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Abstract

Industrial anomaly segmentation relies heavily on pixel-level annotations, yet
real-world anomalies are often scarce, diverse, and costly to label. Segmentation-
oriented industrial anomaly synthesis (SIAS) has emerged as a promising alter-
native; however, existing methods struggle to balance sampling efficiency and
generation quality. Moreover, most approaches treat all spatial regions uniformly,
overlooking the distinct statistical differences between anomaly and background ar-
eas. This uniform treatment hinders the synthesis of controllable, structure-specific
anomalies tailored for segmentation tasks. In this paper, we propose FAST, a
foreground-aware diffusion framework featuring two novel modules: the Anomaly-
Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction
Module (FARM). AIAS is a training-free sampling algorithm specifically designed
for segmentation-oriented industrial anomaly synthesis, which accelerates the
reverse process through coarse-to-fine aggregation and enables the synthesis of
state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Mean-
while, FARM adaptively adjusts the anomaly-aware noise within the masked
foreground regions at each sampling step, preserving localized anomaly signals
throughout the denoising trajectory. Extensive experiments on multiple industrial
benchmarks demonstrate that FAST consistently outperforms existing anomaly syn-
thesis methods in downstream segmentation tasks. We release the code in https:
//github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.

1 Introduction
Motivation. Industrial anomaly segmentation plays a vital role in modern manufacturing, aiming to
localize abnormal regions at the pixel level. Unlike traditional anomaly detection, which typically
performs binary classification at the image or region level, anomaly segmentation requires more
fine-grained and precise localization of abnormal patterns. However, real-world anomalies are
inherently scarce, diverse, and non-repeatable, making it difficult to collect data that fully captures
the range of possible abnormal types. Moreover, acquiring high-quality pixel-level annotations is
labor-intensive and costly, especially in industrial scenarios. To address these limitations, recent
studies have increasingly explored the use of synthetic anomalies to expand the training data space
and improve downstream performance.
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Limitations. Despite recent advances, current anomaly synthesis methods face three fundamental
limitations that hinder their effectiveness for segmentation tasks [35]. (i) Lack of controllability.
Most existing methods provide limited control over the structure, location, or extent of synthesized
anomalies. This limitation is particularly evident in GAN-based approaches [22, 41, 6]. These
methods typically adopt a one-shot generation paradigm, offering little flexibility in specifying where
and how anomalies should appear. (ii) Neglect of segmentation-relevant properties. Training-free
methods such as patch replacement or texture corruption [16, 40] may produce visible anomalies,
but the synthesized patterns often lack the structural consistency and complexity of real-world
industrial anomalies, which are critical for improving segmentation performance. (iii) Uniform
treatment of spatial regions and inefficiency. Although recent diffusion-based methods [11, 14, 26]
have mitigated the above issues, they still treat all spatial regions uniformly during both forward
and reverse processes, without explicitly modeling the distinct statistical properties of anomaly
regions [43, 38]. This absence of region-aware modeling prevents the model from preserving
abnormal regions throughout the synthesis trajectory. Moreover, these models typically require
hundreds to thousands of denoising steps [12, 27], resulting in a significant computational cost,
especially for the real-world production line changeover. While recent training-free methods [17]
aim to accelerate sampling, they fail to incorporate anomaly-aware cues, making them less effective
for segmentation-oriented industrial anomaly synthesis (SIAS). These limitations motivate the need
for SIAS models that support controllable anomaly synthesis, explicit modeling of anomaly regions,
and efficient, task-aligned sampling strategies.

FAST. To address these issues, we propose FAST, a novel foreground-aware diffusion framework with
two complementary modules: Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-
Aware Reconstruction Module (FARM). (i) AIAS is a training-free sampling strategy that reduces
the number of denoising steps by up to 99% (from 1000 to as few as 10), resulting in over 100×
speedup for SIAS tasks. Despite this drastic acceleration, FAST achieves an average mIoU of
76.72% and accuracy of 83.97% on MVTec-AD, outperforming all prior state-of-the-art methods. (ii)
FARM explicitly models abnormal regions by reconstructing pseudo-clean anomalies and generating
anomaly-aware noise at each step in both the forward and reverse processes. Incorporating FARM
boosts performance from 65.33% to 76.72% in mIoU (↑11.39), and from 71.24% to 83.97% in
accuracy (↑12.73), demonstrating its critical role in enhancing anomaly salience. Detailed results
are provided in Sec. 4.3. Together, AIAS and FARM enable FAST to generate controllable and
segmentation-aligned anomalies that significantly improve downstream performance.

Contributions. In summary, our contributions are three-fold: (1) To mitigate the inefficiency and se-
mantic misalignment of existing diffusion sampling, we introduce a training-free Anomaly-Informed
Accelerated Sampling (AIAS) strategy that aggregates multiple denoising steps into a small number of
coarse-to-fine analytical updates. (2) To address the lack of persistent anomaly-region representation,
we propose a Foreground-Aware Reconstruction Module (FARM) that reconstructs pseudo-clean
anomalies and reintegrates anomaly-aware noise at each step. (3) To support segmentation-oriented
industrial anomaly synthesis, we design FAST, a controllable and efficient model. Extensive ex-
periments on MVTec-AD and BTAD datasets demonstrate that it significantly outperforms existing
methods in downstream segmentation tasks.

2 Related work
Industrial Anomaly Synthesis. Industrial anomaly synthesis aims to mitigate the scarcity of labeled
abnormal samples in real-world inspection scenarios. Existing methods can be categorized into hand-
crafted and DL-based approaches. Hand-crafted methods typically apply training-free manipulations
to normal images, such as patch pasting [23, 25] or external texture blending [40, 36, 44] from
sources like DTD [4], but they suffer from distributional deviation and limited realism. Deep learning-
based methods alleviate these limitations by learning from real anomaly patterns. GAN-based
methods [7, 32] can synthesize visually realistic anomalies but lack fine-grained controllability over
anomaly shape and location. Diffusion-based methods [7, 15, 37, 10] offer stronger generative
capacity via large-scale pretrained models, yet treat all regions uniformly and lack explicit control
over anomaly localization, which is essential for segmentation. To this end, we propose FAST, which
integrates foreground-aware reconstruction and efficient, segmentation-oriented anomaly synthesis
into a unified diffusion framework.

Acceleration of Discrete-Time Diffusion Models. Diffusion models can be categorized into
continuous-time and discrete-time frameworks. Continuous formulations [18, 19, 46] adopt
SDE/ODE-based parameterizations and leverage high-order solvers for efficient sampling. In contrast,
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standard DDPMs [12] model a discrete-time Markov chain with fixed variance schedules and require
thousands of iterative denoising steps. While continuous-time solvers achieve notable speedups, they
rely on continuously parameterized noise or score functions, which requires reformulating training
objectives or interface in discrete-time models. Therefore, various acceleration techniques have been
developed specifically for discrete-time diffusion. Some methods modify the generative process
to reduce steps: DDGAN [33] integrates GAN-based decoding, TLDM [45] and ES-DDPM [20]
truncate the forward process, and Blurring Diffusion Models [13] operate in the frequency domain.
However, these methods require retraining and show limited generalization. In contrast, training-free
approaches such as DDIM [27], PLMS [17], and GGDM [30] accelerate sampling without model
modification. Yet, they treat all spatial regions uniformly and lack task-specific guidance essential for
SIAS. Recent work like CUT [28] introduces external prompts for localized control for anomalies,
but at the cost of multiple iterations per sampling step. In comparison, FAST proposes a novel
training-free strategy that aggregates multiple denoising steps into coarse-to-fine segments while
injecting mask-aware structural guidance, enabling efficient SIAS.

