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Abstract

A straightforward pipeline for zero-shot out-of-distribution (OOD) detection in-
volves selecting potential OOD labels from an extensive semantic pool and then
leveraging a pre-trained vision-language model to perform classification on both
in-distribution (ID) and OOD labels. In this paper, we theorize that enhancing
performance requires expanding the semantic pool, while increasing the expected
probability of selected OOD labels being activated by OOD samples, and en-
suring low mutual dependence among the activations of these OOD labels. A
natural expansion manner is to adopt a larger lexicon; however, the inevitable
introduction of numerous synonyms and uncommon words fails to meet the above
requirements, indicating that viable expansion manners move beyond merely se-
lecting words from a lexicon. Since OOD detection aims to correctly classify
input images into ID/OOD class groups, we can "make up" OOD label candidates
which are not standard class names but beneficial for the process. Observing
that the original semantic pool is comprised of unmodified specific class names,
we correspondingly construct a conjugated semantic pool (CSP) consisting of
modified superclass names, each serving as a cluster center for samples sharing
similar properties across different categories. Consistent with our established
theory, expanding OOD label candidates with the CSP satisfies the requirements
and outperforms existing works by 7.89% in FPR95. Codes are available in
https://github.com/MengyuanChen21/NeurIPS2024-CSP.

1 Introduction

The efficacy of machine learning models typically diminishes on out-of-distribution (OOD) data,
thereby underscoring the significance of flagging OOD samples for caution. Traditional visual OOD
detection methods are typically driven by a single image modality, leaving the rich information in
textual labels untapped [21, 34, 63, 56, 11]. As pre-trained vision-language models (VLMs) develop,
employing textual information in visual OOD detection has become a burgeoning paradigm [15, 12,
40, 58, 64, 43, 29]. A straightforward pipeline [29] is to select potential OOD labels from a semantic
pool and leverages the text-image alignment ability of a pre-trained VLM. Specifically, potential
OOD labels are selected from WordNet [39] based on their similarities to the In-distribution (ID)
label space, and then CLIP [47] is employed to classify input images into ID/OOD class groups.
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In this paper, we establish a mathematic model to describe the performance of the above pipeline.
Specifically, the activation status of selected OOD labels, aka whether the similarities between OOD
labels and an input image exceed an implicit threshold, can be modeled as a series of independent
Bernoulli random variables [29]. Depending on the class group of the input image, we refer these as ID
and OOD Bernoulli variables for short. As the proportion of selected OOD labels in the semantic pool
increases, our theory indicates an inverted-V performance variation trend, which aligns with the actual
observation. We further derive that the peak performance is positively correlated with two factors: the
size of the semantic pool and the average expectation of the OOD Bernoulli variables. Considering the
mutual influence between factors, a clear strategy for enhancing performance involves concurrently
enlarging these two factors while maintaining low mutual dependence among the Bernoulli variables.
As a result, with an existing semantic pool, what we need to do is to expand it with additional OOD
labels which have higher and independent probabilities of being activated by OOD images.

A straightforward manner of semantic pool expansion is to adopt larger lexicons. However, simple
lexicon expansion fails to yield consistent satisfactory outcomes, and we conclude that the inefficacy
is attributed to the following reasons: On the one hand, larger lexicons bring numerous uncommon
words, whose expected probabilities of being activated by OOD images are minimal, thus resulting
in a reduction of the average expectation of the OOD Bernoulli variables. On the other hand, larger
lexicons introduce plenty of (near-)synonyms for existing OOD label candidates, leading to a high
degree of functional overlap and little benefit. The corresponding Bernoulli random variables for
(near-)synonyms are highly mutual dependent, which severely violates the independence assumption
required by Lyapunov central limit theorem [1], thus failing to achieve the expected enhancement.

The above analysis suggests that viable strategies for semantic pool expansion require moving beyond
the paradigm of simply selecting labels from larger lexicons. Since the goal of OOD detection is
to correctly classify input images into ID/OOD class groups, we can freely "make up" OOD label
candidates which are not standard class names but beneficial for the process. Inspired by the fact that
the original semantic pool is comprised of unmodified specific class names (e.g., "cat", "wallet",
"barbershop"), each of which serves as a cluster center for samples from the same category but
with varying properties, we correspondingly construct a conjugated semantic pool (CSP) consisting
of specifically modified superclass names (e.g., "white creature", "valuable item", "communal
place"), each of which serves as a cluster center for samples sharing similar properties across different
categories. Expanding OOD label candidates with the CSP satisfies the requirements of our theoretical
scheme. Specifically, since superclasses used in constructing the CSP include broad semantic objects,
the property clusters encompass samples from numerous potential OOD categories. Therefore, these
cluster centers, serving as OOD labels, have much higher expected probabilities of being activated by
OOD samples, thus increasing the average expectation of the OOD Bernoulli variables. Furthermore,
the distribution of these property cluster centers in the feature space is distinctly different from that
of the original category cluster centers, resulting in a relatively low mutual dependence between the
new and original labels. Consistent with the established theory, our method outperforms the SOTA
method NegLabel [29] with an improvement of 7.89% in FPR95, which underscores the efficacy of
our method. Our contributions include:

• A theoretical scheme for improving OOD detection with pre-trained VLMs (Section 3.1).
We derive that an unequivocal strategy for performance enhancement requires concurrently
increasing the semantic pool size and the expected activation probability of OOD labels and
ensuring low mutual dependence among the activations of selected OOD labels.

• An analysis of the inefficacy of simple lexicon expansion (Section 3.2). We attribute the
inefficacy to the introduction of numerous uncommon words and (near-)synonyms, which
respectively reduces the expected activation probabilities of OOD labels and brings severe
mutual dependence, thereby failing to achieve theoretical enhancement.

• An expansion manner beyond selecting labels from existing lexicons (Section 3.3). We
construct an additional conjugated semantic pool (CSP), consisting of modified superclass
names, each serving as a cluster center for samples with similar properties across different
categories. Consistent with our established theory, expanding OOD label candidates with
the CSP satisfies the requirements and achieves satisfactory performance improvements.

• Extensive experiments and related analysis on multiple OOD detection benchmarks with
state-of-the-art performances (Section 5), which demonstrate the effectiveness of our method.

Proof and derivations, visualizations, additional experiment results and details are given in Appendix.
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2 Preliminaries

Task setup. OOD detection leveraging pre-trained vision-language models (VLMs), also termed as
zero-shot OOD detection [15, 12, 40, 58, 64, 43, 29], aims to identify OOD images from ID ones
with only natural-language labels of ID classes available. Formally, given the testing image set
X = X in ∪ X out, where X in ∩ X out = ∅, and ID label (class name) set Y in = {y1, . . . , yK}, where
K is the number of ID classes, our target is to obtain an OOD detector G(x;Y in) : X → {in, out},
where x ∈ X denotes a test image. It is noteworthy that the zero-shot setting does not require that
there be no overlap between the pre-training data of VLMs and the testing data X , but only stipulates
that no ID images are available for model fine-tuning. In other words, the split of ID and OOD data
completely depends on how users manually preset the ID label set Yin.

OOD detection with a pre-trained VLM and a semantic pool. A straightforward pipeline of this
task is to select potential OOD labels from a semantic pool and leverages the text-image alignment
ability of a pre-trained VLM to perform zero-shot OOD detection [29]. Specifically, there are
three steps: (1) Fetching numerous words from a semantic pool like WordNet [39] as OOD label
candidates; (2) Selecting a portion of OOD label candidates most dissimilar to the entire ID label
space; (3) Employing a pre-trained VLM like CLIP [47] to obtain similarities between testing images
and ID/OOD labels and then performing OOD detection with a designed OOD score.

