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ABSTRACT

The effectiveness of the use of general audio pre-trained models to generate rep-
resentations suitable for speech separation has been explored in a previous study
(Huang et al., 2022) with the main finding being that they provide minimal benefit
compared to features extracted without the models. The study hypothesised that
since the general audio pre-trained models were trained with clean audio dataset,
they are unable to generalize to noisy and mixed speeches hence not effective in
speech separation. This paper investigates this hypothesis by comparing the per-
formance of pre-trained model trained on contaminated speeches and that trained
on clean ones. We are interested in evaluating whether contamination leads to bet-
ter downstream performance. We also investigate if the type of input used to train
the pre-trained model impacts the quality of embeddings it generates. To sepa-
rate the sources, we propose a fully unsupervised technique of speech separation
based on deep modularization. Our findings establish that by injecting noise and
reverberation in the training dataset, the pre-trained model generate significantly
better embeddings than when clean dataset is used. Further, based on the model
presented here, working in short-time Fourier transform (STFT) results in bet-
ter features than using time-domain features. The proposed deep modularization
speech separation technique can improve SI-SNRi and SDRi by 1.3 and 2.7, re-
spectively, when mixtures contain less than four sources and improves the results
significantly for many source mixtures.

1 INTRODUCTION

Pre-trained models have become popular especially in natural language processing (NLP) and Com-
puter vision. In NLP, for example, a large corpus of text can be used to learn universal language
representations which are beneficial for downstream NLP tasks. Due to their success in these do-
mains, unsupervised learning-based pretrained models have been introduced for audio data (Chung
et al., 2019) (Chung et al., 2020) (Liu et al., 2020) (Liu et al., 2021)(Baevski et al., 2020)(Hsu
et al., 2021a). Such pretrained models can be beneficial to speech separation in several ways: First,
the models are trained using large speech dataset hence can learn universal speech representations
which can boost the quality of speech generated by speech separation models. Secondly, they pro-
vide models with better initialization which can result in better generalization and speed up con-
vergence during training of speech separation models. Finally, pretrained speech models can act
as regularizers to help speech separation models to avoid overfitting (Erhan et al., 2010). The im-
portance of pre-trained models in speech separation is the subject of investigation in (Huang et al.,
2022). They use 13 speech pre-trained models to generate features of a mixed speech which are then
passed through a three-layer BLSTM network to generate speech separation mask. They compare
the performance of these features with those of baseline STFT and Mel filterbank (FBANK) fea-
tures. Their experiments establish that the 13 pre-trained models used do not significantly improve
feature representations as compared to those of baselines. Hence the quality of separated speech
generated based on features of pre-trained models are only slightly better or worse in some cases as
compared to those generated based on the baseline features. They attribute this to domain mismatch
and information loss. Since most of the pre-trained models were trained with clean speech, they do
not generalize well to noisy speech domain. Pre-trained models are usually trained to model global
features and long-term dependencies hence some local features of the noisy or mixed speech signal
may be lost due to this during feature extraction. Using HuBERT large model (Hsu et al., 2021b),
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they demonstrate that the last layer of the model does not produce the best feature representation
for speech enhancement and separation. In fact, for speech separation, the higher layers features
are of low quality as compared to lower layers. They show that the weighted-sum representations
of the representations from the different layers of pre-trained models where lower layers are given
more weight generate better speech the enhancement and separation results as compared to isolated
layers representations. They hypothesise that this could be due to the loss of some local signal in-
formation necessary for speech reconstruction tasks in deeper layers. In this research, we re-look
into the use of pre-trained models to boost speech separation. We are particularly investigating
whether training a pre-trained model on contaminated speeches will result in it generating quality
features for speech separation as compared to that trained with clean speech. We also investigate
whether input features (Fourier vs time domain features) have a significant impact on the quality
of features generated by the pre-trained model. Another major challenge faced by DNN models
performing speech separation is the permutation ambiguity. Most speech separation tools such as
(Zeghidour & Grangier, 2021a) (Huang et al., 2011) (Weng et al., 2015) (Isik et al., 2016) (Hershey
et al., 2016a) and (Luo & Mesgarani, 2019a) cast the problem of speech separation as a multi-class
regression. In that case, training a DNN model involves comparing its output to a source speaker.
The models always output a dimension for each target class and when multiple sources of the same
type exist, the system needs to select arbitrarily which output dimension to map to each output and
this raises a permutation problem (permutation ambiguity) Hershey et al. (2016a). Systems that
perform speaker separation have an extra burden of designing mechanisms that are geared towards
handling the permutation problem. One key technique of avoiding permutation ambiguity is to per-
form speech separation through clustering technique (Hershey et al., 2016b) (Byun & Shin, 2021)
(Isik et al., 2016) (Qin et al., 2020) (Lee et al., 2022). Despite their success, the existing clustering
technique employ supervised training which require a costly process of data labelling. Furthermore,
these methods require that the number of speakers need to be known before execution which may
not be practical in some cases. We seek to avoid permutation ambiguity problem by implementing
a fully unsupervised speech separation technique in the downstream using deep modularization net-
work where the number of speakers need not to be known priori. In summary we make the following
key contributions:

1. We show that training a pre-trained model with contaminated audio generates better fea-
tures talored for speech separation as compared to that trained on clean audio.

