in different ways, for example the performance of SAGE
only improved in the higher signal edge regimes (right and left sides of the fig. 2). The performance
of GAT increased dramatically in the case of very noisy edges and features. This is likely because
degree correction gave it more information on what edges to prune. Interestingly, the attention
based models, the Transformer and GAT, saw a stark increase in performance in the heterophilous
clustering, suggesting that self-attention allows for a better interpretation of such graphs.

6 EFFECT OF HIGHER-ORDER STRUCTURE IN REAL WORLD DATASETS

Figure 3: Comparison of model accuracies on real data compared to performance on matched syn-
thetic data. The accuracy tends to improve when we erase higher-order structure in the data. The
datasets from left to right are: Flickr, DeezerEurope, Citeseer, LastFMAsia, DBLP, Facebook-
PagePage, Pubmed, GitHub, Cora, Amazon Computers, and Amazon Photos. The figure depicts
cases where we transform only the edges, only the features, and both. The transformer was not run
due to memory requirements.

The experiments to be described in this section support the claim that higher-order structure, such
as clustering or motifs, influence the performance of GNN architectures. We found that the models
generally performed better on matched synthetic data than on real data, suggesting that the higher-
order structure that was erased is an impediment to GNN learning (see fig. 3).

To make the synthetic data for each data set, we transformed the edge and feature data as if each
dataset were already a degree-corrected cSBM. we used a variety of datasets from pytorch geomet- FIX
ric (Fey & Lenssen, 2019). In particular, the edge data was randomized by rewiring every edge to
preserve degree distribution and modularity similar to ideas in Fosdick et al. (2018). In some exper-
iments, the node features were also transformed by sampling from the estimated normal distribution. NEW
Thus, the synthetic data lacks nontrivial structure except the structure implied by the degree dis- FIX
tribution, intra/inter-class linkage frequency, and feature means and standard deviations match the
corresponding empirical network.

We see a positive impact on the accuracy of the GCN when removing the higher-order struc-
ture (see fig. 3) specifically with edge structure. The fact that the GNNs do better on this semi-
randomized data suggests that they may perform optimally on SBM-like data, but are negatively
impacted by the additional structure present in real data. Uncovering why such structure can be
detrimental to these GNNs is a significant opportunity for future work.

To further verify that we are not confusing higher-order structure with label noise, we verified these
results on synthetic data with controlled structure. Such results indicate that GNNs perform worse
on datasets with spatial structure, but are unaffected by local motifs such as triadic closure. Results
on graphs with planted hierarchical structure were mixed but largely favored SBM data. A more
detailed analysis can be found in appendix D.
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7 REPRODUCIBILITY STATEMENT

For further explanation of various proofs explored in section 4, see appendix A and appendix B. For
code implementations of our studies in section 5.3 and section 6, see our GitHub or the supplemen-
tary material. For the exact implementation of section 5.3, view the hyperparameters discussed in
section 5.1. In regards to our findings in section 6, view appendix D for a more in-depth explanation.
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Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack tolerance of complex
networks. Nature, 406(6794):378–382, 2000.

Jesús Arroyo, Avanti Athreya, Joshua Cape, Guodong Chen, Carey E. Priebe, and Joshua T. Vogel-
stein. Inference for multiple heterogeneous networks with a common invariant subspace. Journal
of Machine Learning Research, 22(142):1–49, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization. In
The 38th International Conference on Machine Learning, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions in
multi-layer networks. In The Eleventh International Conference on Learning Representations,
2023.

Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural net-
works use graphs when they shouldn’t, 2023. arXiv:2309.04332.

Danny Bickson. Gaussian belief propagation: Theory and application. PhD thesis, Hebrew Uni-
versity of Jerusalem, 2009.

