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Abstract

We study the problem of uncertainty quantifica-
tion via prediction sets, in an online setting where
the data distribution may vary arbitrarily over
time. Recent work develops online conformal
prediction techniques that leverage regret mini-
mization algorithms from the online learning liter-
ature to learn prediction sets with approximately
valid coverage and small regret. However, stan-
dard regret minimization could be insufficient for
handling changing environments, where perfor-
mance guarantees may be desired not only over
the full time horizon but also in all (sub-)intervals
of time. We develop new online conformal predic-
tion methods that minimize the strongly adaptive
regret, which measures the worst-case regret over
all intervals of a fixed length. We prove that our
methods achieve near-optimal strongly adaptive
regret for all interval lengths simultaneously, and
approximately valid coverage. Experiments show
that our methods consistently obtain better cov-
erage and smaller prediction sets than existing
methods on real-world tasks, such as time series
forecasting and image classification under distri-
bution shift.

1. Introduction
Modern machine learning models make highly accurate pre-
dictions in many settings. In high stakes decision-making
tasks, it is just as important to estimate the model’s uncer-
tainty by quantifying how much the true label may deviate
from the model’s prediction. A common approach for uncer-
tainty quantification is to learn prediction sets that associate
each input with a set of candidate labels, such as prediction
intervals for regression, and label sets for classification. The
most important requirement for learned prediction sets is to
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achieve valid coverage, i.e. they should cover the true label
with at least 1− α (such as 90%) probability.

Conformal prediction (Vovk et al., 2005) is a powerful
framework for augmenting any base predictor (such as a
pretrained model) into prediction sets with valid coverage
guarantees (Angelopoulos & Bates, 2021). These guaran-
tees require almost no assumptions on the data distribution,
except exchangeability (i.i.d. data is a sufficient condition).
However, exchangeability fails to hold in many real-world
settings such as time series data (Chernozhukov et al., 2018)
or data corruption (Hendrycks et al., 2018), where the data
may exhibit distribution shift. Various approaches have
been proposed to handle such distribution shift, such as
reweighting (Tibshirani et al., 2019; Barber et al., 2022) or
distributionally robust optimization (Cauchois et al., 2022).

A recent line of work develops online conformal prediction
methods for the setting where the data arrives in a sequential
order (Gibbs & Candès, 2021; 2022; Zaffran et al., 2022;
Feldman et al., 2022). At each step, their methods output
a prediction set parameterized by a single radius param-
eter that controls the size of the set. After receiving the
true label, they adjust this parameter adaptively via regret
minimization techniques—such as Online Gradient Descent
(OGD) (Zinkevich, 2003)—on a certain quantile loss over
the radius. These methods are shown to achieve empirical
coverage frequency close to 1−α, regardless of the data dis-
tribution (Gibbs & Candès, 2021). In addition to coverage,
importantly, these methods achieve sublinear regret with
respect to the quantile loss (Gibbs & Candès, 2022). Such
regret guarantees ensure that the size of the prediction set
is reasonable, and rule out “trivial” algorithms that achieve
valid coverage by alternating between predicting the empty
set and full set (cf. Section 2 for a discussion).

While regret minimization techniques achieve coverage and
regret guarantees, they may fall short in more dynamic en-
vironments where we desire a strong performance not just
over the entire time horizon (as captured by the regret), but
also within every sub-interval of time. For example, if the
data distribution shifts abruptly for a few times, we rather
desire strong performance within each contiguous interval
between two consecutive shifts, in addition to the entire

The code for our experiments can be found at https://
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1

https://github.com/salesforce/online_conformal
https://github.com/salesforce/online_conformal


Improved Online Conformal Prediction via Strongly Adaptive Online Learning

horizon. Gibbs & Candès (2022) address this issue par-
tially by proposing the Fully Adaptive Conformal Inference
(FACI) algorithm, a meta-algorithm that aggregates mul-
tiple experts (base learners) that are OGD instances with
different learning rates. However, their algorithm may not
be best suited for achieving such interval-based guarantees,
as each expert still runs over the full time horizon and is not
really localized. This is also reflected in the fact that FACI
achieves a near-optimal Õ(

√
k) regret within intervals of a

fixed length k, but is unable to achieve this over all lengths
k ∈ [T ] simultaneously.

In this paper, we design improved online conformal predic-
tion algorithms by leveraging strogly adaptive regret mini-
mization, a technique for attaining strong performance on
all sub-intervals simultaneously in online learning (Daniely
et al., 2015; Jun et al., 2017). Our proposed algorithm,
Strongly Adaptive Online Conformal Prediction (SAOCP),
is a new meta-algorithm that manages multiple experts, with
the key difference that each expert now only operates on its
own active interval. We summarize our contributions:

• We propose SAOCP, a new algorithm for online confor-
mal prediction. SAOCP is a meta-algorithm that main-
tains multiple experts each with its own active interval,
building on strongly adaptive regret minimization tech-
niques (Section 3). We instantiate the experts as Scale-
Free OGD (SF-OGD), an anytime variant of the OGD,
which we also study as an independent algorithm.

• We prove that SAOCP achieves a near-optimal strongly
adaptive regret of Õ(

√
k) regret over all intervals of

length k simultaneously, and that both SAOCP and SF-
OGD achieve approximately valid coverage (Section 4).

• We show experimentally that SAOCP and SF-OGD at-
tain better coverage in localized windows and smaller
prediction sets than existing methods, on two real-world
tasks: time series forecasting and image classification
under distribution shift (Section 5).

1.1. Related work

Conformal prediction The original idea of conformal
prediction (utilizing exchangeable data) is developed in the
early work of Vovk et al. (1999; 2005); Shafer & Vovk
(2008). Learning prediction sets via conformal prediction
has since been adopted as a major approach for uncertainty
quantification in regression (Papadopoulos, 2008; Vovk,
2012; Lei & Wasserman, 2014; Vovk et al., 2018; Romano
et al., 2019; Gupta et al., 2019; Barber et al., 2021; 2022)
and classification (Lei et al., 2013; Romano et al., 2020;
Cauchois et al., 2020; 2022; Angelopoulos et al., 2021b),
with further applications in general risk control (Bates et al.,
2021; Angelopoulos et al., 2021a; 2022a), biological imag-
ing (Angelopoulos et al., 2022b), and protein design (Fan-
njiang et al., 2022), to name a few.

Recent work also proposes to optimize the prediction sets’
efficiency (e.g. width or cardinality) in addition to coverage
(Pearce et al., 2018; Park et al., 2020; Yang & Kuchibhotla,
2021; Stutz et al., 2022; Angelopoulos et al., 2021a;b; Bai
et al., 2022). The regret that we consider can be viewed as a
(surrogate) measure for efficiency in the online setting.

Conformal prediction under distribution shift For the
more challenging case where data may exhibit distribution
shift (and thus are no longer exchangeable), several ap-
proaches are proposed to achieve approximately valid cov-
earge, such as reweighting (using prior knowledge about
the data’s dependency structure) (Tibshirani et al., 2019;
Podkopaev & Ramdas, 2021; Candès et al., 2021; Barber
et al., 2022), distributionally robust optimization (Cauchois
et al., 2020), or doubly robust calibration (Yang et al., 2022).

Our work makes an addition to the online conformal pre-
diction line of work (Gibbs & Candès, 2021; 2022; Zaf-
fran et al., 2022; Feldman et al., 2022), which uses regret
minimization techniques from the online learning litera-
ture (Zinkevich, 2003; Hazan, 2022) to adaptively adjust
the size of the prediction set based on recent observations.
Closely related to our work is the FACI algorithm of Gibbs
& Candès (2022), which is a meta-algorithm that uses multi-
ple experts for handling changing environments. Our meta-
algorithm SAOCP differs in style from theirs, in that our
experts only operate on their own active intervals, and it
achieves a better guarantee on the strongly adaptive regret.

A related line of work studies conformal prediction for time
series data. Chernozhukov et al. (2018); Xu & Xie (2021);
Sousa et al. (2022) use randomization and ensembles to pro-
duce valid prediction sets for time series that are ergodic in a
certain sense. Some other works directly apply vanilla con-
formal prediction to time series either without theoretical
guarantees or requiring weaker notions of exchangeabil-
ity (Dashevskiy & Luo, 2008; Wisniewski et al., 2020; Kath
& Ziel, 2021; Stankeviciute et al., 2021; Sun & Yu, 2022).

Strongly adaptive online learning Our algorithms adapt
techniques from the online learning literature, notably
strongly adaptive regret minimization (Daniely et al., 2015;
Jun et al., 2017; Zhang et al., 2018) and scale-free algo-
rithms for achieving other kinds of adaptive (e.g. anytime)
regret guarantees (Orabona & Pál, 2018).

2. Preliminaries
We consider standard learning problems in which we ob-
serve examples (x, y) ∈ X ×Y and wish to predict a label y
from input x. A prediction set C : X → 2Y is a set-valued
function that maps any input x to a set of predicted labels
C(x) ⊂ Y . Two prevalent examples are prediction intervals
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for regression in which Y = R and C(x) is an interval, and
label prediction sets for (m-class) classification in which
Y = [m] and C(x) is a subset of [m]. Prediction sets are
a popular approach to quantify the uncertainty associated
with the point prediction ŷ = f(x) of a black box model.

We study the problem of learning prediction sets in the
online setting, in which the data (X1, Y1), . . . , (XT , YT )
arrive sequentially. At each time step t ∈ [T ], we output a
prediction set Ĉt = Ĉt(Xt) based on the current input Xt

and past observations {(Xi, Yi)}i≤t−1, before observing
the true label Yt. The primary goal of the prediction set is
to achieve valid coverage: P[Yt ∈ Ĉt(Xt)] = 1− α, where
1−α ∈ (0, 1) is the target coverage level pre-determined by
the user. Standard choices for α include {0.1, 0.05}, which
correspond to {90%, 95%} target coverage respectively.

Throughout this paper, we use the standard notation O(·) to
suppress absolute constants, and Õ(·) to suppress absolute
constants and polylogarithmic factors, e.g. log(T ).

Online conformal prediction We now review the idea of
online conformal prediction, initiated by Gibbs & Candès
(2021; 2022). This framework for learning prediction sets in
the online setting achieves coverage guarantees even under
distribution shift.

At each time t ∈ [T ], online conformal prediction as-
sumes that we have a family of prediction sets Ct =
{Ĉt(x, s)}x∈X ,s∈R specified by a radius parameter s ∈ R,
and we need to predict ŝt ∈ R and output prediction set
Ĉt = Ĉt(Xt, ŝt) ⊂ Y . The family (Ct)t∈[T ] is typically
defined through base predictors f̂t (for example, f̂t ≡ f
can be a fixed pretrained model). A standard example in
regression is that we have a base predictor f̂t : X → R,
and we can choose Ĉt(Xt, s) := [f̂t(Xt)− s, f̂t(Xt) + s]

to be a prediction interval around f̂t(Xt), in which case the
radius s is the (half) width of the interval. In general, we
allow any Ct that are nested sets (Gupta et al., 2019) in the
sense that Ĉt(x, s) ⊆ Ĉt(x, s

′) for all x ∈ X and s ≤ s′,
so that a larger radius always yields a larger set.

Online conformal prediction adopts online learning tech-
niques to learn ŝt based on past observations. Defining the
“true radius” St := inf{s ∈ R : Yt ∈ Ĉt(Xt, s)} (i.e. the
smallest radius s such that Ĉt covers Yt), we consider the
(1−α)-quantile loss (aka pinball loss (Koenker & Bassett Jr,
1978)) between St and any predicted radius ŝ:

ℓ(t)(ŝ) = ℓ1−α(St, ŝ)

:= max{(1− α)(St − ŝ), α(ŝ− St)}. (1)

Throughout the rest of this paper, we assume that all true
radii are bounded: St ∈ [0, D] almost surely for all t ∈ [T ].

