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Abstract. We study a recently introduced adaptation of Tukey depth to
graphs and discuss its algorithmic properties and potential applications
to mining and learning with graphs. In particular, since it is NP-hard
to compute the Tukey depth of a node, as a first contribution we pro-
vide a simple heuristic based on maximal closed set separation in graphs
and show empirically on different graph datasets that its approxima-
tion error is small. Our second contribution is concerned with geodesic
core-periphery decompositions of graphs. We show empirically that the
geodesic core of a graph consists of those nodes that have a high Tukey
depth. This information allows for a parameterized deterministic defini-
tion of the geodesic core of a graph.

1 Introduction

Centrality measures are of high importance in data analysis, as they typically
capture the elements’ “importance” quantitatively. Of course, the meaning of
importance depends on the choice of the particular centrality measure. Different
types of centrality measures have been introduced for networks (see, e.g., [13]),
including degree centrality, eigenvector centrality, Katz centrality, closeness cen-
trality, betweenness centrality, page rank, and hubs and authorities. In Fig. [I] we
present a graphical illustration of some of these centrality measures for some
small graphs for a visual comparison.

In [2], a relatively new centrality measure, the Tukey depth has been intro-
duced for graphs. The notion of Tukey depth was originally defined over finite
subsets of R? [522]. It depends only on the traces of half-spaces of R? on the
ground set, without utilizing the geometric position of the elements. This prop-
erty allows for adapting it to other domains associated with a closure system, by
using (abstract) half-spaces [3] or other types of disjoint closed sets [I7]) instead
of half-spaces in R?. For R? and in other more general metric spaces [4], Tukey
depth has been studied in the context of machine learning, in particular, object
classification in [I2]. In the case of learning linear classifiers, the Tukey median,
i.e., the points with the highest Tukey depth are related to the Bayes point [6].

Regarding graphs, the Tukey depth of a node v of a graph is defined by the
size (i.e., number of nodes) of the underlying graph subtracted by the maximum
size of a geodesically closed set that does not contain v itself [2] (see Fig. 1] for
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Fig.1: Degree Centrality, Closeness Centrality, Betweenness Centrality and
Tukey Depth of nodes in graphs selected from different graph datasets [11]. The
centrality (resp. depth) values are normalized (i.e, mapped to the interval [0, 1])
by their maximum values in the graph. In particular, nodes of the smallest (resp.
highest) centrality values are denoted by yellow (resp. blue).

an example of the Tukey depth on graphs). This is closely related to the original
definition for R? [5)22]. The difference is that in R?, a half-space is used, while
maximum size geodesic closed sets are not necessarily half-spaces. Similarly to
R?, it is NP-hard to compute the graph Tukey depth of a node [27].

Motivated by this negative result, one of the main contributions of this work
is a heuristic algorithm for approzrimating graph Tukey depth. It runs in time
polynomial in the size of the input graph and approximates the Tukey depth of
a node with one-sided error by overestimating it. Our experimental results with
small graphs clearly demonstrate that the approximation is close to the exact
Tukey depth, by noting that for larger graphs we were not able to evaluate the
approximation performance of our algorithm, as it was not possible to calculate
the exact Tukey depth in practically feasible time.
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Our heuristic is based on the greedy algorithm designed in [I7] for solving the
more general maximal closed set separation (MCSS) problem. In the particular
case of graphs, the underlying closure operator is defined by the graph geodesic
closure in [I7]. It is therefore natural to ask the following question: Is there
a connection between graph Tukey depth and node separation with geodesically
closed node sets? We give an affirmative answer to this question by showing that
the size of a mazimum separating closed node set always depends on the Tukey
depth of its nodes. In particular, for any set containing at least one node of high
Tukey depth, there exists no large disjoint closed set.