Foreground–background Decoupling. Foreground–background decoupling has been widely em-
ployed in industrial anomaly synthesis to enhance spatial precision and suppress irrelevant background
interference. The core idea is to isolate defect-related regions from normal contexts, thereby improv-
ing downstream performance and synthesis controllability. Most methods such as PRN [42] and
DCDGANc [31] perform explicit two-stage compositions, which first generate abnormal foregrounds
and then blend them with normal backgrounds under soft mask constraints, but often suffer from
boundary inconsistencies. Recent studies have introduced implicit separation; for instance, FCIS [29]
enlarges the anomaly–background distance via contrastive learning, while BDG [3] incorporates
masked attention and regularization within the denoiser to disentangle the influence of anomalies
from the surrounding background. Although both BDG and FAST involve diffusion-based synthesis
with certain forms of foreground–background decoupling, they pursue different research objectives
through fundamentally distinct methodologies. FAST is a segmentation-oriented anomaly synthesis
framework that emphasizes pixel-wise structural alignment and contextual consistency, whereas
BDG primarily targets robust anomaly detection. Technically, AIAS in FAST analytically aggre-
gates multiple DDPM reverse transitions into a few closed-form, coarse-to-fine updates, forming a
deterministic and training-free sampler (e.g., xt → xt−1) whose coefficients are precomputed under
the original variance schedule, without any variance-controlling parameters like DDIM [27]. In
contrast, BDG depends on DDIM inversion (e.g., xt−1 → xt) to maintain background features, which
requires inversion consistency and retraining with regularization losses. These two mechanisms are
fundamentally distinct and not directly interchangeable. Furthermore, the FARM module in FAST
functions as an external foreground-reconstruction pathway that injects anomaly-aware noise via
masks across timesteps to preserve anomaly salience throughout the sampling trajectory, whereas
BDG employs masks merely as internal attention gates to localize edits within the denoiser. Essen-
tially, BDG modifies the attention dynamics inside the denoiser to limit interference, while FARM
operates outside the denoiser as a reconstruction-based enhancement module. These conceptual and
algorithmic distinctions, together with different experiments and evaluation (segmentation-oriented
mIoU/Acc vs. detection-oriented AUROC/AP) demonstrate that FAST and BDG follow independent
research lines and remain technically and theoretically original.

3 Methods
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Figure 1: Illustration of a single forward–reverse process in FAST. AIAS accelerates sampling by
aggregating multiple denoising steps into a small number of coarse-to-fine segments, achieving up to
100× speedup while preserving semantic alignment under anomaly mask guidance. FARM extracts
anomaly-only content from the noisy latent xt at each timestep t and transforms it into anomaly-aware
noise by re-applying forward diffusion.
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FAST for Anomaly Segmentation. The proposed FAST framework is built upon the LDM [24] of
T steps. For notational simplicity, we denote the encoded latent of the original image as x0, and its
predicted reconstruction from the network as x̂0. We define xts as the noisy latent at timestep ts,
and x̂ts as the FARM-adjusted, anomaly-aware latent at the same step. LetM∈ {0, 1}H×W denote
the binary anomaly mask, and [ts, te] represent a coarse-to-fine segment in AIAS, where te < ts.
Fig. 1 illustrates a single forward-reverse process at step ts. In the forward phase, noise is added up
to timestep ts, yielding a noisy latent xts . FARM (Fϕ in Algorithm 1) then predicts a pseudo-clean
anomaly latent x̂an

0 , and adds noise to it up to timestep ts to obtain an anomaly-aware latent x̂ts ,
which aims to match the observed xts in masked regions during training. In the corresponding
reverse process, we divide the full denoising process into S segments, each spanning [ts, te]. Within
each segment, AIAS approximates the posterior transition using: q(xte | xts , x̂0). This formulation
aggregates multiple DDPM steps into a single numerical update. FARM is also applied to refine xte ,
ensuring the preservation of anomaly cues throughout the reverse process. More details can be seen
in Algorithms 1 and 2.In addition, for the textual conditioning component of LDM, we follow the
configuration of Anomaly Diffusion [15]; more implementation details can be found there.

Algorithm 1 FAST Training
1: repeat
2: x0 ∼ q(x0),M, and weights λ1, λ2

3: ts ∼ Uniform({1, . . . , T}), ϵ ∼ N (0, I)
4: xts =

√
ᾱtsx0 +

√
1− ᾱtsϵ

5: x̂ts =
√
ᾱtsFϕ(xts ,M) +

√
1− ᾱtsϵ

6: Take gradient descent step on:

∇θ ∥ϵ− ϵθ(x̂ts , ts)∥
2

+∇ϕ ∥(M⊙ x0 − Fϕ(xts , ts,M))∥2

7: until converged

Algorithm 2 FAST Sampling
(Details are shown in Supplementary Material A.4)

1: Initialize xT ∼ N (0, I)
2: for each segment [ts, te] from T → 0 do
3: ϵ̂ = ϵθ(xts , ts)
4: x̂0 = 1√

ᾱts
(xts −

√
1− ᾱts · ϵ̂)

5: AIAS:

xte = Fϕ(q(xte | xts , x̂0), te,M))

6: end for
7: return x0

3.1 Anomaly-Informed Accelerated Sampling

The standard DDPM allows us to directly compute the marginal distribution of xt given a clean
sample x0 and additive noise ϵ. Therefore, the one-step posterior distribution of xt−1 can be expressed
as:

q(xt−1 | xt, x0) = N (Atx0 +Btxt, σ
2
t I), (1)

where the coefficients are derived from the variance schedule as follows:

At =

√
ᾱt−1βt

1− ᾱt
, Bt =

√
αt(1− ᾱt−1)

1− ᾱt
, σ2

t =
1− ᾱt−1

1− ᾱt
βt,

and αt = 1− βt, ᾱt =
∏t

s=1 αs. All are closed-form coefficients derived from a predefined noise
schedule. In practice, the true sample x0 is not accessible during inference, and is typically replaced
by a model prediction x̂0 obtained via denoising estimation. Equation 1 thus serves as the foundation
for approximate posterior sampling, provided that x̂0 is a sufficiently accurate estimate of the ground
truth x0.

Theoretically, if we assume x̂0 = x0 holds exactly (i.e., the prediction perfectly matches the ground-
truth image), then the entire reverse process becomes fully deterministic and analytically tractable,
with the only source of stochasticity being the injected noise at each step. In this idealized setting,
the reverse sampling trajectory is fully governed by closed-form probabilistic transitions. This forms
the basis for Lemma. 1 (For brevity, the full proof is provided in the Supplementary Material A.1).
Lemma 1 (Linear–Gaussian closure). Let {xk}Kk=0 ⊂ Rd satisfy the recursion

xk−1 = Ck xk + dk + εk, εk ∼ N (0,Σk), εk⊥{xk, εk+1, . . .}, (2)
where Ck ∈ Rd×d, dk ∈ Rd, and Σk ∈ Rd×d are deterministic. Then, for every integer m with
1≤m≤k, xk−m is again an affine–Gaussian function of xk:

xk−m =
(m−1∏

i=0

Ck−i

)
︸ ︷︷ ︸

=:C
(m)
k

xk +

m−1∑
i=0

( i∏
j=1

Ck−j

)
dk−i︸ ︷︷ ︸

=:d
(m)
k

+ ε
(m)
k , (3)
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where

ε
(m)
k ∼ N

(
0,Σ

(m)
k

)
, Σ

(m)
k =

m−1∑
i=0

( i∏
j=1

Ck−j

)
Σk−i

( i∏
j=1

Ck−j

)⊤
. (4)

While the ideal condition x̂0 = x0 rarely holds in practice, the following properties justify the use of
x̂0 in the multi-step formulation:

(i) The training objective of standard DDPM is explicitly designed to minimize the discrep-
ancy between the predicted noise and the true noise. Consequently, the denoising model
ϵθ(xt, t) implicitly learns to reconstruct a close approximation of x0 through the reverse
reparameterization formula.

(ii) Both empirical observations and theoretical analyses suggest that x̂0 varies slowly with
respect to t at large diffusion steps. That is, for a segment [ts, te] with ts > te and moderate
length (e.g., ts − te ≪ T ), we havex̂0(xts , ts) ≈ x̂0(xt, t) for all t ∈ [ts, te], due to the
temporal smoothness of model predictions in the noise-dominated regime.