After observing Xt, predicting the radius ŝt, and observing

the label Yt (and hence St), the gradient1 ∇ℓ(t)(ŝt) can be
evaluated and has the following simple form:

∇ℓ(t)(ŝt) = α− 1[ŝt < St] = α− 1[Yt /∈ Ĉt]︸ ︷︷ ︸
:=errt

,
(2)

where errt is the indicator of miscoverage at time t (errt = 1
if Ĉt did not cover Yt). Gibbs & Candès (2021) perform an
Online Gradient Descent (OGD) step to obtain ŝt+1:

ŝt+1 = ŝt − η∇ℓ(t)(ŝt) = ŝt + η(errt − α), (3)

where η > 0 is a learning rate, and the algorithm is initial-
ized at some ŝ1 ∈ R. Update (3) increases the predicted
radius if Ĉt did not cover Yt (errt = 1), and decreases the
radius otherwise. This makes intuitive sense as an approach
for adapting the radius to recent observations.

Adaptive Conformal Inference (ACI) The ACI algo-
rithm of Gibbs & Candès (2021) uses update (3) in con-
junction with a specific choice of Ct = CACI

t , where

ĈACI
t (Xt, ŝt) =

{
y : S̃t(Xt, y) ≤ Qŝt

(
{S̃τ}t−1

τ=1

)}
, (4)

where S̃t : X × Y → R is any function (termed the score
function), S̃τ := S̃τ (Xτ , yτ ) denotes score of the τ -th ob-
servation, and Qs(·) denotes the s ∈ (0, 1)-th empirical
quantile of a set (cf. (32)). In words, ACI’s confidence set
contains all y whose score S̃t(Xt, y) is below the ŝt-th quan-
tile of the past scores, and they use (3) to learn this quantile
level. The framework presented here generalizes the ACI
algorithm where we allow any choice of Ct that are nested
sets, including but not limited to (4). For convenience of
discussions, unless explicitly specified, we will also refer to
this general version of (3) as ACI throughout this paper.

Empirically, we show in Section 5 that FACI (Gibbs &
Candès, 2022) (an extension of ACI) performs better when
trained to predict St directly under our more general param-
eterization, i.e. Ĉ(Xt, ŝt) = {y : S̃t(Xt, y) ≤ ŝt}.

Coverage and regret guarantees Gibbs & Candès (2021)
show that ACI2 achieves approximately valid (empirical)
coverage in the sense that the empirical miscoverage fre-
quency is close to the target level α:

CovErr(T ) :=
∣∣∣ 1T ∑T

t=1 errt − α
∣∣∣ ≤ D+η

ηT . (5)

In addition to coverage, by standard online learning analy-
ses, ACI achieves a regret bound on the quantile losses
{ℓ(t)}t∈[T ]: we have Reg(T ) ≤ O(D2/η + ηT ) ≤
O(D

√
T ) (with optimally chosen η), where

Reg(T ) :=
∑T

t=1 ℓ
(t)(ŝt)− infs⋆∈R

∑T
t=1 ℓ

(t)(s⋆). (6)

1More precisely,∇ℓ(t)(ŝt) is a subgradient.
2Their results are established on the specific choice of Ct in (4),

but can be extended directly to any Ct that are nested sets.
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Algorithm 1 Strongly Adaptive Online Conformal Prediction (SAOCP), adapted from Jun et al. (2017).
Input :Target coverage 1− α ∈ (0, 1); maximum possible radius D > 0

1 for t = 1, . . . , T do
// Obtain prediction interval by aggregating active experts

2 Initialize new expert At = SF-OGD
(
α←α; η←D/

√
3; ŝ1←ŝt−1) (Algorithm 2), and set weight wt,t = 0

3 Compute active set Active(t) = {i ∈ [T ] : t− L(i) < i ≤ t}, where L(i) is defined in (8)
4 Compute prior probability πi ∝ i−2(1 + ⌊log2 i⌋)−1

1[i ∈ Active(t)]
5 Compute un-normalized probability p̂i = πi[wt,i]+ for all i ∈ [t]

6 Normalize p = p̂/ ∥p̂∥1 ∈ ∆t if ∥p̂∥1 > 0, else p = π
7 Compute predicted radius ŝt =

∑
i∈Active(t) piŝi,t (for t ≥ 2), and ŝt = 0 for t = 1

8 Observe input Xt ∈ X and return prediction set Ĉt(Xt, ŝt)
// Use meta loss and per-expert losses to update experts

9 Observe true label Yt ∈ Y , compute true radius St = inf{s ∈ R : Yt ∈ Ĉt(Xt, s)} and loss function ℓ(t)(·) = ℓ1−α(St, ·)
10 for i ∈ Active(t) do
11 Update expert Ai with (Xt, Yt) and obtain next predicted radius ŝi,t+1

12 Compute gi,t =

{
1
D

(
ℓ(t)(ŝt)− ℓ(t)(ŝi,t)

)
wi,t > 0

1
D

[
ℓ(t)(ŝt)− ℓ(t)(ŝi,t)

]
+

wi,t ≤ 0

13 Update expert weight wi,t+1 = 1
t−i+1

(∑t
j=i gi,j

)(
1 +

∑t
j=i wi,jgi,j

)

One advantage of the regret as an additional performance
measure alongside coverage is that it rules out certain algo-
rithms that achieve good coverage in a “trivial” fashion and
are not useful in practice — for example, Ĉt may simply al-
ternate between the empty set and the full set {α, 1−α} pro-
portion of the time, which satisfies the coverage bound (5)
on arbitrary data distributions, but suffers from linear regret
even on certain simple data distributions (cf. Appendix A.2).

We remark that the regret has a connection to the cover-
age error in that CovErr(T ) = | 1T

∑T
t=1 ∇ℓ(t)(ŝt)|, i.e. the

coverage error is equal to the average gradient (derivative)
of the losses. However, without further distributional as-
sumptions, regret bounds and coverage bounds do not imply
each other in a black-box fashion (see e.g. Gibbs & Candès
(2021, Appendix A)) and need to be established separately
for each algorithm.

3. Strongly Adaptive Online Conformal
Prediction

Our approach is motivated from the observation that regret
minimization is in a sense limited, as the regret measures
performance over the entire time horizon [T ], which may
be insufficient when the algorithm encounters changing en-
vironments. For example, if St = 1 for 1 ≤ t ≤ T/2 and
St = 100 for T/2 < t ≤ T , then achieving small regret
on all (sub)-intervals of size T/2 is a much stronger guar-
antee than achieving small regret over [T ]. For this reason,
we seek localized guarantees over all intervals simultane-
ously, to prevent worst-case scenarios such as significant
miscoverage or high radius within a specific interval.

The Strongly Adaptive Regret (SARegret) (Daniely et al.,

2015; Zhang et al., 2018) has been proposed in the online
learning literature as a generalization of the regret that cap-
tures the performance of online learning algorithms over all
intervals simultaneously. Concretely, for any k ∈ [T ], the
SARegret of length k of any algorithm is defined as

SAReg(T, k) :=

max
[τ,τ+k−1]⊆[T ]

(
τ+k−1∑
t=τ

ℓ(t)(ŝt)− inf
s⋆

τ+k−1∑
t=τ

ℓ(t)(s⋆)

)
(7)

SAReg(T, k) measures the maximum regret over all inter-
vals of length k, which reduces to the usual regret at k = T ,
but may in addition be smaller for smaller k.

Algorithm: SAOCP We leverage techniques for mini-
mizing the strongly adaptive regret to perform online con-
formal prediction. Our main algorithm, Strongly Adaptive
Online Conformal Prediction (SAOCP, described in Algo-
rithm 1), adapts the work of Jun et al. (2017) to the online
conformal prediction setting. At a high level, SAOCP is a
meta-algorithm that manages multiple experts, where each
expert is itself an arbitrary online learning algorithm taking
charge of its own active interval that has a finite lifetime. At
each t ∈ [T ], Algorithm 1 instantiates a new expert At with
active interval [t, t+ L(t)− 1], where L(t) is its lifetime:

L(t) := g ·max
n∈Z

{2n : t ≡ 0 mod 2n}, (8)

and g ∈ Z≥1 is a multiplier for the lifetime of each expert.
It is straightforward to see that at most g⌊log2 t⌋ experts are
active at any time t under choice (8), granting Algorithm 1 a
total runtime of O(T log T ) for any g = Θ(1). Then, at any
time t, the predicted radius ŝt is obtained by aggregating
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Algorithm 2 Scale-Free Online Gradient Descent (SF-
OGD), adapted from Orabona & Pál (2018).
Input :α ∈ (0, 1), learning rate η > 0, init. ŝ1 ∈ R

14 for t ≥ 1 do
15 Observe input Xt ∈ X
16 Return prediction set Ĉt(Xt, ŝt)
17 Observe true label Yt ∈ Y and compute true radius St =

inf{s ∈ R : Yt ∈ Ĉt(Xt, s)}.
18 Compute loss ℓ(t)(·) = ℓ1−α(St, ·)
19 Update predicted radius

ŝt+1 = ŝt − η
∇ℓ(t)(ŝt)√∑t

i=1 ∥∇ℓ(i)(ŝi)∥
2
2

(10)

the predictions of active experts (Line 7):

ŝt =
∑

i∈Active(t) pi,tŝi,t,

where the weights {pi,t}i∈[t] (Lines 4-6) rely on the
{wi,t}i∈[t] computed by the coin betting scheme (Orabona
& Pál, 2016; Jun et al., 2017) in Lines 12-13.

Choice of expert In principle, SAOCP allows any choice
of the expert that is a good regret minimization algorithm
over its own active interval satisfying anytime regret guar-
antees. We choose the experts to be Scale-Free OGD (SF-
OGD; Algorithm 2) (Orabona & Pál, 2018), a variant of
OGD that decays its effective learning rate based on cumu-
lative past gradient norms (cf. (10)).

On the quantile loss (1) (executed over the full horizon [T ]
with learning rate η = Θ(D); η = D/

√
3 is optimal), SF-

OGD enjoys an anytime regret guarantee (Proposition A.2)

Reg(t) ≤ O(D
√
t) for all t ∈ [T ], (9)

which follows directly by applying Orabona & Pál (2018,
Theorem 2). Plugging SF-OGD into Line 2 of Algorithm 1
gives our full SAOCP algorithm.

SF-OGD as an independent algorithm As a strong re-
gret minimization algorithm itself, SF-OGD can also be
run independently (over [T ]) as an algorithm for online
conformal prediction (described in Algorithm 2). We find
empirically that SF-OGD itself already achieves strong per-
formances in many scenarios (Section 5).

4. Theory
4.1. Strongly Adaptive Regret

We begin by showing the SARegret guarantee of SAOCP.
As we instantiate SAOCP with SF-OGD as the experts, the
proof follows directly by plugging the regret bound for SF-
OGD (9) into the SARegret guarantee for SAOCP (Jun et al.,
2017), and can be found in Appendix B.1.

Proposition 4.1 (SARegret bound for SAOCP). Algorithm 1
achieves the following SARegret bound simultaneously for
all lengths k ∈ [T ]:

SAReg(T, k) ≤ 15D
√

k(log T + 1) ≤ Õ(D
√
k). (11)

The Õ(D
√
k) rate achieved by SAOCP is near-optimal for

general online convex optimization problems, due to the
standard regret lower bound Ω(D

√
k) over any fixed inter-

val of length k (Orabona, 2019, Theorem 5.1).

Comparison with FACI The SARegret guarantee of
SAOCP in (11) improves substantially over the FACI (Fully
Adaptive Conformal Inference) algorithm (Gibbs & Candès,
2022), an extension of ACI. Concretely, (11) holds simul-
taneously for all lengths k. By contrast, FACI achieves
SAReg(T, k) ≤ Õ(D2/η + ηk) in our setting (cf. their
Theorem 3.2), where η > 0 is their meta-algorithm learn-
ing rate. This can imply the same rate Õ(D

√
k) for a

single k by optimizing η, but not multiple values of k
simultaneously. As an example, for small interval sizes
of order k = O(T c) = o(T ) with c < 1, FACI with
the optimized η ≍ T−c/2 can achieve the optimal rate
SAReg(T, k) ≤ Õ(DT c/2) on this particular c, but will
perform suboptimally on other values of c. By contrast,
SAOCP achieves SAReg(T, k) ≤ Õ(DT c/2) simultane-
ously for all c ∈ (0, 1).