It follows from the definition of graph Tukey depth that it is related to other
concepts based on geodesic convexity. One of these notions is the recent prob-
abilistic definition of geodesic core-periphery decomposition of graphs. It was
introduced in [21I] and studied in [T92T2324]. Our second question is concerned
with the following problem: Is there a connection between graph Tukey depth and
geodesic core-periphery decompositions? The geodesic core-periphery decompo-
sition separates some graphs (including social networks) into a dense core and
a sparse “surrounding” periphery [21] (see Fig. [3| for a visual example). While
some of the graphs (e.g., Erdés-Rényi, Barabdsi-Albert, and Watts-Strogatz ran-
dom graphs) seem to have no periphery, others (e.g., trees and fully connected
graphs) seem to have no core. This behavior is not well-understood up to now.
It seems that if all nodes in the graph are of high Tukey depth, then the graph
contains a core, which is the entire graph. In contrast, if there is only a small set
of nodes of high Tukey depth, then its core consists of those nodes (see Fig. for
some examples). This observation allows for a parameterized deterministic def-
inition of the cores. That is, the core of a graph can be defined by those nodes
that have a Tukey depth greater than a user specified threshold. Our empiri-
cal results clearly demonstrate that using the right threshold, the probabilistic
definition of cores in [21] coincides with our deterministic one.

The rest of the paper is organized as follows. In Sec.[2] we first collect necessary
notions and notations. In Sec. [3|we present our heuristic for approximating Tukey
depth and evaluate it empirically on small graph datasets. Sec. [4] contains some
examples which show that graph Tukey depth is strongly related to existing
mining and learning algorithms on graphs that rely on graph geodesic convexity.
Finally, in Sec. || we mention some open questions for future research.

2 Preliminaries

In this section, we collect the necessary notions and fix the notation. For a graph
G = (V,E), V(G) and E(G) denote the set V of nodes and the set E of edges,
and n and m stands for n = |V(G)| and m = |E|, respectively. Unless otherwise
stated, by graphs we always mean undirected graphs without loops and multi-
edges. For any u,v € V(QG), the (geodesic) interval [u, v] is the set of all nodes
on all shortest paths between u and v (see Fig. for an example). A set of
nodes X C V(G) is called (geodesically) closed iff for all u,v € V(G), u,v € X
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(a) (b)
Fig.2: (a) The interval [u,v] in blue and (b) the closure p({u,v}) in red.

implies [u,v] € X. The closure p(X) of a set X C V(G) is the smallest closed
set containing X (see Fig. 2b| for an example of p({u,v})).

Graph Tukey Depth For a graph G the Tukey depth of a node v € V(G) is defined
as follows [2]: Let C' C V(G) be a closed set of mazimum cardinality such that
v ¢ C. The Tukey depth of v, denoted by td(v) is defined by td(v) = |V(G)|—|C|.
The definition implies that the larger a closed set which does not contain v, the
smaller its depth is.

Geodesic Cores Up to now, geodesic cores [21] are defined probabilistically only.
Informally, the geodesic core of a graph consists of those nodes which are con-
tained in “every” geodesic closed set that is generated by a small number of
random nodes. Of course, the core defined in this way can be empty, but it turns
out that this is not the case for most social networks. Adapting the definition of
[21] slightly, we define the geodesic core of a graph G, denoted by C as follows. Let
X1, X5, ... be a sequence of sets where each set consists of £ > 0 nodes selected
independently and uniformly at random from V(G). Then C = ﬂ;=1 p(X;),
where i is the smallest integer satisfying ﬂ;zl p(X;) = ﬂ;ill p(X;) is the core of
G. Obviously, this definition is not deterministic since different choices of X; and
of k can lead to different cores. Nevertheless, the experiments in [19] with large
real-world networks show that for k ~ 10, the core (if it exists) does not depend
on the particular choice of the generator elements. The core-periphery decompo-
sition of a graph is composed of the subgraph induced by the core nodes and
that by the remaining nodes, called periphery. In Fig. | we give a visual example
of the core-periphery decomposition of the CA-GrQc network [Q]El

3 Approximating the Tukey Depth

Motivated by the negative complexity result concerning the calculation of Tukey
depth, in Sec. [3I] below we first propose a heuristic based on the maximal closed
set separation (MCSS) algorithm in [I7]. It approximates Tukey depths with
one-sided error. We then show experimentally on different types of small graphs
that the results obtained by our heuristic are fairly close to the exact ones.

! This network is build by the co-authorships in the general relativity and quantum
cosmology community.
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(a) Entire Network (b) (Geodesic) Core (¢) Periphery

Fig.3: (a) CA-GrQc network [9], (b) its (geodesic) core, (c) its periphery. [19]

Furthermore, our algorithm is, even on small graphs, up to 200 times faster than
the exact one (see Sec. [3.2). It is important to emphasize that it was not possible
to calculate the exact Tukey depths for larger graphs in a feasible time.