The OOD detection performance of this pipeline can be modeled as follows [29]. Given the selected
OOD label set Yout = {z1, . . . , zm}, 0 < m ≤ M , where m is the number of selected OOD
labels, and M is the size of the semantic pool. By applying a threshold ψ, we can naturally define
pin
i = P (si ≥ ψ|f, zi,X in) as the probability of classifying ID input images x ∈ X in as positive

for the given label zi, where si = sim(f(x), f(zi)) is the similarity score given by the pre-trained
model f . To derive an analytic form for the model’s OOD detection performance, we employ a
straightforward OOD score function S(x), aka the total positive count across categories for a sample
x. Specifically, S(xin) =

∑
i s

in
i , where sin

i is a Bernoulli random variable with parameter pin
i , i.e., the

probability of sin
i = 1 is pin

i and the probability of sin
i = 0 is 1− pin

i . Consequently, S(xin) follows a
Poisson binomial distribution with parameters {pin

1 , ..., p
in
m}. pout

i and S(xout) are defined similarly.
Based on the Lyapunov central limit theorem (CLT) [1], we can obtain the following lemma:
Lemma 1. Given independent Bernoulli random variables {s1, ..., sm} with parameters {p1, ..., pm},
where 0 < pi < 1, as m goes to infinity, the Poisson binomial random variable C =

∑m
i=1 si con-

verges in distribution to a normal random variable with distribution N (
∑m

i=1 pi,
∑m

i=1 pi(1− pi)).

According to Lemma 1, proved in Appendix A.1, the distribution of C in can be approximated as
C in ∼ N

(∑m
i=1 p

in
i ,
∑m

i=1 p
in
i (1− pin

i )
)
, and the distribution of Cout can be approximated similarly.

By denoting q1 = Ei[p
in
i ], v1 = Vari[pin

i ], q2 = Ei[p
out
i ], v2 = Vari[pout

i ], we have

C in ∼ N (mq1,mq1(1− q1)−mv1) , C
out ∼ N (mq2,mq2(1− q2)−mv2) . (1)

Thereafter, with the derivation provided in Appendix A.2, we can obtain the closed-form expression
of one of the most commonly adopted OOD performance metric, aka the false positive rate (FPR)
when the true positive rate (TPR) is λ ∈ [0, 1], denoted by FPRλ, as

FPRλ =
1

2
+

1

2
· erf

(√
q1(1− q1)− v1
q2(1− q2)− v2

erf−1 (2λ− 1) +

√
m(q1 − q2)√

2q2(1− q2)− 2v2

)
, (2)

where erf(x) = 2√
π

∫ x

0
e−t2dt. However, contrary to the monotonic trend suggested by Eqn. 2, the

actual performances in experiments exhibit an inverted-V trend as the ratio of selected OOD labels in
the semantic pool increases. Therefore, we further optimize the mathematic model by incorporating
finer-grained variable relationships, seeking theoretical guidance for performance enhancement.

3 Methodology

3.1 A Theoretical Scheme for Performance Enhancement

Since selecting OOD labels is typically based on the reverse-order of similarities to the ID label
space to minimize semantic overlap, i.e., the most dissimilar OOD label candidates are most likely
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to be selected, the expected probability, q1, of OOD labels being activated by ID images is not
static. Specifically, as the ratio of selected OOD labels r = m/M increases, the expected activation
probability q1 = Ei[p

in
i ] of existing OOD labels for ID images will monotonically increase, since

more OOD labels with higher affinities to ID labels are selected. When all labels in the semantic
pool are finally selected, q1 will achieve q2, which means the expected probabilities of OOD labels
being activated by ID and OOD images are close. Meanwhile, q2 is considered as a constant when
the semantic pool is fixed and the ratio r varies, since whether an element in the pool (excluding ID
labels) corresponds to a potential OOD sample is independent of its similarity to the ID label space.
Formally, defining q0 as the lower bound of q1, we model the accumulated increase in q1 as the ratio
r increases from zero with the function u(r), which exhibits following properties:

u(r) = q1(r)− q0, u(r = 0|q0, q2) = 0, u(r = 1|q0, q2) = q2 − q0 > 0, u′(r) ≥ 0. (3)

Besides, we assume that the absolute value of the curvature of u is constrained within a specific range,
thereby preventing abrupt changes in the trend of u, which facilitates subsequent analysis. With u(r),
we set λ = 0.5 in Eqn. 2 for convenience and then explore the properties of

FPR0.5 =
1

2
+

1

2
· erf

(√
m

2
· q0 − q2 + u(r|q0, q2)√

q2(1− q2)− v2

)
. (4)

Denote z =
√

m
2 · q0−q2+u√

q2(1−q2)−v2
, from Eqn. 4, we can derive that the first-order derivative of FPR0.5,

denoted as G(r), can be expressed as

G(r|q0, q2, u,M) =
∂FPR0.5

∂r
=
Me−z2

2
√
2π

· q0 − q2 + u+ 2ru′
√
m
√
q2(1− q2)− v2

, (5)

which can be further proved to monotonically increase over the interval (0, 1] with respect to r with
the above assumptions. Besides, according to Eqn. 5, we can obtain that

lim
r→0+

G(r) = lim
r→0+

κ(q0 − q2)

2
√
r

= −∞, lim
r→1

G(r) = κu′(r = 1) ≥ 0, (6)
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Figure 1: Model performances evaluated
by FPR50 and FPR95 (lower is better)
of our method and NegLabel against the
ratio r, which exhibit a trend of initial de-
cline followed by an increase. Detailed
results can be found in Table 8.

where κ = (M/2π)
1
2 (q2(1− q2)− v2)

− 1
2 e−z2

> 0.

Since FPR0.5(r) is a continuous function within our frame-
work and satisfies Eqn. 6, it can be deduced that there ex-
ists a value r0 ∈ (0, 1] where FPR0.5 reaches its minimum.
Furthermore, FPR0.5 monotonically decreases over the in-
terval (0, r0] and increases over the interval [r0, 1]. Since
FPRλ is a smooth continuous function with respect to λ,
we deduce that FPRλ and FPR0.5 share similar trends as
the parameter r varies, which aligns with the actual results
presented in Fig. 1. A more detailed calculation process
from Eqn. 4 to Eqn. 6 is provided in Appendix A.3.

Subsequently, we delve deeper into the factors influenc-
ing the optimal value of the OOD detection performance
evaluated by FPR0.5(r). When r reaches the critical point
r0, the expected performance improvement resulting from
"OOD samples being correctly identified due to the addi-
tion of new OOD labels" will be equal to the performance degradation caused by "ID samples being
misclassified due to the addition of new OOD labels". As a result, the model performance achieves
its peak. Specifically, from Eqn. 5, it can be inferred that r0 satisfies

q0 − q2 + u(r0|q0, q2) + 2r0u
′(r0|q0, q2) = 0. (7)

Given the complex interdependencies among the variables in the above equation, it is challenging
to derive any definitive conclusions with the undefined form of the function u. Consequently, we
simplify by assuming that the function u(r) is linear. Under this assumption, by substituting Eqn. 7
into Eqn. 4, we obtain that the optimal value of FPR0.5 can be expressed as

FPR0.5(r0) =
1

2
+

1

2
· erf

(
− (2M)

1
2 r

3
2
0 (q2 − q0)√

q2(1− q2)− v2

)
, (8)
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where the variables M and q2, aka the semantic pool size and the expected probability of OOD
labels being activated by OOD samples, are the predominant factors influencing the right side of the
equation. The other variables q0, r0, and v2 remain nearly constant with a sufficiently large semantic
pool (refer to Appendix A.4 for analysis), thus exerting marginal impact.

