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ABSTRACT

The development of autonomous agents increasingly relies on Multimodal Lan-
guage Models (MLMs) to perform tasks described in natural language with GUI
environments, such as websites, desktop computers, or mobile phones. Existing
benchmarks for MLM agents in interactive environments are limited by their focus
on a single environment, lack of detailed and generalized evaluation methods,
and the complexities of constructing tasks and evaluators. To overcome these
limitations, we introduce CRAB, the first agent benchmark framework designed to
support cross-environment tasks, incorporating a graph-based fine-grained evalua-
tion method and an efficient mechanism for task and evaluator construction. Our
framework supports multiple devices and can be easily extended to any environment
with a Python interface. Leveraging CRAB, we developed a cross-platform Crab
Benchmark-v0 comprising 120 tasks in computer desktop and mobile phone envi-
ronments. We evaluated 6 advanced MLMs using different single and multi-agent
system configurations on this benchmark. The experimental results demonstrate
that the single agent with GPT-4o achieves the best completion ratio of 38.01%.

1 INTRODUCTION

The development of autonomous agents for human-centric interactive systems—such as desktop
OS (Zhang et al., a), websites (Zhou et al.; Koh et al.), smartphones (Zhang et al., b; Xing et al.), and
games (Vinyals et al.; Wang et al., a)—has long been an important goal of AI research, aiming to
convert natural language instructions into concrete operations. Traditionally, these challenges have
been addressed using reinforcement learning (Mnih et al.). Recently, Large Language Models (LLMs)
have demonstrated remarkable proficiency in natural language understanding and commonsense
reasoning, making them vital tools for developing autonomous agents. This utility is further enhanced
by Multimodal Language Models (MLMs), which improve the ability to interpret visual information
from GUIs (Cheng et al.).

To effectively develop MLM-based autonomous agents for real-world applications, it is essential to
create suitable benchmarks for standardized performance evaluation. However, existing benchmarks
still have limitations in terms of interaction methods, platform diversity, evaluation metrics, static
task dataset that prevent them from closely mirroring complex real-world applications. First, existing
benchmarks that interact with the environments through pre-collected observation data from system
environments (Sun et al.; Mialon et al.; Deng et al., 2023) fail to capture the dynamic nature of real-
world scenarios without interactive exploration where data and conditions can change unpredictably.
Second, existing benchmarks are typically evaluated on a single platform, either Web, Android, or
Desktop OS (Shi et al., 2017; Xing et al.; Xie et al.). However, the practical applications usually
involve tasks that span multiple platforms. For example, using a smartphone to take a photo and
sending it to a desktop for editing with a graphics editor is a common real-world task across multiple
platforms. Third, existing evaluation methods are generally either goal-based or trajectory-based (Shi
et al., 2017; Xing et al.). Goal-based methods typically employ a coarse-grained binary reward, solely
evaluating whether the final system state aligns with the task’s objectives. In contrast, trajectory-based
methods can offer more nuanced metrics by assessing the agent’s actions against a gold trajectory yet
ignore the possibility of multiple valid pathways to complete a task, making the evaluation results
less fair. Lastly, task creation within these complex systems are not static and extensible with fixed
templates (Sun et al.; Xie et al.), which limits the diversity and scope of tasks.
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Figure 1: Architecture of the Crab Framework demonstrating a benchmarking workflow for a
multi-agent system. A task is initialized by assigning instructions to the main agent and a graph
evaluator inside the benchmark system. The workflow progresses through a cycle where the main
agent observes, plans, and instructs the sub-agents, who then execute actions within their respective
environments. The graph evaluator monitors the status of tasks within the environments, continuously
updating and outputting the task completion metrics throughout the workflow.

We propose a benchmark that closely mirrors real-world situations and an evaluation method that more
accurately reflects an agent’s performance on complex tasks. To this end, we introduce CRAB, a novel
CRoss-environment Agent Benchmark framework. CRAB provides a comprehensive framework for
evaluating cross-environment tasks in interactive environments, where the agent needs to operate
simultaneously across various devices and platforms, adapting to varied system conditions to complete
tasks efficiently. To the best of our knowledge, CRAB is the first autonomous agent benchmark
framework that incorporates the cross-environment tasks. Moreover, we propose a novel evaluation
method called graph evaluator. Unlike traditional goal-based and trajectory-based evaluation, our
graph evaluator checks the intermediate procedures of completing a task by decomposing the task
into multiple sub-goals. Each sub-goal is assigned a judge function to verify its completeness, and
each is considered a node in the graph evaluator. The graph structure describes the sequential and
parallel relationships between the sub-goals. Therefore, it offers fine-grained metrics similar to
trajectory-based evaluations while accommodating multiple valid pathways to a solution, making it
more suitable for evaluating tasks that involve various correct approaches. To solve the increasing
complexity in cross-environment task construction. We also propose a highly extensible graph-based
task construction method called sub-task composition. Combining multiple sub-tasks in a graph with
task targets allows for efficient construction of various cross-environment tasks with corresponding
graph evaluators. The whole framework is implemented in Python and use the network to interact
with environments, ensuring easy adaptation to any platform, device, or modality. Table 1 compares
CRAB with existing agent benchmark frameworks.

Based on CRAB framework, we propose a benchmark Crab Benchmark-v0 with two cooperated
environments that include an Android emulator and an Ubuntu desktop virtual machine. We have
developed a total of 120 real-world tasks. These tasks address a wide array of common real-world
applications and tools, including but not limited to calendars, email, maps, web browsers, and
terminals, and facilitate common interactions between smartphones and desktops. Considerable time
has been invested in verifying the accuracy and comprehensiveness of the instructions for subtasks,
as well as the generalization and correctness of their evaluators. Most tasks are constructed using a
careful composition of sub-tasks, while some tasks are crafted manually to accommodate specific
collaborative scenarios. We test 6 popular MLMs, including GPT-4 Turbo, GPT-4o, Claude 3 Pro,
Gemini 1.5 Pro, Pixtral-8B, and LLaVA-OneVision-72B across different structures of single-agent
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Table 1: Comparison of existing agent benchmark frameworks. The columns details key features
of each framework: Interactive Environment indicates the presence of either interactive environments
or static datasets; Multimodal Observation specifies the availability of vision-based observations (e.g.
screenshots); Cross-platform denotes support for multiple operating systems or platforms; Evaluation
describes the evaluation metrics, categorized as Goal-based (checking environment state according
solely on the final goal), Trajectory-based (comparing agent action trajectory with a gold actions
sequence), Multiple (varied across tasks), Intermediate-reward (combines multiple signals with three
strategies: Conjunctive Evaluation, Disjunctive Evaluation, and Order Constraint), LLM-as-a-Judge
(Zheng et al., 2023), or Graph-based (a DAG with each node as an intermediate checkpoint); Task
Construction shows the task construction method, including Handmade (handcrafted by human),
LLM-inspired (using LLM to generate task drafts but still verified and annotated by human), Template
(generated by filling in the blanks in task templates), or Sub-task Composition (composing multiple
sub-tasks to construct tasks and evaluators).

Interactive
Environment

Multimodal
Observation

Cross-
platform Evaluation Task

Construction
# of apps

or websites

MINIWOB++ (Shi et al., 2017) Web ✓ ✗ Goal-based Handmade 1
WEBSHOP (Yao et al., 2022) Web ✓ ✗ Goal-based Template 1
METAGUI (Sun et al.) ✗ ✗ ✗ Trajectory-based Handmade 6
GAIA (Mialon et al.) ✗ ✗ ✗ Goal-based Handmade n/a
MIND2WEB (Deng et al., 2023) ✗ ✗ ✗ Goal-based LLM-inspired 137
AGENTBENCH (Liu et al., 2024) Multi-isolated ✗ ✗ Multiple Handmade n/a
INTERCODE (Yang et al., b) Code ✗ ✗ Goal-based Handmade n/a
WEBARENA (Zhou et al.) Web ✓ ✗ Goal-based Template 6
OMNIACT (Kapoor et al.) ✗ ✗ ✗ Trajectory-based Handmade 60+
VWEBARENA (Koh et al.) Web ✓ ✗ Goal-based Template 4
ANDROIDARENA (Xing et al.) Android ✓ ✗ Trajectory-based LLM-inspired 9
OSWORLD (Xie et al.) Linux / Windows ✓ ✗ Goal-based Template 9
MOBILE-ENV (Zhang et al., 2024a) Android ✓ ✗ Intermediate-reward Template 13
GUI-WORLD (Chen et al., 2024a) ✗ ✓ ✗ LLM-as-a-Judge LLM-inspired not present
ANDROIDWORLD (Rawles et al., 2024) Android ✓ ✗ Goal-based Template 20
WAA (Bonatti et al., 2024) Windows ✓ ✗ Goal-based Handmade 6

CRAB Linux & Android ✓ ✓ Graph-based Sub-task Composition 25

and multi-agent systems, totaling 12 different agent settings in our benchmarks. The experimental
results show that the single agent structure with GPT-4o model achieves the best overall completion
ratio of 38.01%, underscoring the necessity for ongoing development of more effective autonomous
agents. Our proposed metrics successfully distinguish between different methods better than previous
metrics. We further analyze the different termination reasons that reflect the problems inherent in the
communication within the multi-agent system.