Therefore, it is reasonable to treat x̂0 as fixed within a short temporal window. Under this assump-
tion, multiple single-step reverse transitions can be analytically composed into a single multi-step
affine–Gaussian kernel. This approximation and Lemma. 1 form the basis for Theorem 2, which
characterizes the closed-form reverse process from ts to te (For brevity, the full proof is provided in
the Supplementary Material A.2 ).
Lemma 2 (Closed-form reverse from ts → te). Fix indices 0 ≤ te < ts ≤ T , and let the single-
step coefficients (At, Bt, σ

2
t ) be defined as in Eq. 13. Then the aggregated reverse kernel over

ts → · · · → te is affine–Gaussian:
xte = Πts

te xts +Σts
te x̂0 + εte , (5)

where

Πts
te :=

ts∏
i=te+1

Bi, Σts
te :=

ts∑
i=te+1

Ai

ts∏
j=i+1

Bj , εte ∼ N

0,

ts∑
i=te+1

 ts∏
j=i+1

Bj

2

σ2
i I

 .

Therefore, it can be observed that in the limited segments (e.g., ts → te), there are the three scalars(
Πts

te ,Σ
ts
te , εte

)
, allowing us to precompute them once and re-use them during sampling. Lemma. 2

enables theoretical computation of posterior transitions between any two timesteps ts and te, allowing
multi-step sampling in a manner distinct from DDIM. However, while the affine–Gaussian transition
provides an efficient coarse approximation for the reverse path xts → xte , the approximation may
introduce residual artifacts in parctice. It is caused by the strong noise attenuation and the fixed
x̂0 assumption. Moreover, since xt inherently entangles both the foreground and the background
content, direct sampling through the affine-Gaussian kernel will ignore the critical spatial structure
discrepancies for SIAS.

To better preserve anomaly-localized information while ensuring smooth global composition, we
explicitly decompose the clean sample x0 into two disjoint components:

x0 = xan
0 + xbg

0 , (6)

where xan
0 is the anomaly-only region (masked byM), and xbg

0 is the background. The background
is independently forward-diffused:

xbg
te ∼ q(xbg

te | x
bg
0 ), (7)

while the anomaly foreground is refined by the learned FARM module (introduced later in Sec. 3.2),
and merged with the background through spatial masking:

xR
te = FARM(xte), xte =M⊙ xR

te + (1−M)⊙ xbg
te . (8)

This foreground-aware fusion ensures consistent noise levels between anomalous and normal regions
at each step, preserving local anomaly salience while maintaining global visual coherence. In practice,
we also introduce a final fine-grained refinement stage using standard DDPM posterior sampling
for small t (e.g., t = 1 or t = 2) to restore the alignment between the coarse trajectory and the
ground-truth posterior, and to enhance fine-scale texture fidelity. The complete sampling algorithm is
summarized in Algorithm 3.
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3.2 Foreground-Aware Reconstruction Module
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Figure 2: The architecture of FARM. Given noisy latent xts
and maskM, the encoder fenc extracts features zts , which
is also modulated by a background-adaptive soft mask M̃
and related timestep embedding τ ts . The decoder fdec then
reconstructs the anomaly-only latent x̂an

0 , which is forward-
diffused to produce anomaly-aware noise.

As discussed above, conventional dif-
fusion models treat all spatial regions
uniformly, which limits their abil-
ity to synthesize localized anoma-
lies. To address this, we propose
the Foreground-Aware Reconstruc-
tion Module (FARM), which recon-
structs clean anomaly-only content
from noisy latent inputs under both
temporal and spatial guidance. As il-
lustrated in Fig. 2, FARM adopts an
encoder–decoder architecture. The en-
coder fenc extracts deep representa-
tions from the noisy latent xts , while
the decoder fdec progressively upsam-
ples and integrates the binary mask
M at multiple resolutions, ensuring
spatial alignment with anomaly regions throughout the hierarchy.

To encode temporal context, we initialize sinusoidal timestep embeddings τ ts ∈ Rd and project
them into latent space via a learned linear layer. These embeddings are added to the encoder output,
modulating feature responses based on the current noise level and allowing the decoder to reconstruct
temporally consistent structures.

In addition, to modulate background activation, we introduce a background-adaptive soft mask:

M̃ =Md + (1−Md) · σ(fbg(τ ts)), (9)

whereMd is a downsampled binary mask aligned with encoder resolution, and fbg is a lightweight
MLP. This design allows FARM to suppress irrelevant background features while adapting to the
current timestep.

The encoded feature is computed as:

zts = M̃ · fenc(xts) + Proj(τ ts), (10)

and decoded into an anomaly-only latent: x̂an
0 = fdec(zts ,M).

To inject anomaly-aware noise into the sampling trajectory, the reconstructed anomaly is forward-
diffused:

x̂an
ts =

√
ᾱts · x̂an

0 +
√

1− ᾱts · ϵ, ϵ ∼ N (0, I), (11)
and replaces the original noise in masked regions:

x̂ts = (1−M) · xts +M · x̂an
ts . (12)

During training, FARM is supervised to ensure that the reconstructed anomalies match the masked
regions of the noisy inputs. During inference, temporal and spatial guidance together enable FARM
to introduce localized and temporally coherent anomaly signals into the reverse trajectory, ensuring
alignment with the global generative process while enhancing fine-grained control.

4 Experiments
4.1 Implementation Details.
Datasets. We evaluate FAST on two widely-used industrial anomaly segmentation benchmarks:
MVTec-AD [1] and BTAD [21]. For each anomaly class, we synthesize image–mask pairs using
normal images, binary masks, and text prompts describing anomaly semantics. A total of 500 samples
are generated for each anomaly type within a class, with approximately one-third used for training
and the remainder reserved for evaluation. This design ensures sufficient structural diversity while
maintaining training efficiency. Mask Generation Strategy. Our mask synthesis consists of two
complementary components: (i) geometric augmentation of real anomaly masks via operations
like rotation and flipping; (ii) synthesis of new masks using a Latent Diffusion Model (LDM) pre-
trained on real anomaly mask examples, which follows the protocol of AnomalyDiffusion [15]. All
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synthesized masks undergo manual screening to guarantee visual realism, structural diversity, and
consistency with typical industrial abnormal structures. Evaluation Metrics. We report performance
using mean intersection over union (mIoU) and pixel-wise accuracy (Acc), following standard
practice in anomaly segmentation. Baselines. FAST is compared against six representative anomaly
synthesis approaches: CutPaste [16], DRAEM [40], GLASS [2], the GAN-based SOTA method
DFMGAN [8], and diffusion-based SOTA models Anomaly Diffusion [15] and RealNet [43]. To
simulate realistic deployment scenarios, we pair all generation methods with lightweight segmentation
networks, including Segformer [34], BiSeNet V2 [39], and STDC [9]. As our method adopts the
same prompt-driven synthesis setup as AnomalyDiffusion [15], we omit the details here for brevity.
Full specifications of the textual configuration, as well as other implementation details, including
dataset preprocessing, sampling schedules, loss weights, and hyperparameter settings, are provided
in the Supplementary Materials A.5.

4.2 Comparison Studies
Table 1: Evaluation of pixel-level segmentation accuracy on extended MVTec data using real-time
Segformer. Detailed per-category results for other real-time segmentation model, such as BiseNet V2
and STDC are reported in Supplementary Material A.6.