If we disregard the interdependencies among the variables, the impact of M and q2 on the optimal
value of FPR0.5 is straightforward: (1) With q2 fixed, it can be easily observed that FPR0.5(r0)
monotonically decreases with M . (2) With M fixed, and denoting the input to the erf(·) function
as ζ, it can be derived from Eqn. 8 that,

∂FPR0.5(r0)

∂q2
=

1

2
· ∂erf(ζ)

∂ζ
· ∂ζ
∂q2

= −
√
Mr30
2π

· e
−ζ2

(q2 + q0 − 2q0q2 − 2v2)

(q2(1− q2)− v2)
3
2

≤ 0 (9)

holds in almost all practical cases (see Appendix A.5 for analysis), thus FPR0.5(r0) also monotonically
decreases with respect to q2. However, in real-world scenarios, the complex interactions between M
and q2 prevent either variable from being adjusted in isolation. For instance, utilizing a larger lexicon
to expand the size M of the semantic pool may cause a decline in q2 (see Section 3.2). Conversely,
discarding candidates with lower activation probabilities to elevate q2 leads to a reduction of M . The
variable changes in both strategies exert opposing effects, ultimately leading to minimal improvements
or even degradation in model performance. Besides, the Lyapunov central limit theorem (CLT) used
in proof of Lemma 1 requires that the activations of selected OOD labels are independent. Although
complete independence is impossible to achieve in real-world scenarios, it is essential to maintain a
relatively low level of mutual dependence to reduce the errors in theoretical derivations. Therefore,
an unequivocal strategy for performance enhancement is concurrently increasing the variables
M and q2 and ensuring that there is no strong dependence among the activations of selected
OOD labels. With an existing semantic pool, what we need to do is to expand it with additional
OOD labels which have higher and independent probabilities of being activated by OOD images.

3.2 A Closer Look at the Inefficacy of Simple Lexicon Expansion
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Figure 2: Model performances
evaluated by FPR95 (lower is
better) with lexicons of differ-
ent sizes. Detailed results can
be found in Table 9.

Therefore, it is time to consider how to expand the original semantic
pool, which already includes most common words, while ensuring
the increase of q2 and low mutual dependence. The most straightfor-
ward strategy for expansion, adopting larger existing lexicons, fails
to consistently yield satisfactory outcomes, as shown in Fig. 2. Sub-
sequently, we analyze that the inefficacy of simple lexicon expansion
is attributed to the following reasons.

On the one hand, larger lexicons bring numerous uncommon words,
whose expected probability of being activated by OOD images are
minimal, thus resulting in a reduction of q2. As derived in Sec-
tion 3.1, the decrease of q2 attenuates the performance improvements
yielded by enlarging M . There are two potential reasons for the acti-
vation probability pout

i of an uncommon OOD label zi being minimal:
(1) Pre-trained VLMs lack semantic matching capability for label zi.
This issue is particularly pronounced when zi pertains to concepts
such as highly abstract notions (e.g., "idealism", "metaphysics"),
complex mathematical concepts (e.g., "Lyapunov condition", "central limit theorem"), or specific
knowledge of individuals (e.g., personal names excluding celebrities). Pre-trained VLMs are unable
to recognize the corresponding content of these text inputs, resulting in pout

i remaining close to zero.
(2) The set X out lacks testing samples similar to label zi. For instance, when the test dataset primarily
consists of images of everyday items, new labels constructed from astronomical terms are likely to
maintain pout

i close to zero. 2 The above scenarios are much more prevalent in lexicons of uncommon
terms than those of common words. Thereafter, a larger proportion of labels with minimal activation
probability pout

i will diminish q2 = Ei[p
out
i ], thus attenuating the performance improvement.

On the other hand, larger lexicons introduce plenty of synonyms and near-synonyms for existing
OOD label candidates, leading to a high degree of functional overlap with little additional benefit.

2In practical applications, input images typically encompass limited categories. Therefore, it is reasonable
that an infinite expansion of vocabulary richness does not necessarily yield sustained performance improvement.
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For example, the common word "smartphone" can be expanded by adding synonyms such as "mobile
phone" and "cellphone". However, the selection results for these words are consistent due to their
similar meanings, and if they are selected, the activation of these labels still depends solely on the
presence of a smartphone in the input image. This demonstrates a high level of mutual dependency
and provides little additional benefit compared to only including "smartphone" in the semantic pool.
Despite no reduction in q2, the corresponding Bernoulli random variables for synonyms, representing
whether they are activated by an input OOD image, severely violate the independent assumption
required by Lemma 1. Although the Lyapunov CLT used in proof of Lemma 1 relaxes the requirement
for random variables to have strictly identical distributions as mandated by the traditional CLT, it still
requires that the variables maintain mutual independence. Despite the random variables corresponding
to semantically dissimilar labels are not strictly independent, the intensity of their mutual dependency
is generally much lower than that observed in (near-)synonyms. Contrarily, synonyms and near-
synonyms lead to significant bias in the approximation of Eqn. 1 and the conclusions derived, thereby
failing to achieve the theoretical enhancement.

3.3 Expanding Label Candidates with Conjugated Semantic Pool

The above analysis suggests that viable strategies for semantic pool expansion require moving beyond
the paradigm of simply selecting labels from a lexicon. Since the goal of OOD detection is to correctly
classify input images into ID/OOD class groups, we can freely "make up" OOD label candidates
which are not standard class names but beneficial for the process. Inspired by the fact that the original
semantic pool is comprised of unmodified specific class names, each of which serves as a cluster
center for samples from the same category but with varying properties, we correspondingly construct
a conjugated semantic pool (CSP) consisting of specifically modified superclass names, each of
which serves as a cluster center for samples sharing similar properties across different categories.

We notice that a class name inherently encompasses a broad semantic range. As shown in the bottom
right of Fig. 3, when an image is attached with the class label "cat", it actually depicts one of various
more specific situations, such as a "white cat", "tabby kitten", "gray cat", "yawning cat", or "cat on a
mat", etc. Considering all feature points that correspond to more specific descriptions of cats as a
cluster within the feature space, the feature point of "cat" can be regarded as its cluster center.

Playful
Tabby Kitten

Butterfly
Cat

Pensive 
White Cat

Tabby Cat 
on a Mat

White Butterfly on 
Purple Blooms

Blue Morpho on 
Pink Flowers

Monarch 
Butterfly

White
Creature

White Peacock 
Displaying Feathers

White
Polar Bear

Toy

Plush Bunny 
and Cat

Pink Toy 
Dinosaur

Incorrect nearest label

Absent OOD category

Category name in the

original semantic pool

An element of the

conjugated semantic pool

Cat

White
Creature

Pensive
White Cat

Specific description

of an input image

Input image

White …

Figure 3: An illustrative diagram of an ele-
ment in the conjugated semantic pool (CSP).
Category names can be regarded as the cen-
ters of category clusters. Similarly, elements
in CSP can be considered as cluster centers
of superclass objects with similar properties.

In an ideal scenario, each input image in the feature
space would be closest (most similar) to the clus-
ter center that corresponds to its category, thereby
achieving perfect OOD identification. However, the
following issues impair the ideal case: (1) Due to the
limited capabilities of pre-trained VLMs, some OOD
images, such as "white polar bear" in Fig. 3, are
closer to incorrect cluster centers than to the correct
ones. (2) Owing to the limited scope of lexicons and
the inaccuracy of label selection, the category name
corresponding to an OOD image, such as "white pea-
cock" in Fig. 3, may not exist in selected labels, re-
sulting in the absence of an appropriate cluster center.
To summarize briefly: not every input OOD image
locates close to a correct OOD cluster center.

Thereafter, it naturally occurs to us that we should
construct more suitable cluster centers to attract such
"homeless" OOD images. This is why we expand the original semantic pool by constructing the CSP
as follows: Instead of specifying concrete category names (e.g., "cat", "wallet", "barbershop"), we
utilize superclass names to encompass a wider range of categories (e.g., "creature", "item", "place");
Instead of leaving category names undecorated, we using adjectives from a lexicon as modifiers to
attract objects sharing similar properties. As a result, we obtain numerous label candidates of random
combinations of adjectives and superclasses (e.g., "white creature", "valuable item", "communal
place"). As Fig. 3 shows, in the feature space, "white creature" can be considered as the cluster center
of all feature points corresponding to creatures modified by "white", such as "white cat", "white
butterfly", "white polar bear", etc. Note that the semantic scopes of label candidates in the CSP may
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overlap with ID categories. For example, when "Cat" or "Butterfly" in Fig. 3 are included in ID
classes, the label candidate "White Creature" in the CSP may not be selected as an OOD label.