2 RELATED WORK

Leveraging LLMs as reasoning units has become an effective approach (Wang et al., 2024b; Huang
et al., 2022; Xi et al.) for building autonomous agents, including embodied agents (Wang et al., a;
Song et al., 2023; Chen et al., 2023), social simulations (Park et al., 2023; Lin et al., 2023), web
navigation (Lù et al.), game playing (Lan et al., 2023; Tan et al., 2024), office assistants Li et al.
(2024b), and code generation (Zhang et al., 2023). Specifically, some works apply LLMs to the
planning of embodied agents in complex environments (Wang et al., a; Song et al., 2023; Chen
et al., 2023). Others focus on simulating human behaviors and social communication by harnessing
LLMs’ remarkable human-like understanding and generation capabilities (Park et al., 2023; Lin et al.,
2023). Additionally, multi-agent systems have been introduced to enhance the simulation of human
behavior through agent cooperation (Li et al., 2023; Hong et al., 2023; Wu et al., 2023; Jin et al.,
2024; Wang et al., 2024a). In another approach, several studies have expanded the capacities of
agents by incorporating multimodal understanding, enabling agents to process diverse modalities of
input data such as images and text (Hong et al.; Liu et al., a; Furuta et al., 2024; Chen et al., 2024b).

Various benchmarks are developed to validate the performance of autonomous agents based on the
reproducible environments. Miniwob++ (Shi et al., 2017) analyzes the open-domain web tasks,
builds corresponding web environment, and produces high-quality datasets considering extensive
website and operation categories. Mind2Web (Deng et al., 2023) proposes a benchmark for the
real-world websites which are genuine and unpredictable, with a high coverage of domains, websites,
tasks, and user-interactions. WebArena (Zhou et al.) provides a realistic and reproducible web
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environment to simulate sufficiently complex web tasks. Several works (Koh et al.; He et al., 2024)
further broaden the web tasks, considering the visual tasks to build the benchmark for multi-modal
autonomous agents. SWEBench (Jimenez et al.) builds a benchmark based on the Github, focusing
on the coding capacity of understanding and solving issues. AgentBench (Liu et al., 2024) expands
the scope of agent applications within the domain of computer interaction tasks and encompasses
the examination of these tasks across multiple complex environments. OMNIACT (Kapoor et al.)
incorporates the visual information of OS screen UI via segmentation and corresponding tagging,
which creates corresponding tasks upon the basic elements. OSWorld(Xie et al.) pays attention to
the simulations across diverse computer systems, taking XML and screenshots as both inputs and
meticulously delineating a standardized format for both the environment and the evaluation process.
WindowsAgentArena(Bonatti et al., 2024) focuses on the simulation of windows environment,
proposes a challenging set of windows-oriented task, gives a trustful evaluation for the popular
environment.

Current studies also focus on control tasks in mobile systems. MetaGUI (Sun et al.) divides the
mobile system control tasks into dialogues and GUI operation traces, collecting GUI traces based on
the collected dialogues. AITW (Rawles et al., 2023) produces a large dataset upon a large dataset
of real-world scenarios, and builds challenging multi-steps tasks based on the annotated single-step
tasks as a two-stage manner. MobileAgent (Wang et al., b) proposes tasks based on Ant Intelligent
Assistant(AIA) system, which integrates Standing Operating Procedure(SOP) information for the
creation of subtasks. AITZ (Zhang et al., 2024b) constructs datasets with Chain-of-Thought (COT)
considerations, adding semantic annotations according to visual models at each step, and developing
the operational procedure for selected tasks. Mobile Agent Bench (Wang et al., 2024c) collects app
event signals via android accessibility service, builds the benchmark with well annotated operation
trajectories, and divides the tasks into several levels. Android World (Rawles et al., 2024) establishes
a fully functional environment for the Android system and provides a robust and reliable evaluation
of the agent’s capacity in Android-oriented tasks. Mobile-ENV (Zhang et al., 2024a) introduces an
intermediate reward mechanism where the environment generates signals based on its state. These
signals are combined into an intermediate reward using three types of aggregation operators. The
motivation behind this approach aligns closely with the problem addressed by our proposed graph
evaluator, but it relies on a tree structure with multiple relationships that can increase complexity
for annotators, potentially limiting dataset scalability. GUI-World (Chen et al., 2024a) contributes
a large video dataset for GUI automation and trains a new VideoLLM for UI tasks. However, the
evaluation method used by GUI-World, LLM-as-a-Judger (Zheng et al., 2023), may lack the precision
and consistency offered by rule-based evaluation systems.

3 DEFINITIONS

3.1 PROBLEM FORMULATION

Consider autonomous agents performing a task on a digital device (i.e. desktop computer). Such a
device typically has input devices (i.e. mouse and keyboard) for human interaction and output devices
(i.e. screen) to allow human observation of its state. In CRAB, we represent this type of device as an
environment. Formally, this environment is defined as a reward-free Partially Observable Markov
Decision Process (POMDP), denoted by the tuple M ∶= (S,A, T ,O), where S represents the state
space, A the action space, T ∶ S × A → S the transition function, and O the observation space.
Considering the collaborative nature of multiple devices in real-world scenarios, we can combine
multiple environments into a set M = M1,M2, ...,Mn, where n is the number of environments and
each environment Mj = (Sj ,Aj , Tj ,Oj). We define a task that requires operations across multiple
environments as a cross-environment task. This task is formalized as a tuple (M, I, R), in which
M is the environment set, I is the task objective in the form of natural language instructions, and
R is the reward function of the task. An agent system, designed to complete a task represented
by an instruction I , can be modeled as a policy π((m, a) ∣ (I,H, o1, ..., on)), which defines
the probability of taking action a in environment m when receiving observation (o1, ..., on) from
environment (M1, ...,Mn) with a history of actions H . An agent within the agent system operates
with a fixed back-end MLM, a predefined system prompt, and retains its chat history. An agent
system is composed of either a single agent responsible for all planning, reasoning, and action-taking
or multiple agents connected through a communication workflow to collaborate.
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3.2 GRAPH OF TASK DECOMPOSITION

Download the html file of the 1st item.

Put all files in the same folder.Open a web browser.

Open an online shopping website. Search for T-shirts. Download html files for the 
top 10 items. Write a Python script to extract the relevant information in a CSV file.

Decompose Compose

Write a python script that parses html 
files and saves the data in a CSV file.

Run the script.Enter an online shopping website.

Download the html file of the 10th item.

…

GDT

Figure 2: An example of a Graph of Task De-
composition.

Decomposing a complex task into several sim-
pler sub-tasks has been proved to be an effec-
tive prompting method for LLMs (Khot et al.,
2023). Some studies represent sub-tasks in a
graph structure. For instance, PLaG (Lin et al.)
uses a graph-based structure to enhance plan rea-
soning within LLMs, while DyVal (Zhu et al.,
2024) employs directed acyclic graphs (DAGs)
to facilitate dynamic evaluation of LLMs. By
introducing this concept into the realm of bench-
marks, naturally, decomposing a complex task
into sub-tasks that have both sequential and par-
allel connections forms a DAG. Therefore, we
introduce the Graph of Decomposed Tasks
(GDT), which provides a new task decomposi-
tion method representing decomposed sub-tasks
within a DAG structure. In GDT, each node is a
sub-task, formalized as a tuple (m, i, r), where
m specifies the environment in which the sub-task is performed, i provides the natural language
instruction, and r represents the reward function. This function evaluates the state of m and outputs
a boolean value to determine if the sub-task is completed. The edges within GDT represent the
sequential relationship between sub-tasks. An example GDT is shown in Fig. 2.

4 THE CRAB FRAMEWORK

4.1 CROSS-ENVIRONMENT AGENT INTERACTION

Compared to single-environment tasks, cross-environment tasks offer two main advantages for
benchmarking agents. First, cross-environment tasks reflect real-world scenarios where humans
use multiple devices simultaneously to accomplish tasks. Second, these tasks require sophisticated
message processing and information transfer between environments. Such tasks demand that the agent
plan actions, construct outputs for each environment, and remember what needs to be transferred,
showcasing a high-level understanding of real-world and ability to solving complex tasks. CRAB
uses a unified interface for agents to operate in all environments. We define an action by its name,
the environment it belongs to, a concrete description of its functionality, and the parameters with
descriptions. Through this approach, CRAB can adapt to any platform or modality, from devices to
applications like browsers, by defining a few interactive functions. Implementation details are in the
Appendix A.3.

4.2 GRAPH EVALUATOR

To assess the capabilities of MLM agents, most benchmarks (Shi et al., 2017; Deng et al., 2023; Koh
et al.; Zhou et al.) evaluate agents based on solely the final states of the environment after agent
operations. Typically, they only judge whether the final goal is success or fail. However, this approach
does not capture incremental progress made by the agents. For instance, consider two agents tasked
with installing a new application on a computer: agent a successfully downloads the installer but fails
during the installation process, whereas agent b does not even try to find the installer. Despite Agent
a making more progress, both are deemed failures under the goal-based evaluation system, resulting
in an unfair assessment of their performance. An alternative method, Trajectory-based Matching
(Xing et al.; Kapoor et al.), abandons state-based evaluation and instead compares the agent’s actions
against a predefined gold action sequence for each task, giving nuanced metrics. Nevertheless, this
method faces challenges in real-world systems where tasks may have multiple valid execution paths.
For example, copying a file can be accomplished using either a file manager or the command line.
Inspired by the "decomposing" idea from GDT (Sec. 3.2), we propose a novel integrated approach,
the Graph Evaluator, which provides fine-grained metrics and supports multiple valid paths.
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To build a graph evaluator for a given task, we begin by decomposing the task into a GDT, where
each sub-task is associated with an intermediate environment state critical to completing the overall
task. Nodes in the graph evaluator activate when they either have no incoming edges or after all
their preceding tasks are completed, ensuring a sequential order of tasks. After an agent takes an
action, the system checks these active nodes to verify if the target state of each node is reached. A
node completion triggers successor nodes to activate and verify the state. This cycle repeats until
no new nodes activate, showing that the system’s task sequence aligns with the current state of the
environment. Unlike trajectory-based methods, the Graph Evaluator focuses on key states rather
than specific actions, allowing agents flexibility in execution. For instance, in a file-editing task, the
evaluator checks if the file is edited, regardless of whether a CLI or GUI editor is used. This ensures
mandatory steps are completed while accommodating diverse execution paths.