Also, in terms of algorithm styles, while both SAOCP and
FACI are meta-algorithms that maintain multiple experts
(base algorithms), a main difference between them is that
all experts in FACI differ in their learning rates and are all
active over [T ], whereas experts in SAOCP differ in their
active intervals (cf. (8)).

Dynamic regret The (worst-case) dynamic regret—which
measures the performance of an online learning algorithm
against the worst-case (strongest) comparator sequence—is
another generalization of the regret for capturing the perfor-
mance in changing environments (Zinkevich, 2003; Besbes
et al., 2015). Building on the reduction from dynamic regret
to strongly adaptive regret (Zhang et al., 2018), we show that
SAOCP also achieves a worst-case dynamic regret bound
on any interval within [T ], with rate depending on a certain
path length of the true radii {St}t≥1; see Proposition B.1
and the discussions thererafter.3

3We remark that a more general version of dynamic regret
which measures the regret against an arbitrary comparator se-
quence has also been considered in the literature. However, the
relationship between the SARegret and the general dynamic regret
remains unclear; see e.g. Zhao et al. (2022) for a discussion.

5



Improved Online Conformal Prediction via Strongly Adaptive Online Learning

4.2. Coverage

Recall the empirical coverage error defined in (5):

CovErr(T ) =
∣∣∣ 1T ∑T

t=1 errt − α
∣∣∣.

Without any distributional assumptions, we show that SF-
OGD achieves CovErr(t) ≤ O(t−1/4 log t) for any t ∈
[T ]. So its empirical coverage converges to the target
1 − α as T → ∞, similar to ACI (though with a slightly
slower rate). The proof (Appendix B.3) builds on a group-
ing argument and the fact that the effective learning rate

η/
√∑t

τ=1

∥∥∇ℓ(τ)(ŝτ )
∥∥2
2

of SF-OGD changes slowly in t.

Theorem 4.2 (Coverage bound for SF-OGD). Algorithm 2
with any learning rate η = Θ(D) and any initialization
ŝ1 ∈ [0, D] achieves CovErr(T ) ≤ O(α−2T−1/4 log T )
for any T ≥ 1.

We now provide a distribution-free coverage bound for
SAOCP, building on a similar grouping argument as in
Theorem 4.2.
Theorem 4.3 (Coverage bound for SAOCP; Informal ver-
sion of Theorem B.3). For any T ≥ 1, a randomized variant
of Algorithm 1 where Line 7 is replaced by sampling an ex-
pert i ∼ pt and predicting ŝt := ŝt,i achieves

CovErr(T ) ≤ O
(
infβ(T

1/2−β + T β−1Sβ(T ))
)
. (12)

Theorem 4.3 considers a randomized variant of SAOCP,
and its coverage bound depends on a quantity Sβ(T ) (full
definition in Theorem B.3) that measures the smoothness
of the expert weights and the cumulative gradient norms
for each individual expert. Both are expected for technical
reasons and also appear in coverage bounds for other expert-
style meta-algorithms such as FACI (Gibbs & Candès, 2022).
For instance, if there exists β ∈ (1/2, 1) so that Sβ(T ) ≤
Õ(T γ) for some γ < 1 − β, then (12) implies a coverage
bound CovErr(T ) ≤ Õ(T−min{1/2−β,β−1+γ}) = oT (1).

We remark that Theorem 4.3 also holds more generically for
other choices of the expert weights {pt}t∈[T ] (Line 5-6) and
active intervals, not just those specified in Algorithm 1. In
particular, SF-OGD is the special case where there is only a
single active expert over [T ]. In this case, we can recover the
Õ(α−2T−1/4) bound of Theorem 4.2 (see Appendix B.4.1
for a detailed discussion).

Additional coverage guarantee under distributional as-
sumptions Under some mild regularity assumptions on
the distributions of S1, . . . , ST , we show in Theorem C.3
that SAOCP achieves approximately valid coverage on ev-
ery sub-interval of time. Its coverage error on any interval
I = [τ, τ + k − 1] ⊆ [1, T ] is Õ(k−1/(2q) + (VarI/k)

1/q)
for a certain q ≥ 2 that quantifies the regularity of the dis-
tribution, and VarI is a certain notion of variation between

the true quantiles of St over t ∈ I (cf. (29)). In particular,
we obtain an approximately valid coverage on any interval
I for which VarI = o(k).

5. Experiments
We test SF-OGD (Algorithm 2) and SAOCP (Algorithm 1)
empirically on two representative real-world online uncer-
tainty quantification tasks: time series forecasting (Sec-
tion 5.1) and image classification under distribution shift
(Section 5.2). Choices of the prediction sets {Ĉt(x, s)}x,s
will be described within each experiment. In both experi-
ments, we compare against the following methods:

1. SCP: standard Split Conformal Prediction (Vovk et al.,
2005) adapted to the online setting, which simply pre-
dicts the (1− α)-quantile of the past radii. SCP does
not admit a valid coverage guarantee in our settings as
the data may not be exchangeable in general;

2. NExCP: Non-Exchangeable SCP (Barber et al., 2022),
a variant of SCP that handles non-exchangeable data
by reweighting. We follow their recommendations and
use an exponential weighting scheme that upweights
more recent observations;

3. FACI (Gibbs & Candès, 2022) with their specific
“quantile parametrization” (4), and score function S̃t

corresponding to our choice of Ĉt;
4. FACI-S: Generalized version of FACI applied to pre-

dicting the radius ŝt’s on our choice of Ĉt directly.

Additional details about all methods can be found in Ap-
pendix E. Throughout this section we choose the target
coverage level to be the standard 1− α = 90%.

5.1. Time Series Forecasting

Setup We consider multi-horizon time series forecasting
problems with real-valued observations {yt}t≥1 ∈ R, where
the base predictor f̂ uses the history Xt := y1:t to predict
H steps into the future, i.e. f̂(Xt) = {f̂ (h)(Xt)}h∈[H] =

{ŷ(h)t+h}h∈[H], where ŷ
(h)
t+h is a prediction for yt+h. Using

f̂(Xt), we produce fixed-width prediction intervals

Ĉ
(h)
t (Xt, ŝ

(h)
t ) :=

[
ŷ
(h)
t+h − ŝ

(h)
t , ŷ

(h)
t+h + ŝ

(h)
t

]
, (13)

where ŝ
(h)
t is predicted by an independent copy of the on-

line conformal prediction algorithm for each h ∈ [H] (so
that there are H such algorithms in parallel). We form our
online setting using a standard rolling window evaluation
loop, wherein each batch consists of predicting all H inter-
vals {Ĉ(h)

t }h∈[H], observing all H true values {yt+h}h∈[H],
and moving to the next batch by setting t → t + H . For
each h ∈ [H], we only evaluate yt+h against one interval
Ĉ

(h)
t (Xt, ŝ

(h)
t ). After the evaluation is done, we use all

pairs {(yt+k, ŷ
(h)
t+k)}k∈[H] to update ŝ

(h)
t → ŝ

(h)
t+H . To set
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LGBM (MAE = 0.06) ARIMA (MAE = 0.18) Prophet (MAE = 0.12)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

SCP .844.004 .127.004 .252.007 .017.001 .871.004 .245.029 .237.008 .039.021 .783.008 .178.007 .355.012 .019.001
NExCP .875.002 .134.004 .197.006 .013.001 .871.004 .245.034 .227.007 .040.024 .856.003 .187.007 .231.007 .010.001
FACI .866.002 .113.003 .180.005 .009.001 .866.004 .232.034 .214.006 .034.022 .867.002 .175.007 .184.005 .006.000
SF-OGD .889.002 .138.004 .154.004 .011.001 .877.003 .250.036 .195.006 .037.022 .888.001 .186.007 .138.003 .007.001
FACI-S .883.002 .128.003 .163.004 .010.001 .872.004 .238.034 .201.006 .035.021 .885.001 .180.007 .144.003 .006.000
SAOCP .882.002 .121.003 .143.004 .009.000 .864.003 .221.031 .190.005 .033.022 .872.001 .173.007 .143.003 .005.000

Table 1. Results on M4 Hourly (414 time series) with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as
meanstd. Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). For
all base predictors, SAOCP achieves the best or second-best width, local coverage error, and strongly adaptive regret.

LGBM (MAE = 0.13) ARIMA (MAE = 0.06) Prophet (MAE = 0.32)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

SCP .769.004 .184.002 .466.005 .031.001 .896.002 .122.002 .290.004 .018.001 .599.005 .349.004 .614.005 .051.001
NExCP .818.002 .183.002 .420.004 .015.000 .891.001 .116.002 .296.004 .012.001 .715.003 .356.004 .559.004 .019.000
FACI .846.002 .169.002 .308.003 .008.000 .886.001 .101.002 .259.003 .008.000 .767.003 .344.004 .397.004 .014.001
SF-OGD .873.001 .173.002 .246.003 .011.001 .892.001 .106.002 .245.003 .011.001 .862.001 .354.004 .220.002 .008.001
FACI-S .875.001 .169.002 .240.003 .010.001 .891.001 .103.002 .243.003 .010.001 .866.002 .349.004 .210.002 .007.001
SAOCP .869.001 .162.002 .213.002 .007.000 .875.001 .093.002 .238.002 .008.001 .867.001 .352.004 .172.001 .005.000

Table 2. Results on M4 Daily (4227 time series) with target coverage 1 − α = 0.9 and interval size k = 20. Results are formatted
as meanstd. Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green).
SAOCP achieves the best width, local coverage error, and strongly adaptive regret for all base predictors. The only methods which achieve
global coverage in (0.85, 0.95) for LGBM and Prophet are the ones that predict ŝt+1 directly, not as a quantile of S1, . . . , St.

the maximum radius for SF-OGD and SAOCP, we choose
D/

√
3 for each horizon h to be the largest h-step residual

observed on the calibration split of the training data.

Base predictors We consider three diverse types of base
predictors (models), and we use their implementations in
Merlion v2.0.0 (Bhatnagar et al., 2021):

1. LGBM: A model which uses gradient boosted trees to
predict ŷ(h)t+h = f̂ (h)(yt−L+1, . . . , yt). This approach
attains strong performance on many time series bench-
marks (Elsayed et al., 2021; Bhatnagar et al., 2021).

2. ARIMA(10, d⋆, 10): The classical AutoRegressive In-
tegrated Moving Average stochastic process model for
a time series, where the difference order d⋆ is chosen
by KPSS stationarity test (Kwiatkowski et al., 1992).

3. Prophet (Taylor & Letham, 2017): A popular Bayesian
model which directly predicts the value y as a function
of time, i.e. ŷt = f̂(t).

Datasets We evaluate on four datasets totaling 5111 time
series: the hourly (414 time series), daily (4227 time series),
and weekly (359 time series) subsets of the M4 Competi-
tion, a dataset of time series from many domains including
industries, demographics, environment, finance, and trans-
portation (Makridakis et al., 2018); and NN5, a dataset of
111 time series of daily banking data (Ben Taieb et al., 2012).
We normalize each time series to lie in [0, 1].

We use horizons H of 24, 30, and 26 for hourly, daily, and
weekly data, respectively. Each time series of length L is
split into a training set of length L − 120 with 80% for
training the base predictor and 20% for initializing the UQ
methods, and a test set of length 120 to test the UQ methods.

Metrics For each experiment, we average the following
statistics across all time series: global coverage, median
width, worst-case local coverage error

LCEk := max
[τ,τ+k−1]⊆[1,T ]

∣∣∣α− 1
k

∑τ+k−1
t=τ errt

∣∣∣, (14)

and strongly adaptive regret SAReg(T, k) (7), which we
abbreviate as SARegk. In all cases, we use an interval
length of k = 20. We also report the average mean absolute
error (MAE) of each base predictor.

Results We report results on M4 Hourly and M4 Daily in
Tables 1, 2, and on M4 Weekly and NN5 Daily in Tables 4,
and 5 (Appendix D).