Consistent with our established theory, our proposed method achieves satisfactory performance
improvements by concurrently enlarging the semantic pool size M and the expected activation
probability q2 of OOD labels and ensuring that there is no severe mutual dependence among the
activations of selected OOD labels. Firstly, when we expand the original semantic pool with the CSP,
the enlargement of M is obvious. Then, since the superclasses used in constructing the CSP typically
include broad semantic objects, the property clusters encompass samples from numerous potential
OOD categories. Therefore, their centers have much higher expected probabilities of being activated
by OOD samples, which brings an increase in q2. Furthermore, the distribution of these property
cluster centers in the feature space is distinctly different from that of the original category cluster
centers. As a result, the mutual dependence between the new and original labels is relatively low,
and the functions of labels from the CSP will not be overshadowed, enhancing the likelihood that an
OOD image locates close to a correct OOD cluster center. Experiment results and analysis which
support the above claims are provided in Appendix C.1.

4 Related works

Traditional visual OOD detection. Traditional visual OOD detection methods, driven by the single
image modality, can be broadly categorized into four distinct types: (1) Output-based methods,
which aims to obtain improved OOD scores from network output, can be further classified into
post-hoc methods [21, 34, 25, 54, 55, 44, 38] and training-based ones [10, 23, 57, 26, 71, 65, 30].
(2) Density-based methods [37, 49, 53, 67, 11] explicitly model the ID data with probabilistic models
and identify test data located in regions of low density as OOD. (3) Distance-based methods [32, 51,
63, 56, 41, 7, 70, 59, 24, 18] originate from the core idea that OOD samples should be relatively far
away from ID prototypes or centroids. (4) Reconstruction-based methods [76, 69, 28, 33], which
employ an encoder-decoder framework trained on ID data, leverage the performance discrepancies
between ID and OOD samples as indicators for anomaly detection. Furthermore, numerous studies
[52, 72, 14, 42, 6] offer theoretical contributions.

OOD detection leveraging pre-trained VLMs. By adopting pre-trained VLMs, employing textual
information in visual OOD detection has become a burgeoning paradigm with remarkable perfor-
mance [15, 12, 40, 58, 64, 43, 29]. Fort et al.[15] propose to feed the names of potential outlier
classes to image-text pre-trained transformers like CLIP [47] for OOD detection. ZOC [12] extends
CLIP with a text-based image description generator to output OOD label candidates for testing.
MCM [40] simply adopts maximum predicted softmax value as the OOD score, which is an effective
and representative post-hoc OOD detection method based on vision-language pre-training. Based on
MCM, NPOS [58] generates artificial OOD training data and facilitates learning a reliable decision
boundary between ID and OOD data. CLIPN [64] trains a text encoder to teach CLIP to comprehend
negative prompts, effectively discriminating OOD samples through the similarity discrepancies
between two text encoders and the frozen image encoder. Also based on CLIP, LSN [43] constructs
negative classifiers by learning negative prompts to identify images not belonging to a given category.
NegLabel [29] proposes a straightforward pipeline, that is, selecting potential OOD labels from an
extensive semantic pool like WordNet [39], and then leveraging a pre-trained VLM like CLIP to
classify input images into ID/OOD class groups. In this study, we explore the theoretical requirements
for performance enhancement in this pipeline, and thus construct a conjugated semantic pool to
expand OOD label candidates, which achieves performances improvements as expected.

Further discussion about NegLabel. NegLabel [29] undertakes a rudimentary theoretical analysis
of the correlation between OOD detection performance and the quantity of adopted potential labels,
concluding that an increase in selected labels correlates with enhanced performance. However, this
conclusion contradicts the observed actual trend. The contradiction arises from that [29] simply
assume a constant higher similarity between OOD labels and OOD images compared to ID images,
neglecting that this similarity discrepancy originates from the strategy of reverse-order selection
of OOD labels based on their similarity to the ID label space. As the set of selected OOD labels
transitions from "a small subset of labels with the lowest similarity to the entire ID label space" to
"the whole semantic pool, which is unrelated to the setting of ID and OOD labels", the discrepancy in
similarity of ID images to OOD labels versus OOD images to OOD labels will progressively diminish
until it disappears. Incorporating the above dynamic to optimize the mathematic model, we focus

7



on the correlation between OOD detection performance and the ratio of selected OOD labels in the
semantic pool, seeking theoretical guidance for performance enhancement.

5 Experiments

5.1 Experiment Setup

Benchmarks. We mainly evaluate our method on the widely-used ImageNet-1k OOD detection
benchmark [26]. This benchmark utilizes the large-scale ImageNet-1k dataset as the ID data, and
select samples from iNaturalist [60], SUN [66], Places [73], and Textures [8] as the OOD data.
The categories of the OOD data have been manually selected to prevent overlap with ImageNet-1k.
Furthermore, we conduct experiments on hard OOD detection tasks, or with various ID datasets.
Besides, we access whether our method generalizes well to different VLM architectures, including
ALIGN [27], GroupViT [68], EVA [13], etc. More details of datasets can be found in Appendix B.

Implementation details. Unless otherwise specified, we employ the CLIP ViT-B/16 model as the
pre-trained VLM and WordNet as the lexicon. The superclass set for constructing the conjugated
semantic pool is {area, creature, environment, item, landscape, object, pattern, place, scene, space,
structure, thing, view, vista}, which nearly encompasses all real-world objects. The ablation in
Appendix C.5 shows that numerous alternative selections can also yield significant performance
improvements. All hyper-parameters are directly inherited from [29] without any modification,
including the ratio r which is set to 15%. Additionally, we adopt the same NegMining algorithm,
OOD score calculation method, and grouping strategy as described in [29]. All experiments are
conducted using GeForce RTX 3090 GPUs.

Prompt ensemble. We use the following prefixes to construct prompts for labels in the original
semantic pool: the, the good (nice), a photo of (with) the nice, a good (close-up) photo of the nice.
For labels in the conjugated semantic pool, we apply the prefixes: a nice (good, close-up) photo of.
The baseline results reported in the ablation study (see Table 3) also utilize this technique.

Computational cost. The prompt ensemble is constructed over the embedding space to avoid any
additional inference cost. Similar to NegLabel, our method is a post hoc OOD detector with negligible
extra computational burden, which introduces < 1% network forward latency.

Evaluation metrics. Following previous works [40, 29, 64], we adopt the following metrics: the
area under the receiver operating characteristic curve (AUROC), and the false positive rate of OOD
data when the true positive rate of ID data is 95% (FPR95) [46].

5.2 Evaluation on OOD detection benchmarks

Evaluation on ImageNet-1k OOD detection benchmark. We compare our method with existing
OOD detection methods on the ImageNet-1k benchmark organized by [26] in Table 1. The methods

Table 1: Comparative performance of OOD detection across baseline methods utilizing CLIP ViT-
B/16 architecture with ImageNet-1k as ID data. Performance metrics are presented as percentages.