2. We show that the type of input (DFT transformed input vs raw waveform) used to train a
model has significant effect on the quality of features the model generates.

3. We propose a new fully unsupervised technique for speech separation to avoid permutation
problem. The proposed technique is able to scale to mixtures with many speakers with only
small drop in performance.

2 RELATED WORK

Speech enhancement and separation tools can be categorised into two broad categories based on
the type of input features, i.e., those using Fourier spectrum features as input and those using time
domain features. Fourier spectrum-based features tools do not work directly on the raw signal (i.e.,
signal in the time domain) rather they incorporate the discrete Fourier transform (DFT) in their signal
processing pipeline mostly as the first step to transform a time domain signal into frequency domain.
These models recognise that speech signals are highly non-stationary, and their features vary in both
time and frequency. These features include Log-power spectrum features (Fu et al., 2017) (Du &
Huo, 2008) (Xu et al., 2015) (Du et al., 2014), Mel-frequency spectrum features (Liu et al., 2022)
(Ueda et al., 2016) (Du et al., 2020) (Fu et al., 2018) (Weninger et al., 2014) (Donahue et al., 2018),
DFT magnitude features (Nossier et al., 2020) (Fu et al., 2018) Grais & Plumbley (2018) Fu et al.
(2019) Jansson et al. (2017) Kim & Smaragdis (2015) and Complex DFT features (Fu et al., 2017)
(Williamson & Wang, 2017) (Kothapally & Hansen, 2022a) (Kothapally & Hansen, 2022b). The
assumption made by most DNN models that use Fourier spectrum features is that phase information
is not crucial for human auditory. Therefore, they exploit only the magnitude or power of the input
speech to train the DNN models to learn the magnitude spectrum of the clean signal and the factor
in the phase during the reconstruction of the signal (Xu et al., 2014) (Kumar & Florencio, 2016)
(Du & Huo, 2008) (Tu et al., 2014) (Li et al., 2017). The use of the phase from the noisy signal to
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estimate the clean signal is based on works such as (Ephraim & Malah, 1984) that demonstrated that
the optimal estimator of the clean signal is the phase of the noisy signal. Furthermore, most speech
separation models work on frames that are of size between 20-40 ms and believe that the short-
time phase contains low information (Lim & Oppenheim, 1979) (Oppenheim & Lim, 1981) (Vary
& Eurasip, 1985) (Wang & Lim, 1982) and therefore are not crucial when estimating clean speech.
However, recent research Paliwal et al. (2011) have demonstrated through experiments that further
improvements in quality of estimated clean speech can be attained by processing both the short-time
phase and magnitude spectra. Further, the factoring in of the noisy input phase during reconstruction
has been noted to be a problem since the phase errors in the input interact with the amplitude of the
estimated clean signal hence causing the amplitude of the estimated clean signal to differ with the
amplitude of the actual clean signal being estimated (Erdogan et al., 2015), (Han et al., 2015). Due
to phase challenge while working with Fourier spectrum features different tool such as (Luo &
Mesgarani, 2018) (Luo et al., 2020) (Luo & Mesgarani, 2019a) (Venkataramani et al., 2018) (Zhang
et al., 2020) (Subakan et al., 2021a) (Tzinis et al., 2020a) (Tzinis et al., 2020b)(Kong et al., 2022)
(Su et al., 2020) (Lam et al., 2021b) (Lam et al., 2021a) explore the idea of designing a deep learning
model for speech separation that accepts speech signal in the time-domain. The fundamental concept
of these models is to replace the DFT-based input with a data-driven representation that is jointly
learnt during model training. The models therefore accept as their input the mixed raw waveform
sound and then generate either the estimated clean sources or masks that are applied on the noisy
waveform to generate clean sources. By working on the raw waveform, these models address the
key limitation of DFT-based models, since the models are designed to fully learn the magnitude
and phase information of the input signal during training Luo et al. (2020). The DNN models for
speech separation can also be categorised based on how they were trained, that is, spectral mapping
techniques (Fu et al., 2018) (Grais & Plumbley, 2018) (Kim & Smaragdis, 2015) (Xu et al., 2015)
(Lu et al., 2013) (Xu et al., 2014) (Fu et al., 2016) (Gao et al., 2016), spectral masking techniques
Wang & Wang (2013) Isik et al. (2016) Weninger et al. (2014) Fu et al. (2016) Narayanan & Wang
(2013) Chen et al. (2015) (Huang et al., 2015) (Hershey et al., 2016b) (Grais et al., 2014) (Zhang
& Wang, 2016) (Narayanan & Wang, 2015) (Weninger et al., 2015) (Huang et al., 2011) Zhang &
Wang (2016) Liu & Wang (2019a) and generative modelling(Donahue et al., 2018)(Fu et al., 2019).
The use of pre-trained models in speech separation and enhancement has been explored in (Huang
et al., 2022). Currently there is no pre-trained model trained specifically for speech separation,
models exploit general audio pre-trained models in speech separation. However, their use has not
resulted in significant performance boost. The work in (Huang et al., 2022) hypothesises that this
could be because the pretrained models were not trained on noisy or contaminated speech; hence,
they are unable to extrapolate to noisy speeches. This work investigates this hypothesis i.e., whether
training a pre-trained model on contaminated speeches will result in it generating quality features
for speech separation as compared to that trained with clean speech. We also investigate whether
input features have an impact of the quality of features generated by the pre-trained model.