4.3 METRICS

Given a Graph Evaluator synchronized with the environment state, it becomes possible to track
agent progress through the current status of sub-task completions. Beyond the traditional Success
Rate (SR), which marks a task as success only when all sub-tasks are completed, we introduce
three metrics aiming at assessing both performance and efficiency of agents, leveraging the detailed
sub-task status provided by the graph evaluator. Specifically, the Completion Ratio (CR) measures
the proportion of completed sub-task nodes relative to the total nodes in the graph, calculated as
C / N , where C is the number of completed nodes and N is the total number of nodes. This
metric offers a straightforward measure of an agent’s progress on a given task. The Execution
Efficiency (EE), calculated as CR /A, where A denotes the count of executed actions. It evaluates
how efficiently actions are executed relative to the completion of nodes, reflecting the agent’s task
execution efficiency. Lastly, the Cost Efficiency (CE), calculated as CR / T , where T is the total
number of model tokens used, evaluates the efficiency of resource consuming by the agent.

4.4 TASK AND EVALUATOR CONSTRUCTION

Despite the graph evaluator offering detailed evaluations, its creation is complex, requiring task
decomposition into sub-tasks with well-defined graph structures and expert involvement. To ease task
and evaluator creation, we propose building GDTs by sub-tasks, addressing two main challenges: (1)
the need for manual creation of sub-tasks and (2) the complexity of modeling sequential and parallel
relationships between them. A template-based approach is commonly used to address the first issue
by generating a large number of tasks efficiently. To tackle the second challenge, we employ the
message transferring concept (Sec. 4.1). Specifically, if a sub-task α produces an output message that
serves as an input for another sub-task β, then α can be considered a legitimate prerequisite of β,
allowing us to connect α and β with an directed edge in the GDT. To further refine our approach,
we introduce a sub-task template structure. Each sub-task is described using a natural language
instruction template that includes several replaceable input attributes. The types of each input attribute
and the task output should be defined carefully. To generate a GDT, input attributes can be filled
with either a hand-crafted value corresponding to their type or linked to a task with the same output
type as the input type. From the evaluator’s perspective, each sub-task template is linked to an
evaluator generator that uses the input attribute value to generate evaluator subgraphs. Once a GDT is
constructed, the graph evaluator is created by interlinking each subgraph. We follow the principle
that each subtask should do one thing within a single environment, with clearly defined inputs and
outputs that enable seamless integration with other tasks. For example, downloading a file from a
URL to a file path is a well-defined subtask: it accepts a URL as input and outputs the file’s contents.

Task descriptions are initially generated by GPT-4 from sub-task prompts and refined by human
reviewers. This approach, unlike naive templates, allows for a more detailed and scalable task compo-
sition. Our method automates graph evaluator generation, relieving users of coding requirements and
making the system accessible to a broader audience.

5 THE CRAB BENCHMARK

Environments. We build an agent benchmark Crab Benchmark-v0 featuring with cross-environment,
graph evaluator, and task generation through CRAB framework. The environments consists of an
Android smartphone emulator and a Ubuntu Linux desktop virtual machine. We establish both
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environments in a reproducible and standalone manner and utilize snapshots to ensure a consistent
initial state for all environments. The observation space consists solely of the current system screen
for both environments, captured in image format at each step of the agent’s interaction. We employ
the Set-of-Marks visual prompt method (Yang et al., a) to label each interactive element on the screen.
Interactive elements are identified using the GroundingDINO (Liu et al., b) with icon.logo. text
prompt to locate all interactive icons. Additionally, Optical Character Recognition (OCR) is utilized
through EasyOCR1 to detect and label interactive text elements. Each detected item is assigned a
unique integer ID, facilitating reference within the action space. The action spaces for Ubuntu and
Android are distinct and designed to be close to the common interactions in the real devices. For
Ubuntu, we define the following actions: mouse-based actions, keyboard-based actions and a shortcut
action to search for applications. For Android, the action set includes tapping actions, a text action,
a physical button action, and an action to open the app drawer. Additionally, we introduce three
environment-irrelevant actions: completing the task, submitting an answer and waiting. Detailed
descriptions for the environment implementation are shown in Appendix A.2.
Tasks. We meticulously construct 17 sub-task templates for the Android environment and 19 sub-task
templates for the Ubuntu environment. The Ubuntu templates encompass a variety of tasks such as
Command Line Interface (CLI) operations, file system management, search engine usage, desktop
configurations, and map navigation. Conversely, the Android sub-task templates are primarily focused
on the storage and transmission of messages via various applications. Each sub-task template is
linked to a graph evaluator consisting of one to four nodes. Each sub-task are its graph evaluator is
verified by at least two related field experts. We make sure that all tasks are reachable by human. We
generate 104 tasks by sub-task composition and make 16 tasks by hand to include more complex
scenarios that cannot easily described by the sub-tasks. The dataset has 29 Android tasks, 73 Ubuntu
tasks and 18 cross-platform tasks, totaling 120 tasks. Our tasks are intentionally designed to be
more complex than those in other benchmarks, which naturally requires more time for design and
experimentation. A single sub-task in our benchmark might involves multiple operations across
several applications, unlike prior works where most tasks often focus on solving problems within
a single application. With multiple applications nature combined with the scalability of our task
composition and graph evaluator, our tasks are sufficiently challenging to test an agent’s performance
across different applications and scenarios, thereby effectively assessing its generalization ability. The
format and the applications covered by the dataset are shown in Appendix A.4 and A.5, respectively.
Evaluators. To assess the intermediate states of sub-tasks as described in Sec. 4.2, we have imple-
mented a comprehensive suite of execution-based evaluators. These evaluators retrieve and assess
specific current states, such as the edited content of a file or a modified setting, thereby determining
the successful completion of a sub-task. For each evaluator, input attributes are carefully selected to
interpret software information or system settings relevant to the scenario defined for the sub-task.
For instance, evaluators use file paths before and after edits as input parameters to verify the com-
pletion of file editing sub-tasks. Specifically, for sub-tasks on the Android platform, we incorporate
XML-based evaluators (Xing et al.). We dump UI layout as XML path and verify whether the UI
content matches the expected state. For the Ubuntu platform, we employ image matching techniques
(Potje et al., 2024; Jiang et al., 2024; Edstedt et al., 2024) and OCR to handle scenarios where
acquiring necessary state information through conventional APIs is challenging. Image matching
offers fine-grained visual correspondences by comparing keypoint features between images, allowing
us to assess spatial relationships among visual elements. Using OCR and image matching, we can
accurately evaluate tasks such as verifying whether an agent has successfully created a slide with
specified images, text content, and layouts—tasks for which trivial evaluation methods are lacking.
We utilize EasyOCR1 and XFeat2 as our primary tools for OCR and image matching. For tasks with
real-time characteristics that may change over time, we implement crawler scripts to capture dynamic
values at the moment of evaluation. These values are then compared with the results achieved by the
agent upon task completion. We have a total of 59 evaluator functions with different types. Each task
has 4.2 evaluators in average of the whole dataset.

1https://github.com/JaidedAI/EasyOCR
2https://github.com/verlab/accelerated_features
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6 EXPERIMENTS

6.1 BASELINE AGENT SYSTEM

At the core of MLM Agents are backend Multimodal Language Models that provide natural language
and image understanding, basic device knowledge, task planning, and logical reasoning abilities.
To run in Crab Benchmark-v0, the backend model needs to support: (1) Accept multimodal mixed
input, as the system provides both screenshots and text instructions as prompts; (2) Handle multi-turn
conversations, as most tasks require the agent to take multiple actions, necessitating the storage of
history messages in its context; (3) Generate structured output through function calling, ensuring the
proper use of provided actions with type-correct parameters. However, most open source models do
not provide explicit function calling feature, we let these models generate structured JSON output to
simulate the function calling behavior.

We selected 4 commercial and 2 open source MLMs that meet these criteria for our experiments:
GPT-4o (gpt-4o-2024-05-13) (OpenAI, 2024), GPT-4 Turbo (gpt-4-turbo-2024-04-09) (Achiam
et al.), Gemini 1.5 Pro (May 2024 version) (Reid et al.), Claude 3 Opus (claude-3-opus-20240229)
(Anthropic, Year), Pixtral-12B (Pixtral-12B-2409)3, and LLaVA-OneVision-72B (llava-onevision-
qwen2-72b-ov-chat) (Li et al., 2024a). These models serve as the backend models for our agents.
Specifically, We use function calling feature in the four commercial models and JSON output in the
two open source models that do not support function calling. Since the JSON output setting uses
different prompts from the other, we employ a GPT-4o agent without function calling as the control
group to the open source models.

Beyond the MLM backend, the structure of agent systems also influences overall performance. To
examine how different multi-agent structures impact performance, we design three agent system
structures: single agent, multi-agent by functionality, and multi-agent by environment. In
the single agent structure, one agent manages all responsibilities, including observation analysis,
planning, reasoning, and format the output action. The multi-agent by functionality structure splits
tasks between a main agent, responsible for analysis and planning, and a tool agent that translates
instructions into actions without accessing environmental observations. This division allows the
main agent to concentrate on high-level tasks without managing functional call formats. Meanwhile,
in the multi-agent by environment setup, responsibilities are further distributed. A main agent
processes all environmental observations for high-level planning, while each environment-specific
sub-agent executes actions based on the main agent’s instructions, incorporating observations from
their respective environments.

For all models, we utilized the default API parameters and retained two turns of historical messages
to ensure messages do not exceed the context window. The interaction turns are limited to 15 and
the task will be terminated when reaching max turns. The agent can also terminate the task ahead
if it thinks the task is completed. The screenshots are passed through PNG format with the highest
quality that the APIs provide. Detailed agent and prompt designs are shown in Appendix B. In the
experiment, we deployed four cloud machines cloned from the same disk image to ensure a consistent
environment for all agents. Running a single agent setting in the benchmark requires at least 30 hours
to complete on one machine. Evaluation duration depends on the agent system, API response time,
and task steps. Single-agent systems average 10 to 20 seconds per step, while multi-agent systems
take 20 to 40 seconds.