Methods
OOD Datasets AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP [21] 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61
ODIN [34] 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy [37] 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89

GradNorm [25] 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM [63] 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN [56] 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19
VOS [11] 94.62 28.99 92.57 36.88 91.23 38.39 86.33 61.02 91.19 41.32

ZOC [12] 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
MCM [40] 94.59 32.20 92.25 38.80 90.31 46.20 86.12 58.50 90.82 43.93
NPOS [58] 96.19 16.58 90.44 43.77 89.44 45.27 88.80 46.12 91.22 37.93
CoOp [75] 94.89 29.47 93.36 31.34 90.07 40.28 87.58 54.25 91.47 38.83

CoCoOp [74] 94.73 30.74 93.15 31.18 90.63 38.75 87.92 53.84 91.61 38.63
CLIPN [64] 95.27 23.94 93.93 26.17 92.28 33.45 90.93 40.83 93.10 31.10
LSN [43] 95.83 21.56 94.35 26.32 91.25 34.48 90.42 38.54 92.96 30.22

NegLabel [29] 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Ours 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
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Table 2: OOD detection performance comparison on hard OOD detection tasks.
ID datasets ImageNet-10 ImageNet-20 ImageNet-10 ImageNet-100 ImageNet-1k WaterBirds

OOD datasets ImageNet-20 ImageNet-10 ImageNet-100 ImageNet-10 ImageNet-O Placesbg

Methods AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

MCM 98.60 6.00 98.09 13.04 99.39 2.50 87.20 60.00 78.59 64.27 87.45 33.62
NegLabel 98.80 5.00 98.04 11.60 99.37 2.50 87.93 49.40 85.78 56.65 87.99 29.16

Ours 99.02 3.30 98.79 3.40 99.33 2.22 89.59 42.40 88.08 51.50 92.88 12.07

Table 3: Ablation study with CLIP (ViT-B/16) as the backbone on ImageNet-1k as ID.
Components of the Whole Semantic Pool OOD Datasets AverageiNaturalist SUN Places Textures

Original
Semantic Pool

Simple
Adj Labels

Conjugated
Semantic Pool AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

✓ 99.63 1.40 96.25 16.63 92.02 33.90 86.91 57.62 93.70 27.39
✓ 97.06 14.00 93.52 31.82 90.80 40.23 90.93 40.89 93.08 31.74

✓ 97.05 13.94 95.96 17.58 91.66 32.43 95.74 18.74 95.10 20.67

✓ ✓ 99.60 1.51 96.15 16.52 92.38 32.00 89.26 47.39 94.35 24.36
✓ ✓ 99.61 1.54 96.69 13.82 92.85 29.69 93.78 25.78 95.73 17.71

listed in the upper section of Table 1, ranging from MSP [21] to VOS [11], represent traditional
visual OOD detection methods. Conversely, the methods in the lower section, extending from
ZOC [12] to NegLabel [29], employ pre-trained VLMs like CLIP. It is evident that the integration of
textual information through VLMs has increasingly become the predominant paradigm. Our method
outperforms the baseline method NegLabel with a considerable improvement of 1.55% in AUROC
and 7.89% in FPR95, which underscores the efficacy of our method. The reported results are averaged
from runs of 10 different random seeds, whose results are provided in Appendix C.2.

Evaluation on hard OOD detection tasks. Following [40], we also evaluate our method on the hard
OOD detection tasks in Table 2. The results of NegLabel [29] are reproduced with its released setting.
Our method shows consistently high performances on various hard ID-OOD dataset pairs.

Evaluation with various ID datasets. We also experiment on various ID datasets, including Stanford-
Cars [31], CUB-200 [61], Oxford-Pet [45], Food-101 [2], ImageNet-Sketch [62], ImageNet-A [22],
ImageNet-R [20], ImageNetV2 [48], etc. Refer to Appendix C.3 for details.

5.3 Empirical evidence supporting our assertions

Performance trends related to the ratio r. In Fig. 1 and Table 8 (Appendix C.4), we present the
FPR performances of our method and NegLabel against a progressively increasing ratio r, which
represents the proportion of selected OOD labels in the whole semantic pool. The color gradations
displayed in the table clearly illustrate an initial improvement in model performance followed by a
subsequent decline as the ratio r increases. This trend aligns with our derivation in Section 3.1.

Inefficacy of simple lexicon expansion. In Fig. 2 and Table 9 (Appendix C.4), we assess whether
adopting larger lexicons enhances performances. Our findings indicate that it does not always hold.
When the semantic pool covers the vast majority of common words, further expansion will introduce
an excessive number of uncommon words and (near-)synonyms, thus failing to meet the derived
requirements for theoretical performance enhancement. The inefficacy of simple lexicon expansion
indicates that viable expansion manners move beyond merely selecting words from existing lexicons.

Validation of consistency between methodology and theory. Refer to Appendix C.1.

5.4 Ablation study

Ablation of different semantic pool components. As shown in Table 3, we explore the effect of
three semantic pool components: (1) the original semantic pool, which consists exclusively of specific
class names; (2) simple adjective labels employed by NegLabel; and (3) our conjugated semantic
pool (CSP). The results demonstrate that the CSP consistently outperforms the simple adjective labels.
Furthermore, the highest average performance across the four OOD datasets is achieved when the
CSP is employed to expand the original semantic pool.
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Table 4: Performances of OOD detection with different CLIP architectures on ImageNet-1k as ID.

Backbones Methods
OOD Datasets AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50 NegLabel 99.24 2.88 94.54 26.51 89.72 42.60 88.40 50.80 92.97 30.70
Ours 99.46 1.95 95.73 19.05 90.39 38.58 92.41 32.66 94.50 23.06

ResNet101 NegLabel 99.27 3.11 94.96 24.55 89.42 44.82 87.22 52.78 92.72 31.32
Ours 99.47 2.04 95.71 19.50 90.27 39.57 90.59 38.67 94.01 24.95

ResNet50x4 NegLabel 99.45 2.27 95.53 21.95 91.62 35.29 89.48 47.77 94.02 26.82
Ours 99.65 1.48 96.26 17.02 92.01 33.42 92.97 29.40 95.22 20.33

ResNet50x16 NegLabel 99.48 2.00 94.18 29.11 88.85 48.14 91.23 38.74 93.43 29.50
Ours 99.68 1.25 95.89 17.89 91.52 35.77 93.80 26.61 95.22 20.38

ResNet50x64 NegLabel 99.63 1.46 94.29 29.34 91.23 39.18 88.27 49.43 93.36 29.85
Ours 99.69 1.19 96.21 18.49 92.81 30.52 92.57 31.12 95.32 20.33

ViT-B/32 NegLabel 99.11 3.73 95.27 22.48 91.72 34.94 88.57 50.51 93.67 27.92
Ours 99.46 2.37 96.49 15.01 92.42 31.47 93.64 25.09 95.50 18.49

ViT-B/16 NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Ours 99.61 1.54 96.69 13.82 92.85 29.69 93.78 25.78 95.73 17.71

ViT-L/14 NegLabel 99.53 1.77 95.63 22.33 93.01 32.22 89.71 42.92 94.47 24.81
Ours 99.72 1.21 96.73 14.88 93.58 28.41 92.71 28.16 95.69 18.17

ViT-L/14-336px NegLabel 99.67 1.31 95.71 21.60 93.02 32.15 90.38 40.44 94.70 23.88
Ours 99.79 0.86 96.82 14.01 93.64 27.65 93.12 27.39 95.84 17.48

Analysis of different CLIP architectures. Table 4 shows that our proposed method consistently
outperforms the baseline method NegLabel by a large margin with differernt CLIP architectures,
which demonstrates our effectiveness.

Ablation of different superclass sets. Refer to Appendix C.5 for details.

6 Conclusion

Summary. In this paper, we propose that enhancing the performance of zero-shot OOD detection
theoretically requires: (1) concurrently increasing the semantic pool size and the expected activation
probability of selected OOD labels; (2) ensuring low mutual dependence among the label activations.
Furthermore, we analyze that the inefficacy of simply adopting larger lexicons is attributed to the
introduction of numerous uncommon words and (near-)synonyms, thus failing to meet the above
requirements. Observing that the original semantic pool is comprised of unmodified specific class
names, we correspondingly construct a conjugated semantic pool consisting of specifically modified
superclass names, each serving as a cluster center for samples sharing similar properties across
different categories. Consistent with the established theory, expanding OOD label candidates with
the conjugated semantic pool satisfies the requirements and achieves considerable improvements.