3 CONTRASTIVE DEEP MODULARIZATION MODEL (CONDEEPMOD)

3.1 FOURIER BASED FEATURE REPRESENTATION LEARNING WITHOUT AUGMENTATIONS

Here, we are interested in investigating whether features representations generated by speech frames
where no explicit augmentations have been applied are ideal for speech separation. We implement
the contrastive learning similar to the one proposed in Saeed et al. (2021) but at frame-level. The goal
of contrastive self-supervised learning is to establish a representation function f : x 7→ Rd that maps
augmentations to a d−dimensional vectors by ensuring that similar view of augmentations are closer
to each other as compared to those of random ones. The practice is to pick augmentations (x, x+)
that are obtained by passing a given input through two different augmentation functions. Ideal
augmentations of inputs are those that retain features of the inputs that are crucial in the intended
task (e.g., classification) but modify the features that are less important for that task. Here, we do not
apply any explicit augmentation on the speech; we hypothesise that the different frames of a speech
belonging to a given speaker qualify to be viewed as augmentations of a standard hidden frame of
that speaker in the speech separation domain. For frames of a given speaker to qualify as augmented
versions of each other, they must retain important features for speaker’s speech identity and modify
the less important ones. For speech separation, the key features are voice pitch, that is, auditory
perception of the rate of vocal fold vibration (the fundamental frequency or F0) (Xie & Myers,
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2015), vocal timbre, and speaking rate that reveal indexical characteristics can be used for talker
identification. To investigate whether the different frames of a speaker are augmentations of each
other with regard to speech separation, given a clean speech signal in the time domain x ∈ RT , we
transform the signal into a STFT representation S ∈ RF×T . From the resulting frequency-domain
representations we extract frames of spectrogram (T-F bins).These frames of spectrograms serve as
our datapoints. We then design a function f : S 7→ Rd that maps the frames to d-dimensional
vectors by encouraging the representations of pairs of frames from a given speaker to be closer to
each other than the representations of frames of another random speaker. Given n speeches from n
speakers, we segment each of the n STFT transformed speech signals into equally sized frames. Let
X̄ denote the set of all frames generated from the speeches n. Let the function S(., . | X̄) be viewed
as an augmentation pair generator such that it picks two pairs of frames from X̄ belonging to the
same speaker, that is,

(xi, x
+
i ) ∼ Dpos ≡ (xi, x

+
i ) ∼ i.i.d S(., . | X̄) (1)

Here the pair (xi, x
+
i ) is the positive pair with distribution Dpos. Given a batch of size b, for a

positive pair (xi, x
+
i ), we consider all the other b− 2 to be the negative examples with a distribution

of Dneg . To train the model to fit the function f , we use adopt simCLR contrastive loss Chen et al.
(2020).

Ex,x+∼Dpos,x
−
i:n−2∼Dneg

[− log(
ef(x)

T f(x+)

ef(x)T f(x+) +
∑n−2

i=1 ef(x)
T f(x−

i )
)] (2)

The loss function seeks to make the similarity f(x)f(x+) larger as compared to f(x)f(x−).
Once the model is trained to establish frame level features, we exploit the trained model in the
downstream task.

3.2 FOURIER BASED FEATURE REPRESENTATION LEARNING WITH AUGMENTATIONS

Here, given the set X̄ defined in section 3.1, a randomly selected frame xi ∈ X̄ is augmented by
applying two different augmentations functions (a1, a2) to it to generate similar views i.e a1(xi) →
x̃i and a2(xi) → x̃j (see figure 1). There are several potential enhancements that can be applied
to speech,including pitch modification, additive noise, reverberation, band reject filtering, and time
masking Kharitonov et al. (2021). In our case, we use additive noise (a1) and additive noise plus
reverberation (a2). These two augmentations involve contaminating the selected frame by either
adding noise or adding noise then convolving the noisy speech with impulse response. Noise is
added to speech by adding selected nonstationary noises with a selected signal-noise ratio (SNR).
With reverberation, impulse responses are used to simulate different acoustic conditions. Applying
the augmentations on b selected random frames from the set X̄ results in 2b datapoints. For given
positive pair (x̃i, x̃j) within a batch, the other 2(b − 1) datapoints are treated as negative samples
and loss function in equation 2 is used for training.