Norbert Binkiewicz, Joshua T. Vogelstein, and Karl Rohe. Covariate-assisted spectral clustering.
Biometrika, 104(2):361–377, 2017.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In International Conference for Machine Learning, 2022.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata Sen. Contextual stochastic
block models. In Advances in Neural Information Processing Systems, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander. Configuring random
graph models with fixed degree sequences. SIAM Review, 60(2):315–355, 2018.

Kimon Fountoulakis, Amit Levi, Shenghao Yang, Aseem Baranwal, and Aukosh Jagannath. Graph
attention retrospective. Journal of Machine Learning Research, 24(246):1–52, 2023.

Chao Gao, Zongming Ma, Anderson Y. Zhang, and Harrison H. Zhou. Community detection in
degree-corrected block models. The Annals of Statistics, 46(5), 2018.

Jonathan Halcrow, Alexandru Mosoi, Sam Ruth, and Bryan Perozzi. Grale: Designing networks for
graph learning. In the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020.

10



Under review as a conference paper at ICLR 2024

William L. Hamilton. Theoretical motivations. In Graph Representation Learning, pp. 77–103.
Springer, 2020.

William L. Hamilton, Rex Ying, and Jure Lescovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing, 2017.

Jing Huang and Jie Yang. UniGNN: a unified framework for graph and hypergraph neural networks.
In International Joint Conferences on Artificial Intelligence Organization, 2021.

Ningyuan Huang and Soledad Villar. A short tutorial on the Weisfeiler-Lehman test and its variants.
In 2021–2021 IEEE International Conference on Acoustics, 2021.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with AlphaFold.
Nature, 596(7873):583–589, 2021.

Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks.
Phys. Rev. E, 83:016107, 2011.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Internation Conference on Learning Representations, 2017.

Pan Li and Jure Leskovec. The expressive power of graph neural networks. In Graph Neural
Networks: Foundations, Frontiers, and Applications, pp. 63–98. Springer, 2022.

Wei Lu. Learning guarantees for graph convolutional networks on the stochastic block model. In
International Conference on Learning Representations, 2022.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations, 2022.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with simple
architecture design, 2021. arXiv:2105.07634.

Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph neural
networks. In 36th International Conference on Machine Learning, 2019.

Hoang N.T. and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass
filters, 2019. arXiv:1905.09550.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Proceedings of Machine Learning
Research, 12:2825–2830, 2011.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D. Turner. gl2vec: Learning feature repre-
sentation using graphlets for directed networks. In 2019 IEEE/ACM International Conference on
Advances in Social Networkss Analysis and Mining, 2020.
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A ANALYSIS OF ONE-LAYER GCN

In this appendix, we prove the three parts of proposition 1.

A.1 DISTRIBUTION OF LINEAR EMBEDDINGS

Analyzing the linear part of the model gives

(AXW )i =
∑

j∈N (i)

X(j)W.

From here, we split the sum into two parts corresponding to the two possible classes of neighbors:∑
j∈N (i)
j in class 1

X(j)W +
∑

j∈N (i)
j in class 2

X(j)W

We then substitute the known expressions for X(j):∑
j∈N (i)
j in class 1

(µm+ zj)W +
∑

j∈N (i)
j in class 2

(−µm+ zj)W.

This becomes

(AXW )i = µ(nin − nout)mW︸ ︷︷ ︸
neighborhood signal

+

 ∑
j∈N (i)

zj

W

︸ ︷︷ ︸
noise

.

A.2 NODEWISE ACCURACY, CONDITIONED ON THE GRAPH STRUCTURE

Assume W ̸= 0. If nin = nout = 0 then we have an isolated point. Since we are assuming no
self loops and have no bias, these nodes do not affect the optimal parameters (in particular, the
convolution outputs zero for these nodes). Thus we can assume that each node has at least one edge.
We then compute,

P (y[X](i) = 1 | nin, nout, vi = 1) =

∫ ∞

0

1√
2πWTW (nin + nout)

e
− 1

2

(
x−(µ(nin−nout)mW )√

WT W (nin+nout)