SAOCP consistently achieves global coverage in
(0.85, 0.95), and it obtains the best or second-best interval
width, local coverage error, and strongly adaptive regret for
all base predictors on all 3 M4 datasets. FACI-S generally
achieves better LCEk and SARegk than FACI, showing
the benefits of predicting ŝt+1 directly, rather than as a
quantile of S1, . . . , St. The relative performance of FACI-S
and SF-OGD varies, though FACI-S is usually a bit better.
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Method LCE10 LCE20 LCE30 LCE40 LCE50 LCE60

SCP .585 .466 .389 .336 .295 .263
NExCP .592 .420 .323 .262 .221 .191
FACI .467 .308 .232 .187 .157 .134
SF-OGD .394 .246 .183 .146 .123 .104
FACI-S .385 .240 .179 .144 .122 .104
SAOCP .337 .213 .159 .128 .107 .091

Table 3. Local coverage error of the LGBM model evaluated on the
M4 Daily dataset (4227 time series) with target coverage 1− α =
0.9 and multiple interval sizes k. Best results are bold, while
second-best are underlined. SAOCP achieves the best LCEk for
all k. Standard errors for all reported values are below 0.005.

However, SAOCP consistently achieves better LCEk and
SARegk than both FACI-S and SF-OGD.

There are multiple instances where all of SCP/NExCP/FACI
fail to attain global coverage in (0.85, 0.95) (Tables 2 and
4). The base predictor’s MAE is at least 0.13 in all these
cases, suggesting an advantage of predicting ŝt+1 directly
as in SF-OGD/SAOCP when the underlying base predictor
is inaccurate.

Evaluations with different interval lengths Tables 1, 2,
4, and 5 evaluate LCEk of various online conformal pre-
diction methods with an interval size of k = 20 across a
wide range of experimental settings. To determine whether
these results hold for different interval lengths, we report
LCEk for the LGBM model on the M4 Daily dataset for
k ∈ {10, 20, 30, 40, 50, 60} (Table 3). Out of the box,
SAOCP achieves the best LCE for all k, further exhibit-
ing its robustness.

Additional experiments with ensemble models In Ap-
pendix F, we use EnbPI (Xu & Xie, 2021) to train a boot-
strapped ensemble, and we compare EnbPI’s results with
those obtained by applying NExCP, FACI, SF-OGD, and
SAOCP to the residuals produced by that ensemble. The
results largely mirror those in the main paper.

5.2. Image Classification Under Distribution Shift

Datasets and Setup We evaluate the ability of conformal
prediction methods to maintain coverage when the under-
lying distribution shifts in a systematic manner. We use a
ResNet-50 classifier (He et al., 2016) pre-trained on Ima-
geNet and implemented in PyTorch (Paszke et al., 2019).
Here, x ∈ X is an image, and y ∈ Y = [m] is its class. To
construct structured distribution shifts away from the train-
ing distribution, we use TinyImageNet-C and ImageNet-C
(Hendrycks & Dietterich, 2019), which are corrupted ver-
sions of the TinyImageNet (m = 200 classes) (Le & Yang,
2015) and ImageNet (m = 1000 classes) (Deng et al., 2009)
test sets designed to evaluate model robustness. These cor-

rupted datasets apply 15 visual corruptions at 5 different
severity levels to each image in the original test set.

We consider two regimes: sudden shifts where the corrup-
tion level alternates between 0 (the base test set) and 5, and
gradual shifts where the corruption level increases in the
order of {0, 1, . . . , 5}. We randomly sample 500 data points
for each corruption level before changing to the next level.

Prediction Sets We follow Angelopoulos et al. (2021b)
to construct our prediction sets. Let f̂ : Rd → ∆m be
a classifier that outputs a probability distribution on the
m-simplex. At each t, we sample Ut ∼ Unif[0, 1] and let

St(x, y) = λ
√
[ky − kreg]+ + Utf̂y(x) +

∑ky−1
i=1 f̂π(i)(x)

Ĉt(Xt) = {y : St(Xt, y) ≤ ŝt}, (15)

where π is the permutation that ranks f̂(x) in decreasing
order, π(ky) = y, and λ and kreg are regularization param-
eters designed to reduce the size of the prediction set. For
TinyImageNet, we use λ = 0.01 and kreg = 20. For Ima-
geNet, we use λ = 0.01 and kreg = 10. Accordingly, we set
the maximum radius D = λ

√
m− kreg for SF-OGD and

SAOCP, which we note is the maximum value of St(·, ·).

Metrics When evaluating the UQ methods, we plot the
local coverage and prediction set size (PSS) of each method
using an interval length of k = 100,

LocalCov(t) = 1
100

∑t+99
i=t 1[Yi ∈ Ĉi(Xi)]

LocalPSS(t) = 1
100

∑t+99
i=t

∣∣∣Ĉi(Xi)
∣∣∣.

We compare the local coverage to a target of 1− α, while
we compare the local PSS to the 1−α empirical quantile of
the oracle set sizes PSS⋆t = |{y : St(Xt, y) ≤ St(Xt, Yt)}|.
These targets are the “best fixed” values in each window. We
also report the worst-case local coverage error LCE100 (14).

Results We evaluate the UQ methods on TinyImageNet
and TinyImageNet-C in Figure 1, and on ImageNet and
ImageNet-C in Figure 2 (Appendix G). In both sudden and
gradual distribution shift, the local coverage of SAOCP and
SF-OGD remains the closest to the target of 0.9. The differ-
ence is more notable when the distribution shifts suddenly.
When the distribution shifts more gradually, NExCP, FACI,
and FACI-S have worse coverage than SAOCP and SF-OGD
at the first change point, which is where the largest change
in the best set size occurs.

All methods besides SCP predict sets of similar sizes,
though FACI’s, FACI-S’s, and NExCP’s prediction set sizes
adapt more slowly to changes in the best fixed size (e.g.
t ∈ [500, 700] for gradual shift in Figure 2). On TinyIma-
geNet, SAOCP obtains slightly better local coverage than
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NExCP: LCEk = (0.13, 0.14)
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Figure 1. Local coverage (top row) and prediction set size (second row) achieved by various UQ methods when the distribution shifts
between TinyImageNet and TinyImageNet-C every 500 steps. We plot moving averages with a window size of 100. Left: sudden shifts
between corruption level 0 and 5. Right: gradual shift from level 0 to 5. SAOCP and SF-OGD’s local coverage remain the closest to the
target of 0.9, especially at the change points. While their prediction sets have similar size, LCEk is lower for SAOCP than SF-OGD.

SF-OGD, and they both have similar prediction set sizes
(Figure 1). On ImageNet, SAOCP and SF-OGD attain simi-
lar local coverages, but SAOCP tends to attain that coverage
with a smaller prediction set (Figure 2).

6. Conclusion
This paper develops new algorithms for online conformal
prediction under arbitrary distribution shifts. Our algorithms
achieve approximately valid coverage and better strongly
adaptive regret than existing work. On real-world experi-
ments, our proposed algorithms achieve coverage closer to
the target within local windows, and they produce smaller
prediction sets than existing methods. Our work opens up
many questions for future work, such as obtaining stronger
coverage guarantees, or characterizing the optimality of the
learned radii under various settings with distribution shift.
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A. Basic Properties of Online Conformal Prediction Algorithms
A.1. Properties of SF-OGD

We consider the SF-OGD algorithm (Algorithm 2). We first show that the iterates of SF-OGD are bounded within a range
slightly larger than the range of the true radii. The proof is similar to Gibbs & Candès (2021, Lemma 4.1).

Lemma A.1 (Bounded iterates for SF-OGD). Suppose the true radii are bounded: St ∈ [0, D] for all t ∈ [T ]. Then
Algorithm 2 with any initialization ŝ1 ∈ [−η,D + η] and learning rate η > 0 admits bounded iterates:

ŝt ∈ [−η,D + η] for all t ∈ [T ].

Proof. Recall by (2) that

∇ℓ(t)(ŝt) = α− 1 [ŝt < St] = α− errt ∈ {−(1− α), α} ⊂ [−1, 1]. (16)

for all t ∈ [T ]. Therefore, Algorithm 2 satisfies for any t ≥ 1 that

|ŝt+1 − ŝt| = η

∣∣∣∣∣∣ α− errt√∑t
τ=1(α− errτ )2

∣∣∣∣∣∣ ≤ η. (17)

We prove the lemma by contradiction. Suppose there exists some t such that ŝt /∈ [−η,D + η]. Let t ≥ 2 be the smallest
such time index (abusing notation slightly). Suppose ŝt > D + η, then by (17) we must have ŝt−1 > D but ŝt−1 ≤ D + η.
Note that ŝt−1 > D ≥ St−1 by our precondition, so that the (t − 1)-th prediction set must cover and thus errt−1 = 0.
Therefore by the algorithm update (10) we have

ŝt = ŝt−1 − η
α− errt−1√∑t−1
τ=1(α− errτ )2

< ŝt−1 ≤ D + η,

contradicting with our assumption that ŝt > D+ η. A similar contradiction can be derived for the other case where ŝt < −η.
This proves the desired result.

The following regret bound follows directly by applying the generic regret bound of Scale-Free OGD (Orabona & Pál, 2018,
Theorem 2) to the quantile loss (1).

Proposition A.2 (Anytime regret bound for SF-OGD). Suppose the true radii are bounded: St ∈ [0, D] for all t ∈ [T ].
Then Algorithm 2 with any initialization ŝ1 ∈ [0, D] and learning rate η = D/

√
3 achieves the following regret bound for

any t ∈ [T ]:

Reg(t) ≤ (
√
3 + 1)D

√√√√ t∑
τ=1

∥∥∇ℓ(τ)(ŝτ )
∥∥2
2
≤ O(D

√
t).

Proof. The second inequality follows directly by (16).

To prove the first inequality (the regret bound), we note that Algorithm 2 is a special case of the Scale-Free Mirror Descent
algorithm of Orabona & Pál (2018, Section 4) with convex loss ℓ(t)(·) = ℓ1−α(St, ·), and regularizer R(s) := s2/(2η)
(in their notation) which is λ = 1/η-strongly convex with respect to the ℓ2 norm on R. Further, by Lemma A.1 we have
ŝt ∈ [−η,D + η] for all t ∈ [T ]. Therefore, applying Orabona & Pál (2018, Theorem 2) gives that for any t ∈ [T ],

t∑
τ=1

ℓ(τ)(ŝτ )− inf
s⋆∈[0,D]

t∑
τ=1

ℓ(τ)(s⋆) ≤
(
1

λ
+ sup

τ≥1
BR(s

⋆, ŝτ )

)
·

√√√√ t∑
τ=1

∥∥∇ℓ(τ)(ŝτ )
∥∥2
2

=

(
η + sup

s⋆∈[0,D],s′∈[−η,D+η]

1

2η
(s⋆ − s′)2

)
·

√√√√ t∑
τ=1

∥∥∇ℓ(τ)(ŝτ )
∥∥2
2
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=

(
η +

(D + η)2

2η

)
·

√√√√ t∑
τ=1

∥∥∇ℓ(τ)(ŝτ )
∥∥2
2
,

where BR(·, ·) denotes the Bregman divergence associated with R. Choosing η = D/
√
3, the leading coefficient is

(
√
3 + 1)D. The desired result follows by noting that

Reg(t) =

t∑
τ=1

ℓ(τ)(ŝτ )− inf
s⋆∈R

t∑
τ=1

ℓ(τ)(s⋆) =

t∑
τ=1

ℓ(τ)(ŝτ )− inf
s⋆∈[0,D]

t∑
τ=1

ℓ(τ)(s⋆)

by our assumption that St ∈ [0, D] and basic properties of the quantile losses
{
ℓ(τ)(·)

}
τ≥1

.

A.2. Example of “Trivial” Algorithm with Coverage Guarantee

We consider the following “trivial” online conformal prediction algorithm that does not utilize the data at all: Simply predict
the maximum radius D for (1− α) proportion of the time steps, then predict the minimum radius 0 for α proportion of the
time steps: {

ŝt := D for t ∈ {1, . . . , ⌊(1− α)T ⌋} =: Tfull,

ŝt := 0 for t ∈ {⌊(1− α)T ⌋+ 1, . . . , T} =: Tempty.
(18)

By our assumption that St ∈ [0, D] almost surely and the nested set structure of Ĉt(Xt, ·), we have errt = 1[Yt ∈ Ĉt] =
1[ŝt ≥ St] = 0 for all t ∈ Tfull, and similarly errt = 1 for all t ∈ Tempty. Therefore, algorithm (18) directly satisfies

CovErr(T ) =

∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ =
∣∣∣∣ |Tempty|

T
− α

∣∣∣∣ = ∣∣∣∣T − ⌊(1− α)T ⌋
T

− α

∣∣∣∣ ≤ 1

T
, (19)

i.e. the algorithm achieves approximately (1− α) empirical coverage, with error O(1/T ). It is also straightforward to see
that, by slightly modifying the definition of Tfull, Tempty (making the two index sets alternate), we can make the above
coverage bound hold in an anytime sense (for t ∈ [T ]).