3.3 TIME DOMAIN-BASED FEATURE REPRESENTATION LEARNING WITHOUT
AUGMENTATIONS

Given a time-domain speech signal x ∈ RT , the signal is processed by an encoder similar to the
one proposed in Subakan et al. (2021b) to generate representation h ∈ RF×T . This is then chunked
into frames along the time axis to generate L ∈ RF×S×N . Here N represents the number of frames
generated. Given n speech signals, the resulting set W̄ of N × n frames are then processed similar
to X̄ in the discussion in section 3.1.

3.4 TIME DOMAIN-BASED FEATURE REPRESENTATION LEARNING WITH AUGMENTATIONS

Given the set W̄ established in section 3.3, a randomly selected frame xi ∈ S̄ is augmented by
applying the two different augmentations functions (a1, a2) defined in section 3.2 to it. This gen-
erates two similar views, i.e., a1(xi) → x̃i and a1(xi) → x̃j . Once the augmentations have been
generated, the processing proceeds similarly to the discussion in Section 3.2.
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Figure 1: How the pre-trained model is trained when explicit augmentations are applied to STFT
based frames. The lower part of the figure shows how the pretrained model is utilised for deep
modularization. Speech reconstruction is not shown in the figure. a1 and a2 are the different aug-
mentations

4 DOWNSTREAM TASK: FRAMES PARTITIONING

The goal is to exploit frame-level representation learned in section 3 to partition a set of frames
such that frames dominated by a given speaker are grouped together. To proceed, we define a graph
G(V,E) where V = (v1, v2, · · · , vn), |V | = n is the set of all nodes (frames) and E ⊂ V × V ,
|E| = m is the set of all edges of the mixed speech signal. We denote the adjacency matrix of G
by A where Aij = 1 if {vi, vj} ∈ E and 0 otherwise. The degree of vi is defined as di =

∑n
j Aij ,

we are interested in generating graph partition function F : V → {1, · · · , k} that splits the set of
nodes V into k partition vi = {vj : F(vj) = i} given the nodes attributes F̄ ∈ Rn×d generated by
contrastive learning. In order to partition the vertices, we explore the statistical approach of vertices
partitioning known as modularity (Q) (Newman, 2006). Modularity involves comparing the number
of edges within partitions and some equivalent randomized partitions (null network) in which edges
are placed without regard to relationships that exist in the network. Modularity is, therefore, defined
as

Q = Number of edges within partitions − expected number of such edges (3)

A high value of Q, indicates closer similarities among members belonging to a given partition.
Therefore, the goal is to maximise Q. Modularity (Q) is derived in Newman (2006) as:

Q =
1

2m

∑
ij

(Aij − Pij)δ(gi, gj) (4)

where δ(gi, gj) is 1 if vertex i and j belong to the same partition and 0 otherwise. Pij is the expected
number of edges between i and j while Aij is the actual number of edges between i and j. If vertex
i and j have degrees di and dj , respectively, then the expected degree of vertex i can be defined
as

∑
j Pij = di. Based on this, vertex i and j are connected with probability Pij =

didj

2m (see
(Newman, 2006)). Hence equation 4 is modified to:

Q =
1

2m

∑
ij

(Aij −
didj
2m

)δ(gi, gj) (5)

The problem of maximizing Q is NP-Hard (Brandes et al., 2006), however, if we seek to generate
k non-overlapping partitions, a partition assignment matrix S ∈ Rn×k (n represents number of
vertices) is defined (Newman, 2006). Each column of S indexes a partition, that is, S = {s1 | s2 |
, · · · , | sk|}. The columns are vectors of (0,1) elements such that Sij = 1 if vertex i belongs to
partition j and 0 otherwise. Based on this setup the columns of S are mutually orthogonal since
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each row of the matrix sums to 1. S therefore satisfies the normalization Tr(STS) = n where
Tr(.) is the matrix trace. Based on the definition of S, δ(gi, gj) =

∑k
k=1 SikSjk and hence

Q =
1

2m

∑
ij=1

k∑
n=1

(Aij − Pij)SikSjk =
1

2m
Tr(STBS) (6)

where B is the modularity matrix such that Bij = Aij − Pij . By relaxing S ∈ Rn×k, the optimal
S that maximizes Q is the top k eigenvectors of matrix B. In our case, we seek to optimize Q(
learn and optimize cluster assignment matrix S), by modularizing the frame features F̄ ∈ Rn×d

learned via constrative learning. We seek to adapt the deep neural network graph partition technique
proposed in Bianchi et al. (2020),Müller (2023) to partition our features. They partition nodes of a
graph by the following formulation:

F̄ = GNN(Ã,X, θGNN ) (7)

S = softmax(F̄ ) (8)

Where Ã = D− 1
2AD− 1

2 , X are the input features, D is the diagonal matrix with the degrees
d1, · · · , dn on the diagonal and A is the adjacency matrix. In equation 7, node features F̄ are
learned via graph neural network (GNN) and the assignment matrix S is established via SoftMax
activation function. In (Bianchi et al., 2020), the assignment matrix S is established by multilayer
perception (MLP) with SoftMax on the output layer. In our case, we formulate the problem as:

F̄ = Con(X, θcon) (9)

S = RNN(F̄ , θrnn) (10)

Where the frame feature matrix F̄ is established via contrastive learning (Con). The partition as-
signment of a frame is established using BLSTM similar to the one proposed in (Huang et al., 2022)
with SoftMax on the output layer. This maps each frame feature f̄i ∈ F̄ to the i row of the cluster as-
signment matrix S. To optimise the assignment S, we use the loss function in Equation 12 (Müller,
2023). The loss is composed of a modularity (derived in Equation 6) term and a collapse regularizer.
The collapse regularizer is crucial to avoid S generating trivial partitions (Müller, 2023). Further-
more, it has been shown in Müller (2023) that the loss function in equation 12 maintains consistency
of community detection as the number of nodes increases.

L(S) = − 1

2m
Tr(STBS) +

√
k

n
||
∑
i

ST
i ||F −1 (11)

Here, ||.||F is the Frobenius norm. The complexity of the modularity term Tr(STBS) is O(n2) per
update of L(S) which makes the training process computationally costly. Therefore, to efficiently
update L(S), Müller (2023) proposes to decompose Tr(STBS) into sum of sparse matrix-matrix
multiplication and rank one degree normalization Tr(STAS−SdT dS). This reduces the complex-
ity to (O)(d2n) for every update of the loss function.

L(S) = − 1

2m
Tr(STAS − SdT dS) +

√
k

n
||
∑
i

ST
i ||F −1 (12)

4.1 ADJACENCY MATRIX

To construct the adjacency matrix A, for each frame i we compute its similarity with all other nodes
using inner product i.e.

eij = f̄T
i f̄j (13)

where j = 1, 2, · · · , n and f̄i and f̄j ∈ F̄ . We then select a threshold θ such that if eij < θ, we
remove an edge between i and j then the adjacency matrix is defined as

Aij =

{
1, if there is an edge between i and j
0, otherwise

(14)

Optimum θ is established experimentally (explained in Appendix A3).
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5 CLEAN SIGNAL ESTIMATION

From the established partitions k, we generate k masks in the range [0, 1], where 0 indicates that
a given frame in the input mixed signal is missing in that cluster, while 1 signifies the presence of
a given frame. The mask-based separation of sources is predicated on the assumption of sparsity
and orthogonality of the sources in the mixed signal in the domain in which masks are computed.
Based on this assumption, the dominant signal at a given range is taken to be only signal at that
range. Therefore, the generation of clusters through modularization is used to estimate the dominant
signals in a given range. Once the masks have been established, they are applied to the input mixed
signal to generate k estimated clean signals. For the input speech signal that has been transformed
to STFT, the mask is applied to the input STFT spectrogram to obtain the estimated spectrograms of
clean speech signals. The inverse STFT is then used to estimate a clean speech signal. In case of a
time domain signal, the mask is applied to the STFT-like transformation generated by the encoder.
The decoder (transposed encoder) is the used to generate estimated signal. For STFT phase recon-
struction, we use the technique proposed in Wang et al. (2018) which jointly reconstructs the phase
of all sources in each mixture by exploiting their estimated magnitudes and the noisy phase using
the multiple input spectrogram inversion (MISI) algorithm (Gunawan & Sen, 2010).

5.1 MODEL(F)

The model (encoder) f which is used to establish frame representations is made up of a stack of 6
identical layers. One such layer is shown in figure 2 (appendix A4). The layers are composed of
layer normalisation, 1D convolution, and 1D maxpooling.

6 EXPERIMENTS

6.1 DATASET

To pre-train all the four model variants, we used the popular Wall Street Journal (WSJ0) corpus
(Paul & Baker, 1992). The dataset was recorded using a close-talk microphone hence free from
reverberation and noise. We used 30 hours of speeches from si tr s to train the models. When
pre-training with STFT features without augmentation, the audios in the training data were down-
sampled to 8kHz then frames generated by applying short-time Fourier transform using a 32 ms
Hamming window and an 8 ms hop size. While pre-training using STFT features with augmenta-
tion, we first created the first set (set A) of 30 hours of noisy speeches in time domain by adding
randomly sampled excerpt from noise recorded in various urban setting from (Wichern et al., 2019)
to the 30 hours of clean speech from si tr s. The second set (set B) was created by adding rever-
beration to the first set using edited scripts from (Maciejewski et al., 2020)( see Figure 2). The two
sets of speeches were then downsampled to 8kHz and frames were generated by applying short-time
Fourier transform using 32 ms Hamming window and 8 ms shift. Two frames extracted from a simi-
lar position in both sets were considered to be augmentations of the clean frame in the same position
in the original clean speech and hence constitute a positive pair. For time domain pre-training with

Figure 2: Creating two sets of speeches by adding noise to the first set and noise+reverberation on
the second set.