)2

dx

(1)
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We now fix,

u =
x− (µ(nin − nout)mW )√

2WTW (nin + nout)
with du =

dx√
2WTW (nin + nout)

. (2)

Notice
√
2WTW (nin + nout) > 0 since each node has at least one edge and W ̸= 0. We have,√

2WTW (nin + nout)√
2πWTW (nin + nout)

∫ ∞

−(µ(nin−nout)mW )√
2WT W (nin+nout)

e−u2

du

=
1

2

∫ ∞

−(µ(nin−nout)mW )√
2WT W (nin+nout)

2e−u2

√
π

du =
1

2
erf(u)

∣∣∣∞−(µ(nin−nout)mW )√
2WT W (nin+nout)

Observe that limu→∞ erf(u) = 1, so

1

2

(
lim
u→∞

erf(u)− erf

(
−(µ(nin − nout)mW )√
2WTW (nin + nout)

))

=
1

2

(
erf

(
µ(nin − nout)mW√
2WTW (nin + nout)

)
+ 1

)
.

Thus we have that

P (y[X](i) = 1 | nin, nout, vi = 1) =
1

2

(
erf

(
µ(nin − nout)mW√
2WTW (nin + nout)

)
+ 1

)
,

as promised.

A.3 MAXIMIZING ACCURACY

Given the symmetry of the linear model,

P (yi = vi) = P (yi = vi|vi = 1)

Let Pin(nin) be the probability of having nin homophilous edges, and Pout(nout) be the probability
of having nout heterophilous edges. Since Pin(nin) and Pout(nout) are independent we have,

P (yi = vi|vi = 1) = P ((AXW )i > 0 | vi = 1) (3)

=

N
2∑

nin=0

N
2∑

nout=0

P ((AXW )i > 0 | nin, nout)Pin(nin)Pout(nout). (4)

Recall that θ is the angle between W and m and that consequently cos θ = mW/
√
WTW . To find

the maximizers, we now differentiate each term P ((AXW )i > 0 | nin, nout) with respect to θ and
set it equal to 0.

d

dθ

(
1

2

(
erf

(
µ(nin − nout)√
2(nin + nout)

cos(θ)

)
+ 1

))
= 0 (5)

− µ(nin − nout)√
2(nin + nout)

1

2
sin(θ)

(
erf ′

(
µ(nin − nout)√
2(nin + nout)

cos(θ)

))
= 0, (6)

− µ(nin − nout)√
2(nin + nout)

1

2
sin(θ)

2√
π
e
−
(

µ(nin−nout)√
2(nin+nout)

cos(θ)

)2

= 0 (7)

where erf ′(x) = 2√
π
e−x2

. This is equal to 0 exactly when θ = 0 and θ = π.
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It turns out these are the only two critical values. To demonstrate this we reintroduce our summations
and re-index α = nin + nout and β = nin − nout. Define U(α) = N

2 −
∣∣α− N

2

∣∣:
N∑

α=0

U(α)∑
β=−U(α)

− µβ√
2απ

sin(θ)e−
µ2β2

2α cos2(θ)Pin(nin(α, β))Pout(nout(α, β)) (8)

=
−µ sin(θ)√

2π

N∑
α=0

U(α)∑
β=−U(α)

β√
α
e−

µ2β2

2α cos2(θ)Pin(nin(α, β))Pout(nout(α, β)) (9)

by pairing off entries whose absolute value of beta are equal we have:

=
−µ sin(θ)√

2π

N∑
α=0

U(α)∑
β=1

c(α, β, θ) (Pin(nin(α, β))Pout(nout(α, β))− Pin(nout(α, β))Pout(nin(α, β)))

(10)

with c(α, β, θ) = β√
α
e−

µ2β2

2α cos2(θ). From here note that in the case of homophily:

Pin(nin(α, β))Pout(nout(α, β))− Pin(nout(α, β))Pout(nin(α, β)) > 0 (11)

and heterophily:

Pin(nin(α, β))Pout(nout(α, β))− Pin(nout(α, β))Pout(nin(α, β)) < 0. (12)

To see this, note that

Pin(nin)Pout(nout) ∝
( N

2

nin

)( N
2

nout

)
pnin

in pnout
out .