However, it is straightforward to construct examples of data distributions for which the trivial algorithm (18) suffers linear
regret on the quantile loss ℓ(t) defined in (1), and such data distributions can be chosen to be fairly simple. For example,
suppose all data points admit the same true radius D/2, i.e.

St ≡ D/2 for all t ∈ [T ].

Then for s⋆ = D/2 we have ℓ(t)(s⋆) = ℓ1−α(D/2, D/2) = 0 for all t ∈ [T ], which achieves total loss
∑T

t=1 ℓ
(t)(s⋆) = 0

(the smallest possible, since ℓ(t)(·) ≥ 0). On the other hand, algorithm (18) achieves loss

ℓ(t)(ŝt) = ℓ1−α(St, ŝt) =

{
ℓ1−α(D/2, D) = α(D/2) for t ∈ Tfull,

ℓ1−α(D/2, 0) = (1− α)(D/2) for t ∈ Tempty.

Therefore, we have

Reg(T ) =

T∑
t=1

ℓ(t)(ŝt)− inf
s⋆

ℓ(t)(s⋆) =

T∑
t=1

ℓ(t)(ŝt) = αD/2 · |Tfull|+ (1− α)D/2 · |Tempty|

= αD/2 · ⌊(1− α)T ⌋+ (1− α)D/2 · (T − ⌊(1− α)T ⌋) ≥ α(1− α)DT = Ω(T ),

i.e. algorithm (18) suffers from linear regret. This demonstrates sublinear regret as a sensible criterion for ruling out trivial
algorithms like (18).
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B. Proofs for Section 4
B.1. Proof of Proposition 4.1

The proof follows by plugging in the regret bound for SF-OGD (Proposition A.2) into Jun et al. (2017, Theorem 2). Define
u(t) := maxn{2n : t ≡ 0 mod 2n}. Fix any k ∈ [T ] and τ ∈ [T − k + 1]. Their proof starts by splitting the interval
[τ, τ + k − 1] into consecutive sub-intervals J̄ (1), . . . , J̄ (n), where J̄ (i) = [τi,max{τ + k, τi + u(τi)} − 1] is a prefix of
expert Aτi ’s active interval.

We have for any fixed s⋆ ∈ R that

Regretkτ (s
⋆) :=

τ+k−1∑
t=τ

ℓ(t)(ŝt)−
τ+k−1∑
t=τ

ℓ(t)(s⋆)

=

n∑
i=1

∑
t∈J̄(i)

(
ℓ(t)(ŝt)− ℓ(t)(ŝt,τi)

)
+

n∑
i=1

∑
t∈J̄(i)

(
ℓ(t)(ŝt,τi)− ℓ(t)(s⋆)

)
≤ D

n∑
i=1

√∣∣J̄ (i)
∣∣(7 log T + 5)︸ ︷︷ ︸

Jun et al. (2017, Lemma 2)

+D

n∑
i=1

√∣∣J̄ (i)
∣∣(1 +√

3)︸ ︷︷ ︸
Proposition A.2

≤ D

(√
7 log T + 5 +

√
1 +

√
3

) ∞∑
j=0

√
k2−j

︸ ︷︷ ︸
Jun et al. (2017, Lemma 3)

=
D
√
2√

2− 1

√
k

(√
7 log T + 5 +

√
1 +

√
3

)
≤ 15D

√
k(log T + 1)

Taking supremum over all s⋆ ∈ R and all intervals [τ, τ + k − 1] ⊂ [T ], we obtain the desired bound on SAReg(T, k).

B.2. Dynamic Regret for SAOCP

Proposition B.1 (Dynamic regret bound for SAOCP). Algorithm 1 achieves the following (worst-case) dynamic regret
bound: For any interval [τ, τ + k − 1] ⊂ [T ] of length k ∈ [T ], we have

τ+k−1∑
t=τ

ℓ(t)(ŝt)− min
s⋆τ:τ+k−1

τ+k−1∑
t=τ

ℓ(t)(s⋆t ) =

τ+k−1∑
t=τ

[
ℓ(t)(ŝt)− ℓ(t)(St)

]
≤ Õ

(
D
[
V

1/3
[τ,τ+k−1]k

2/3 +
√
k
])

, (20)

where

V[τ,τ+k−1] :=

τ+k−1∑
t=τ+1

|St − St−1|

is the path length of the true radii within [τ, τ + k − 1].

The dynamic regret4 Õ(V
1/3
[τ,τ+k−1]k

2/3 +
√
k) obtained in Proposition B.1 matches minimax optimal rate (Besbes et al.,

2015) for general online convex optimization problems under gradient feedback; though we remark that faster rates are
achievable under full-information feedback of the entire loss function (Zhao & Zhang, 2021, Theorem 3).

Comparison of dynamic regret with FACI Dividing (20) by k, we obtain the following average dynamic regret bound
for SAOCP on [τ, τ + k − 1]:

Õ
(
D
[
(V[τ,τ+k−1]/k)

1/3 + 1/
√
k
])

,

simultaneously for all lengths k and τ ∈ [T − k + 1].

4More precisely, the intermediate result with V[τ,τ+k−1] replaced by the standard total variation of losses Ṽ[τ,τ+k−1] in (21).
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In comparison, the FACI algorithm (adapted to our setting) with learning rate η acheives average dynamic regret bound (Gibbs
& Candès, 2022, Theorem 3.2)

Õ
(
D
[
(V[τ,τ+k−1]/k)

1/2 + η/D +D/(ηk)
])

.

When the path length V[τ,τ+k−1] = o(k), FACI achieves a better dependence on the average path length (V[τ,τ+k−1]/k =
o(1), yet a worse dependence on k itself due to the inability to choose the optimal η simultaneously for all k, similar as the
comparison of their SARegret bounds (Section 4.1).

Proof of Proposition B.1 We apply the dynamic regret bound of Zhang et al. (2018, Corollary 5) for the SAOCP
algorithm on the interval [τ, τ + k − 1], and note that our iterates ŝt ∈ [−η,D + η] ⊂ [−D, 2D] by Lemma A.1 and our
choice η = D/

√
3 in Algorithm 1. Therefore we obtain

τ+k−1∑
t=τ

ℓ(t)(ŝt)− min
s⋆τ:τ+k−1

τ+k−1∑
t=τ

ℓ(t)(s⋆t ) ≤ Õ
(
D
[
Ṽ

1/3
[τ,τ+k−1]k

2/3 +
√
k
])

,

where

Ṽ[τ,τ+k−1] =

τ+k−1∑
t=τ+1

sup
s′∈[0,D]

∣∣∣ℓ(t)(s′)− ℓ(t−1)(s′)
∣∣∣ (i)≤ τ+k−1∑

t=τ+1

|St − St−1| = V[τ,τ+k−1], (21)

where (i) follows by the fact that
∣∣ℓ(t)(s′)− ℓ(t−1)(s′)

∣∣ = |ℓ1−α(s
′, St)− ℓ1−α(s

′, St−1)| ≤ |St − St−1| by the
1-Lipschitzness of the quantile loss (1) with respect to the second argument. This proves the desired result.

B.3. Proof of Theorem 4.2

We first note that, by (2) and (10), Algorithm 2 simplifies to the update

ŝt+1 = ŝt + η
errt − α√∑t
s=1(errs − α)2

= ŝ1 + η

t∑
s=1

errs − α√∑s
i=1 (erri − α)2

. (22)

Note that we have ŝt+1 ∈ [−η,D + η] for all t ≥ 0 (Lemma A.1), which implies that∣∣∣∣∣∣
tf∑

t=t0+1

errt − α√∑t
s=1(errs − α)2

∣∣∣∣∣∣ = 1

η

∣∣ŝtf+1 − ŝt0+1

∣∣ ≤ D + 2η

η
for any 0 ≤ t0 < tf .

Note that |errt−α| ∈ [α, 1] for all t. Therefore, we can invoke Lemma B.2 below with at = errt−α and M = (D+2η)/η
to obtain that for any T ≥ 1,

∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ ≤ 2

(
D + 3η

η
+ α−2 log T

)
T−1/4 ≤ O(α−2T−1/4 log T ),

where the later bound holds for any η = Θ(D). This proves Theorem 4.2.
Lemma B.2. Suppose the sequence {at}t∈[T ] ∈ R satisfies α ≤ |at| ≤ 1 for some α > 0, and∣∣∣∣∣∣

tf∑
t=t0+1

at√∑t
s=1 a

2
s

∣∣∣∣∣∣ ≤ M for any 0 ≤ t0 < tf ≤ T.

Then we have ∣∣∣∣∣ 1T
T∑

t=1

at

∣∣∣∣∣ ≤ 2
(
M + 1 + α−2 log T

)
T−1/4.
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Proof. The proof builds on a grouping argument. Define integers

L =
⌈
T β
⌉
, K = ⌈T/L⌉ ≤ T 1−β + 1,

where β ∈ (0, 1) is a parameter to be chosen. For any k ∈ [K], define the k-th group to be

Gk = {tk−1 + 1, . . . , tk} := {(k − 1)L+ 1, . . . ,min {kL, T}}, (23)

so that we have
⋃K

k=1 Gk = [T ], |Gk| = L for all k ∈ [K − 1], and |GK | ≤ L.

Next, for any fixed k ≥ 2, define sums

Sk :=
∑
t∈Gk

at√∑t
s=1 a

2
s

, S̃k :=
∑
t∈Gk

at√∑tk−1

s=1 a2s

.

By our precondition, we have |Sk| ≤ M for all k ∈ [K]. Further, we have

∣∣∣Sk − S̃k

∣∣∣ ≤ ∑
t∈Gk

|at| ·

 1√∑tk−1

s=1 a2s

− 1√∑t
s=1 a

2
s

 ≤ |Gk| ·

 1√∑tk−1

s=1 a2s

− 1√∑tk
s=1 a

2
s


(i)

≤ L ·
∑tk

s=tk−1+1 a
2
s

2
(∑tk−1

s=1 a2s

)3/2 (ii)

≤ L · L

2(α2(k − 1)L) ·
(∑tk−1

s=1 a2s

)1/2 =
L

2α2(k − 1) ·
√∑tk−1

s=1 a2s

,

where (i) uses the inequality 1√
x
− 1√

x+y
≤ y

2x3/2 for x, y ≥ 0, and (ii) uses the bounds
∑tk

s=tk−1+1 a
2
s ≤ (tk − tk−1) ≤ L

and
∑tk−1

s=1 a2s ≥ α2tk−1 = α2(k − 1)L. By the triangle inequality, this implies that∣∣∣S̃k

∣∣∣ ≤ |Sk|+
∣∣∣S̃k − Sk

∣∣∣ ≤ M +
L

2α2(k − 1) ·
√∑tk−1

s=1 a2s

,

and thus for any k ≥ 2 that∣∣∣∣∣∑
t∈Gk

at

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
t∈Gk

at√∑tk−1

s=1 a2s

∣∣∣∣∣∣︸ ︷︷ ︸
|S̃k|

·

√√√√tk−1∑
s=1

a2s ≤

M +
L

2α2(k − 1) ·
√∑tk−1

s=1 a2s

 ·

√√√√tk−1∑
s=1

a2s

≤ M

√√√√tk−1∑
s=1

a2s +
L

2α2(k − 1)
≤ M

√
(k − 1)L+

L

2α2(k − 1)
.