6.2 RESULT

The primary outcomes are detailed in Table 2. Aside from the Success Rate, Completion Rate,
Execution Efficiency, and Cost Efficiency mentioned above, we also present the reasons for agent
termination to further investigate the factors preventing the agent system from completing the task.
Comparison of backend models. The GPT-4o and GPT-4 Turbo models, developed by OpenAI,
achieved the highest average success rates and completion ratios (CR) among the tested models.
Claude 3 outperforms Gemini 1.5 in terms of CR, but there remains a significant gap between the
GPT-4 series and other models. Claude and Gemini have a higher Invalid Action Ratio, usually
failing by clicking nonexistent elements on the screen or taking nonexistent actions. Regarding

3https://mistral.ai/news/pixtral-12b/
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Table 2: Evaluation results on Crab Benchmark-v0. The Model column identifies the backend
masked language models (MLMs) used. The Structure column describes the configuration of the
agent system: Single means single agent; By Func is multi-agent by functionality; By Env indicates
multi-agent by environment. We provide traditional metric of Success Rate (SR) alongside newly
introduced metrics: Completion Ratio (CR), Execution Efficiency (EE), and Cost Efficiency (CE).
Note that Gemini 1.5 Pro has an invalid CE because the Gemini API does not support retrieving
token counts at the start time of experiments. The Termination Reason shows the ratio of reasons
why the agent is terminated when the task is not success. False Completion (FC) indicates that the
agent believes it has completed the task, but it actually has not; Reach Step Limit (RSL) means the
agent has reached the step limit but has not completed the task; Invalid Action (IA) refers to the agent
producing outputs that do not follow instructions, which may include invalid formats, nonexistent
actions, or invalid action parameters.

Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 14.17 38.01 4.15 5.29 ×10−4 8.33 55.83 21.67
GPT-4O By Func 15.00 34.00 3.93 5.31 ×10−4 10.83 54.17 20.00
GPT-4O By Env 14.17 33.34 3.84 2.74 ×10−4 8.33 48.33 29.17

GPT-4 TURBO Single 9.17 33.35 3.80 4.52 ×10−4 8.33 65.00 17.50
GPT-4 TURBO By Func 13.33 33.48 4.07 4.38 ×10−4 10.83 40.00 35.83

GEMINI 1.5 PRO Single 5.00 15.48 1.72 n/a 2.50 55.83 36.67
GEMINI 1.5 PRO By Func 5.00 12.76 1.42 n/a 8.33 33.33 53.33

CLAUDE 3 OPUS Single 3.33 19.60 1.95 1.85 ×10−4 10.00 57.50 29.17
CLAUDE 3 OPUS By Func 3.33 16.48 1.72 1.77 ×10−4 28.33 34.17 34.17

GPT-4O W/O FC Single 9.17 23.05 2.34 3.93 ×10−4 5.00 42.50 43.33
PIXTRAL-12B Single 0.83 9.50 0.75 0.87 ×10−4 0.83 75.83 22.50
LLAVA-OV-72B Single 0.83 6.64 0.52 1.02 ×10−4 12.50 71.67 15.00

efficiency, the GPT-4 series also demonstrates strong performance, with GPT-4o having a higher CE
value compared to GPT-4 Turbo, highlighting its cost-effectiveness. GPT-4o’s performance drops
after disabling tool calling feauture, primarily due to its higher Invalid Action rate, showing the
effectiveness of tool calling in generating structured output. In open source models, Pixtral-12B, with
far fewer parameters, achieves a better CR compared to LLaVA-ov-72B, showcasing its efficiency.
Although the open-source models generally understand screenshots and generate step-by-step plans
correctly, they often fail to execute the correct actions according to the plan. Moreover, they do not
effectively analyze task completion through observation. Once an incorrect action is performed, they
tend to assume current step is success and proceed to the next step.
Comparison of agent structures. The performance of multi-agent structures on all backend MLMs
is slightly lower than that of single-agent structures, which is somewhat unconventional. Based on
the communication log, we find that multi-agent structures tend to experience information loss during
inter-agent communication, leading to misunderstandings among downstream agents. This increases
the likelihood of multi-agent structures taking invalid actions and incorrectly completing tasks. These
experiments demonstrate that the design of the communication protocol and selecting the appropriate
scenario are crucial for multi-agent systems. A detailed analysis is included in Appendix C.2. In
terms of efficiency, multi-agent structures require more chat rounds, which can consume more tokens,
resulting in a lower CE compared to single-agent settings.
Comparison of platforms. We have three types of tasks: Ubuntu, Android, and cross-environment.
The metrics for each type of task can reveal the model or structure preferences. As shown in Fig. 3,
the GPT-4o model demonstrates significantly better performance on Android and cross-platform
tasks compared to GPT-4 Turbo, which may indicate OpenAI’s increased focus on mobile devices.
Additionally, models like Gemini, Claude, Pixtral, and LLaVa-OV perform better on Android devices
compared to the Ubuntu, likely due to less training on Linux desktop data, which makes it difficult
for them to recognize desktop icons. While it does not fully represent agent performance, it’s notable
that the two open-source models exhibit a low invalid action ratio but still fail to complete tasks. We
include further platform specific results in Appendix C.1.
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Figure 3: Completion Ratio and Termination Reasons on different platforms.

Comparison of metrics. The completion ratio metric reveals a notable performance difference
between models. For instance, even though GPT-4o with single agent strcuture and with mutli-agent
by environment structure have the same success rates, their completion ratios differ by up to 4.67%.
This highlights the value of the completion ratio in assessing the effectiveness of different methods.
For a more detailed analysis of each model and structure’s performance, we provide several case
studies in the Appendix. C.3.

Key issues in solving cross-environment task. The benchmark pipeline’s complexity makes it
difficult to identify universal issues across tasks and models. However, the challenges in cross-
platform tasks are similar to those in single-platform settings. Key issues include action space
discrepancies, where diverse action spaces in cross-platform environments confuse single-agent
architectures but can be mitigated by multi-agent setups tailored to each platform; limited context
length, which prevents the ability to process entire history observations and becomes more severe for
cross-platform scenarios with increasing screenshots; coordinate grounding issues, where advanced
tools like GroundingDINO and OCR occasionally fail to detect all screen elements in too complicated
GUI observation; and icon recognition failures, where the backend model correctly plans the next
step but cannot accurately identify and interact with corresponding icons, even though the visual
prompt detect them correctly.

7 CONCLUSION

We propose the CRAB framework, which introduces the cross-environment automatic task-performing
problem, featuring advanced graph-based task generation and evaluation methods that reduce manual
effort in task design and provide more dynamic and accurate agent assessments. Based on this
framework, we present Crab Benchmark-v0, a set of high-quality cross-environment tasks in smart-
phone and desktop environments, equipped with advanced visual prompting techniques. We tested
various backend models and agent system structures on this dataset. The results reveal preferences for
different agent settings, demonstrating Crab Benchmark-v0’s strong ability to distinguish MLMs and
autonomous agent systems. Despite our contribution to advancing cross-environment agent research,
there are still some limitations. The sub-tasks are built upon the original apps in the Ubuntu and
Android systems on Pixel devices, which limits the coverage of a wider range of applications. The
current visual prompting methods do not fully recognize all interactive elements, hindering agent
performance. Future work can focus on expanding the dataset and environments, testing more models,
prompts, and multi-agent structures, as well as improving the use of visual prompting methods within
the benchmark.
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A BENCHMARK DETAIL

Section A.2 introduces the implementation details and action space settings of the benchmark
environments. Section A.3 describes the design logic and implementation of the CRAB framework.
Section A.4 describes the our experiment settings in detail. Section A.5 describes the specific format
defined in our framework that ease data extension and how to use them. We provides a detailed
document to setup experiment environments and reproduce our results.4 Fig. 4 shows the structure of
modules inside Crab Benchmark-v0.

Crab Benchmark v0
Android Environment

Ubuntu Environment

Tasks

Name: "android" Description: "A Google Pixel smartphone
runs on the Android operating system..."

Observation Space

Screenshot

Prompt Space

Visual Prompt

Action Space

Tap

Press Key

Write Text

Swipe

Open App Drawer ...

Name: "ubuntu" Description: "An Ubuntu 22.04 Linux desktop
operating system..."

Observation Space

Screenshot

Prompt Space

Visual Prompt

Action Space

Click

Press Key

Write Text

Right Click

Seach Application ...

Sub-tasks

Sub-task Template 1Sub-task 1 Evaluator Generator 1 Ubuntu

Sub-task Template 2Sub-task 2 Evaluator Generator 2 Ubuntu

Sub-task Template 3Sub-task 3 Evaluator Generator 3 Android

...

Cross-platform Task Description Attributes Graph Evaluator

Android Task Description Attributes Graph Evaluator

Ubuntu Task Description Attributes Graph Evaluator

...

Figure 4: Module Structure of Crab Benchmark-v0. The benchmark is divided into two primary
sections: the left section, highlighted with warm hues, features two environments, while the right
section, accentuated with cool hues, outlines various tasks. Each environment is defined by attributes
including name, description, observation space, prompt method, and action space. Blocks marked
in red denote actions. As for the tasks, they are composed of multiple sub-tasks and formulated
by combine multiple evaluator sub-graphs derived from the sub-task evaluator generators. Arrows
illustrate the compositional relationships between tasks and sub-tasks.