Similarly,

Pin(nout)Pout(nin) ∝
( N

2

nin

)( N
2

nout

)
pnout

in pnin
out.

Subtracting yields

Pin(nin)Pout(nout)− Pin(nout)Pout(nin) (13)

∝
( N

2

nin

)( N
2

nout

)
(pin

ninpnout
out − pnout

in pnin
out) (14)

=

( N
2

nin

)( N
2

nout

)
pnout

in pnin
out

((
pin
pout

)nin−nout

− 1

)
. (15)

Since nin ≥ nout (because β ≥ 0), eq. (15) is positive in the heterophilous case and negative
otherwise (unless nin = nout, of course). If nin = nout then the probabilty for any node to be NEW
classified correctly is .5 regardless of the weight matrix, so every weight matrix is optimal.

In any case, the first derivative is not equal to zero unless θ ∈ {0, π}.

Notice if we include self-loops, the analysis case is very similar, with the caveat that there may rarely
be another critical point in the very dense heterophilous case, due to the possibility of nin = N

2 .

Thus the critical points are 0 and π.

We now take the second derivative with respect to θ to classify the critical points. For clarity we set
h = µ(nin−nout)√

2(nin+nout)
. Again, proceeding term by term gives

−h√
π

d

dθ

(
sin(θ)e−h2 cos2 θ

)
(16)

=
−2h3√
π

sin(θ)2 cos(θ)e−h2 cos2 θ − h√
π
cos(θ)e−h2 cos2 θ. (17)
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Since sin(θ) = 0 at both critical points and cos(θ) = ±1, this simplifies to

= − h√
π
cos(θ)e−h2

. (18)

We now reintroduce the summations and reindex. Once again fixing α = nin + nout and β =
nin − nout. Let U(α) be defined as above. The second derivative is then

−µ√
2π

cos(θ)

N∑
α=0

U(α)∑
β=−U(α)

β√
α
e−

µ2β2

2α P (nin(α, β))P (nout(α, β)) (19)

=
−µ√
2π

cos(θ)

N∑
α=0

U(α)∑
β=1

β√
α
e−

µ2β2

2α (Pin(nin(α, β)Pout(nout(α, β))− Pin(nout(α, β))Pout(nin(α, β)))

(20)

Similar to the analysis with the first derivative, the second term in the innermost sum is always less
than the first (assuming homophily here), we that the second derivative must be positive at π and
negative at 0, as expected. In the heterophilous case, the opposite sign rules apply.

Thus in the homophilous case the maximal accuracy is obtained when θ = 0 or our weight matrix is
pointing in the same direction as our average feature vector. The minimal accuracy is obtained with
θ = π. For heterophily reversed rules apply.

B ANALYSIS OF TWO-LAYER GNNS

B.1 PROOF THAT LINEAR MODELS ARE OPTIMAL IN CERTAIN CASES

Let Ω be a 2-class attributed random graph model. For any x = (G, i, v,X) ∈ Ω, we defined earlier
the negation

−x = (G, i,−v,−X)

and the reflection
RS(x) = (G, i, v, RS ◦X)

where S is some subspace of Rm. We also define P⊥ = I − PS or the projection onto the subspace
orthogonal to S.