no augmentation, similar to (Subakan et al., 2021b), we divide a given speech in the training set into
frames (chunks) of size 250 with 125 overlap between two subsequent frames while for pre-training
in time domain with augmentation, we first augment a given audio dataset to create two sets of 30
hour long utterances where one set is augmented with noise and the other has noise plus reverbera-
tion as described before. Both sets of speeches are then fragmented into frames (chunks) of size 250
with 125 overlap between two subsequent frames. Frames extracted from similar positions in both
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sets are considered augmentations of the clean frame in the same position from the original clean
speech, hence forming a positive pair.
Pre-training configuration: To train the four variants of pre-trained models, we used the Adam
optimiser and the cyclical learning rate (Smith, 2017) with a minimum learning rate of 1e− 4 and a
maximum of 1e− 1. Each model was trained with a single NVDIA V100 GPU for 1M steps with a
batch size of 512 frames.
Fine-tuning: For the downstream task of frame partitioning, we do not perform any domain adap-
tation such as fine-tuning.
Speech separation. To evaluate the quality of embeddings generated by pre-trained models on
speech separation, we use wsj0-2mix, wsj0-3mix Hershey et al. (2016a),wsj0-4mix, ws0-5mix
(Nachmani et al., 2020), Libri5Mix, Libri10Mix (Dovrat et al., 2021). The wsj0-2mix, wsj0-3mix,
wsj0-4mix, and ws0-5mix datasets are made of 2, 3, 4, 5 speaker mixtures, respectively, created
from the WSJ0 corpus. The datasets are created by exploiting randomly selected gains in order
to achieve relative levels between 0 and 5 dB between the 2, 3, 4, 5 speech signals. The datasets
are composed of 30 h training, 10 h validation, and 5 h test sets. The training and validation sets
share common speakers, which is not the case for test set. Libri5Mix and Libri10Mix are speech
mixture composed of 5 and 10 different speakers respectively. The dataset is created from the Lib-
riMix dataset (Cosentino et al., 2020), which was created from LibriSpeech Panayotov et al. (2015).
The mixtures are created from clean utterances with no noise with the resulting mixtures having an
SNRs that are normally distributed with a mean of 0 dB and a standard deviation of 4.1 dB. These
mixtures are created in Dovrat et al. (2021). For all of these datasets, we use the test dataset for
speech separation. For each audio in the test dataset, in time-frequency domain we establish frames
by applying short-time Fourier transform using 32 ms Hamming window and 8 ms hop size, while
in time domain chunks of size 250 with 125 overlap between two subsequent frames are extracted.
The frames are then processed by the relevant pre-trained model for embedding generation, e.g.,
if a pre-trained model was trained using time domain frames it processes time-domain frames to
generate embeddings. After embeddings have been generated, we optimize the downstream model
according to equation 12 to generate partitions. We set the maximum number of clusters k = 20.
Evaluation metrics: We used objective metrics of Short-time objective intelligibility (STOI)(Taal
et al., 2011), perceptual evaluation of speech quality (PESQ) algorithm (Rix et al., 2001), SI-SNR
improvement (SI-SNRi), Signal-to-Distortion Ratio improvement (SDRi), Deep Noise Suppression
MOS (DNSMOS) which is a reference-free metric that evaluates perceptual speech quality Reddy
et al. (2021) . It is a DNN based model trained on human ratings obtained by using an online
framework for listening experiments based on ITU-T P.808. We also use SIG, BAK, OVRL: The
non-intrusive speech quality assessment model DNSMOS P.835 (Reddy et al., 2022).

6.2 QUALITY OF CLUSTERS

To begin our experiments, we first evaluate how the different frame embeddings resulting from the
different pretrained models affect the downstream cluster generation. To evaluate how good the
clusters are, we use the graph-based cluster measurement metrics proposed in (Yang & Leskovec,
2012). We are particularly interested in metrics that capture the how well a given partition is sep-
arated from the rest i.e., quantifying the number of edges pointing from a given partition to other
partitions. A good partition should have few edges pointing outwards. The most relevant metrics
for our study being graph modularity and conductance. Cluster conductance (C)= cs

2ms+cs
, if S

is a partition, the function C measures how similar the nodes of S are where ms is the number of
edges in S i.e., ms = {(u, v) ∈ E, u ∈ S, v ∈ S} and cs is the number of edges in the boundary
of S i.e. cs = {(u, v) ∈ E : u ∈ S, v /∈ S}. Conductance quantifies the fraction of edges pointing
outside a given partition. Quality partitions should have a small conductance value. Graph modu-
larity (Q)= 1

4 (ms−E(ms)) where E(ms) is the expected ms. Quality partitions should have high
modularity. The results are reported in Table 1. When STFT features with explicit augmentations
are used to train the self-supervised model, it generates more quality embeddings that lead to quality
clusters as compared to the other three variants of inputs. This variant generates better clusters in all
the three test datasets. Notably, time domain with augmentations generates the second-best clusters
in all the three datasets. These indicates that for this setup, explicit augmentations are important
when training a pre-trained model for speech separation. It is also important to note that STFT
trained pre-trained model generates better embeddings that that of time domain suggesting that fea-
ture extraction through STFT transform captures more speech separation features as compared to
time-domain features.
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Table 1: Results of conductance C and modularity Q when using different input configurations and
different mixtures. Here the values of C and Q have been multiplied by 100.