Category CutPaste DRAEM GLASS DFMGAN RealNet AnomalyDiffusion FAST
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

bottle 75.11 79.49 79.51 84.99 70.26 76.30 75.45 80.39 77.96 83.90 76.39 83.54 86.86 90.90
cable 55.40 60.49 64.52 70.77 58.81 62.32 62.10 64.87 62.51 69.27 62.49 74.48 73.71 77.94
capsule 35.15 40.29 51.39 62.32 34.12 38.04 41.29 45.83 46.76 51.91 37.73 44.72 63.22 71.12
carpet 66.34 77.59 72.57 81.28 70.11 77.56 71.33 83.69 68.84 79.15 64.67 73.59 73.84 83.53
grid 29.90 46.72 47.75 67.85 37.43 46.30 37.73 54.13 37.55 48.86 38.70 51.82 52.45 70.70
hazel_nut 56.95 60.72 84.22 89.74 55.51 57.43 83.43 86.03 60.18 63.49 59.33 67.48 90.81 94.79
leather 57.23 63.49 64.12 71.49 62.05 73.38 60.96 68.02 68.29 77.16 56.45 62.51 66.60 74.18
metal_nut 88.78 90.94 93.51 96.10 88.15 90.52 92.77 94.93 91.28 94.09 88.00 91.10 94.65 96.88
pill 43.28 47.11 46.99 49.76 41.52 43.54 87.19 90.05 47.32 58.31 83.21 89.00 90.17 94.07
screw 25.10 31.35 46.96 59.03 35.94 42.37 46.65 50.79 47.12 55.17 38.47 49.49 49.94 57.48
tile 85.33 91.60 89.21 93.74 85.67 90.28 88.87 91.96 83.53 87.30 84.29 89.72 90.13 93.77
toothbrush 39.40 63.93 65.35 79.43 53.75 60.46 61.00 70.50 57.68 72.03 48.68 64.41 74.98 88.63
transistor 65.03 71.05 59.96 62.18 29.28 30.67 73.56 78.48 63.71 66.79 79.27 91.74 91.80 94.50
wood 49.64 60.47 67.52 73.28 50.91 53.16 67.00 80.84 61.84 89.54 60.16 74.62 78.77 86.31
zipper 65.39 71.89 69.29 79.36 69.98 79.31 66.34 70.50 68.78 78.50 65.36 72.66 72.80 84.73
Average 55.87 63.81 66.86 74.75 56.23 61.44 67.71 74.07 62.89 71.70 62.88 72.06 76.72 83.97

Table 2: Evaluation of pixel-level segmentation accuracy on extended BTAD data using real-time
Segformer, BiseNet V2 and STDC.

Backbone Category CutPaste DRAEM GLASS DFMGAN RealNet AnomalyDiffusion FAST
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

Segformer
01 66.94 78.20 67.86 80.14 68.02 79.57 67.02 78.03 67.17 80.20 66.55 76.31 75.93 86.12
02 65.04 83.64 69.52 82.96 69.99 83.58 68.75 84.92 70.64 83.90 68.06 84.74 70.63 81.63
03 50.96 60.41 50.39 54.30 51.77 53.53 38.95 41.55 48.76 57.50 54.85 80.20 79.40 85.64

BiseNet V2
01 57.15 69.88 49.16 63.48 44.09 50.57 49.49 59.20 45.45 57.65 46.66 55.18 58.74 68.98
02 59.45 82.05 66.46 80.29 66.37 79.46 66.02 79.21 66.11 81.67 65.57 84.00 68.02 82.40
03 31.84 40.62 36.15 39.04 30.80 37.15 20.12 21.48 29.55 33.11 42.27 74.41 77.87 92.49

STDC
01 48.06 59.86 42.17 65.36 45.51 60.12 44.68 51.71 32.91 49.21 44.85 55.29 44.95 53.47
02 59.80 77.57 64.96 84.32 65.02 81.94 64.85 75.32 64.00 82.64 64.73 78.93 67.76 82.16
03 19.76 25.20 36.14 38.80 17.04 28.01 14.67 16.55 22.57 24.79 41.71 65.45 84.04 92.36

Anomaly Segmentation Table. 1 and 2 report pixel-level segmentation results on various datasets
using Segformer trained with FAST-augmented data. We observe that FAST achieves an average mIoU
of 76.72% and accuracy of 83.97%, significantly outperforming the strongest prior method, DRAEM
(74.75% Acc), by 9.22 points, respectively. Improvements are particularly notable in challenging
categories: in capsule, FAST increases mIoU from 51.39% (DRAEM) to 63.22% (↑11.83); on
grid, from 47.75% to 52.45% (↑4.70); and on transistor, from 84.22% to 91.80% (↑7.58). Even in
relatively easier categories such as bottle and tile, FAST still yields consistent improvements of 7.35
and 0.92 mIoU points, respectively. These results demonstrate that the combination of mask-aware
noise injection via FARM and coarse-to-fine accelerated sampling via AIES enables more realistic
and structurally coherent anomaly synthesis, leading to superior segmentation performance. Similar
trends are observed when replacing Segformer with other real-time backbones such as BiseNetV2
and STDC, as shown in Supplementary Materials A.6, confirming the generalizability of FAST across
different segmentation architectures.

Qualitative Comparison. Fig. 3 visually compares anomaly samples synthesized by differ-
ent anomaly synthesis methods across several MVTec-AD categories. It can be observed that
traditional unsupervised methods such as CutPaste and DRAEM generate anomalies by over-
laying arbitrary textures or patches without any semantic guidance. For instance, in the ca-
ble category, anomalies produced by CutPaste appear as artificial, block-like overlays lack-
ing meaningful texture or structure. Similarly, DRAEM and GLASS introduce unrealistic
color distortions and incoherent patterns in the transistor category, which deviate significantly
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from typical industrial anomalies. DL-based approaches (DFMGAN, RealNet, and Anomaly-
Diffusion) generate more visually plausible results, but still exhibit noticeable shortcomings.

Mvtec AD CutPaste DRAEM GLASS DFMGAN RealNet Anomaly Diffusion FAST
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Figure 3: Visualization results of different anomaly synthesis
methods on the MVTec dataset. Columns correspond to
synthesis methods (from left to right: MVTec AD, CutPaste,
DRAEM, GLASS, DFMGAN, RealNet, Anomaly Diffusion,
FAST), and rows correspond to product categories (from top
to bottom: hazel_nut, transistor, tile, metal_nut, cable).

For instance, RealNet often intro-
duces color shifts and boundary ar-
tifacts, as seen in the tile and cable
cases, where anomalies appear overly
smooth or blurred. DFMGAN and
AnomalyDiffusion are able to synthe-
size more coherent shapes (e.g., spray-
paint-like anomalies in hazel_nut), yet
they suffer from inaccurate bound-
aries and structural mismatches, as is
especially evident in the tile (Anoma-
lyDiffusion) and cable (DFMGAN)
categories. In contrast, FAST consis-
tently produces anomalies that closely
resemble realistic anomalies while
maintaining precise alignment with
the annotated masks. In the metal_nut
and hazel_nut cases, FAST is the
only method that preserves fidelity
and shape within the intended regions,
demonstrating superior controllabil-
ity and structural consistency. These
results validate the effectiveness of
the proposed FAST in segmentation-
oriented anomaly synthesis.
4.3 Ablation Studies
The Impact of AIAS. We compare our proposed AIAS strategy with several widely-used training-
free samplers, including DDPM [12] with 1000 steps, DDIM [27] with 50 steps and PLMS [17]
with 50 steps. These methods represent state-of-the-art discrete-time sampling approaches for
diffusion-based models. To ensure fairness, we exclude continuous-time solvers, as they rely on a
fundamentally different formulation based on ODEs or SDEs, which necessitates a distinct training
paradigm and architectural adjustments incompatible with our discrete-time framework. Quantitative
results are reported in Fig. 5. While DDPM achieves competitive results on certain categories
(e.g., carpet, tile), it requires 1000 iterative steps, making it over 20× slower than AIAS in practice.
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Mvtec AD DDPM DDIM PLMS AIAS

Figure 4: SIAS results with other sampling strategies.
Columns correspond to sampling strategies (from left to
right: ground truth, DDPM (1000 steps), DDIM (50 steps),
PLMS (50 steps), AIAS (50 steps), and rows correspond to
categories (from top to bottom: hazelnut, pill, screw). Fur-
ther qualitative results (trained on MVTec and BTAD) are
provided in the Supplementary Materials A.8.

DDIM and PLMS, though more ef-
ficient, exhibit inconsistent perfor-
mance across categories and often
underperform AIAS, particularly on
challenging textures such as capsule,
grid, and transistor. In contrast, AIAS
achieves the best results on the ma-
jority of categories and consistently
provides competitive or superior per-
formance in both mIoU and accu-
racy, demonstrating its ability to gen-
erate segmentation-aligned anomalies
with significantly fewer steps. It fur-
ther indicates that by analytically ag-
gregating multiple DDPM transitions
into coarse-to-fine segments, AIAS
reduces the discretization error in-
herent in single-step samplers (e.g.,
DDIM) or fixed multistep solvers
(e.g., PLMS), allowing a closer ap-
proximation of the true posterior
within just 50 steps. Fig. 4 further
illustrates the qualitative advantage. For example, in the hazel_nut class, the anomalies produced
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by DDPM, DDIM, and PLMS display noticeable color inconsistencies near the anomaly bound-
ary, resulting from distributional mismatch with the background. In comparison, FAST-produced
anomalies that are well blended into the context, with sharper and more realistic structural alignment.