For k = 1, we have trivially
∣∣∑

t∈G1
at
∣∣ ≤ |G1| ≤ L. Summing the bounds over k ∈ [K] yields∣∣∣∣∣

T∑
t=1

at

∣∣∣∣∣ ≤ L+

K∑
k=1

∣∣∣∣∣∑
t∈Gk

at

∣∣∣∣∣ ≤ L+M
√
L ·

K∑
k=2

√
k − 1 +

L

2α2

K∑
k=2

1

k − 1

≤ L+
2

3
M

√
LK3/2 +

L

2α2
log2 K

≤
⌈
T β
⌉
+

2

3
M
√
⌈T β⌉ · T 3(1−β)/2 +

1

2α2

⌈
T β
⌉
log2(T

1−β)

≤ 2T β + 2MT 3/2−β +
2

α2
T β log T.

Choosing β = 3/4, we obtain ∣∣∣∣∣
tf∑

t=t0+1

at

∣∣∣∣∣ ≤ 2
(
M + 1 + log T/α2

)
T 3/4.

Dividing by T on both sides yields the desired result.
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B.4. Coverage of SAOCP

Theorem B.3 (Coverage bound for SAOCP). Consider a randomized version of Algorithm 1 where Line 7 is changed to
sampling an expert i ∼ pt,· ∈ ∆([t]) and outputting radius ŝt,i. Consider the corresponding expected miscoverage error

ẽrrt :=

t∑
i=1

pt,i 1 [ŝt,i < St]︸ ︷︷ ︸
:=errt,i

. (24)

Then we have for any T ≥ 1 that

∣∣∣∣∣ 1T
T∑

t=1

ẽrrt − α

∣∣∣∣∣ ≤ O

(
inf

β∈(1/2,1)

{
T 1/2−β + T β−1 ×

(
1 +

⌈T 1−β⌉∑
j=2

max
t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣
)

︸ ︷︷ ︸
Sβ({pt}t∈[T ],{

∑t
τ=i ∥∇ℓ(τ)(ŝτ,i)∥2

2}i≤t})=:Sβ(T )

})

(understanding ptj−1,i := 0 for any i > tj−1), where for each β ∈ (1/2, 1), {Gj}
⌈T 1−β⌉
j=1 with |Gj | ≤

⌈
T β
⌉
, Gj =

{tj−1 + 1, . . . ,min {tj , T}} is the even grouping of [T ] as in (23), and

Gi
i:t :=

√√√√ t∑
τ=i

∥∥∇ℓ(τ)(ŝτ,i)
∥∥2
2
=

√√√√ t∑
τ=i

(errτ,i − α)2

is the cumulative squared gradients received by expert Ai for any t > i (understanding experts as running until time T even
after they become inactive).

Proof. Fix any i ∈ [T ]. As Algorithm 1 chooses each expert Ai to be SF-OGD (Algorithm 2), we have by (10) that for all
t ≥ i,

ŝt+1,i − ŝt,i =
η

Gi
i:t

· (errt,i − α). (25)

Now fix any β ∈ (1/2, 1). For any group 2 ≤ j ≤
⌈
T 1−β

⌉
and t ∈ Gj , plugging the above into definition (24) gives that

ẽrrt − α =

t∑
i=1

pt,i(errt,i − α) =
1

η

t∑
i=1

pt,iG
i
i:t(ŝt+1,i − ŝt,i)

=
1

η

tj−1∑
i=1

ptj−1,iG
i
i:tj−1

(ŝt+1,i − ŝt,i) +
1

η

t∑
i=1

(
pt,iG

i
i:t − ptj−1,iG

i
i:tj−1

)
(ŝt+1,i − ŝt,i)

=
1

η

tj−1∑
i=1

ptj−1,iG
i
i:tj−1

(ŝt+1,i − ŝt,i) +
1

η

t∑
i=1

(
pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

)
·Gi

i:t(ŝt+1,i − ŝt,i).

Summing this over t ∈ Gj and noting that the coefficients ptj−1,iG
i
i:tj−1

in the first sum does not depend on t, we get∣∣∣∣∣∣
∑
t∈Gj

(ẽrrt − α)

∣∣∣∣∣∣
≤

∣∣∣∣∣1η
tj−1∑
i=1

ptj−1,iG
i
i:tj−1

(ŝtj+1,i − ŝtj−1+1,i)

∣∣∣∣∣+ |Gj | ·max
t∈Gj

∣∣∣∣∣1η
t∑

i=1

(
pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

)
·Gi

i:t(ŝt+1,i − ŝt,i)

∣∣∣∣∣
≤ 1

η
max

i∈[tj−1]
Gi

i:tj−1

∣∣ŝtj+1,i − ŝtj−1+1,i

∣∣+ |Gj | ·max
t∈Gj

t∑
i=1

∣∣∣∣∣1η
(
pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

)
·Gi

i:t(ŝt+1,i − ŝt,i)

∣∣∣∣∣
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(i)

≤ D + 2η

η

√
T + |Gj | ·max

t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣
(ii)

≤ C
√
T + |Gj | ·max

t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣
Above, (i) used Gi

i:tj−1
≤
√

tj−1 − i+ 1 ≤
√
T by the definition of Gi

i:tj−1
, the bound

∣∣ŝtj+1,i − ŝtj−1+1,i

∣∣ ≤ (D + 2η)

which follows by the fact that each expert is initialized within [−η,D + η] and applying Lemma A.1, and the bound∣∣Gi
i:t(ŝt+1,i − ŝt,i)

∣∣ ≤ η by (25); (ii) used the fact that η = D/
√
3 in Algorithm 1, so that (D + 2η)/η = 2 +

√
3 =: C is

an absolute constant. Also, note that for group j = 1, we directly have∣∣∣∣∣∑
t∈G1

(ẽrrt − α)

∣∣∣∣∣ ≤ |G1|.

Summing all the above bounds over j ∈
[⌈
T 1−β

⌉]
gives∣∣∣∣∣

T∑
t=1

(ẽrrt − α)

∣∣∣∣∣ ≤
⌈T 1−β⌉∑

j=1

∣∣∣∣∣∣
∑
t∈Gj

(ẽrrt − α)

∣∣∣∣∣∣
≤ O

(
T 3/2−β + |G1|+

⌈T 1−β⌉∑
j=2

|Gj | ×max
t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣
)

≤ O

(
T 3/2−β + T β

(
1 +

⌈T 1−β⌉∑
j=2

max
t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣
))

Dividing both sides by T proves the desired bound for this fixed β. Further taking supremum over β ∈ (1/2, 1) gives the
desired result.

B.4.1. DISCUSSIONS & SF-OGD AS A SPECIAL CASE

We first note that, the proof of Theorem B.3 does not rely on the specific structure of either the expert weights {pt,i}i<t or
the active intervals. Therefore, the result of Theorem B.3 holds generically for any other aggregation scheme over experts
with arbitrary active intervals, in addition to that specified in Algorithm 1.

In particular, by setting pt,1 = 1 and pt,i = 0 for i ≥ 2, and defining the first expert A1 to be active over [T ], Algorithm 1
(either with or without the randomization, since there is only one active expert) recovers Algorithm 2. In this case, we
show that Sβ(T ) ≤ Õ(α−2) for any β ∈ (1/2, 1), so that Theorem B.3 (and its informal version in Theorem 4.3) indeed
subsumes Theorem 4.2 as a special case by choosing β = 3/4, as claimed in Section 4.2.

We have

Sβ(T ) = 1 +

⌈T 1−β⌉∑
j=2

max
t∈Gj

t∑
i=1

∣∣∣∣∣pt,i − ptj−1,i

Gi
i:tj−1

Gi
i:t

∣∣∣∣∣ (i)= 1 +

⌈T 1−β⌉∑
j=2

max
t∈Gj

∣∣∣∣∣1− G1
1:tj−1

G1
1:t

∣∣∣∣∣, (26)

where (i) used the fact that pt,1 = 1 and pt,i = 0 for i ≥ 2. For any t ∈ Gj , we have∣∣∣∣∣1− G1
1:tj−1

G1
1:t

∣∣∣∣∣ = 1−

√∑tj−1

s=1 (errs − α)2√∑t
s=1(errs − α)2

(i)

≤
∑t

s=tj−1+1(errs − α)2

2
∑tj−1

s=1 (errs − α)2

(ii)

≤ t− tj−1

2α2tj−1

(iii)

≤
⌈
T β
⌉

2α2 · (j − 1) ⌈T β⌉
=

1

2α2(j − 1)
,

where (i) follows from the inequality 1 −
√
x√

x+y
=

√
x+y−

√
x√

x+y
≤

√
x+y−

√
x√

x
=
√
1 + y

x − 1 ≤ y
2x for any x, y ≥ 0; (ii)

follows by the bound |errs −α| ∈ [α, 1] for any s; (iii) follows by definition of the grouping (23). Plugging the above bound
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into (26), we obtain

Sβ(T ) ≤ 1 +

⌈T 1−β⌉∑
j=2

1

2α2(j − 1)
≤ O

(
α−2 log T

)
= Õ(α−2),

proving the claim.

C. Distribution-Aware Coverage Guarantees for SAOCP
In this section, we show that under mild density lower bound assumptions on the true radii, a probabilistic variant of the
coverage error of SAOCP (Algorithm 1) is bounded by Õ(k−1/(2q))+ Õ((Vark/k)

1/q) for every interval of length k, where
q ≥ 2 is a parameter of the density lower bound assumption, and Vark measures a certain variance (over intervals of length
k) in the 1− α conditional quantiles of the true radii. The proof builds on the strongly adaptive regret guarantee (in the
quantile loss) for SAOCP (Proposition 4.1), and bounding parameter estimation errors by excess quantile losses using a
self-calibration inequality type argument (Steinwart & Christmann, 2011).

Setting We consider the online conformal prediction setting described in Section 2. For any t ≥ 1, let Ft :=
σ({Xi, ŝi, Si}i∈[t−1], Xt) be the σ-algebra by all observed data {(Xi, ŝi, Si)}i≤t−1 as well as Xt. Note that by defi-
nition of the online conformal prediction setting, the predicted radius ŝt can only depend on information within Ft as well as
(possibly) external randomness. Consequently, we have St ⊥⊥ ŝt | Ft, i.e. St and ŝt are conditionally independent given Ft.

We now state our assumptions on the distributions of the true radii.
Assumption C.1 (Density upper bounds). For all t ∈ [T ], there exists a constant L > 0 such that St | Ft is a continuous
random variable that is bounded within [0, D] and has a density ft : [0, D] → R≥0 with ft(s) ≤ L/D for all s ∈ [0, D].
Assumption C.2 (Density lower bounds). For all t ∈ [T ], St | Ft is a continuous random variable that is bounded within
[0, D] and has a density ft : [0, D] → R≥0. With probability one, there exist constants b > 0, q ≥ 2,∆t > 0 such that

ft(s) ≥
2b

D

∣∣∣∣2(s− s⋆t )

D

∣∣∣∣q−2

(27)

for all s ∈ [s⋆t −∆t, s
⋆
t +∆t], where

s⋆t := Q1−α(St | Ft) (28)

is the 1− α conditional quantile of St.

As examples for Assumption C.2, the case where q = 2 corresponds to a constant lower bound on the conditional density
ft(·) locally around s⋆t , which holds e.g. if each ft(·) itself has a constant lower bound over [0, D] (this is the assumption
made by Gibbs & Candès (2022)). A larger q makes the density lower bound (27) easier to satisfy and thus specifies a more
relaxed assumption. We also note that s⋆t is itself a random variable which is measurable on Ft.

For any interval I = [τ, τ + k − 1] ⊆ [T ], our coverage result depends on a certain variance between s⋆τ , . . . , s
⋆
τ+k−1.