WSJ0-3mix test-dataset
Input Type C Q

Time domain+augmentation 15.6 86.7
STFT+augmentation 14.9 88.1
Time domain 17.3 81.4
STFT 16.6 83.5

WSJ0-4mix test-dataset
Time domain+augmentation 16.2 85.3
STFT+augmentation 15.5 86.9
Time domain 18.0 79.7
STFT 17.5 82.4

WSJ0-5mix test-dataset
Time domain+augmentation 19.0 76.6
STFT+augmentation 18.4 78.5
Time domain 20.3 75.4
STFT 19.6 75.8

6.3 EVALUATION ON SPEECH SEPARATION

We evaluated the performance of the proposed technique on source separation using wsj0-2mix,
wsj0-3mix wsj0-4mix, ws0-5mix test datasets. Table 2 reports the results based on the evaluation
metrics. The quality of partitions has direct relationship with the quality of speech separation. In
all the four datasets, the pre-trained model where STFT is contaminated with noise and reverber-
ation registers significantly higher results as compared to the other three. Like the observation in
section 6.1, pre-trained model trained with time domain features with augmentations registers the
second-best performance. The results show that injecting noise and reverberation in the pre-training
increases the portability of the generated features to the speech separation domain. Further, with
this setup, STFT based features generate significantly better features as compared to time domain
features. It is worth noting that even without domain adaptation, the proposed deep modulariza-
tion technique can generate quality estimated clean speech signals. We also note that with deep
modularity technique, performance drops marginally as the number of sources increases. A direct
comparison with other existing speech separation tools is included in Appendix A1, A2.

Table 2: Showing speech separation results when different variants of inputs are used to in the pre-
trained model.

WSJ0-2mix test-dataset
Model SI-SNRi(↑) SDRi(↑) STOI(↑) PESQ (↑) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)

ConDeepMod(STFT+augmentation) 21.6 20.9 0.9069 3.98 4.05 3.98 4.11 4.01
ConDeepMod(STFT+augmentation) 22.9 22.7 0.9346 4.04 4.17 4.11 4.23 4.16
ConDeepMod(Time domain) 19.8 20.1 0.9123 3.92 3.93 3.89 3.97 3.89
ConDeepMod(STFT) 21.3 21.0 0.9323 4.01 3.97 3.88 4.08 3.94

WSJ0-3mix test-dataset
ConDeepMod(Time domain+augmentation) 21.2 20.7 0.9123 3.96 3.98 3.93 4.03 3.99
ConDeepMod(STFT+augmentation) 22.1 22.4 0.9146 4.01 4.09 4.02 4.17 4.08
ConDeepMod(Time domain) 19.3 18.8 0.8790 3.88 3.85 3.83 3.90 3.87
ConDeepMod(STFT) 20.9 20.6 0.9301 3.91 3.90 3.86 4.02 3.96

WSJ0-4mix test-dataset
ConDeepMod(Time domain+augmentation) 15.9 14.9 0.9007 3.97 3.94 3.90 3.99 3.93
ConDeepMod(STFT+augmentation) 16.3 16.0 0.9102 4.07 4.00 3.99 4.09 4.03
ConDeepMod(Time domain) 14.6 14.7 0.8630 3.86 3.81 3.79 3.86 3.80
ConDeepMod(STFT) 15.0 14.9 0.9045 3.92 3.87 3.86 3.91 3.85

WSJ0-5mix test-dataset
ConDeepMod(Time domain+augmentation) 13.8 14.3 0.8787 3.94 3.91 3.85 3.90 3.87
ConDeepMod(STFT+augmentation) 14.2 14.7 0.9089 4.003 3.95 4.90 4.04 4.001
ConDeepMod(Time domain) 13.2 13.4 0.8730 3.80 3.79 3.74 3.80 3.81
ConDeepMod(STFT) 14.0 13.9 0.8745 3.86 3.80 3.77 3.85 3.83

7 CONCLUSION

Through experiments, we establish that injecting noise and reverberation in the speech training data
helps pre-trained models learn better features tailored for speech separation. This justifies the need
to develop a pre-trained model tailored for speech separation rather than using the general audio pre-
trained models. Further, based on the proposed model, we establish that working in STFT domain
results in higher quality embeddings as compared to time domain features. The proposed speech
separation technique based on deep modularization is effective in establishing independent sources
contained in a mixture and can work in mixtures with unknown sources.
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A APPENDIX

A.1 COMPARISON WITH OTHER SPEECH SEPARATION TOOLS IN FEW ( n ≤ 3) SOURCE
MIXTURES.