DDPM (1000 steps) DDIM (50 steps) PLMS (50 steps) AIAS (50 steps)

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 5: The effect of different sampling methods on SIAS
in the MVTec dataset. Top row shows per-category segmen-
tation performance using mIoU; bottom row shows perfor-
mance using Acc. Detailed per-category results of AIAS are
reported in Supplementary Material A.6.

Although this result may seem coun-
terintuitive, since fewer sampling
steps usually imply degraded visual
quality. And we believe the difference
primarily stems from the evaluation
objective. Specifically, DDPM sam-
pling remains the best performer in
terms of pure visual fidelity metrics
in our work, but AIAS is designed
to optimize downstream segmentation
performance rather than perceptual re-
alism alone. As shown in Table 3,
moderately increasing the sampling
steps can slightly enhance image qual-
ity, yet it also leads to a substantial
rise in inference time. More impor-
tantly, excessive steps tend to weaken
the anomaly localization consistency
and thus degrade segmentation per-
formance. Therefore, AIAS achieves
a more favorable trade-off between
SIAS and visual fidelity.
Table 3: Comparison of pixel-level anomaly segmentation using different steps on the MVTec dataset.

Category Step 2 Step 5 Step 10 Step 30 Step 50 Step 100 Step 200 Step 500 Step 1000
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

bottle 77.03 80.96 80.55 85.08 83.26 85.90 84.59 87.89 86.86 90.90 83.75 86.95 84.04 88.54 83.52 88.19 81.65 84.83
cable 47.39 48.66 69.58 73.11 71.23 75.07 73.34 77.59 73.71 77.94 72.99 76.50 72.83 76.51 75.23 79.32 73.45 78.06
capsule 43.56 48.58 49.81 54.22 54.85 59.31 61.12 67.08 63.22 71.12 63.15 71.17 62.12 71.76 62.83 70.88 60.01 66.87
carpet 70.24 80.98 73.22 83.18 73.10 84.06 73.56 80.50 73.84 83.53 73.41 82.92 73.17 81.90 73.27 82.49 75.99 84.14
grid 48.15 61.75 50.03 63.28 50.89 71.35 48.76 61.17 52.45 70.70 50.03 65.41 52.06 67.28 49.18 63.63 50.91 63.19
hazel_nut 76.16 78.75 84.16 86.50 90.45 94.04 90.49 94.04 90.81 94.79 90.82 94.16 90.87 94.27 90.77 94.71 89.81 93.31
leather 62.11 66.86 66.74 76.16 67.09 76.51 65.44 72.41 66.60 74.18 66.88 74.22 65.87 87.88 67.95 83.62 71.03 80.32
metal_nut 92.06 93.57 93.94 95.72 94.71 96.98 94.47 96.31 94.65 96.88 94.74 97.19 94.50 96.59 94.72 96.80 94.63 97.18
pill 50.03 55.46 80.01 82.53 90.07 93.80 90.02 94.24 90.17 94.07 89.82 94.10 89.80 93.22 90.15 94.34 89.36 93.79
screw 46.07 52.01 47.92 56.55 50.04 56.21 50.11 60.85 49.94 57.48 50.06 58.66 48.41 61.05 47.71 54.90 49.35 59.18
tile 87.26 93.92 89.46 94.96 89.72 93.92 89.58 93.68 90.13 93.77 89.93 94.45 90.02 93.73 89.71 93.38 91.01 94.72
toothbrush 58.54 67.15 76.65 87.41 76.96 90.29 74.36 90.78 74.98 88.63 74.17 87.29 73.32 86.49 75.66 89.50 76.10 91.25
transistor 66.42 71.59 66.08 70.23 77.27 79.66 89.45 92.65 91.80 94.50 91.39 94.66 89.67 93.50 90.32 93.21 89.59 93.41
wood 68.69 78.28 74.23 81.07 75.97 81.18 78.76 84.99 78.77 86.31 77.00 83.95 77.60 82.85 77.71 83.45 80.03 85.30
zipper 68.85 75.26 70.92 81.44 72.44 84.99 73.08 81.91 72.80 84.73 71.99 81.94 71.71 82.21 71.73 83.47 72.45 82.35
Average 64.17 70.25 71.55 78.10 74.54 81.55 75.81 82.41 76.72 83.97 76.01 82.90 75.73 83.85 76.03 83.46 76.36 83.19
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Figure 6: Segmentation-oriented industrial anomaly synthesis results at different steps of AIAS.
Columns correspond to increasing sampling steps T (from left to right), and rows correspond to
product categories (from top to bottom: capsule, bottle, carpet).
The Impact of AIAS under different steps. We further investigate the segmentation performance
of AIAS under varying numbers of reverse steps, ranging from 2 to 1000, as reported in Table. 3.
Remarkably, AIAS approximates the performance of full-step DDPM using only 10 steps, and reaches
near-optimal results by 50 steps, demonstrating the effectiveness of our coarse-to-fine aggregation
strategy. Performance improves rapidly as t increases from 2 to 50, since early segments capture
the global layout and coarse structure of anomalies, which are most relevant for segmentation.
This trend is also visually confirmed in Fig. 6. Beyond this point, performance gains gradually
saturate, indicating that additional steps primarily refine high-frequency details with limited impact on
segmentation accuracy. Notably, when t = 1000, AISA degenerates to the original DDPM sampling
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process, where each segment [te, ts] corresponds to a single denoising step. The convergence
of performance at this point validates that our multi-step analytical updates provide a faithful
approximation of the full diffusion trajectory, preserving both global semantics and fine-grained
anomaly cues while significantly reducing sampling cost. Furthermore, excessive denoising steps
may introduce over-smoothing or amplify reconstruction inconsistencies, potentially weakening the
alignment between synthesized anomalies and segmentation-relevant structures. Overall, these results
highlight that AIAS not only accelerates sampling, but also introduces an inductive structural bias
beneficial for anomaly segmentation. In practice, the optimal balance between quality and efficiency
is achieved within 10–50 steps.
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Figure 7: Qualitative ablation results with and without
FARM on MVtec dataset. Columns correspond to cate-
gory–anomaly pairs (from left to right: Wood_color, Tile_oil,
Hazel_nut_crack, Cable_missing_wire; and rows correspond
to ablation strategy (from top to bottom: without FARM (w/o
FARM) and with FARM (w/ FARM).

The Impact of FARM. To evalu-
ate the effectiveness of FARM, we
conduct an ablation study by com-
paring the model’s performance with
(w/ FARM) and without (w/o FARM)
FARM under identical AIAS settings.
Results on the MVTec dataset are
reported in Fig. 8. The inclusion
of FARM leads to substantial im-
provements in segmentation perfor-
mance, with average mIoU increas-
ing from 65.33 to 76.42 and accu-
racy increasing from 71.24 to 83.97.
The performance gains are particu-
larly pronounced in challenging cat-
egories characterized by fine-grained
or complex structures, such as capsule
(↑14.1 mIoU), grid (↑14.7 mIoU), and
transistor (↑29.5 mIoU). Even in relatively easier categories like tile and hazel_nut, FARM consis-
tently enhances accuracy and boundary localization, as shown in Fig. 7. More detailed analysis of
FARM can be found in Supplementary Material A.7.

Figure 8: Qualitative ablation results with and without FARM on MVtec dataset. Columns correspond
to product categories and rows correspond to mIou and Acc). Detailed per-category results for ablation
study of FARM are reported in Supplementary Material A.7.