A.1 DATASET STATISTICS

The applications in our task dataset along with the counts of tasks that utilize them is listed in
Table 3 and 4. The task dataset covers a wide range of applications across two platforms, primarily
focusing on daily life, programming, and office work scenarios. It is also worth noting that in our
task settings, a single task often involves two or more applications. On average, each task contains
1.84 applications, according to our statistics.
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Table 3: Applications and their task counts in the Ubuntu environment.
App Name Description # Tasks
Terminal GNOME terminal emulator with command line tools (e.g., cat, wget). 40
Firefox Web browser with various web Apps (e.g., Google Docs and Search). 35
File Manager GNOME official file manager. 25
GIMP GNU Image Manipulation Program, open-source raster graphics editor. 13
System Setting GNOME system setting GUI application. 11
VSCode Code editor. 8
LibreOffice Writer Word processor. 8
LibreOffice Impress Presentation program. 7
LibreOffice Calc Spreadsheet program. 6
Vim CLI text editor. 6
Slack Team communication platform. 1

Table 4: Applications and their task counts in the Android environment.
App Name Description # Tasks
Google Map Map application. 13
Google Calendar Calendar application. 9
Gmail Google mail service application. 7
Google Keep Google note application. 6
Google Tasks Google TO-DO list. 5
Messages Android built-in message sending application. 5
Contacts Android built-in contacts application. 5
Google Drive Google Cloud Drive application. 4
Clock Android built-in clock application. 2
Files Android built-in file manager. 1
Settings Android system setting. 1
Camera Android built-in camera. 1
Google Docs Google online word processor. 1
Phone Android built-in phone calling application. 1

The distribution of node counts of graph evaluators per task is provided in Table 5. Our task dataset
includes graphs ranging from 1 to 11 nodes. It is important to note that the number of nodes depends
on the complexity of the task, with more complex tasks involving larger graphs.

A.2 ENVIRONMENT IMPLEMENTATION DETAIL

The Ubuntu environment is launched on a QEMU/KVM (Bellard, 2005; Kivity et al., 2007) Virtual
Machine, and the Android environment employs the Google Android Emulator5. Interaction with the
Ubuntu environment is facilitated using PyAutoGUI6 and MSS7, which provide high-level commands
for mouse and keyboard control and screen capture, respectively. For the Android environment, we
use the Android Debug Bridge (ADB)8. The detailed action space is described in Table 6.

A.3 FRAMEWORK DESIGN

CRAB offers a modular and extensible framework for evaluating agent performance in diverse tasks.
At the heart of the framework lies the action, a unit operation representing the fundamental operation
within the benchmark. The action is essentially an executable Python function that can be defined
with explicit typed parameters and a clear description. actions serve not only as building blocks but

4https://github.com/camel-ai/crab/blob/main/crab-benchmark-v0/README.md
5https://developer.android.com/studio/run/emulator
6https://github.com/asweigart/pyautogui
7https://github.com/BoboTiG/python-mss
8https://developer.android.com/tools/adb
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Table 5: Node count histogram.
# Nodes 1 2 3 4 5 6 7 8 9 10 11

# Tasks 5 16 29 26 14 18 7 1 0 3 1

Table 6: Action space of Crab Benchmark-v0. The actions at the top of the table apply to the
Ubuntu environment, those in the middle to the Android environment, and those at the bottom are
relevant across all environments.

Action Name (Parameters) Description
click(elem) Click on elem.
right_click(elem) Right-click on elem.
double_click(elem) Double-click on elem.
write_text(text) Typing the specified text.
press(key) Press a keyboard key.
hotkey(keys) Press keyboard keys at the same time.
scroll(direction) Scrolls page up or down.
search_app(name) Search for application with name in the system.

tap(elem) Tap on elem.
long_tap(elem) Press and hold elem.
swipe(elem,dire,dist) Swipe from elem in a specified direction and distance.
write_text(text) Typing the specified text.
press(key) Press a key, can be home or back.
show_all_drawer() Show the app drawer to list installed applications.

submit(answer) Submit answer if needed.
complete() State that a task is completed.
wait() Wait the environment to process

also as interfaces through which agents interact with the environment. The evaluator is a specialized
action restricted to returning boolean values, signifying the success or failure of an agent’s task. It
enhances the actions by analyzing the state of the environment and the sequence of actions executed
by the agent, providing a decisive metric of task accomplishment. Additionally, multiple evaluators
can be interconnected to form a graph evaluator for complex tasks (Sec. 4.2).

The benchmark is a key definition in the framework. A benchmark includes multiple environments
and cross-environment tasks. The environment is formed by an action space and an observation
space, which are both defined by a list of actions, and other essential parameters necessary for its
configuration. This composite structure facilitates the execution and monitoring of actions, whether
on local machines, remote servers, virtual machines, or physical devices networked together. A task
encapsulates a natural language description and a graph evaluator.

CRAB utilizes Python functions to define all actions and evaluators, embodying a "code as configura-
tion" philosophy. Each function’s docstring outlines its description and parameter definitions, which
are then presented to the agent as structured prompts. Compared to traditional methods using data
interchange formats like JSON or YAML, Python code configurations provide a more structured
approach and fits in modern IDE.

By decoupling actions, environments, tasks, and evaluations, CRAB facilitates a plug-and-play archi-
tecture that can adapt to various scenarios. Such a system is scalable, maintainable and expandable,
allowing researchers and developers to introduce new tasks and environments without restructuring
the entire framework. Our implementation uses networkx (Hagberg et al.) for building graph and dill
(McKerns et al.) for function serialization in our implementation.

A.4 CONFIGURATION BY MODULES

Building on the declarative and modular design of our framework, this section explains the configura-
tion and potential extensibility of each module.
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Environment The environments in CRAB are a combination of multiple different uses of actions
with some environment metadata, such as name and natural language description. In Crab Benchmark-
v0, we use a computer desktop environment and a smartphone environment both based on virtual
machine technology. The computer desktop environment, named Ubuntu, is installed from an ISO
image of Ubuntu 22.04.4 LTS (Jammy Jellyfish) downloaded from the Ubuntu Official website9.
Necessary applications such as the LibreOffice suite (Writer, Calc, and Impress) and Slack are installed
later via snap and apt, according to the task dataset requirements. The smartphone environment,
named Android, is installed using pre-defined devices (Google Pixel 8 Pro with release name R)
provided in Google Android Studio10. We install additional required applications such as Keep Notes,
Tasks, and Docs from Google Play. The descriptions of the two environments in Crab Benchmark-v0,
which are inserted in the agent prompts, are as follows:

• Ubuntu: An Ubuntu 22.04 Linux desktop operating system. The interface displays a current
screenshot at each step and primarily supports interaction via mouse and keyboard. You
must use searching functionality to open any application in the system. This device includes
system-related applications including Terminal, Files, Text Editor, Vim, and Settings. It also
features Firefox as the web browser, and the LibreOffice suite—Writer, Calc, and Impress.
For communication, Slack is available. The Google account is pre-logged in on Firefox,
synchronized with the same account used in the Android environment.

• Android: A Google Pixel smartphone runs on the Android operating system. The interface
displays a current screenshot at each step and primarily supports interaction through tapping
and typing. This device offers a suite of standard applications including Phone, Photos,
Camera, Chrome, and Calendar, among others. Access the app drawer to view all installed
applications on the device. The Google account is pre-logged in, synchronized with the
same account used in the Ubuntu environment.

Action Action implementation in Crab Benchmark-v0 utilize the dynamic feature of Python. It
provides an intuitive method to define actions through Python function. Here is an example of action
search_application in the Ubuntu environment:

@action
def search_application(name: str) -> None:

"""Search an application name.

For exmaple, if you want to open an application named "slack",
you can call search_application(name="slack"). You MUST use this
action to search for applications.

Args:
name: the application name.

"""
pyautogui.hotkey("win", "a")
time.sleep(0.5)
pyautogui.write(name)
time.sleep(0.5)

Listing 1: Define "search_application" action.

We extract key information from the function through the @action decorator as following:

• Name: The action name serves as the identifier for backend models. It should semantically
match the action’s behavior to improve the accuracy of the agent in executing the action. The
function name is extracted as the action name. In this example, search_application
is the assigned name.

• Description: The description provides a natural language explanation of the action to assist
the agent in understanding how to use it. The main body of the function’s docstring is used
as the description. For example, in this instance, the description outlines the basic usage of
the action: Search an application name, along with an example of its usage.

9https://releases.ubuntu.com/jammy/ubuntu-22.04.4-desktop-amd64.iso
10https://developer.android.com/studio
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• Parameters: The parameters are the arguments that the functions accept, offering flexibility
for the agent to control the environment. Typically, a set of parameters is defined, each
consisting of a name, type, and a natural language description. Parameters are extracted from
the function’s parameters along with their type annotations. Additionally, parameter descrip-
tions are extracted from the Args section in the docstring. In this example, there is only one
parameter named name, with a type of str, and its description is the application
name.

• Entry: The entry represents the implementation of the function, defined within the function
body to specify how the action is executed. When the agent invokes the function, the entry
is executed with the provided parameters. In this example, we utilize the pyautogui package
for keyboard control. Initially, it presses a hotkey to enter the application search panel in
Ubuntu, then proceeds to type the application name provided by the parameters, finally
displaying the search results.

Observation The observation space is represented by a set of actions. These observation actions
are designed to be parameter-free and return an observation result. For instance, within the Ubuntu
environment, the sole observation action available is the screenshot function, defined as follows:

@action
def screenshot() -> str:

"""Capture the current screen as a screenshot."""
with mss() as sct:
# Capture raw pixels from the screen
sct_img = sct.grab(sct.monitors[1])
# Convert to PNG format
png = tools.to_png(sct_img.rgb, sct_img.size)
# Encode to Base64 format for easier transmission
base64_img = base64.b64encode(png).decode("utf-8")
return base64_img

Listing 2: Define the "screenshot" observation action.

This action captures the screen’s current view and encodes it in Base64 format. Additionally, visual
prompts are also defined by actions that utilize the output from an observation action as their input,
further processing it to generate a visual prompt for the agent.