3.1 The Heuristic

Recall that the exact Tukey depth of a node v is defined by td(v) := |V (G)| —
|C|, where |C| is the maximum size of a closed set C' not containing v. It can
be computed exactly using an integer linear program (see [2] for the details).
The computationally hard part of the problem is that a closed set of mazimum
size has to be found. Our heuristic addresses this problem by considering an
inclusion mazimal closed set only, instead of a maximum sized closed set. This
relaxation, which distorts of course the exact value of Tukey depth, allows us
to apply the efficient greedy algorithm proposed in [I7] for solving the maximal
closed separation problem. In what follows, for any v € V(G), t?l(v) denotes the
approximation of td(v) obtained with our heuristic.

Given a graph G, the rough idea to approximate the Tukey depth of a node
v € V(G) is to find an inclusion maximal geodesically closed set C' C V(G) with
v ¢ C. Such a set C' can be found by applying the MCSS algorithm from [17]
with v and some distinct node v’ as input. The output of the algorithm consists
of two node sets H,, H, C V(G) with v € H, and v' € H,s such that they
are disjoint, closed, and inclusion maximal concerning these properties. That
is, neither of H,, H, can properly be extended into a larger closed set without
violating the disjointness. The Tukey depth can then be approximated using the
sizes of H, resp. H, . Given v, the result depends on the particular choice of v'.
To improve the approximation quality, we therefore call the MCSS algorithm
for each node v several times with different nodes v’ # v.

The description of the above heuristic is given in Alg.[I] In Line [T} we initialize
the Tukey depth of all nodes in G by setting them to the maximum possible value,
i.e., to |V(G)|. We repeat the procedure described above for all nodes v € V(G)
and all their neighbors v' € I'(v). In this way we separate v from all neighbors
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Algorithm 1: Approximation of Graph Tukey Depth

Input : graph G R
Output: approximation td(v) of td(v) for all v € V(QG)
1 td(v) «— V(G| for all v € V(G);
2 for v € V(G) do
3 for v' € I'(v) do
Hy, Hy = MCSS({v'}, {v});
for z € V(G) do
if x ¢ H,s then
| td(z) = min{td(z), |V (G)| — |H.|};
if x ¢ H, then
9 | td(z) = min{td(z), |V(G)| — [Ho|};
10 return td(v) for all v € V(G)

o g O A

v by maximal disjoint closed sets H,, H,  (see Line . We then update the
current Tukey depth of all graph nodes « € V(G) by taking the minimum over
the current approximation value and the new approximation which is the size
of the graph subtracted by the size of the output closed set not containing x
(see Line[7] and Line [9).

By construction, Alg. [1f finds only mazimal and not maximum closed sets,
resulting in an one-sided error in the estimate of Tukey depths. This property is
formulated in the proposition below.

Proposition 1 Alg. |1| overestimates the Tukey depth, i.e., for the output t/a(v)
returned by Alg. |1l we have td(v) > td(v), for allv € V(G).

Regarding the runtime of Alg. note that it depends on the number of
MCSS computations in the inner loop (Lines . Iterating over all neighbors,
the runtime is quadratic in the number of edges and linear in the number of
nodes. This follows from the facts that we call the closure algorithm for each
edge at most twice and that the closure algorithm runs in time O(m - n) [14].
Thus, we have the following result for the total runtime of Alg.

Proposition 2 Alg. |1] outputs an upper bound of the Tukey depth for all nodes
of G in O(m? - n) time.

The runtime of the approximation algorithm can be improved by considering
for each node v a fized number of distinct nodes v’, or by considering a fixed
subset W C V(G), instead of the whole node set V(G) in the outer loop (see
Lines . It is left to further research to analyze how these changes affect the
quality of the approximation performance.

3.2 Experimental Evaluation

In this section we empirically evaluate the approximation quality and runtime
of Alg. |1] on datasets containing small graph&ﬂ Regarding the approximation

2 See |https://github.com/fseiffarth /AppOfTukeyDepth| for the code.
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quality, we compare the results obtained by our algorithm to the exact Tukey
depths computed with the algorithm in [2]. For the evaluation we consider 19
graph datasets of different types (small molecules, small graphs from bioinfor-
matics and computer vision, and small social networks) from [T1] (see columns
2—4 of Tab. [1] for the number of graphs and their average number of nodes and
edges). The average size of the graphs ranges from 14 (PTC_MM) up to 82
(OHSU); their average edge numbers from 14 to 200. The reason for considering
small graphs only is that the exact algorithm from [2] was unable to calculate the
Tukey depth for larger graphs in less than one day (see the last two columns). For
practical reasons, we removed all disconnected graphs from the original datasets,
by noting that our heuristic works for disconnected graphs as well.