Lemma 1. For any model y on Ω, the cost function is given by:

C(y) = Ex∼Ω

[
log
(
1 + e−v(x)y(x)

)]
Proof. By definition,

C(y) = Ex∼Ω[− logP (v(x) : y(x))]

where

P (v(x) : y(x)) =

{
σs(y(x)) v(x) = 1
1− σs(y(x)) v(x) = −1

and σs(z) = (1 + e−z)−1. Famously the sigmoid function satisfies 1 − σs(z) = σs(−z). We can
then re-write the probability as

P (v(x) : y(x)) = σs(v(x)y(x))

Using the additionally identity − log σs(z) = log(1 + e−z) we obtain,

C(y) = Ex∼Ω [− log σs(v(x)y(x))] = Ex∼Ω

[
log
(
1 + e−v(x)y(x)

)]

Lemma 2. The function f(x) = log(1 + e−x) is convex.
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Proof. It suffices to take the second derivative:

f ′′(x) =
ex

(1 + ex)2
> 0.

Lemma 3. Let y be any model on Ω. If Ω is class-symmetric about the origin, then following
inequality holds:

C(y) ≥ Ex∼Ω

[
log
(
1 + e−v(x)

y(x)−y(−x)
2

)]
If Ω is symmetric about the subspace S, then

C(y) ≥ Ex∼Ω

[
log

(
1 + e−v(x)

y(x)+y(RS(x))
2

)]
Proof. First let Ω be class-symmetric about the origin. By the above lemma,

C(y) = Ex∼Ω

[
log
(
1 + e−v(x)y(x)

)]
Since P (F ) = P (−F ) for all F ⊂ Ω, we can make a change of variables x 7→ −x to obtain

C(y) = Ex∼Ω

[
log
(
1 + e−v(−x)y(−x)

)]
= Ex∼Ω

[
log
(
1 + ev(x)y(−x)

)]
We may therefore add the two expressions and divide by 2 to arrive at,

C(y) =
1

2
Ex∼Ω

[
log
(
1 + e−v(x)y(x)

)
+ log

(
1 + ev(x)y(−x)

)]
.

By Jensen’s inequality for convex functions,

1

2
[f(z1) + f(z2)] ≥ f

(
z1 + z2

2

)
for f(z) = log(1 + e−z). Applying this to C[y], we obtain

C(y) ≥ log
(
1 + e

1
2 (−v(x)y(x)+v(x)y(−x))

)
(21)

= log
(
1 + e−v(x)

y(x)−y(−x)
2

)
(22)

If Ω is symmetric about the subspace S, then the same reasoning yields,

C(y) ≥ log
(
1 + e−v(x)

y(x)+y(RS(x))

2

)
.

Note that there is a sign difference from the previous expression, as negation flips the classes while
reflection does not.

Recall that if
y(x) = (ϕ′G ◦ σ ◦ ϕG)[X](i)

then
L[y](x) =

1

2
(ϕ′G ◦ ϕG)[X](i)

and
PS [L[y]](x) =

1

2
(ϕ′G ◦ ϕG ◦ PS)[X](i)

Lemma 4. Let y be any generalized 2-layer GCN without bias on Ω. Then for any x ∈ Ω,

y(x)− y(−x)
2

= L[y](x)

and for any subspace S of Rm,

L[y](x) + L[y](RS(x))

2
= RS [L[y]](x)
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Proof.

y(x)− y(−x) = (ϕ′G ◦ σ ◦ ϕG)[X](i)− (ϕ′G ◦ σ ◦ ϕG)[−X](i) (23)

= ϕ′G
(
σ(ϕG(X))− σ(ϕG(−X))

)
(i) (by linearity of ϕ′G) (24)

= ϕ′G
(
σ(ϕG(X))− σ(−ϕG(X))

)
(i) (by linearity of ϕG) (25)

= ϕ′G(ϕG(X))(i) (as σ(z)− σ(−z) = z) (26)
= 2L[y](x) (27)

which after dividing by 2 proves the first expression. Next,

2(L[y](x) + L[y](RS(x))) (28)

= (ϕ′G ◦ ϕG)[X](i) + (ϕ′G ◦ ϕG)[RS(X)](i) (29)

= (ϕ′G ◦ ϕG)[PS(X) + P⊥(X)](i) + (ϕ′G ◦ ϕG)[PS(X)− P⊥(X)](i) (30)

= 2(ϕ′G ◦ ϕG)[PS(X)](i) (by linearity of ϕ′G and ϕG) (31)
= 4PS [L[y]](x) (32)

which after dividing by 4 proves the second expression.