Evaluator The evaluator in Crab Benchmark-v0 is crafted to assess the outcome of actions
performed by the agent within the environment. The evaluator is defined as an action that
outputs a boolean value. An example of an evaluator in the Ubuntu environment is the
check_text_in_current_window_name function, outlined below:

@evaluator(env_name="ubuntu")
def check_text_in_current_window_name(text: str) -> bool:

try:
out = subprocess.check_output(

["xdotool", "getwindowfocus", "getwindowname"], text=True
).strip()

except subprocess.CalledProcessError:
return False

return text in out

Listing 3: Define "check_text_in_current_window_name" evaluator.

The evaluator function is denoted with an @evaluator decorator and specifies its operating
environment. The function’s primary role is to execute a check within the system and return a boolean
value indicating success or failure based on the condition being evaluated. Here, the function aims to
verify whether a specified text appears in the title of the currently focused window. This is achieved
through the use of the subprocess module to execute system commands that fetch the window’s
title, checking if the provided text parameter is contained within it.

Task Following a declarative programming paradigm, the task is defined as a data model. Here is
an example of a cross-platform task in the dataset:
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Task(
id="a3476778-e512-40ca-b1c0-d7aab0c7f18b",
description="Open \"Tasks\" app on Android, check the...",
evaluator=path_graph(

check_current_package_name("com.google.android.apps.tasks"),
check_current_window_process("gnome-control-center"),
check_color_scheme("prefer-dark"),

),
)

Listing 4: Define a task.

In this model, each task is represented as an instance of the Task class, which is a subclass of
BaseModel in Pydantic11 package. Each task is uniquely identified by an ID and described by a
detailed description. The evaluator component is structured as a graph evaluator, which integrates
multiple evaluative functions into a directed graph using the networkx12 package. Each evaluator
within this graph must be appropriately parameterized to assess specific conditions relevant to the
task. For example, the task demonstrated aims to open the "Tasks" app on Android and perform
a series of verifications: it checks whether the correct Android app is opened, whether the current
focused window’s process name is gnome-control-center, and whether the color scheme is
set to dark.

Sub-task The sub-task in CRAB is the unit component of in task construction. The following
example is a sub-task template that we used to easily generate sub-tasks:

SubTask(
id="0f589bf9-9b26-4581-8b78-2961b115ab49",
description="Open \"{file_path}\" using vim in a terminal, write \"{
content}\", then save and exit vim.",
attribute_dict={"file_path": "file_path", "content": "message"},
output_type="file_path",
evaluator_generator=lambda file_path, content: path_graph(

check_current_window_process("gnome-terminal-server"),
is_process_open("vim"),
is_process_close("vim"),
check_file_content(file_path, content),

),
),

Listing 5: Define a task.

In this sub-task model, each sub-task is defined using a similar approach to the main task. The
attributes of the sub-task are outlined in an attribute_dict, which details the types and roles of
each attribute used in the sub-task’s operations. The output_type field specifies the expected type
of output from the sub-task. The types reflected in attribute_dict and output_type, play
a critical role in determining the compatibility and sequential logic of compose multiple sub-tasks.
The evaluator for the sub-task is dynamically generated using a lambda function, which crafts an
evaluator sub-graph based on the sub-task’s attributes.

A.5 COMPOSED TASK FORMAT

We use a JSON format to save the composed tasks, which includes the task ID, overall task description,
sub-tasks with their attribute values, and a graph structure represented in an adjacency list. The entire
task dataset is defined by the sub-task pool in Python code and the task composition JSON files
categorized by task platform.

{
"description": "Combine Image 1 \"/home/crab/Pictures/cat.png\" and
Image 2 \"/home/crab/assets/campus.png\" using GIMP (GNU Image

11https://pydantic.dev/
12https://networkx.org/
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Manipulation Program), placing Image 1 on the left side of Image 2,
and save the combined image to \"/home/crab/Desktop/background.png\".
Then, set this combined image as the screen background of the system

.",
"tasks": [

{
"task": "4cf246ea-0a7f-43da-84b6-61d74a2699af",
"attribute": {

"image_path_1": "/home/crab/Pictures/cat.png",
"image_path_2": "/home/crab/assets/campus.png",
"output_path": "/home/crab/Desktop/background.png"

},
"output": "/home/crab/Desktop/background.png"

},
{

"task": "a207ef38-b3b2-4c6c-a1e3-75c38162f5ba",
"attribute": {

"photo_path": "/home/crab/Desktop/background.png"
},
"output": null

}
],
"adjlist": "0 1\n1",
"id": "d3c917ff-406f-447a-87f5-b8d835cba750"

}

Listing 6: Define a composite task in JSON.

B AGENT SYSTEM

B.1 AGENT IMPLEMENTATION

In this section, we outline the implementation of the agents used in our experiments, which leverage
advanced multimodal language models from OpenAI, Anthropic, and Google. Each agent is designed
to function in multi-environment setups, interacting with various action spaces defined by different
environments.

General Framework All agents share a common architecture but are tailored to the specific APIs
and capabilities of each language model provider.

Initialization Each agent is initialized with several key parameters, including a description, an
action space, the model type, maximum tokens, history message length, and an optional environment
description. The initialization process involves:

• Action Space Conversion: Actions defined for each environment are converted into a
schema compatible with the respective API. This ensures that the actions can be correctly
interpreted and executed by the language models.

• System Message Setup: Depending on whether the agent is configured for single or multiple
environments, a system message is formatted to provide the model with context about the
tasks and environments.

Interaction (Chat Method) The core functionality of each agent is encapsulated in its ability to
interact with users through a chat method. This involves:

• Content Parsing: Input content is parsed and formatted to match the requirements of
the respective API. This includes structuring user messages and any necessary contextual
information.

• Request Construction: The request payload is constructed, incorporating the system
message, chat history, and the newly parsed user input.
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• API Communication: The constructed request is sent to the appropriate API, which
generates a response. The agents handle API-specific constraints such as rate limits and
response formats.

• Response Handling: The response from the API is processed to extract any tool calls
suggested by the model. These are then appended to the chat history, maintaining a coherent
conversation state.

Multi-Environment Support For agents configured to operate in multiple environments, additional
logic ensures that actions are correctly associated with their respective environments. This involves
modifying action names and descriptions to reflect their environmental context and handling responses
accordingly.

Utilities and Shared Functions Several utility functions support the operation of these agents, facil-
itating tasks such as content parsing, action prompt generation, and schema conversion. These shared
functions ensure consistency and reduce redundancy across the different agent implementations.

B.2 INTER-AGENT COMMUNICATION STRATEGIES

In this section we introduce the details of two multi-agent communications methods, which are
introduced in 6.1.

Multi-agent Communication by Functionality This setting involves two agents: a main agent
prompted with the task description and a tool agent with the entire action space. The main agent
generates the instruction for the next step and sends it to the tool agent. The tool agent chooses the
proper action with parameters and a target environment, then feeds it back to the system.

Multi-agent Communication by Environment This setting involves four agents in our benchmark
setting: a main agent prompted with the task description and three tool agents, each corresponding to
the environments of Android, Ubuntu, and Root, with the respective action spaces. The main agent
generates the instruction for the next step and sends it to the tool agents. Each sub-environment
agent receives the message containing the instruction and environment observation information.
The environment agents process the message using their specialized models and action schemas,
performing the required actions within their environments.

B.3 AGENT PROMPT

B.3.1 SINGLE AGENT

Prompt

You are a helpful assistant. Now you have to do a task as described below:
**{task_description}**.
You should never forget this task and always perform actions to achieve this task. And this is
the description of each given environment: {env_description}. A unit operation you
can perform is called action in a given environment. For each environment, you are given a
limited action space as function calls:
{action_descriptions}
You may receive a screenshot of the current system. You may receive a screenshot of a
smartphone app. The interactive UI elements on the screenshot are labeled with numeric tags
starting from 1.
In each step, You MUST explain what do you see from the current observation and the plan of
the next action, then use a provided action in each step to achieve the task. You should state
what action to take and what the parameters should be. Your answer MUST be a least one
function call. You SHOULD NEVER ask me to do anything for you. Always do them by
yourself using function calls.
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Prompt

You are a helpful assistant. Now you have to do a task as described below:
**{task_description}**
You should never forget this task and always perform actions to achieve this task. And this
is the description of each given environment: {env_description}. You will receive
screenshots of the environments. The interactive UI elements on the screenshot are labeled
with numeric tags starting from 1.
A unit operation you can perform is called Action. You have a limited action space as function
calls: {action_descriptions}. You should generate JSON code blocks to execute the
actions. Each code block MUST contains only one json object, i.e. one action. You can output
multiple code blocks to execute multiple actions in a single step. You must follow the JSON
format below to output the action.
{"name": "action_name", "arguments": {"arg1": "value1",
"arg2": "value2"}}
or if not arguments needed:
{"name": "action_name", "arguments": {}}
You MUST use exactly the same "action_name" as I gave to you in the action space. You
SHOULDN’T add any comments in the code blocks.
In each step, You MUST explain what do you see from the current observation and the plan of
the next action, then use a provided action in each step to achieve the task. You should state
what action to take and what the parameters should be. Your answer MUST contain at least
one code block. You SHOULD NEVER ask me to do anything for you. Always do them by
yourself.

B.3.2 MULTI-AGENT BY FUNCTIONALITY

Main Agent Prompt

You are a helpful assistant. Now you have to do a task as described below:
{task_description}. And this is the description of each given environment:
{env_description}. A unit operation you can perform is called action in a given envi-
ronment. For each environment, you are given a limited action space as function calls:
{action_descriptions}
You may receive a screenshot of the current system. The interactive UI elements on the
screenshot are labeled with numeric tags starting from 1. For each step, You must state what
actions to take, what the parameters are, and you MUST provide in which environment to
perform these actions.

Tool Agent Prompt

You are a helpful assistant in generating function calls. I will give you a detailed description
of what actions to take next, you should translate it into function calls. please do not output
any other information.