Concretely, define the interval quantile variation

VarI :=

τ+k−1∑
t=τ

E

[(
s⋆t
D

− 1

kD

τ+k−1∑
i=τ

E[s⋆i | Fτ ]

)2
]
. (29)

Then, the expected absolute difference between SAOCP’s predictions ŝτ , . . . , ŝτ+k−1 and the true conditional quantiles
s⋆τ , . . . , s

⋆
τ+k−1 is Õ(k−1/(2q)) + Õ(k−1/qVar

1/q
I ). Due to the Lipschitzness of the CDFs (by Assumption C.1), the

coverage error has a similar form. So SAOCP achieves better coverage when the interval quantile variation is lower, and it
achieves approximately valid coverage as long as VarI ≤ o(|I|). More formally, we have:
Theorem C.3. Let Assumptions C.1 & C.2 hold. Fix any interval I = [τ, τ + k − 1] ⊆ [T ]. Then, letting ∆I = min{∆t :
t ∈ I}, Algorithm 1 achieves quantile estimation error

1

|I|
∑
t∈I

E
[∣∣∣∣ ŝt − s⋆t

D

∣∣∣∣] ≤ O

(
1

b1/q
D

∆I

(
log T

|I|

)1/(2q)
)

+O

(
L1/q

b1/q
D

∆I

(
VarI
|I|

)1/q
)
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and interval miscoverage error

1

|I|
∑
t∈I

∣∣∣P[Yt ∈ Ĉt(Xt)]− (1− α)
∣∣∣ ≤ O

(
L

b1/q
D

∆I

(
log T

|I|

)1/(2q)
)

+O

(
L1+1/q

b1/q
D

∆I

(
VarI
|I|

)1/q
)
.

In Theorem C.3, q is a parameter quantifying the difficulty of lower bounding the distribution of St | Ft away from its 1−α
conditional quantile s⋆t . If q is higher, then closeness to s⋆t is less correlated with the expected regret on the quantile loss (1).
Meanwhile, the term D/∆I grows larger as α grows smaller. The inclusion of this term mirrors the inclusion of α−2 in
Theorem 4.2, and it indicates that more extreme quantiles are harder to learn.

Proof of Theorem C.3 The key ingredient is the technical Lemma C.4, which uses the expected dynamic regret of
a sequence ŝτ , . . . , ŝτ+k−1 to upper bound the expected distance between that sequence and the true 1 − α conditional
quantiles of Sτ , . . . , Sτ+k−1. We decompose the expected dynamic regret into the interval regret of Algorithm 1 (which
we can upper bound by Proposition 4.1) and a term which we can use VarI to upper bound. The desired coverage bound
follows by the Lipschitzness of the CDFs of the St’s (implied by the density upper bound Assumption C.1). In this proof,
we use EFt [X] as short-hand for the conditional expectation E[X | Ft].

Lemma C.4 (Bounding quantile estimation error by dynamic regret). Fix any interval I = [τ, τ + k − 1] ⊆ [T ], and let
∆I = min{∆t : t ∈ I}. Under Assumption C.2, we have∑

t∈I

E
[∣∣∣∣ ŝt − s⋆t

D

∣∣∣∣]q ≤ 2q(q − 1)

bD

(
D

2∆I

)q∑
t∈I

E[ℓ1−α(St, ŝt)− ℓ1−α(St, s
⋆
t )].

To prove Theorem C.3, we follow a similar technique to Zhang et al. (2018) and decompose the expected dynamic regret

E

[∑
t∈I

ℓ1−α(St, ŝt)− ℓ1−α(St, s
⋆
t )

]
=E

[∑
t∈I

ℓ1−α(St, ŝt)− inf
s

∑
t∈I

ℓ1−α(St, s)

]
︸ ︷︷ ︸

A

+ E

[
inf
s

∑
t∈I

ℓ1−α(St, s)− ℓ1−α(St, s
⋆
t )

]
︸ ︷︷ ︸

B

.

We first observe that term A is simply the expected interval regret on I . Since Proposition 4.1 bounds the strongly adaptive
regret with probability one, we can bound A ≤ 15D

√
|I|(log T + 1). Now, we analyze term B, and note that

E

[
inf
s

∑
t∈I

ℓ1−α(St, s)− ℓ1−α(St, s
⋆
t )

]
≤ inf

s
E

[∑
t∈I

EFt [ℓ1−α(St, s)− ℓ1−α(St, s
⋆
t ))]

]

by Jensen’s inequality and the tower property of conditional expectation. Now, for any t ∈ I and s ∈ [0, D],

EFt
[ℓ1−α(St, s)− ℓ1−α(St, s

⋆
t )]

= EFt
[(1− α)(St − s)1[St > s] + α(s− St)1[St ≤ s]− (1− α)(St − s⋆t )1[St > s⋆t ]− α(s⋆t − St)1[St ≤ s⋆t ]]

=

{
EFt

[(St − s)1[St > s]− α(St − s)− α(s⋆t − St)] St ≤ s⋆t
EFt

[(s− St)1[St ≤ s]− (1− α)(s− St)− (1− α)(s⋆t − St)] St > s⋆t

=

{
EFt

[(St − s)1[s < St ≤ s⋆t ] + α(s− s⋆t )] St ≤ s⋆t
EFt

[(s− St)1[s
⋆
t ≤ St ≤ s]− (1− α)(s− s⋆t )] St > s⋆t

(i)
= EFt

[(St − s)1[s ≤ St ≤ s⋆t ] + (s− St)1[s
⋆
t ≤ St ≤ s]] + α(s− s⋆t )PFt

[St ≤ s⋆t ]− (1− α)(s− s⋆t )PFt
[St ≤ s⋆t ]

(ii)
= EFt

[(St − s)1[s ≤ St ≤ s⋆t ] + (s− St)1[s
⋆
t ≤ St ≤ s]]

=

∣∣∣∣∣
∫ s⋆t

s

(x− s)ft(x)dx

∣∣∣∣∣ (iii)≤ L(s⋆t − s)2

2D
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Above, (i) uses the fact that s⋆t is Ft-measurable, (ii) uses the fact that PFt
[St ≤ s⋆t ] = 1− α by definition, and (iii) uses

the density upper bound ft(x) ≤ L
D (Assumption C.1). Therefore, taking the infimum over s ∈ R and by definition of

VarI (29), we have B ≤ LD
2 VarI , and

E

[∑
t∈I

ℓ1−α(St, ŝt)− ℓ1−α(St, s
⋆
t )

]
≤ 15D

√
|I|(log T + 1) +

LD

2
VarI .

We combine this result with the power-mean inequality, Lemma C.4, and the facts that (q(q − 1))1/q = O(1) and
(x+ y)1/q ≤ x1/q + y1/q to prove the first part of Theorem C.3,

1

|I|
∑
t∈I

E
[∣∣∣∣ ŝt − s⋆t

D

∣∣∣∣] ≤
(

1

|I|
∑
t∈I

E
[∣∣∣∣ ŝt − s⋆t

D

∣∣∣∣]q
)1/q

≤ O

(
D

b1/q∆I

(
log T

|I|

)1/(2q)
)

+O

(
D

∆I

(
LVarI
b|I|

)1/q
)
. (30)

To prove the desired coverage bound, we note that

1

|I|
∑
t∈I

∣∣∣P[Yt ∈ Ĉt(Xt)]− (1− α)
∣∣∣ = 1

|I|
∑
t∈I

|E[EFt [1[St ≤ ŝt]− 1[St ≤ s⋆t ]]]| ≤
1

|I|
∑
t∈I

E[|Ft(ŝt)− Ft(s
⋆
t )|],

where the final inequality uses Jensen’s inequality and the fact that EFt
[1[St ≤ s]] = Ft(s) is the CDF of St | Ft. The

result follows by combining (30) with Assumption C.1, which implies that the CDF Ft is L/D-Lipschitz.

Proof of Lemma C.4 We first consider the following general situation, where S is any continuous random variable
bounded in [0, D] with a density f . Define s⋆ = Q1−α (S). Let g be the density of the normalized random variable
X = 2S−D

D ∈ [−1, 1], and let x⋆ = Q1−α (X) = 2s⋆−D
D . As in Steinwart & Christmann (2011, Example 2.3), assume that

there exist constants b > 0, q ≥ 2,∆ > 0 such that

g(x) ≥ b|x− x⋆|q−2 ⇐⇒ f(s) ≥ 2b

D

∣∣∣∣2(s− s⋆)

D

∣∣∣∣q−2

(31)

for all s ∈ [s⋆ −∆, s⋆ +∆]. Let β = b
q−1 and γ = β( 2∆D )q−1. By Steinwart & Christmann (2011, Theorem 2.7),

|x− x⋆| ≤ 21−1/qq1/qγ−1/q(E[ℓ1−α(X,x)− ℓ1−α(X,x⋆)])
1/q

= 2

(
q

2γ
E[ℓ1−α(X,x)− ℓ1−α(X,x⋆)]

)1/q

= 2

(
q(q − 1)

b

(
D

2∆

)q−1

E[ℓ1−α(X,x)− ℓ1−α(X,x⋆)]

)1/q

Since |x− x⋆| = 2
D |s− s⋆|, ℓ1−α(X,x) = 2

D ℓ1−α(S, s), and we can obtain∣∣∣∣s− s⋆

D

∣∣∣∣q ≤ 2q(q − 1)

bD

(
D

2∆

)q

E[ℓ1−α(S, s)− ℓ1−α(S, s
⋆)].

Lemma C.4 now follows by fixing any t ∈ I , defining Gt = σ(Ft, ŝt) and noticing that St | Gt
dist
= St | Ft (as Gt only

involves possibly an additional “external” randomness of the online prediction algorithm over Ft), so s⋆t = Q1−α(St |
Ft) = Q1−α(St | Gt). Since ŝt and s⋆t are Gt-measurable, we can bound

EGt

[∣∣∣∣ ŝt − s⋆t
D

∣∣∣∣q] ≤ 2q(q − 1)

bD

(
D

2∆I

)q

EGt
[ℓ1−α(St, ŝt)− ℓ1−α(St, s

⋆
t )].

The result follows by taking unconditional expectations of both sides, observing that E[|st − s⋆t |]q ≤ E[|st − s⋆t |
q
] by

Jensen’s inequality, and summing over all t ∈ I .
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LGBM (MAE = 0.19) ARIMA (MAE = 0.09) Prophet (MAE = 0.41)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

SCP .706.018 .288.008 .443.020 .040.003 .911.005 .203.012 .257.013 .017.002 .555.019 .453.016 .571.019 .058.004
NExCP .764.013 .268.009 .411.017 .014.001 .904.004 .185.012 .254.011 .009.001 .681.013 .462.018 .508.017 .017.001
FACI .822.008 .254.009 .282.012 .008.001 .899.003 .169.011 .205.008 .007.001 .776.009 .458.018 .338.013 .007.001
SF-OGD .872.004 .262.009 .208.008 .011.002 .901.003 .170.011 .191.008 .010.002 .871.003 .475.019 .209.008 .009.002
FACI-S .863.005 .240.009 .207.008 .010.002 .891.004 .152.009 .197.008 .010.002 .856.004 .459.018 .197.006 .007.002
SAOCP .872.004 .248.009 .170.006 .008.001 .886.003 .155.010 .178.007 .008.001 .868.002 .473.019 .158.004 .007.001

Table 4. Results on M4 Weekly (359 time series) with target coverage 1 − α = 0.9 and interval size k = 20. Results are formatted
as meanstd. Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green).
For all base predictors, SAOCP achieves the best local coverage error, best strongly adaptive regret, and second-best width. The only
methods which achieve global coverage in (0.85, 0.95) for LGBM and Prophet are the ones that predict ŝt+1 directly, not as a quantile of
S1, . . . , St.

LGBM (MAE = 0.08) ARIMA (MAE = 0.07) Prophet (MAE = 0.11)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

SCP .932.003 .205.004 .123.006 .012.001 .938.003 .199.004 .126.007 .012.001 .912.006 .221.009 .154.009 .010.000
NExCP .922.002 .187.003 .133.006 .011.000 .922.002 .175.003 .136.006 .012.001 .908.003 .208.010 .146.006 .010.000
FACI .910.002 .179.004 .130.005 .010.000 .906.002 .162.004 .132.005 .011.001 .900.002 .200.010 .131.005 .009.000
SF-OGD .904.002 .190.004 .123.004 .011.000 .901.002 .176.004 .130.005 .012.000 .898.002 .216.010 .128.004 .011.000
FACI-S .909.002 .179.003 .127.005 .010.000 .910.002 .166.003 .123.004 .011.000 .904.002 .203.010 .125.004 .009.000
SAOCP .892.002 .179.003 .132.004 .012.000 .895.002 .166.003 .127.005 .012.000 .885.002 .207.010 .134.004 .013.000

Table 5. Results on NN5 Daily (111 time series) with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as
meanstd. Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). All
methods perform similarly well.