Limitations and Future directions. Our method has following limitations worth further exploration:
(1) The effectiveness of CSP depends on the implicit assumption that the OOD samples exhibit a
variety of distinct visual properties. When this assumption does not hold, i.e., OOD samples most
share similar visual properties, such as the plant images in iNaturalist, the addition of CSP results in
a slight performance decline, since most newly added labels are not likely to be activated. Reducing
dependency on this assumption is a valuable direction for future research. (2) In this work, we
primarily focus on analyzing and optimizing the activation status of OOD labels while making no
modification to the ID label set. However, there is a possibility that selecting additional labels from
the semantic pool, including the CSP, to expand the ID label set could enhance the identification of
difficult ID samples. We consider this a promising direction for future exploration.
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A Proof and Derivation

The proof is partially adapted from the appendix of [29].

A.1 Proof of Lemma 1

Lyapunov Central Limit Theorem. Suppose {s1, ..., sm, ...} is a sequence of independent random
variables, each with finite expected value µi and variance σ2

i . Define ρ2m =
∑m

i=1 σ
2
i . If for some

δ > 0, Lyapunov’s condition

lim
m→∞

1

ρ2+δ
m

m∑
i=1

E[|si − µi|2+δ] = 0 (10)

is satisfied, then a sum of si−µi

ρm
converges in distribution to a standard normal random variable, as m

goes to infinity:
1

ρm

m∑
i=1

(si − µi)
d−→ N (0, 1). (11)

Lemma 1. Given a sequence of independent Bernoulli random variables {s1, ..., sm} with parameters
{p1, ..., pm}, where 0 < pi < 1, as m goes to infinity, the Poisson binomial random variable
C =

∑m
i=1 si converges in distribution to the normal random variable:

C
d−→ N

(
m∑
i=1

pi,

m∑
i=1

pi(1− pi)

)
. (12)

Proof. The proof process involves an application of the Lyapunov central limit theorem (CLT) [1], a
particular form of CLT which relaxes the identical-distribution assumption. Since si is a Bernoulli
random variable with parameter pi, we know that µ[si] = pi, σ2[si] = pi(1 − pi). To keep the
notation uncluttered, we use µi and σ2

i for substitution. Based on the above expectation and variance
values, we try to verify the Lyapunov condition: Denote ρ2m =

∑m
i=1 σ

2
i , for some δ > 0,

lim
m→∞

1

ρ2+δ
m

m∑
i=1

E
[
|si − µi|2+δ

]
= 0. (13)

Analyzing the term E[|si − µi|2+δ] based on si and µi, we know

E[|si − µi|2+δ] = (1− µi)
2+δ Pr(si = 1) + (0− µi)

2+δ Pr(si = 0)

= (1− pi)
2+δpi + (0− pi)

2+δ(1− pi)

= (1− pi)pi
(
(1− pi)

1+δ + p1+δ
i

)
.

(14)

Thus, we know 0 < E[|si − E[si]|2+δ] < 2. Then, we analyze

ρ2+δ
m =

(
m∑
i=1

pi(1− pi)

)1+δ/2

≥

(
m∑
i=1

ε

)1+δ/2

= ε1+δ/2m1+δ/2, (15)

where ε = min(pi − p2i ) > 0. Based on Eqn. 14 and Eqn. 15, we have

0 <
1

ρ2+δ
m

m∑
i=1

E[|si − µi|2+δ] ≤ 2m

ε1+δ/2m1+δ/2
=

2

ε1+δ/2mδ/2
. (16)

Thus, as m→ ∞, the squeeze theorem tells us that

lim
m→∞

1

ρ2+δ
m

m∑
i=1

E[|si − µi|2+δ] = 0. (17)

Hence, we verify the Lyapunov condition for C and si. Based on the Lyapunov CLT, we know that,
as m goes to infinity,

1

ρm

m∑
i=1

(si − µi)
d−→ N (0, 1), (18)
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where d−→ means “converges in distribution”. Thus, for a sufficiently large m, the Poisson binomial
random variable C =

∑m
i=1 si approximately follows

C ∼ N

(
m∑
i=1

µi, ρ
2
m

)
= N

(
m∑
i=1

pi,

m∑
i=1

pi(1− pi)

)
. (19)

A.2 Derivation of Eq. (3)

First, we denote the cumulative distribution function (CDF) of a normal distribution with mean µ and
standard deviation σ as Φ(x;µ, σ2), which can be expressed by

Φ(x;µ, σ2) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
, (20)

and its inverse function can be expressed by

Φ−1(x;µ, σ2) =
√
2σ · erf−1(2x− 1) + µ, (21)

where erf(x) denotes the integral of the standard normal distribution from 0 to x, termed as error
function, and can be given by

erf(x) =
2√
π

∫ x

0

e−t2dt. (22)

Besides, with the distributions of C in and Cout given by

C in ∼ N (mq1,mq1(1− q1)−mv1) , C
out ∼ N (mq2,mq2(1− q2)−mv2) , (23)

the false positive rate (FPR) when the true positive rate (TPR) is λ ∈ [0, 1], denoted by FPRλ, can be
calculated as

FPRλ = Fout(F
−1
in (λ)) = Φ

[
Φ−1 (λ;mq1,mq1(1− q1)−mv1) ;mq2,mq2(1− q2)−mv2

]
=

1

2
+

1

2
· erf

(
Φ−1 (λ;mq1,mq1(1− q1)−Mv1)−mq2√

2mq2(1− q2)− 2mv2

)

=
1

2
+

1

2
· erf

(√
2mq1(1− q1)− 2mv1erf−1(2λ− 1) +mq1 −mq2√

2mq2(1− q2)− 2mv2

)

=
1

2
+

1

2
· erf

(√
q1(1− q1)− v1
q2(1− q2)− v2

erf−1 (2λ− 1) +

√
m(q1 − q2)√

2q2(1− q2)− 2v2

)
,

(24)
where Fin and Fout denote the cumulative distribution functions which correspond to the scores
obtained by ID and OOD samples.

A.3 Calculation process from Eq.(3) to Eq.(6)

First, from

FPRλ =
1

2
+

1

2
· erf

(√
q1(1− q1)− v1
q2(1− q2)− v2

erf−1 (2λ− 1) +

√
m(q1 − q2)√

2q2(1− q2)− 2v2

)
, (25)

we know that

FPR0.5 =
1

2
+

1

2
erf

(√
m

2
· q0 − q2 + u(r|q0, q2)√

q2(1− q2)− v2

)
. (26)
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Denote z =
√

m
2 · q0−q2+u(r|q0,q2)√

q2(1−q2)−v2
, then we can derive that

G(r|q0, q2, u,M) =
∂FPR0.5

∂r
=
∂FPR0.5

∂z

∂z

∂m

∂m

∂r
=

1

2

∂erf(z)
∂z

∂z

∂m

∂m

∂r

=
M

2
· 2e

−z2

√
π

·
1

2
√
m
(q0 − q2 + u) +

√
m

M
∂u
∂r√

2q2(1− q2)− 2v2

=
Me−z2

2
√
2π

·
q0 − q2 + u+ 2m

M
∂u
∂r√

m
√
q2(1− q2)− v2

.

(27)

Denote w = 1√
m

(
q0 − q2 + u+ 2m

M
∂u
∂r

)
, then we have

∂w

∂r
=
M

m

((
1

M

∂u

∂r
+

2

M

∂u

∂r
+

2m

M2

∂2u

∂r2

)√
m− 1

2
√
m

(
q0 − q2 + u+

2m

M

∂u

∂r

))
=

M

2m
3
2

(
4m2

M2

∂2u

∂r2
+

4m

M

∂u

∂r
− q0 + q2 − u

)
≥ M

2m
3
2

(
−4m2

M2

∂u

∂r
+

4m

M

∂u

∂r
− q0 + q2 − u

)
=

M

2m
3
2

(
4r(1− r)

∂u

∂r
+ (q2 − q0 − u)

)
≥ 0,

(28)

where the derivation from the second to the third line utilizes an assumption on the limited range of
the curvature of the function u(r), aka |u′′| ≤ u′. While recognizing the challenge of consistently
maintaining this assumption in complex real-world scenarios, we consider it reasonable for use in
intuitive quantitative analyses to simplify derivations. Therefore, we come to the conclusion that
G′(r) = ∂2FPR0.5

∂r2 ≥ 0. Besides, according to Eqn. 27, we have

lim
r→0+

G(r) = lim
r→0+

√
Me−z2

2
√
2π

· q0 − q2√
r
√
q2(1− q2)− v2

= lim
r→0+

κ(q0 − q2)

2
√
r

= −∞, (29)

lim
r→1

G(r) =
e−z2

√
2π

·
√
Mu′(r = 1|q0, q2)√
q2(1− q2)− v2

= κu′(r = 1) ≥ 0, (30)

where κ = (M/2π)
1
2 (q2(1− q2)− v2)

− 1
2 e−z2

> 0.