B.3.3 MULTI-AGENT BY ENVIRONMENT

Main Agent Prompt

You are a main agent, and your goal is to plan and give instructions to sub-agents in each
environment to complete the final task. Now you have to do a task as described below:
{description}. The description of each given environment: {env_description}.
For each step, you are required to provide high-level instructions detailing the next actions
to be taken. Additionally, you must specify which sub-agent in the designated environment
should execute these instructions. If a sub-agent is not needed for a particular step, you may
instruct it to skip that step.
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Root Environment Agent Prompt

You are a sub-agent responsible for the crab benchmark root environment. Your goal is to
assist the main agent in completing the whole task: "{description}". You can only
complete the task or submit the result when the main agent tells you the whole task has been
completed. Otherwise, you can only call SKIP.

Sub-environment Agent Prompt

You are a sub-agent responsible for the {environment} environment. The description
of the {environment} environment is: {env_description}. Your goal is to assist
the main agent in completing the final task by performing actions in the {environment}
environment according to the instructions from the main agent. The final task is described
below: {task_description}. A unit operation you can perform is called action in a
given environment. You can only execute action in the {environment} environment. For
the {environment} environment, you are given a limited action space as function calls:
{action_descriptions}
The interactive UI elements on the screenshot are labeled with numeric tags starting from 1.
For each step, You will receive an instruction telling you what you need to do next. After
analyzing the instruction you received and the current {environment} system, if you think
you don’t need to do anything in the current {environment} system, you should choose
SKIP action. Otherwise, you must state what actions to take, what the parameters are, and you
MUST provide in which environment to perform these actions. Your answer must be function
calls. Please do not output any other information. You must make sure all function calls get
their required parameters.

C FURTHER RESULT ANALYSIS

This section further discusses our experimental results in detail. Section C.1 categorizes the results into
three types of tasks: Ubuntu, Android, and cross-platform, and provides further analysis. Section C.3
examines three specific tasks and analyzes the performance of different agent settings on each.

C.1 RESULT BY PLATFORMS

Table 7, 8 and 9 show the experiment results on Ubuntu Tasks, Android Tasks, and cross-platform
Tasks, respectively.

We find that certain models demonstrate a distinct preference or better alignment with specific
platforms. The GPT-4o, Gemini, and Claude models, for instance, show notably better outcomes on
Android platforms. This suggests potential optimizations or intrinsic features within these models
that cater effectively to the Android environment’s requirements. Conversely, the GPT-4 Turbo model
exhibits superior performance on Ubuntu tasks, hinting at possible architectural or training aspects
that are better suited for that specific environment.

Cross-platform tasks necessitate functionality across different operating systems or platforms, demand
a broader capability range and more sophisticated agent coordination. The importance of CR is
especially critical in such environments, where it serves as a more reliable metric for distinguishing
between agent models than SR. Given the presence of all Gemini, Claude, and open source model
agents’ SR is 0.0, indicating that Completion Ratio more effectively captures an agent model’s
capability, thereby better reflecting its robustness and adaptability to complex requirements. On
cross-platform tasks, GPT-4 Turbo (Single) exhibits a CR of 52.61%, which indicates that even
though SR might be lower, the agent covers a significant portion of task objectives before termination.

Furthermore, analyzing the reasons for task termination offers additional insights into the operational
challenges these models encounter. False Completion is notably prevalent in Android tasks. Reach
Step Limit remains the most frequent cause of termination, particularly in cross-platform tasks. The
Claude model exhibits a significantly high Invalid Action ratio in cross-platform tasks, indicating
its difficulties in managing multi-environment scenarios effectively. The GPT-4o with JSON mode
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Table 7: Evaluation results on Ubuntu tasks.
Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 9.59 30.82 3.22 4.87 ×10−4 6.85 58.90 24.66
GPT-4O By Func 9.59 24.20 2.72 4.30 ×10−4 5.48 63.01 21.92
GPT-4O By Env 10.96 22.88 2.74 2.29 ×10−4 5.48 43.84 39.73

GPT-4 TURBO Single 10.96 31.09 4.08 5.57 ×10−4 2.74 65.75 20.55
GPT-4 TURBO By Func 12.33 28.95 3.70 4.18 ×10−4 8.22 32.88 46.58

GEMINI 1.5 PRO Single 1.37 7.76 0.63 n/a 0.00 47.95 50.68
GEMINI 1.5 PRO By Func 1.37 3.31 0.33 n/a 0.00 20.55 78.08

CLAUDE 3 OPUS Single 0.00 9.54 0.72 0.63 ×10−4 8.22 58.90 32.88
CLAUDE 3 OPUS By Func 0.00 4.93 0.46 0.47 ×10−4 27.40 34.25 38.36

GPT-4O W/O FC Single 10.96 22.58 2.30 4.49 ×10−4 5.48 54.79 28.77
PIXTRAL-12B Single 0.00 2.97 0.22 0.24 ×10−4 1.37 80.82 17.81
LLAVA-OV-72B Single 0.00 3.31 0.20 0.35 ×10−4 17.81 64.38 17.81

shows a extremely high IA ratio in Android tasks, proving the serious hallucination problem under
this setting.

Overall, these findings underscore the necessity of selecting the appropriate agent model and con-
figuration based on specific platform and task needs. The variability in model performance across
different setups also highlights the ongoing need for development and refinement of multi-agent
systems to enhance their versatility and efficacy in increasingly diverse and complex operational
environments. These results comparing SR and CR also demonstrates the important of our graph
evaluator in agent evaluation.

C.2 COMPARISON BETWEEN SINGLE AGENT AND MULTI-AGENT

The experimental results indicate that multi-agent structures perform slightly worse than single-agent
systems, which is somewhat unusual. We analyse the possible reasons here.

First, comparing in False Completion Rate, we attribute the lower Success Rate (SR) of Multi-agent
to a high False Completion Rate—where the agent incorrectly assumes that the task is complete. As
observed in failure cases (e.g., the Cross-platform Task case study in Appendix C.3), Sub-agents
often misinterpret the Main agent’s instructions. Despite being required to perform a final action, the
instructions lead Sub-agents to prematurely conclude that the task is complete, resulting in incorrect
“complete” actions. While this issue also occurs in Multi-Env, it happens less frequently. By analysing
the communication logs, we believe this is due to information loss during inter-agent communication.
Sometimes, the main agent gives a correct instruction, but the sub-agent misunderstands it because it
does not have the context. Natural language, while effective for aligning with human understanding
in LLM communication, is less suited for inter-agent communication, leading to information loss
during compression and interpretation, which weakens the performance of multi-agent structures.

Next, comparing in Invalid Action Rate, we observe that in single-platform tasks, both Multi-Env and
Multi-Func suffer from similar inter-agent communication issues, as indicated by their high Invalid
Action rates. However, in cross-platform tasks (Table 9), the Single agent’s Invalid Action rate is
significantly higher than that of the Multi-agent by environment structures on GPT-4o model. Cross-
platform tasks require frequent environment changes with varying action spaces, and if the model’s
performance output is inadequate, it often generates correct actions in the wrong environment, invalid
actions in the correct environment, or correct actions in correct environment but in the wrong format.
This phenomenon highlights the limitations of current general-purpose LLMs, where multi-agent
structures can be advantageous. By assigning each agent a specific responsibility and a limited action
space, multi-agent structures can mitigate these issues.

To improve multi-agent system performance, we suggest to follow two approaches: (1) Developing
better multi-agent structures to minimize information loss during communication, and (2) Intro-
ducing a critical agent to correct hallucinations or information loss during communication. These
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Table 8: Evaluation results on Android tasks.
Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 24.14 47.91 5.84 7.17 ×10−4 13.79 58.62 3.45
GPT-4O By Func 24.14 48.74 6.83 9.19 ×10−4 24.14 37.93 13.79
GPT-4O By Env 27.59 53.34 6.99 4.58 ×10−4 13.79 44.83 13.79

GPT-4 TURBO Single 6.90 27.08 2.60 2.87 ×10−4 20.69 62.07 10.34
GPT-4 TURBO By Func 20.69 37.01 5.00 5.92 ×10−4 13.79 51.72 13.79

GEMINI 1.5 PRO Single 17.24 34.52 4.82 n/a 10.34 65.52 6.90
GEMINI 1.5 PRO By Func 17.24 35.99 4.31 n/a 31.03 37.93 13.79

CLAUDE 3 OPUS Single 13.79 41.90 5.07 5.37 ×10−4 20.69 55.17 10.34
CLAUDE 3 OPUS By Func 13.79 44.02 4.75 5.35 ×10−4 48.28 31.03 6.90

GPT-4O W/O FC Single 10.34 14.29 1.72 2.94 ×10−4 3.45 6.90 79.31
PIXTRAL-12B Single 3.45 24.17 2.16 2.72 ×10−4 0.00 65.52 31.03
LLAVA-OV-72B Single 3.45 13.51 1.36 3.00 ×10−4 3.45 93.10 0.00

Table 9: Evaluation results on cross-platform tasks.
Agent system Metrics Termination Reason

Model Structure SR(%) ↑ CR(%) ↑ EE(%) ↑ CE(%) ↑ FC(%) RSL(%) IA(%)

GPT-4O Single 16.67 51.24 5.21 3.98 ×10−4 5.56 38.89 38.89
GPT-4O By Func 22.22 50.00 4.15 3.13 ×10−4 11.11 44.44 22.22
GPT-4O By Env 5.56 43.54 3.22 1.60 ×10−4 11.11 72.22 11.11

GPT-4 TURBO Single 5.56 52.61 4.60 2.89 ×10−4 11.11 66.67 16.67
GPT-4 TURBO By Func 5.56 46.17 4.06 2.67 ×10−4 16.67 50.00 27.78

GEMINI 1.5 PRO Single 0.00 16.14 1.15 n/a 0.00 72.22 27.78
GEMINI 1.5 PRO By Func 0.00 13.65 1.21 n/a 5.56 77.78 16.67

CLAUDE 3 OPUS Single 0.00 24.50 1.93 1.24 ×10−4 0.00 55.56 44.44
CLAUDE 3 OPUS By Func 0.00 18.96 1.93 1.20 ×10−4 0.00 38.89 61.11

GPT-4O W/O FC Single 0.00 39.11 3.51 3.28 ×10−4 5.56 50.00 44.44
PIXTRAL-12B Single 0.00 12.35 0.62 0.44 ×10−4 0.00 72.22 27.78
LLAVA-OV-72B Single 0.00 9.07 0.48 0.53 ×10−4 5.56 66.67 27.78

improvements, however, come with a trade-off, namely an increase in token costs within the agent
system. Within our benchmark framework, users can utilize the error log we provide to analyze the
bottlenecks of their agents and refine their designs.