Theorem 3. Let Ω be a 2-class attributed random graph model and let y be any two-layer GCN
without bias on Ω. If Ω is class-symmetric about the origin then,

C(L[y]) ≤ C[y].

Furthermore, if Ω is symmetric about S then,

C(PS [L[y]]) ≤ C(L[y])

Proof. If Ω is class-symmetric about the origin then,

C[y] ≥ Ex∼Ω

[
log
(
1 + e−v(x)

y(x)−y(−x)
2

)]
(33)

= Ex∼Ω

[
log
(
1 + e−v(x)L[y](x)

)]
(34)

= C[L[y]] (35)

Similarly, if Ω is symmetric about S then the above lemmas applied to L[y] yield,

C(L[y]) ≥ Ex∼Ω

[
log
(
1 + e−v(x)

L[y](x)+L[y](RS(x))

2

)]
(36)

= Ex∼Ω

[
log
(
1 + e−v(x)PS [L[y]](x)

)]
(37)

= C(PS [L[y]]). (38)

B.2 ACCURACY ANALYSIS IN THE OPTIMAL-PARAMETER CASE

In light of the preceding theorem, we now study the accuracy of the optimal linear, two-layer GCN,
which we are able to compute in integrals. Let

y(x) = K
∑

j∈N (x)

∑
k∈N (j)

X(k) ·m

over a cSBM with expected average node degree d and edge information parameter λ, where K is a
constant, direction m ∈ Rmfeat , and features are given by

X(i) = viµm+ zi

where vi ∈ {±1} is the class and zi is the Gaussian error with mean 0 and variance σ2I . In this
case, X(i) ·m is given by

X(i) ·m = viµ+ zi ·m = vi + bi

where bi = zi ·m is Gaussian with mean 0 and variance σ2.
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In our analysis, self-loops will be added. Furthermore, din and dout will denote,

din =
d+ λ

√
d

2
, dout =

d− λ
√
d

2
.

In the large node limit, the number of neighbors of a node i having the same class, nin, is distributed
according to a Poisson distribution with mean din. Similarly, the number of neighbors having the
opposite class, nout, is distributed according to a Poisson distribution with mean dout.

The number of same class neighbors of the same-class neighbors of i, denoted nin,in is given by a
Poisson distribution conditional on nin with mean dinnin. Similarly the number of opposite class
neighbors of the same class neighbors of i, denoted nin,out is given by a Poisson distribution condi-
tional on nin with mean doutnin. We define nout,in and nout,out similarly.

Let n2−in and n2−out denote nin,in + nout,out and nin,out + nout,in respectively. Intuitively, n2−in

and n2−out denote the number of same class and opposite class nodes distance two from node i.
By independence, n2−in and n2−out are given by a Poisson distribution conditional on nin and nout
with means dinnin + doutnout and doutnin + dinnout, respectively. Then, if we let p(k, λ) = λke−λ

k!
be the pmf of the Poisson distribution, the probability of nin, nout, n2−in, and n2−out occurring can
be factored as

P (nin, nout, n2−in, n2−out) (39)
= p(nin, din) · p(nout, dout) · p(n2−in, dinnin + doutnout) · p(n2−out, doutnin + dinnout). (40)

Given nin, nout, n2−in, and n2−out, the model y(x) will have mean

µK
∑

j∈N (x)

∑
k∈N (j)

vk

as the error terms have mean 0. Taking self-loops into account, there are (nin + nout + 1) 2-walks
to the central node, two 2-walks to each of the neighbors, and one 2-walk to each of the nodes at
distance 2. Recall the mean may be calculated linearly while variance satisfies

Var

(∑
i

aiXi

)
=
∑
i

a2iVar(Xi)

where the {Xi}i are independent distributions. The conditional mean is therefore given by

Kµv(x)

(
(nin + nout + 1) + 2(nin − nout) + n2−in − n2−out

)
and variance

K2σ2

(
(nin + nout + 1)2 + 4(nin + nout) + (n2−in + n2−out)

)
.