5 Conclusion
In this work, we proposed FAST, a segmentation-oriented foreground-aware diffusion framework
tailored for anomaly synthesis. To address the limitations of existing anomaly synthesis methods,
specifically their limited controllability and lack of structural awareness, we introduced two key
components: the Foreground-Aware Reconstruction Module (FARM), which adaptively injects
anomaly-aware noise at each sampling step, and the Anomaly-Informed Efficient Sampling (AIAS),
a training-free strategy that accelerates sampling via coarse-to-fine aggregation. Built upon a discrete-
time latent diffusion backbone, FAST enables the synthesis of segmentation-aligned anomalies with
as few as 10 denoising steps. Extensive experiments on MVTec-AD and BTAD demonstrate that
FAST outperforms existing baselines in downstream segmentation. FAST represents a promising
step toward controllable and efficient segmentation-oriented industrial anomaly synthesis.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the contributions and scope of
the paper. The paper introduces FAST, a foreground-aware diffusion framework with two
core modules: Anomaly-Informed Accelerated Sampling (AIAS), which enables coarse-
to-fine training-free sampling with up to 100× speed-up, and the Foreground-Aware Re-
construction Module (FARM), which constructs anomaly-aware noise at each denoising
step to enhance abnormal regions. These claims are substantiated by theoretical derivations,
algorithmic design, and comprehensive experiments showing consistent improvements on
MVTec and BTAD datasets. The introduction does not overclaim or extend beyond the
scope addressed in the experiments, and the focus remains tightly aligned with segmentation-
oriented industrial anomaly synthesis.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a discussion of the limitations of the proposed approach in
both the introduction and experimental sections. Specifically, it acknowledges that while the
coarse-to-fine accelerated sampling strategy in AIAS achieves substantial efficiency gains,
it may introduce residual artifacts when the step is too small (t =1 or 2). These parts are
explicitly explained in the method and ablation sections. The discussion also reflects on the
balance between sampling speed and segmentation accuracy, thus providing a realistic scope
for the claims.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes two key theoretical lemmas, both of which are formally
stated with clearly defined assumptions and notations. The corresponding full proofs are
provided in the supplementary materials, and their relevance to the proposed multi-step
posterior approximation is explicitly discussed in Section. 4.3. These results establish the
mathematical validity of the accelerated sampling trajectory used in AIAS. All theorem
statements are cross-referenced and grounded in standard DDPM formulations, ensuring
both correctness and completeness.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all implementation details necessary to reproduce its
main experimental findings. including used datasets , model settings, evaluation metrics, and
comparison baselines. The supplementary material provides further configuration details
such as prompt templates, sampling step schedules, hyperparameters, and segmentation
backbones. its algorithms offer full pseudocode of the core modules. This level of detail
ensures that other researchers can independently replicate the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We demonstrate the robustness and statistical reliability of our findings through
extensive evaluations that span multiple benchmarks, segmentation backbones, and anomaly-
synthesis baselines:

• Multiple datasets: We report results on both MVTec-AD (15 categories) and BTAD
(3 categories), covering a total of 18 distinct product classes.

• Diverse segmentation models: For each synthesis method, we train and evaluate three
real-time segmentation backbones (SegFormer, BiSeNet V2, and STDC), yielding
consistent performance gains across architectures.

• Comparison to six baselines: Our improvements hold against CutPaste, DRAEM,
GLASS, DFMGAN, RealNet, and AnomalyDiffusion in every category and with every
backbone.

• Per-category breakdown: Tables 1–3 present per-category mIoU and accuracy, show-
ing that FAST yields higher scores in 100% of cases on MVTec and over 80% of cases
on BTAD.

By reporting results across 18 categories × 3 backbones × 6 baselines—i.e., over 324
individual experimental settings—and observing uniform improvements, we effectively
capture variability arising from different data domains, network initializations, and anomaly
types. Although we did not include classical error bars, this large-scale, cross-domain
evaluation serves as a comprehensive measure of statistical significance: no combination of
dataset, model, or baseline contradicts our reported gains, underscoring the reliability of
FAST’s benefits.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all details required to understand and replicate the results.
Detailed hyperparameter configurations—including learning rates, batch sizes, optimizer
types (Adam), and tarining configuration are provided in supplementary materials. More-
over, architectural decisions (e.g., mask input channels in MGA) and sampling parameters
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(e.g., timestep schedules) are explicitly described. This ensures complete fairness in the
experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
We demonstrate the robustness and statistical reliability of our findings through extensive
evaluations that span multiple benchmarks, segmentation backbones, and anomaly-synthesis
baselines. we report results across 18 categories × 3 backbones × 6 baselines—i.e., over
324 individual experimental settings, and observing uniform improvements, we effectively
capture variability arising from different data domains, network initializations, and anomaly
types. Although we did not include classical error bars, this large scale, cross domain
evaluation serves as a comprehensive measure of statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute environment is clearly described in supplementary materials.
All experiments were conducted using a single NVIDIA A100 GPU with 40GB memory,
and sampling steps per image under FAST is benchmarked. The paper also compares
computational efficiency with baselines like DDIM and PLMS including both qualitative
and quantitative results. it provide enough information for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper obeys to the NeurIPS Code of Ethics. All datasets used (MVTec
AD and BTAD) are publicly available and widely accepted for industrial anomaly detection
research. No human-related data, sensitive information, or privacy-infringing content is
involved. The proposed synthesis method does not introduce harmful or unsafe content.
This work is clearly framed around improving segmentation performance for industrial
inspection using synthesized data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive and negative societal impacts.
On the positive side, FAST enables efficient and controllable industrial anomaly synthe-
sis, which can greatly reduce the reliance on human-annotated datasets and accelerate
deployment of defect detection systems in safety-critical scenarios such as semiconductor
and manufacturing industries. On the negative side, the improved fidelity of synthesized
anomalies may be misused such as sabotaging quality control pipelines. Fortunately, the
risk is much too low.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models used in the paper do not pose high misuse risks. FAST is trained
on public industrial dataset and does not involve any large-scale language model, nor does
it utilize scraped data or human-related content. All synthesized anomalies are domain-
specific and designed solely for improving segmentation in controlled industrial data. As
such, safeguards beyond standard data-sharing practices are not necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses publicly available datasets (MVTec AD and BTAD) and cites
them appropriately. Both datasets are distributed under academic licenses. For existing
comparsion methods and downstream segmentation model, the paper cites associated works
and builds upon them with proper attribution.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We release an anonymized repository (https://anonymous.4open.
science/r/NeurIPS-938) containing the full FAST implementation, accompanied by
a comprehensive README.md (installation, dependencies, usage examples), a CONFIG.md
(dataset preprocessing, hyperparameters, hardware requirements), an explicit MIT license
with usage limitations, and clear notes indicating that only public benchmark datasets
(MVTec-AD, BTAD) are used, ensuring all new assets are thoroughly documented and
consent considerations are addressed.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve any crowdsourcing experiments or human-subject
research—no participant instructions, or compensation details are applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects or any form of crowdsourced data
collection. Therefore, no IRB or equivalent ethical approval is required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The study does not utilize large language models (LLMs) in any aspect of the
core methods, data generation, or experimental procedures.

Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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A Supplementary Materials

A.1 Proof of Lemma 1

Lemma 1 [Linear–Gaussian closure] Let {xk}Kk=0 ⊂ Rd satisfy the recursion

xk−1 = Ck xk + dk + εk, εk ∼ N (0,Σk), εk⊥{xk, εk+1, . . .}, (13)

where Ck ∈ Rd×d, dk ∈ Rd, and Σk ∈ Rd×d are deterministic. Then, for every integer m with
1≤m≤k, xk−m is again an affine–Gaussian function of xk:

xk−m =
(m−1∏

i=0

Ck−i

)
︸ ︷︷ ︸

=:C
(m)
k

xk +

m−1∑
i=0

( i∏
j=1

Ck−j

)
dk−i︸ ︷︷ ︸

=:d
(m)
k

+ ε
(m)
k , (14)

where

ε
(m)
k ∼ N

(
0,Σ

(m)
k

)
, Σ

(m)
k =

m−1∑
i=0

( i∏
j=1

Ck−j

)
Σk−i

( i∏
j=1

Ck−j

)⊤
. (15)

Proof. :
Base case (m = 1).

• Eq. 14 with m = 1 is exactly the recursion Eq. 13.

Induction step.

• Assume Eq. 14 and .15 hold for m = r with 1 ≤ r < k:

xk−r = C
(r)
k xk + d

(r)
k + ε

(r)
k , ε

(r)
k ∼ N

(
0,Σ

(r)
k

)
, ε

(r)
k ⊥xk.