A.4 Analysis of some variables in Eq.(8)

Defined as the lower bound of q1, q0 represents the expected probability of the OOD label, which
is most dissimilar to the ID label space, being activated by ID images. When the semantic pool
size is large enough, this OOD label has very different meaning from ID labels, thus its expected
probability q0 of being activated by ID images is close to zero. With the assumption that the function
u(r) is linear, from Eqn. 7 we can derive that r0 = 1/3, which is a constant unrelated to other factors.
Empirical evidence also indicates that the change of r0 is relatively slight. Besides, v2 is defined as
the variance of the probabilities of OOD labels being activated by OOD samples. When the semantic
pool is large enough, this variance changes very slightly with further expansion. Therefore, we
come to the conclusion that variables q0, r0, and v2 remain nearly constant with a sufficiently large
semantic pool, thus exerting marginal impact to the right side of Eqn. 8.

A.5 Analysis of a condition in Eq.(9)

By adjusting its shape parameters, α and β, the Beta distribution can flexibly simulate a range of
distinct probability distribution profiles. This flexibility is particularly useful in statistical modeling
and analysis where the behavior of probabilities needs to be accurately described. Assuming that pout

i
follows a Beta distribution, we know that

q2 = Ei[p
out
i ] =

α

α+ β
, v2 = Vari[pout

i ] =
αβ

(α+ β)2(α+ β + 1)
. (31)

17



If q2 − 2v2 ≥ 0 does not hold, it means that

α

α+ β
− 2αβ

(α+ β)2(α+ β + 1)
< 0, (32)

which is equivalent to
α2 + 2αβ + β2 + α− β < 0, (33)

and α < min{0.5, β} < 1 is a necessary condition for the above equation. In this situation, the
Beta distribution exhibits a pronounced peak at 0 and a long, thin tail stretching towards 1. In our
experiments, we observe that the similarity distribution between OOD input images and OOD text
labels exhibits a distinct unimodal concentration, with probability densities near 0 and 1 approaching
zero, which is entirely different from the distribution shape derived theoretically. Consequently, we
can conclude that in the vast majority of practical cases, the following inequality holds,

q2 + q0 − 2q0q2 − 2v2 = q2 − 2v2 + q0(1− 2q2) ≥ 0. (34)

B Datasets and Lexicons

B.1 Main benchmark

We mainly evaluate our method on the widely-used ImageNet-1k OOD detection benchmark [26].
This benchmark utilizes the large-scale ImageNet-1k dataset as the ID data, and select samples from
iNaturalist [60], SUN [66], Places [73], and Textures [8] as the OOD data. The categories of the
OOD data have been manually selected to prevent overlap with the classes of ImageNet-1k.

ImageNet-1k, also referred to as ILSVRC 2012, is a subset of the larger ImageNet dataset [9]. This
dataset encompasses 1,000 object classes and includes 1,281,167 images for training, 50,000 images
for validation, and 100,000 images for testing. In the widely used benchmark for OOD detection
organized by [26], the validation set of ImageNet-1k is designated as the ID data.

iNaturalist [60] is a fine-grained dataset containing 859,000 images across more than 5,000 species
of plants and animals. [26] randomly sample 10,000 images from 110 manually selected plant classes
which are not present in ImageNet-1k as the OOD data.

SUN [66] is a scene database which includes 130,519 images from 397 categories. [26] sample
10,000 images from 50 nature-related classes that do not overlap with ImageNet-1k as OOD data.

Places [73] is another scene dataset containing more than 2.5 million images covering more than 205
scene categories with more than 5,000 images per category. [26] manually select 50 categories from
this dataset and then randomly sample 10,000 images as OOD data.

Textures [8], also referred to as Describable Textures Dataset (DTD), consists of 5,640 images from
47 categories of textural patterns inspired from human perception. There are 120 images for each
category. [26] use the entire dataset as OOD data.

B.2 Datesets of hard OOD detection

We also evaluate our method on the hard OOD detection tasks as shown in Table 2. Specifically, the
ID-vs-OOD dataset pairs includes ImageNet-10 vs ImageNet-20, ImageNet-10 vs ImageNet-100,
ImageNet-1k vs ImageNet-O [22], WaterBirds [50]-vs-Placebg, etc.

ImageNet-O [22] is a dataset of adversarially filtered examples for ImageNet OOD detectors. To
create this dataset, the authors delete examples of ImageNet-1k from ImageNet-22k, and then select
examples that a ResNet-50 [19] model misclassifies as belonging to an ImageNet-1k class with high
confidence. This dataset contains 2,000 images across 200 classes. In a hard OOD detection task, we
use ImageNet-1k as the ID data and use ImageNet-O as OOD data.

WaterBirds [50] is constructed by combining bird photographs from the CUB-200 dataset [61] with
image backgrounds from the Places dataset [73]. Therefore, WaterBirds keeps the same size with
CUB-200, i.e., it contains 11,788 images from 200 bird classes. To construct this dataset, the authors
label each bird as waterbird or landbird and place it on one image of water background or land
background. In a hard OOD detection task, we use WaterBirds as the ID data and use its background
images as OOD data.
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B.3 Datasets of various ID data

As depicted in Table 7, our method is evaluated against baseline methods, including MCM [40] and
NegLabel [29], across various ID datasets. These datasets encompass (1) specialized domain-focused
datasets such as Stanford-Cars [31], CUB-200 [61], Oxford-Pet [45], and Food-101 [2]; (2) subsets
of ImageNet, including ImageNet10, ImageNet20, and ImageNet100; (3) ImageNet domain shift
datasets, namely ImageNet-Sketch [62], ImageNet-A [22], ImageNet-R [20], and ImageNetV2 [48].

Stanford-Cars [31] contains 16,185 images of 196 classes of cars. Classes are typically at the level
of Make, Model, Year, e.g., 2012 Tesla Model S or 2012 BMW M3 coupe. The data is split into
8,144 training images and 8,041 testing images.

CUB-200 [61], formally recognized as Caltech-UCSD Birds-200-2011, comprises 11,788 images
across 200 bird subcategories, with 5,994 images for training and 5,794 for testing.

Oxford-Pet [45] is a 37 category pet dataset with roughly 200 images for each class created by the
Visual Geometry Group at Oxford. The total image number is 7,390.

Food-101 [2] dataset consists of 101 food categories with 750 training and 250 test images per
category, making a total of 101k images.

ImageNet-Sketch [62] dataset consists of 50,889 images, approximately 50 images for each of the
1,000 ImageNet classes. The dataset was created using Google Image searches for "sketch of {Class
Name}", specifically limiting results to the "black and white" color scheme.

ImageNet-A [22] is a dataset of 7,500 real-world adversarially filtered images, which are misclassified
by a ResNet-50 ImageNet classifier, from 200 classes. The user-tagged images are downloaded from
websites including iNaturalist, Flicker, and DuckDuckGo.

ImageNet-R [20], formally recognized as ImageNet-Renditions, contains 30,000 images of ImageNet
objects from 200 classes with different textures and styles.