When the graph structure is fixed, the model outputs will be Gaussian-distributed (as it is a sum of
Gaussian clouds), and its accuracy is the probability that its sign matches v(x). By symmetry, we
may assume v(x) = 1. If Φ is the cdf of the standard distribution, then this accuracy is given by Φ
applied to the mean divided by the standard deviation. The accuracy is then,

Φ

(
Kµ(1 + 3nin − nout + n2−in − n2−out)

|K|σ
√
(nin + nout + 1)2 + 4(nin + nout) + (n2−in + n2−out)

)
(41)

= Φ

(
ψ

(
sgn(K)µσ , nin, nout, n2−in, n2−out

))
(42)

where

ψ(c, nin, nout, n2−in, n2−out) = c
1 + 3nin − nout + n2−in − n2−out√

(nin + nout + 1)2 + 4(nin + nout) + (n2−in + n2−out)
.

The total accuracy is then given by
∞∑

nin,nout,n2−in,n2−out=0

P (nin, nout, n2−in, n2−out)Φ

(
ψ

(
sgn(K)µσ , nin, nout, n2−in, n2−out

))
.
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C COMPLETE SET OF ACCURACY MAPS

C.1 MEANS

The comprehensive results for mean values of our experiments are found below. Additional experi-
ments using other architectures or wider bounds may be conducted using our code in GitHub

Binomial Degree Distribution

Figure 4: We compare accuracies over the distributed graphs across varying class sizes. We also
depict the accuracy curves of a regular feedforward neural network and that of spectral clustering on
the same datasets to the right and bottom of each plot respectively. Using these plots, we compare
how well each architecture performs on an increased number of classes. Additionally, we view how
performance changes across different architectures.

When considering the Binomial SBM, we see that SAGE performed the best of any GNN architec-
ture across any class size. As we increase the number of classes more information is needed for any
architecture to classify correctly. Additionally, the increase in class size more adversely affects the
heterophilous regime than the homophilous regime. By comparing the figures in fig. 4 and fig. 5 we
can observe how each model is affected by degree correction across any number of classes.

In fig. 6 and fig. 7 we view the various regimes across which each architecture outperforms the
others. As we increase the class sizes, the favorable regime for the neural network increases in
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Degree-Corrected Degree Distribution

Figure 5: We compare accuracies over degree-corrected graphs with varying class sizes. The GCN
did better on degree-corrected graphs across any number of classes. This can be observed by viewing
how the blue region in the top figures shrinks in the degree-corrected case. The performance of the
Transformer improved in degree-corrected cases for class numbers of two and three, yet it decreased
performance for class numbers of five and seven. The performance of SAGE and GAT were mostly
unaffected by the degree correction.
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size, showing that in many cases it is simply better to ignore edges and utilize solely the feature
information. However, it should be noted that in most of the cases, there is always a regime where
the GNN architecture outperforms both of the baselines.

Binomial Degree Distribution

Figure 6: Regions depicting where each architecture outperforms the others across the SBM graphs.
Here we can compare how varying parts of the data effects the shape and sizes of the favorable
regimes
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Degree-Corrected Degree Distribution

Figure 7: Regions where each architecture outperforms the others across degree-corrected graphs.
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C.2 MAXES

The comprehensive results for max values of our experiments are found below. Additional experi-
ments using other architectures or wider bounds may be conducted using our code in our GitHub.

Binomial Degree Distribution

Figure 8: We compare accuracies over the distributed graphs across varying class sizes. Note that
the blue regions of these graphs are much more pointed than those of the mean graphs.