• Apply Eq. 13 once more:

xk−(r+1) = Ck−rxk−r + dk−r + εk−r

= Ck−r

(
C

(r)
k xk + d

(r)
k + ε

(r)
k

)
+ dk−r + εk−r

= Ck−rC
(r)
k︸ ︷︷ ︸

C
(r+1)
k

xk + Ck−rd
(r)
k + dk−r︸ ︷︷ ︸
d
(r+1)
k

+Ck−rε
(r)
k + εk−r︸ ︷︷ ︸
ε
(r+1)
k

.
(16)

Since ε
(r)
k and εk−r are independent zero–mean Gaussians, their linear combination ε

(r+1)
k remains

Gaussian with covariance Σ(r+1)
k = Ck−rΣ

(r)
k C⊤

k−r+Σk−r, exactly matching Eq. 15 for m = r+1.
Hence the statement holds for all m by induction.

Remark 1. The empty product convention
∏0

j=1 Ck−j = Id is used in Eq. 14.

A.2 Proof of Lemma 2

Lemma 2 [Closed-form reverse from ts → te] Fix indices 0 ≤ te < ts ≤ T , and let the single-
step coefficients (At, Bt, σ

2
t ) be defined as in Eq. 13. Then the aggregated reverse kernel over

ts → · · · → te is affine–Gaussian:

xte = Πts
te xts +Σts

te x̂0 + εte , (17)

where

Πts
te :=

ts∏
i=te+1

Bi, Σts
te :=

ts∑
i=te+1

Ai

ts∏
j=i+1

Bj , εte ∼ N

0,

ts∑
i=te+1

 ts∏
j=i+1

Bj

2

σ2
i I

 .
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Proof. Apply Lemma 1 with Ck = Bk, dk = Akx̂0, Σk = σ2
kI, and m = ts−te. Equations Eq. 17

coincide with the general expressions Eq. 14–Eq. 15, so the result follows directly.

A.3 Loss function

The training objective of FAST consists of two components: the standard denoising loss and the
reconstruction loss. The denoising loss encourages accurate noise prediction across all spatial regions,
while the reconstruction loss ensures that FARM accurately reconstructs anomaly-only content,
and allowes the inserted noise to remain compatible with the global sampling dynamics, thereby
preserving the stability of the overall generation process.

LFAST = λ1 · Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥22

]
(18)

+ λ2 · Exan
0 ,xt,M

[
∥Fϕ(xt,M, t)− xan

0 ∥
2
2

]
,

where ϵ ∼ N (0, I) is the reference noise for the denoising target, the xan
0 is the anomaly-only content

with pure background, ϵθ(xt, t) and Fϕ denote LDM and FARM, respectively. The scalar weights λ1
and λ2 balance the contributions of the two losses

A.4 Pseudo-code of AIAS

Algorithm 3 Anomaly-Informed Accelerated Sampling

Input: MaskM, clean background xbg
full, clean background latent xbg

0 , prediction x̂0 from ϵθ
boundary schedule B = {t1 < t2 < · · · < tK = T} and t1 = 2 in our experiments
Output: Syntheised image xfull

Initialize noisy latent xtK ∼ N (0, I)
for k = K to 1 do

ts ← tk, te ← tk−1

# Coarse multi-step reverse from ts → te
Define cofficients At =

√
ᾱt−1βt

1−ᾱt
, Bt =

√
αt(1−ᾱt−1)

1−ᾱt
, and σ2

t = 1−ᾱt−1

1−ᾱt
βt

Compute µ← (
∏ts

i=te+1 Bi)xts + (
∑ts

i=te+1 Ai

∏ts
j=i+1Bj)x̂0

Sample noise ε ∼ N (0, (
∑ts

i=te+1

(∏ts
j=i+1 Bj

)2
σ2
i )I)

xte ← µ+ ε
# Forward diffuse background to te
xbg
te ∼ N (

√
ᾱtex

bg
0 , (1− ᾱte)I)

xR
te ← FARM(xte)

xte ←M⊙ xR
te + (1−M)⊙ xbg

te
end for
# Fine posterior refinement
for t = t1 down to 0 do

Predict x̂0 ← fθ(xt, t)
xt−1 ← q(xt−1 | xt, x̂0)

end for
xfull ←M⊙Decode(x0) + (1−M)⊙ xbg

full

A.5 Training Configuration

To synthesize abnormal data, we utilize the complete set of normal images, their corresponding
masks, and associated textual descriptions for each type of anomaly within every category of products.
Notably, the original GLASS framework comprises three branches,a normal-sample branch, a feature-
level anomaly synthesis branch guided by gradient ascent, and an image-level branch that overlays
external textures. Therefore, its output is unsuitable directly for pixel-level anomaly segmentation
and other downstream sgementation models. Accordingly, we revised its synthesis process to align
with our segmentation-based evaluation protocol. We release the modified implementation together
with the FAST to ensure fairness.

23



• Model Settings. We set the total number of diffusion steps during training to T = 1000.
For sampling, the range from step 2 to 1000 is uniformly divided into 50 steps, followed by
a fine-grained adjustment phase over the initial steps [0, 2] to enhance reconstruction fidelity.
The model is trained with a batch size of 4 and a learning rate of 1.5e-4. The text embedding
E consists of 8 tokens.

• Prompt Construction. For the MVTec dataset, prompts are formed by appending the
anomaly type to the product category name. For BTAD, due to anonymized category
labels, we use a generic prompt: “damaged". Textual embeddings follow the protocol of
AnomalyDiffusion, where each prompt is tokenized into 8 discrete units and embedded
using a pre-trained BERT encoder [5].

• Hardware and Runtime. All models are trained on a setup of eight NVIDIA A100 GPUs
(40GB each), with training proceeding for roughly 80k iterations.

A.6 Other quantitative experiments

We provide extended evaluation results to complement the findings reported in the main manuscript.
We present detailed, category-wise performance metrics on the MVTec and BTAD benchmarks,
employing BiseNet V2 and STDC as the segmentation backbones. Moreover, we further analyze the
influence of different sampling strategies—except our AIAS method—on downstream segmentation
performance using Segformer.

All experiments are conducted under identical settings to those used in the main study. The results
consistently demonstrate that our proposed FAST framework significantly outperforms existing
anomaly synthesis techniques in enhancing segmentation accuracy across diverse categories.
Table 4: Evaluation of pixel-level segmentation accuracy on extended MVTec data using real-time
BiseNet V2.

Category CutPaste DRAEM GLASS DFMGAN RealNet AnomalyDiffusion FAST
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

bottle 71.77 78.57 75.13 79.17 57.81 60.79 64.28 71.31 72.16 75.55 75.28 85.11 78.48 83.18
cable 46.00 57.08 53.88 60.96 16.63 16.65 57.09 63.25 51.22 62.32 60.55 74.96 70.91 75.77
capsule 25.97 37.04 36.82 42.19 19.53 51.89 28.40 31.18 35.97 39.39 26.77 32.87 48.56 54.22
carpet 58.98 72.22 68.42 77.21 64.77 73.93 62.13 67.98 8.98 9.01 58.18 64.69 68.94 77.20
grid 24.68 44.17 42.81 63.34 6.50 6.91 10.17 15.23 10.61 11.47 18.98 24.30 39.15 51.78
hazel_nut 47.93 53.57 74.83 81.35 71.54 75.62 79.78 84.37 60.16 65.93 57.26 70.41 88.08 93.45
leather 31.11 58.36 55.07 61.58 57.98 71.84 31.77 34.82 53.77 63.85 50.02 61.60 67.18 74.23
metal_nut 82.95 87.73 91.58 94.73 83.82 85.42 91.17 93.57 88.38 90.73 85.52 90.20 93.62 95.82
pill 55.62 67.04 45.23 48.99 23.88 24.15 82.40 84.30 72.59 86.32 80.87 87.02 85.12 89.60
screw 4.88 6.63 25.08 35.77 12.32 13.11 38.14 40.36 22.35 23.78 23.23 29.91 33.49 41.12
tile 76.25 85.75 86.17 90.45 77.32 80.28 85.69 90.12 77.16 84.84 79.32 85.63 86.86 92.12
toothbrush 35.69 50.45 57.66 79.15 38.86 51.97 48.83 58.76 32.38 37.88 44.33 69.32 73.04 87.34
transistor 44.48 51.79 59.88 65.96 44.93 53.04 76.52 82.13 61.68 68.59 76.34 89.94 91.10 93.81
wood 35.51 46.00 49.82 62.09 36.41 51.10 51.84 63.70 47.29 61.35 52.06 72.75 68.15 72.69
zipper 51.61 63.09 66.88 75.75 61.99 70.07 60.61 71.11 66.09 77.54 57.86 67.64 66.59 78.16
Average 46.23 57.30 59.28 67.91 44.95 52.45 57.92 63.48 50.72 57.24 56.44 67.09 70.62 77.37

Table 5: Evaluation of pixel-level segmentation accuracy on extended MVTec data using real-time
STDC.