The results are presented in Tab. [I} It contains the approximation quali-
ties measured in different ways (columns 5-10) and the runtime of the exact
(column 11) and our heuristic algorithm (column 12). The datasets are sorted
according to their absolute approximation error (column 5 of Tab. , i.e., the
sum of all approximation errors over all nodes over all graphs in the dataset.

Regarding the absolute error, our approximation results are equal to the
exact Tukey depths for 5 out of the 19 datasets, while their computation was
faster by a factor of up to 100 (see row PTC_MM). Our algorithm has the
largest absolute error of 4155 on the COIL-DEL graphs, by noting that this
dataset consists of 3900 graphs. Hence, the error per graph is only slightly above
one. Additionally, we look at the relative errors (column 6), i.e., the absolute
error divided by the sum of all depths. We use this measure to validate that
our algorithm performs very well, by noting that the relative errors are below
41073 for all graph datasets. The per node error (column 7) is the average
error our algorithm makes per node, while the per graph error (column 8) is the
error it has on average per graph. Regarding the per node error, the worst case is
for the COIL-DEL dataset (last row) with an average error of 0.05. For the per
graph error, the worst result has been obtained for the OHSU dataset, where
the approximation overestimates the sum of all node depths by 1.65 per graph
on average. This shows that our approximation algorithm performs very well,
especially, if considering the averages over the datasets. Finally, we studied also
the worst case approximations for nodes and graphs. In particular, the columns
Maz. Node Error resp. Max. Graph Error denote the maximum error of the
algorithm on single nodes resp. single graphs. The results show that there is a
very low error of at most 3 per node for 13 out of the 19 datasets. For three graph
datasets, the maximal error per node is at most 7 and we have a maximal error
between 11 and 19 in three cases. Regarding the maximum error per graph, a
similar behavior can be observed by noting that except for OHSU and Peking_1,
the maximum node errors and maximum graph errors are close to each other.
This implies that there are only a few nodes with a high approximation error.
It is an interesting question to pinpoint the properties of such nodes and graphs
that are responsible for the high approximation errors. The last two columns
show the runtimes of the two algorithms. Our algorithm (last column) is faster
than the exact one on all of the datasets by at least one order of magnitude.
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In summary, the results of the evaluation of Alg. [I] clearly show that our
heuristic performs well in approximating the graph Tukey depth. It is faster (up
to 200 times) than the exact algorithm, even on these small graph datasets.
Regarding larger graphs, this gap in runtime will increase because of the ex-
ponential runtime of the exact algorithm. Additionally, the very small relative
errors (at most 4-1073), the average errors (at most 1.65 per graph), and also the
worst case errors show that the algorithm can be used for further applications
based on the Tukey depth (see Sec. [4)).

4 Applications to Mining and Learning in Graphs

This section deals with the connection of Tukey depth to node separability and to
geodesic core-periphery decompositions. We first state three important properties
of Tukey depth. In particular, Proposition [3 clarifies the role of Tukey depth in
the context of geodesic closed sets. Propositions |4| and [5| are from [2].

Proposition 3 Let G be a graph, v € V(G) with td(v) =n —¢, and C C V(G)
a geodesically closed node set with |C| > c. Then v € C.

Proposition 4 Let G be a graph, X C V(G), and C be the geodesic closure of
X. Then the Tukey depth is a quasi-concave function, i.e., for all c € C' we have
td(c) > min{td(z) : x € X} .

Proposition 5 Let G be a graph, k € N, and X = {v € V(G) : td(v) > k}.
Then X is geodesically closed.

To underline the importance of these three statements, we give two examples
that show how they influence existing concepts based on geodesic closures.

Ezample 1: Node Classification and Active Learning In [IIT7UT8I20], disjoint half-
spaces and closed sets are used for binary classification in closure systems, for
node classification, and active learning in graphs using geodesic convexity. Given
the Tukey depth td(v) of a node v, Proposition [3| immediately implies that a
separating half-space or closed set not containing v cannot have a cardinality
greater than n — td(v). Thus, for nodes of high Tukey depth there is no large
geodesic closed set not containing them. Hence, Proposition [3| implies a nice
theoretical connection between Tukey depth and the maximum size of separating
half-spaces and closed sets. Using approximate Tukey depths, the predictive
performance of all the above methods can possibly be improved.