Here, we compare how the proposed technique of speech separation performs as compared to other
state of the art speech separation tools. The results are reported in Table 3. In wsj0-2mix, ConDeep-
Mod (STFT+augmentation) improves SI-SNRi and SDRi by 0.6 and 0.3 respectively as compared
to SepFormer+DM. In wsj0-3mix, the scalability of the proposed technique to high source mixtures
is evidence as compared to the other tools. While the performance of SepFormer + DM with regard
to SI-SNRi and SDRi drops by 2.8 and 2.7 respectively in the wsj0-3mix dataset when compared
to its performance in wsj0-2mix, the performance of ConDeepMod (STFT + augmentation) drops
marginally by only 0.7 and 0.3 respectively in the two metrics. This may signal the ability of mod-
ularity technique to generalize to mixture with high sources.

Table 3: Comparing the results of the proposed technique with other state of the art speech separation
tools.

WSJ0-2mix test-dataset
Model SI-SNRi SDRi

SepFormer Subakan et al. (2021b) 20.4 20.5
SepFormer+DM Subakan et al. (2021b) 22.3 22.4
Wavesplit Zeghidour & Grangier (2021b) 21.0 21.2
Wavesplit+DM Zeghidour & Grangier (2021b) 22.2 22.3
DeepCASA Liu & Wang (2019b) 17.7 18.0
ConvTasnet Luo & Mesgarani (2019b) 15.3 15.6
ConDeepMod(Time domain+augmentation) 21.6 20.9
ConDeepMod(STFT+augmentation) 22.9 22.7
ConDeepMod(Time domain) 19.8 20.1
ConDeepMod(STFT) 21.3 21.0

WSJ0-3mix test-dataset
SepFormer 17.6 17.9
SepFormer+DM 19.5 19.7
Wavesplit 17.3 17.6
Wavesplit+DM 17.8 18.1
ConvTasnet 12.7 13.1
ConDeepMod(Time domain+augmentation) 21.2 20.7
ConDeepMod(STFT+augmentation) 22.1 22.4
ConDeepMod(Time domain) 19.3 18.8
ConDeepMod(STFT) 20.9 20.6

A.2 COMPARISON WITH OTHER SPEECH SEPARATION TOOLS IN HIGH( n ≥ 5) SOURCE
MIXTURES.

Here, we evaluate the performance of the proposed technique in mixtures with many sources. The
results are shown in Table 4. The best performing variant of the proposed technique outperforms
the existing tools by 0.4, 0.7, 1.0 and 1.8 when evaluated on wsj0-5mix, Libri5Mix and Libri10Mix
dataset on SDRi metric. This shows the proposed technique can scale to high source mixtures and
generate quality estimated sources.

A.3 SELECTING SIMILARITY THRESHOLD θ

Selecting the ideal threshold (θ) when creating adjacency matrix is not trivial. If θ is high, we risk
losing important relationships between frames. On the other hand, selecting low θ results in a large
graph dominated by uninformative edges and increases the clustering time. To select the optimum
θ we conducted experiments with different datasets where we varied the value of θ and recorded
modularity and the number of clusters generated. The graph showing how modularity and number
of clusters generated vary when using ws0-5mix test dataset is shown in figure 3. The modularity
values in figure 3 have been normalised by multiplying by 100, and values of number of clusters
have been normalised by multiplying by 10 for easy visualisation. As can be seen in figure 3, as the
similarity increases, modularity increases at the risk of generating a singleton partition. Decreasing

17



Under review as a conference paper at ICLR 2024

Table 4: Performance of the proposed technique on high source mixtures as compared to other tools
that can perform high source mixtures separation.

Results on the WSJ0-5mix test-dataset
Model SDRi

ConvTasNet Luo & Mesgarani (2019a) 6.8
DPRNN Luo et al. (2020) 8.6
MulCat Nachmani et al. (2020) 10.6
Hungarian Dovrat et al. (2021) 13.2
ConDeepMod (Time domain+augmentation) 13.8
ConDeepMod (STFT+augmentation) 14.2
ConDeepMod (Time domain) 13.2
ConDeepMod (STFT) 14.0

Libri5Mix test-dataset
SinkPIT Tachibana (2021) 9.4
MulCat Nachmani et al. (2020) 10.8
Hungarian Dovrat et al. (2021) 12.7
ConDeepMod (Time domain+augmentation) 13.4
ConDeepMod (STFT+augmentation) 13.7
ConDeepMod(Time domain) 12.7
ConDeepMod (STFT) 13.2

Libri10Mix test-dataset
SinkPIT Tachibana (2021) 6.8
MulCat Nachmani et al. (2020) 4.8
Hungarian Dovrat et al. (2021) 7.8
ConDeepMod(Time domain+augmentation) 9.2
ConDeepMod(STFT+augmentation) 9.6
ConDeepMod(Time domain) 7.7
ConDeepMod(STFT) 8.2

the similarity lowers modularity and the risk of generating extra partitions increases. In our case we
selected a θ = 0.3. The same threshold is used in all the experiments.

Figure 3: Graph showing how modularity and number of clusters vary as we change the similarity
threshold

A.4 MODEL
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Figure 4: The proposed Encoder, where Conv1D(x,y,z) represents a 1D convolution with filters =
x, kernel size= y and strides = z. MaxPool(x,y) is a 1D maxpooling with poolsize = x and
strides = y

.
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