NEW
Generally, we find that the Graph-Transformer and SAGE are most resistant to edge and feature

noise. In fig. 8 we compare the performance of the GCN, GAT, SAGE, and Transformer on n-class,
non-degree-corrected cSBM. In these regimes SAGE and Graph are rarely beat by a neural network,
showing that they are more resistant to feature noise compared to the GAT or GCN. In addition,
SAGE and Transformer achieve perfect classification with zero edge information, something that the
GCN and GAT fail to achieve. This reflects that SAGE utilizes more global information (random walks
and graph embeddings) than the GCN and GAT, and that the Transformer learns to ignore the graph
positional encodings altogether. NEW

The areas where the models perform the worst (blue areas fig. 8) vary across the architectures,
as do the regions where they outperform the neural network and spectral clustering baselines (see
fig. 8). For example, the GAT’s blue regime goes much higher than the other architectures when there
is zero edge information. This suggests that clean features are especially important to the GAT. In
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addition, curiously, the degree correction seems to help both the Transformer and the GAT perform
slightly better in the heterophilous case (notice the slight skew in blue).

When we view the maxes in light of the average graphs, we see that the blue portions of the maxes
are much more steeply shaped than that of the averaged. This likely demonstrates that while both the
averages and the maxes perform poorly towards the middle (where there is a lot of edge noise) the
model is able to achieve better along the sides of the graph where we have less feature information
but more edge information. In general, it seems the models benefited from operating on heavy-tailed

Degree-Corrected Degree Distribution

Figure 9: We compare accuracies over degree-corrected graphs across varying class sizes.

graphs. In particular, we see that the GCN and the GAT performed better on degree-corrected graphs
across all class sizes. The Transformer and SAGE did not see as stark of an increase in performance,
but did perform noticeably better on class sizes of 2 and 3.

D FURTHER ANALYSIS OF THE ROLE OF HIGHER-ORDER STRUCTURE

We provide further insights into the effects of higher-order structure in GNNs. To illustrate the
impact of structure, we develop several variants of attributed Stochastic Block Models. We track
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Binomial Degree Distribution

Figure 10: Regions of where each architecture outperforms the others across the SBM graphs. Here
we can compare how varying parts of the data effects the shape and sizes of the favorable regimes
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Degree-Corrected Degree Distribution

Figure 11: Regions where each architecture outperforms the others across degree-corrected graphs.
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Figure 12: Effects of removing higher-order structure in structured SBMs. We vary feature separa-
bility in each of the examples from 0 to 1. GNNs most notably increased under ENN-SBMs.

accuracy on a Hierarchical Stochastic Block Model (hSBM), a Epsilon Nearest Neighbors Stochastic
Block Model (ENN-SBM), and a Stochastic Block Model with Triadic Closure.

The implementations can be found in our code on GitHub. To create the hSBM, we generate 5
sub clusters for each class in the SBM that have slightly more similar features and self higher con-
nectivity. We generate an Epsilon Nearest Neighbor Graph by sampling 1000 points from the unit
square and randomly assigning half to each class. We then generate the edges by adding an edge
between nodes if ||nodei − nodej || ≤ ϵintra for nodes of the same class for nodes of the same class
and ||nodei − nodej || ≤ ϵinter for nodes of different classes. Lastly, we generate a triadic closed
SBM by taking a normal SBM and closing 30% of the possible triadic closures.

We note that, as seen in fig. 12, GNNs perform best on graphs lacking both geographic structure
(encoded by ENN-SBM). One possible reason for this is that rewiring the graphs reduces the diam-
eter of a graph, encouraging nodes to be closer to the center of the graph or their own communities.
We also note that triadic closure has virtually no effect on the performance of GNNs, while results
for hierarchical structure vary across architectures.

Hierarchical structure and spatial structure can both be seen as a version of label noise, as a perfect
graph might only connect groups that are relevant to one another. This is not true in all cases, as
often both of these attributes can contribute valuable information to a machine learning process.
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