C.3 CASE STUDY

To better understand how different agents perform the same task and exhibit varied properties, we
present visual results along with detailed metrics and logs for three cases by platform. The screenshots
illustrate the progress of agents executing tasks according to specific natural language instructions.

C.3.1 CROSS-PLATFORM TASK

Task: Open the "Tasks" app on an Android device, check the first incomplete task, and then
execute it as described. The first task, found incomplete in the "Tasks" app, involves switching the
system to dark mode in Ubuntu via the "Settings" application.

This task exemplifies message passing across different environments, where the "incomplete task"
serves as the critical information that the agent must relay and apply in the Ubuntu setting. These
two phases—retrieving the task details via the phone and executing the task on a computer—are
inseparably linked and cannot be treated as distinct tasks. The agent can only proceed to the second
stage after successfully acquiring information from the first.
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In this task, GPT-4o (single agent), GPT-4 Turbo (single agent), and GPT-4 Turbo (multi-agent by
functionality) all successfully complete the task using the minimal steps necessary to locate and exe-
cute the task, demonstrating their efficiency in managing multiple environments simultaneously. On
the other hand, both GPT-4o (multi-agent by functionality) and GPT-4o (multi-agent by environment)
also perform commendably, completing the task up until the final step. However, after incorrectly
performing the last step, they both erroneously conclude the task is completed and exit. This indicates
a communication breakdown, where the sub-agents misinterpret the instructions from the main agent.
The remaining four agents fail to complete the task. Agents equipped with the Gemini model do
not even manage to open the "Tasks" app within the allocated step limit, whereas agents with the
Claude model quickly open the "Tasks" app to complete the first step but fail at the task execution.
The performance disparity between single-agent and multi-agent configurations in both the Gemini
and Claude models highlights the variance in capability across different models and devices.

C.3.2 UBUNTU TASK

Task: Create a new directory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/assets_copy".

This task can be approached through multiple methods. An agent may opt for a straightforward
strategy first using the search_application command to find the Terminal, then using Linux
commands to create the directory and copy the necessary files. Alternatively, the agent could employ
a GUI-based approach, manually creating the folder and selecting files through actions like click
and right_click. We evaluate various agent systems in a single-agent setting for this task. As
illustrated in Table 10–13 , both GPT-4o and GPT-4 Turbo from OpenAI successfully interpret the task
instructions and employ a simpler solution using Terminal commands. These agents also demonstrate
superior capability in understanding the UI, selecting the correct commands, and accurately using the
Terminal application to fulfill the task requirements.

Conversely, the Gemini and Claude agents, despite attempting to solve the task with Terminal,
ultimately fail in different ways. Both agents struggle with precise clicking and selecting the correct
icons for the intended actions, even though they share the same visual prompting mechanism as
GPT-4o and GPT-4 Turbo. For instance, the Claude agent mistakenly opens the Ubuntu Desktop
Guide instead of the Terminal and continues executing commands in the wrong application without
realizing the error. The Gemini agent, on the other hand, unexpectedly opens the Firefox browser
before correctly navigating to the Terminal but still interacts incorrectly with unrelated applications
and icons. Unlike Claude, Gemini does not type in commands in the wrong applications but persists
in exploring alternative methods using the Files application’s UI. Despite taking significantly more
steps than the GPT-4o and GPT-4 Turbo agents, neither the Claude nor the Gemini agents achieve the
task’s goal.

C.3.3 ANDROID TASK

Task: In Android, using the "Contacts" app, find the email of the contact named John Lauphin,
then using the "Gmail" app, send an email to that contact with the subject "Hello John."

This task consists of sub-tasks across two different applications. Agents must sequentially open the
two apps, retrieve the email address from the first app, and use it in the second app to send an email.
This straightforward yet formal task can be completed using various methods. Agents may need to
locate the contact in the Contacts app and then use the retrieved email address to send a message. We
reports the performance of agents in a multi-agent setting for this challenging task. Following is the
details of agents in operating the task.

GPT-4o multi-agent by functionality In steps 1-11, the agent tries to open the Contacts app but
mistakenly opens Google Assistant multiple times. In steps 12-14, the agent successfully enters the
Contacts app and finds the contact information. The agent then returns to the home page, and the
process is terminated due to the limitation of operation steps.

GPT-4 Turbo multi-agent by functionality In steps 1-2, the agent tries to open the Contacts app
but mistakenly opens Google Messages. In steps 3-5, the agent opens the Contacts app and obtains the
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corresponding information. In steps 6-14, the agent repeatedly opens Google Chrome and Messages
apps, failing to find the Gmail app as planned.

Gemini 1.5 Pro multi-agent by functionality In steps 1-2, the agent finds the Contacts app and
enters it. However, the agent misunderstands the instruction, gets lost in creating a new contact with
the given name, and cannot obtain the corresponding information.

Claude 3 Opus multi-agent by functionality In steps 1-7, the agent tries to open the Contacts
app but mistakenly opens Google Messages multiple times. In steps 7-11, the agent tries to open the
Contacts app but mistakenly opens Google Assistant. In steps 12-14, the agent successfully enters
the Contacts app and finds the contact information. The agent then returns to the home page, plans to
open the Gmail app, and the process is terminated due to the limitation of operation steps.

GPT-4o multi-agent by environment In steps 1-7, the agent plans to open the Contacts app, but
the operation fails due to an error in opening the app drawer, which prevents the agent from finding
and tapping the Contacts app. In steps 8-11, the agent successfully enters the Contacts app and
obtains the information. In steps 12-14, the agent opens the Gmail app, navigates to the sending page,
and tries to input the retrieved email address as the recipient.

Analysis For the agents which are organized by functionality, Gemini 1.5 Pro struggles to complete
the first operation. Although it recognizes and opens the Contacts app as instructed, it fails to proceed
further. In contrast, Claude 3 Opus and GPT-4o successfully obtain the necessary information. In
the initial phase, the multiple agents agree that opening the Contacts app is the first step. However,
they often fail to find the correct position to tap, frequently opening incorrect apps such as Google
Assistant and Messages. Once the agents do open the correct app, they usually find the email address
of the contact quickly. Even when agents plan to go back home and open the Gmail app to send the
message, due to the limitation of operations, the system ended. As shown in steps 3-5, GPT-4 Turbo
quickly finishes the corresponding task after opening the correct app. However, similar to GPT-4o,
GPT4-Turbo agents get stuck as they can not open the correct apps in the following steps. Besides,
GPT-4o (multi-agent by environment) overcomes the issue encountered by GPT-4o (multi-agent by
functionality). Even affected by not being able to access the app drawer, the system could still find
and copy the corresponding information and change to the Gmail app for further operations.
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Table 10: Ubuntu task case with Gemini (Single): Create a new di-
rectory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 click(5)

1 click(1)

Continued on next page
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Table 10 continued from previous page

2 click(4)

3 search_application("terminal")

4 click(9)

Continued on next page
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Table 10 continued from previous page

5 click(3)

6 click(13)

7 search_application("terminal")

Continued on next page
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Table 10 continued from previous page

8 click(10)

9 click(6)

10-14 The agent is stuck at this stage and keeps clicking useless elements.

Completed Nodes / Total Nodes: 0 / 2 Termination Reason: Reach Step Limit
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Table 11: Ubuntu task case with Claude (Single): Create a new di-
rectory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 search_application("terminal")

1 click(13)

Continued on next page
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Table 11 continued from previous page

2 write_text("mkdir /home/crab/assets_copy")

3 key_press("enter")

4 write_text("cd /home/crab/assets")

Continued on next page
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Table 11 continued from previous page

5 key_press("enter")

6 write_text("mkdir assets_copy")

7-14 The agent is stuck at this stage and keeps pressing keys.

Completed Nodes / Total Nodes: 0 / 2 Termination Reason: Reach Step Limit

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 12: Ubuntu task case with GPT-4o (Single): Create a new di-
rectory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 click(2)

1-2 click(2)
right_click(2)

Continued on next page
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Table 12 continued from previous page

3 click(6)

4 write_text("mkdir -p /home/crab/assets_copy")

5-6
Continued on next page
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Table 12 continued from previous page

5-6 key_press("enter")
write_text("cp /home/crab/assets/*.txt /home/crab/assets_copy/")

7 key_press("enter")

Completed Nodes / Total Nodes: 2 / 2 Termination Reason: Success

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 13: Ubuntu task case with GPT-4 Turbo (Single): Create a new
directory "/home/crab/assets_copy" and copy all files with the specified
"txt" extension from "/home/crab/assets" to the directory "/home/crab/
assets_copy".

Step Agent Observation and Action

0 search_application("terminal")

1 click(20)

Continued on next page
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Table 13 continued from previous page

2 write_text("mkdir -p /home/crab/assets_copy")

3 key_press("enter")

4 write_text("cp /home/crab/assets/*.txt /home/crab/assets_copy")

Continued on next page

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 13 continued from previous page

5 key_press("enter")

Completed Nodes / Total Nodes: 2 / 2 Termination Reason: Success
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