Category CutPaste DRAEM GLASS DFMGAN RealNet AnomalyDiffusion FAST
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

bottle 71.37 82.19 73.31 78.23 63.22 69.25 67.66 76.52 69.44 75.68 72.66 84.94 76.82 80.65
cable 42.88 54.74 50.02 58.38 49.38 57.80 57.74 62.86 35.97 38.81 59.43 74.22 54.85 60.26
capsule 21.73 30.72 36.31 41.68 22.91 27.18 25.60 27.96 31.08 34.25 22.90 26.06 49.35 55.29
carpet 50.79 66.68 66.28 76.70 63.18 77.85 58.58 71.83 57.48 68.51 56.16 68.47 64.52 75.02
grid 15.24 25.75 30.29 41.50 19.89 24.72 1.39 1.39 5.37 5.85 16.20 24.63 20.82 25.60
hazel_nut 58.48 65.59 78.75 83.66 68.57 85.83 81.77 84.66 70.16 82.40 61.83 92.42 87.96 93.99
leather 38.12 58.63 44.63 56.84 57.53 73.90 21.29 22.28 36.76 53.88 46.98 59.89 60.38 75.90
metal_nut 81.13 86.63 91.12 94.08 83.97 89.37 90.68 92.73 86.85 91.45 85.81 90.06 93.01 95.32
pill 50.00 60.28 55.47 61.05 44.48 48.11 80.41 82.55 63.96 65.96 78.23 84.35 82.15 86.48
screw 2.80 4.98 16.16 23.05 16.81 19.33 34.93 38.76 17.93 18.76 1.27 2.00 17.82 21.25
tile 69.86 78.18 84.75 91.31 79.86 88.65 85.36 89.72 70.29 77.70 76.96 84.07 86.29 93.89
toothbrush 41.19 52.81 53.72 76.55 37.46 40.91 36.78 38.94 33.85 43.03 35.39 48.93 75.76 87.32
transistor 58.24 68.80 65.57 80.31 62.64 69.32 78.38 87.23 62.57 72.45 71.96 83.28 93.01 96.05
wood 31.75 43.27 55.25 60.82 36.31 45.67 26.36 33.13 37.23 43.37 48.90 62.57 72.27 78.06
zipper 47.51 59.24 61.03 68.53 59.07 69.39 44.42 51.83 60.04 71.52 56.77 66.66 52.03 67.69
Average 45.41 55.90 57.51 66.18 51.02 59.15 52.76 58.81 49.27 56.24 52.76 63.50 65.80 72.85

A.7 More analysis of FARM

These improvements of FARM are not only empirically significant, but also consistent with intuitive
understanding. Without FARM, the segmentation-oriented industrial anomaly synthesis relies solely
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Table 6: Ablation study of FARM on the MVTec dataset using the real-time Segformer.
Category mIoU (w/o FARM) ↑ Acc (w/o FARM) ↑ mIoU (w/ FARM) ↑ Acc (w/ FARM) ↑
bottle 80.65 83.46 86.86 90.90
cable 65.99 70.50 73.71 77.94
capsule 49.08 53.25 63.22 71.12
carpet 72.46 80.84 73.84 83.53
grid 37.79 42.61 52.45 70.70
hazelnut 69.20 72.55 90.81 94.79
leather 61.42 65.91 66.60 74.18
metal_nut 89.59 94.31 94.65 96.88
pill 46.73 48.44 90.17 94.07
screw 46.48 54.42 49.94 57.48
tile 88.91 93.28 90.13 93.77
toothbrush 66.29 81.40 74.98 88.63
transistor 62.35 67.46 91.80 94.50
wood 71.55 79.47 78.77 86.31
zipper 71.40 80.76 72.80 84.73
Average 65.33 71.24 76.72 83.97

Table 7: Ablation Study of AIAS with other training-free sampling Methods on MVTec-AD data via
Segformer.

Category DDPM (1000 steps) DDIM (50 steps) PLMS (50 steps) AIAS (50 steps)
mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑ mIoU ↑ Acc ↑

bottle 81.65 84.83 82.87 86.03 81.49 84.44 86.86 90.90
cable 73.45 78.06 74.21 78.41 74.78 78.91 73.71 77.94
capsule 60.01 66.87 58.02 64.03 56.92 61.90 63.22 71.12
carpet 75.99 84.14 75.33 83.58 75.41 82.39 73.84 83.53
grid 50.91 63.19 50.85 67.91 50.43 61.42 52.45 70.70
hazel_nut 89.81 93.31 89.69 93.03 89.42 92.96 90.81 94.79
leather 71.03 80.32 66.00 72.48 71.85 81.47 66.60 74.18
metal_nut 94.63 97.18 94.50 96.47 93.93 96.69 94.65 96.88
pill 89.36 93.79 89.84 93.03 89.93 93.66 90.17 94.07
screw 49.35 59.18 48.89 57.26 48.78 55.62 49.94 57.48
tile 91.01 94.72 89.23 92.90 89.96 93.25 90.13 93.77
toothbrush 76.10 91.25 74.79 88.48 76.02 91.00 74.98 88.63
transistor 89.59 93.41 89.35 92.37 89.17 91.99 91.80 94.50
wood 80.03 85.30 79.29 84.03 79.61 84.65 78.77 86.31
zipper 72.45 82.35 71.01 83.00 72.06 81.02 72.80 84.73
Average 76.36 83.19 75.59 82.20 75.98 82.09 76.72 83.97

on frozen pre-trained weights and weak conditioning from learned textual embeddings. This limits
the model’s ability to capture the structural characteristics of industrial anomalies, often leading to
visually perturbed but semantically uninformative results. In contrast, FARM explicitly reconstructs
anomaly-only content from noisy latents and produce spatially localized, anomaly-aware noise into
the sampling process. Additionally, by incorporating both spatial masking and timestep encoding,
FARM guides the model to focus on abnormal regions—information that would otherwise be
uniformly treated in the absence of FARM. Together, these mechanisms improve the structural
fidelity, localization precision, and segmentation relevance of synthesized anomalies.

A.8 Other qualitative experiments

We also provide additional qualitative results to supplement the main paper. Specifically, we present
synthesized anomalies across multiple categories from MVTec and BTAD, along with comparisons
against CutPaste, DRAEM, GLASS, RealNet, DFMGAN, and AnomalyDiffusion. Each figure
includes both the generated images and their corresponding segmentation masks.
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Figure 9: Visualization results of different anomaly synthesis methods on the MVTec dataset.
Columns correspond to synthesis methods (from left to right: MVTec AD, CutPaste, DRAEM,
GLASS, DFMGAN, RealNet, Anomaly Diffusion, FAST), and rows correspond to product categories
(from top to bottom: bottle, cable, capsule, carpet, grid).
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Figure 10: Visualization results of different anomaly synthesis methods on the MVTec dataset.
Columns correspond to synthesis methods (from left to right: MVTec AD, CutPaste, DRAEM,
GLASS, DFMGAN, RealNet, Anomaly Diffusion, FAST), and rows correspond to product cate-
gories (from top to bottom: hazel_nut, leather, metal_nut, pill, screw).
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Figure 11: Visualization results of different anomaly synthesis methods on the BTAD dataset.
Columns correspond to synthesis methods (from left to right: MVTec AD, CutPaste, DRAEM,
GLASS, DFMGAN, RealNet, Anomaly Diffusion, FAST), and rows correspond to product categories.
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