D. Additional Time Series Experiments
Here, we report the results of our time series experiments (as described in Section 5.1) on M4 Weekly and NN5 Daily (the
two smaller datasets) in Tables 4 and 5, respectively. The results on M4 Weekly (Table 4) are quite similar to those on M4
Daily (Table 2). All methods do reasonably well on NN5. Considering that even split conformal attains strong worst-case
local coverage error, the residuals likely have a near-exchangeable distribution on NN5 (Barber et al., 2022, Theorems 2a, 3).

E. Additional Experimental Details
We provide specific implementation details of all methods here. We use Q1−α(·) to denote the (empirical) (1 − α)-th
quantile of a set of scalars, defined as

Q1−α

(
{Sτ}tτ=1

)
:= inf

{
s ∈ R :

1

t

t∑
τ=1

1 [Sτ ≤ s] ≥ 1− α

}
. (32)

1. SCP: Split conformal prediction (Vovk et al., 2005) predicts ŝt+1 = Q1−α(
1
t

∑t
τ=1 δSt

).

2. NExCP: Non-exchangeable conformal prediction extends SCP by using a weighted quantile function ŝt+1 =
Q1−α(

1
t

∑t
τ=1 wτδSt

). Barber et al. (2022) suggest using geometrically decaying weights to adapt NExCP to
situations with distribution shift, so we use wt = (1− 3α/4)1−tw1.

3. FACI: Fully Adaptive Conformal Inference has 4 hyperparameters: the individual expert learning rates γ1, . . . , γN ; a
target interval length k; and the meta-algorithm learning rate η; and a smoothing parameter σ. We set k = 100 and
follow Gibbs & Candès (2022) to set N = 8, σ = 1

2k , γ = {0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128},
and

ηt =

√
log(Nk) + 2∑t−1

τ=t−k E[ℓα(βt, αt)2]
,

where the expectation is over αt. We also tried k = 20 for the time series experiments (to match our evaluation metrics),
but the results were worse.
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LGBM (MAE = 0.05) ARIMA (MAE = 0.14) Prophet (MAE = 0.08)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

EnbPI .803.006 .088.003 .331.009 .017.001 .916.003 .220.021 .186.007 .032.014 .834.007 .141.005 .299.011 .018.001
EnbNEx .864.002 .097.003 .218.006 .010.001 .907.003 .198.018 .193.007 .027.012 .892.003 .151.005 .195.006 .010.001
EnbFACI .856.002 .081.003 .200.005 .007.001 .900.003 .181.019 .161.005 .021.007 .884.002 .130.005 .164.005 .007.001
EnbSF-OGD .871.002 .098.004 .173.004 .008.001 .906.003 .201.020 .165.005 .027.009 .898.001 .145.005 .144.004 .008.001
EnbSAOCP .884.002 .091.003 .134.002 .005.000 .893.003 .192.024 .150.004 .053.028 .888.002 .130.005 .130.002 .005.000

Table 6. Ensemble results on M4 Hourly with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as meanstd.
Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). EnbSAOCP
achieves the best local coverage error and strongly adaptive regret for all models, except ARIMA where its strongly adaptive regret is
somewhat high.

LGBM (MAE = 0.11) ARIMA (MAE = 0.10) Prophet (MAE = 0.18)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

EnbPI .512.005 .093.001 .716.004 .077.001 .894.002 .121.002 .289.004 .056.034 .791.005 .288.002 .374.005 .062.001
EnbNEx .749.002 .142.002 .520.004 .020.000 .894.001 .116.003 .293.004 .035.022 .847.003 .343.003 .367.005 .029.000
EnbFACI .776.002 .130.002 .392.003 .015.000 .887.001 .100.007 .248.003 .015.005 .853.003 .232.003 .230.003 .025.001
EnbSF-OGD .798.002 .143.002 .396.004 .021.001 .898.001 .106.002 .241.003 .047.034 .900.002 .292.003 .195.002 .023.001
EnbSAOCP .875.001 .138.002 .203.002 .007.000 .908.001 .096.002 .187.002 .044.033 .917.001 .233.002 .139.001 .011.000

Table 7. Ensemble on M4 Daily with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as meanstd. Best results
are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). EnbSAOCP achieves the
best or second best width, local coverage error, and strongly adaptive regret for all models. It is also the only method which achieves valid
coverage for LGBM.

4. SF-OGD: Scale-Free Online Gradient Descent. The only hyperparameter is the maximum radius D. For the time series
experiments (Section 5.1, Appendix F), we set D/

√
3 for each horizon h equal to the largest h-step residual observed

on the calibration split of the training data. For the m-way image classification experiments (Section 5.2, Appendix G),
we set D = 1 + λ

√
m− kreg, where λ and kreg are the width regularization parameters in (15).

5. FACI-S: FACI applied to St rather than αt. The hyperparameters are the same, except the losses used to compute ηt
are ℓ1−α(St, ŝt), and the learning rates are multiplied by D. We set D in the same way as SF-OGD.

6. SAOCP: There are 2 hyperparameters: the maximum radius D and the lifetime multiplier g in (8). We set D in the same
way as SF-OGD. We set g = 8 for the time series experiments and g = 32 for the image classification experiments.

F. Time Series Experiments with Ensemble Models
In this section, we replicate the experiments of Section 5.1 using ensemble models trained with the method of EnbPI (Xu
& Xie, 2021). Specifically, we train base learner f̂ (b) on (Xt, YT )t∈Ib , where Ib is sampled randomly from [T ]. Then, we
obtain the residual Sy

t = |y − ϕ(f̂ (b)(Xt) : Ib ̸∋ t)| by aggregating all models not trained on (Xt, Yt). Finally, the residual
of a new observation (XT+1, YT+1) is |YT+1 − ϕ(f̂ (b)(XT+1) : b ∈ [B])|. We use B = 5 models in the ensemble.

EnbPI predicts the radius ŝt+1 as the 1− α empirical quantile of the previously observed residuals, as in split conformal
prediction. However, these prediction sets can be obtained via an arbitrary function of the scores, including NExCP, FACI,
SF-OGD, or SAOCP. Besides EnbPI, we call these hybrid methods EnbNEx, EnbFACI, EnbSF-OGD, and EnbSAOCP
respectively. We use the same hyperparameters as described in Appendix E.

This approach puts the other methods on even footing with EnbPI, because EnbPI removes the need for a train/calibration
split and changes the underlying model from a single learner to a more accurate ensemble. We consider the contributions of
EnbPI orthogonal to our own, and this section shows that their method can successfully be combined with ours.

The results mirror those of Section 5.1. EnbSAOCP generally obtains the best or second-best interval width, worst-case local
coverage error, and strongly adaptive regret on all M4 datasets (Tables 6, 7, 8). On NN5 (Table 9), all methods obtain similar
strongly adaptive regret. However, EnbSF-OGD and EnbSAOCP obtain the best and second-best worst-case local coverage
error at the cost of having slightly wider intervals. Across the board, EnbSAOCP has narrower intervals than EnbSF-OGD.
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LGBM (MAE = 0.12) ARIMA (MAE = 0.07) Prophet (MAE = 0.16)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

EnbPI .540.019 .118.006 .596.019 .079.005 .893.008 .174.008 .266.015 .021.003 .785.016 .288.010 .369.019 .048.004
EnbNEx .720.012 .168.007 .483.016 .015.001 .910.004 .161.009 .252.011 .012.001 .875.008 .375.013 .305.015 .027.001
EnbFACI .784.009 .159.006 .336.013 .010.001 .905.004 .142.008 .193.008 .009.001 .881.006 .235.007 .201.010 .017.001
EnbSF-OGD .795.011 .172.007 .329.015 .016.002 .908.003 .152.009 .184.008 .012.002 .915.004 .304.009 .164.008 .023.002
EnbSAOCP .874.004 .165.006 .173.006 .005.000 .909.003 .131.006 .151.006 .008.001 .907.003 .232.006 .133.004 .012.001

Table 8. Ensemble results on M4 Weekly with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as meanstd.
Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). EnbSAOCP
achieves the best width, local coverage error, and strongly adaptive regret for all models. It is also the only method which achieves valid
coverage for LGBM.

LGBM (MAE = 0.09) ARIMA (MAE = 0.07) Prophet (MAE = 0.07)
Method Coverage Width LCEk SARegk Coverage Width LCEk SARegk Coverage Width LCEk SARegk

EnbPI .859.005 .164.004 .225.010 .012.001 .910.003 .163.004 .159.008 .010.001 .904.004 .163.005 .160.007 .010.001
EnbNEx .882.003 .177.004 .177.007 .010.000 .920.002 .174.003 .138.006 .012.001 .923.002 .178.006 .126.004 .012.001
EnbFACI .883.002 .177.004 .166.006 .009.000 .905.002 .156.003 .131.005 .009.001 .907.002 .156.003 .123.004 .010.000
EnbSF-OGD .895.002 .194.004 .132.004 .010.000 .912.002 .176.004 .120.004 .012.001 .912.002 .178.004 .120.004 .013.001
EnbSAOCP .886.002 .188.004 .131.005 .012.000 .906.002 .168.003 .122.004 .012.000 .905.002 .170.003 .118.003 .013.000

Table 9. Ensemble results on NN5 Daily with target coverage 1− α = 0.9 and interval size k = 20. Results are formatted as meanstd.
Best results are bold, while second best are underlined, as long as the method’s global coverage is in (0.85, 0.95) (green). EnbSAOCP
and EnbSF-OGD achieve the best and second-best worst-case local coverage error error at the cost of having slightly wider intervals.

G. Image Classification on ImageNet/ImageNet-C
We replicate the experiments of Section 5.2 using a ResNet-50 classifier on the ImageNet (Deng et al., 2009) base dataset
and its corrupted version ImageNet-C (Hendrycks & Dietterich, 2019). We train the model using SGD with learning rate 0.1
(annealed by a factor of 10 every 7 epochs), momentum 0.9, batch size 256, and early stopping if validation accuracy stops
improving for 10 epochs. The model achieved a final test accuracy of 52.8%. Figure 2 shows the results.

When performing uncertainty quantification, we use the conformal score (15) with width regularization parameters λ = 0.01
and kreg = 20. As in Section 5.2, SAOCP and SF-OGD’s local coverages remain the closest to the target of 0.9. The
differences are most apparent when the distribution shift is sudden, suggesting that they are able to adapt to these distribution
shifts more quickly than other methods. While all methods attain similar prediction set sizes, NExCP and FACI adapt more
slowly to the best fixed prediction set size than SAOCP and SF-OGD. SAOCP also has better coverage than SF-OGD.

26



Improved Online Conformal Prediction via Strongly Adaptive Online Learning

0.7

0.8

0.9

1.0

L
o

ca
l

C
ov

er
ag

e

L
o

ca
l

C
ov

er
ag

e

0

200

400

600

800

P
re

d
ic

ti
on

S
et

S
iz

e

P
re

d
ic

ti
on

S
et

S
iz

e

0 500 1000 1500 2000 2500 3000

Time

0

5

C
or

ru
p

ti
on

L
ev

el

0 500 1000 1500 2000 2500 3000

Time

C
or

ru
p

ti
on

L
ev

el

Best Fixed

SCP: LCEk = (0.29, 0.18)

NExCP: LCEk = (0.09, 0.06)

FACI: LCEk = (0.11, 0.08)

SF-OGD: LCEk = (0.08, 0.05)

FACI-S: LCEk = (0.10, 0.08)

SAOCP: LCEk = (0.08, 0.06)

Figure 2. Local coverage (top row) and prediction set size (second row) achieved by various UQ methods when the distribution shifts
between ImageNet and ImageNet-C every 500 steps. We plot moving averages with window size k = 100. Left: sudden shifts between
corruption level 0 and 5. Right: gradual shift from level 0 to 5. SAOCP and SF-OGD’s local coverage remain the closest to the target of
0.9, especially at the change points. While the two methods attain similar local coverage, SAOCP returns smaller prediction sets than
SF-OGD.
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