Ezxample 2: Geodesic core-periphery decomposition The geodesic core-periphery
decomposition of graphs was analyzed in [T921)23]. In particular, it was found in
[21123] that many social networks consist of a dense geodesic core “surrounded”
by a periphery (see Fig. 3| for an example). While some graphs, especially tree-
like graphs, seem to have no core, others, such as graphs sampled from random
models like Erdés-Rényi, Barabési-Albert and Watts-Strogatz seem to have no
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Karate Club Les Miserables Dolphins

Tukey Depth

Geod.
Core

Fig.4: Tukey depth (top) vs. geodesic core-periphery decomposition (bottom)
for the Karate Club [25], Les Miserables character [§], and Dolphins social net-
works [10]. For the different Tukey depths we use sequential colors. Core and
periphery nodes are denoted by blue and yellow, respectively.

periphery. Moreover, the closure of a small number of randomly chosen graph
nodes (= 10) always contains the geodesic core (if it exists). Furthermore, if the
nodes are sampled from the geodesic core only, then the closure of the nodes is
the geodesic core itself. If we compute the closure of, say, 10 randomly chosen
nodes from the entire network (Fig. , then the closure always contains the core
(orange nodes in Fig. . If all random nodes belong to the core (orange nodes
in Fig. , then their closure is the core itself. The above statements explain this
behavior. Using that the core is always contained in the closure of a small number
of randomly chosen nodes, from Proposition [ it follows that the nodes in the
core are those with the highest Tukey depths. Moreover, the quasi-concaveness
implies that if the core is generated by a few nodes from the core, then the core
nodes must have a very close Tukey depth. Finally, using Proposition 5] we have
that the set of nodes in a graph with a Tukey depth above some threshold is
always closed; cores arise as a special case of this property. These three properties
motivate the following deterministic definition of geodesic cores:

Definition 1 The k-geodesic core of a graph G is defined by
Cr:={veV(G): td(v) > k} .

To empirically confirm our claim that the core contains the nodes with the
highest Tukey depths, consider the three graphs in Fig. [l For each graph, we
computed the exact Tukey depths (top) and their geodesic cores (bottom). For
the Karate Club network (left) considered also in [2], the core exactly matches
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the nodes of the highest Tukey depth. Furthermore, there is not much fluctuation
in the depths of the core nodes. In fact, all nodes of Tukey depth of at most 3
belong to the periphery and all nodes of Tukey depth 19 or 21 to the core. In the
case of the Les Miserables character network (middle), there is only a single node
with a very high Tukey depth of 57, surrounded by nodes of depth less than 35.
In this case, the core algorithm returns only the node with the highest Tukey
depth, showing that the graph Tukey depth can possibly be used to improve
core-periphery decomposition. This is also the case for the Dolphin community
graph (right), where the core consists of nodes with Tukey depth greater than
2, while all nodes in the periphery have a Tukey depth of at most 2.

5 Concluding Remarks

Our results indicate that graph Tukey depth is an interesting and promising
concept for mining and learning with graphs. The study of the relationship of
graph Tukey depth to other node centrality measures is an interesting question
for further research (see Fig.|l). For example, while the centroid(s) in trees [I5/16]
are exactly the nodes with the highest Tukey depth, this is not necessarily the
case for more general graphs beyond trees.

Another important issue is that the semantics of graph Tukey depth must be
understood better. For example what are the properties of the nodes with the
highest depth (cf. the def. of Tukey-median in R?)? We have empirically demon-
strated that graph Tukey depth can closely be approximated for small graphs.
It is a question of whether this result holds for (very) large graphs as well. To
answer this question, the scalability of our approximation algorithm should be
improved on the one hand. On the other hand, one needs (possibly tight) the-
oretical upper bounds on graph Tukey depths. Another interesting question is
to identify graph classes for which our approximation is always exact. While
this is the case for trees, it is unclear whether it holds for outerplanar graphs
as well. We believe that this question can be answered affirmatively by using
the techniques from [19]. As shown in the paper, graph Tukey depth “naturally”
connects different existing concepts based on geodesically closed node sets; ex-
amples include the deterministic definition of k-geodesic cores. This implies that
using our fast core approximation algorithm [I9], we can closely approximate
the set of nodes with the highest Tukey depth.
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