ImageNetV2 [48] contains 10,000 new images across the 1,000 categories of ImageNet-1k. The new
images are gathered from the same source of ImageNet to avoid bias.

B.4 Lexicons

As shown in Table 9, we conduct experiments with lexicons of different sizes, and observe that simply
adopting larger lexicons does not yield consistent performance improvement. From each lexicon, we
select all the nouns to construct the original semantic pool, and use all the adjectives to construct the
additional conjugated semantic pool for expansion.

WordNet [39] is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms, each expressing a distinct concept. In our experiments, we use the
70K nouns and adjectives to construct a semantic pool.

Common-20K3 is a list of the 20,000 most common English words in order of frequency, as
determined by n-gram frequency analysis of the Google’s Trillion Word Corpus. In our experiments,
we use the 17K nouns and adjectives to construct a semantic pool.

Part-of-Speech Tagging4 is a 370K English words corpus. In our experiments, we use the 319K
nouns and adjectives to construct a semantic pool.

C More Results and Analysis

C.1 Validation of consistency between methodology and theoretical framework

Consistent with our established theory, expanding label candidates with the CSP satisfies the require-
ments derived in Section 3.1: (1) Concurrently enlarging the semantic pool size M and the expected
activation probability q2 of OOD labels; (2) Ensuring that there is no severe mutual dependence
among the activations of selected OOD labels.

3https://github.com/first20hours/google-10000-english
4https://www.kaggle.com/datasets/ruchi798/part-of-speech-tagging
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(1) The enlargement of the semantic pool size M is evident. Besides, since the superclasses used
in constructing the CSP typically include broad semantic objects, the property clusters encompass
samples from numerous potential OOD categories. Therefore, their centers have much higher
expected probabilities of being activated by OOD samples, which brings an increase in q2. In Table 5,
we present the expected softmax scores for a single OOD label from both the original semantic pool
and the CSP. These scores, averaged across OOD samples, serve as an approximation of q2, which
is defined as the expected probability of OOD labels being activated by OOD samples. Table 5
reveals that the average score of our CSP across four OOD datasets is distinctly higher than that of
the original pool, indicating that this expansion leads to an increase in q2.

Table 5: The expected Softmax scores of a single OOD label, an approximation of q2, from the
original semantic pool and the conjugated semantic pool, scaled up by a factor of 1000.

Semantic Pools The expected Softmax score of a single OOD label AverageiNaturalist SUN Places Textures

Original / Conjugated 0.1356 / 0.0308 0.0923 / 0.2176 0.0864 / 0.2213 0.0404 / 0.4435 0.0887 / 0.2283

The effectiveness of the CSP is based on the implicit assumption that OOD samples exhibit various
visual properties. However, the degree of visual diversity varies across different OOD datasets,
resulting in different expected probabilities of OOD labels in the CSP being activated, as reflected in
the varying scores of conjugated labels shown in Table 5. For instance, plant images in iNaturalist
have limited visual diversity, leading to low scores for conjugated labels, whereas the Texture
dataset, with its higher visual diversity, exhibits the opposite phenomenon. We can observe that
across different OOD datasets, there is a correlation between these scores and the performance
improvements achieved by our method: the score is lower on iNaturalist compared to the original
pool, relatively higher on SUN and Places, and significantly higher on Textures. Consequently, our
method achieves only modest gains on iNaturalist, normal improvements on SUN and Places, and
substantial enhancements on Textures. This correlation further corroborates the validity of our theory.

(2) Since the labels in CSP are centers of property clusters, while the labels in the original semantic
pool are centers of category clusters, it is highly improbable that numerous synonym pairs would
exist between these two semantic pools. Our statistical analysis supports this claim: we calculate the
average maximum similarity between each label and other labels within the semantic pool, a metric
which reflects the proportion of synonymous pairs within the pool and tends to increase monotonically
as the semantic pool expands. Our findings indicate that only 3.94% of the original labels find more
similar counterparts in the expanded CSP, resulting in a negligible increase in the aforementioned
metric from 0.8721 to 0.8726. As a result, the mutual dependence between the new and original
labels is relatively low, and the functions of labels from the CSP will not be overshadowed, enhancing
the likelihood that an OOD image locates close to an OOD cluster center.

C.2 Random analysis

Table 6 shows the results of our method under random seeds from 0 to 9, whose average is reported in
the main text. It is evident that the performance of our method is minimally impacted by randomness,
consistently exhibiting superior efficacy.

C.3 Various ID datasets

As depicted in Table 7, our method is evaluated against baseline methods, including MCM [40]
and NegLabel [29], across various ID datasets. These datasets encompass (1) specialized domain-
focused datasets such as Stanford-Cars [31], CUB-200 [61], Oxford-Pet [45], and Food-101 [2];
(2) subsets of ImageNet, including ImageNet10, ImageNet20, and ImageNet100; (3) ImageNet
domain shift datasets, namely ImageNet-Sketch [62], ImageNet-A [22], ImageNet-R [20], and
ImageNetV2 [48]. Our proposed method consistently achieves satisfactory results on all the above
ID datasets. For example, our method outperforms NegLabel by 9.23% and 11.71% evaluated by
FPR95 with ImageNet-A and ImageNet-R as the ID data, respectively.
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Table 6: Mean and standard deviation of OOD detection performance across various random seeds
with CLIP-B/16 on ImageNet-1k as ID data. Performance metrics are presented as percentages.

Seeds
OOD Datasets AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
0 99.61 1.54 96.69 13.82 92.85 29.69 93.78 25.78 95.73 17.71
1 99.61 1.51 96.67 13.57 92.99 29.03 93.69 25.57 95.74 17.42
2 99.60 1.56 96.68 13.61 92.95 29.18 93.74 26.10 95.74 17.61
3 99.60 1.56 96.69 13.57 92.93 29.21 93.64 26.01 95.72 17.59
4 99.60 1.54 96.65 13.65 92.87 29.26 94.10 24.95 95.81 17.35
5 99.60 1.55 96.66 13.61 92.88 29.37 94.01 24.79 95.79 17.33
6 99.60 1.53 96.70 13.53 92.92 29.27 93.87 25.96 95.77 17.57
7 99.61 1.54 96.61 13.78 92.85 29.50 93.88 25.74 95.74 17.64
8 99.60 1.53 96.64 13.90 92.89 29.52 94.09 24.75 95.81 17.43
9 99.60 1.56 96.64 13.58 92.88 29.20 93.80 25.59 95.73 17.48

Mean 99.60 1.54 96.66 13.66 92.90 29.32 93.86 25.52 95.76 17.51
Std 0.00 0.02 0.03 0.12 0.04 0.19 0.15 0.48 0.03 0.12

Table 7: OOD detection performance comparison on various ID datasets.

ID datasets Methods
OOD Datasets AverageiNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Stanford-Cars
MCM 99.77 0.05 99.95 0.02 99.89 0.24 99.96 0.02 99.89 0.08

NegLabel 99.99 0.01 99.99 0.01 99.99 0.03 99.99 0.01 99.99 0.02
Ours 100.00 0.00 100.00 0.00 99.99 0.02 100.00 0.00 100.00 0.01

CUB-200
MCM 98.24 9.83 99.10 4.93 98.57 6.65 98.75 6.97 98.67 7.10

NegLabel 99.96 0.18 99.99 0.02 99.90 0.33 99.99 0.01 99.96 0.14
Ours 99.96 0.16 99.99 0.03 99.88 0.37 100.00 0.00 99.96 0.14

Oxford-Pet
MCM 99.38 2.85 99.73 1.06 99.56 2.11 99.81 0.80 99.62 1.71

NegLabel 99.99 0.01 99.99 0.02 99.96 0.17 99.97 0.11 99.98 0.08
Ours 100.00 0.00 100.00 0.00 99.96 0.21 99.97 0.14 99.98 0.09

Food-101
MCM 99.78 0.64 99.75 0.90 99.58 1.86 98.62 4.04 99.43 1.86

NegLabel 99.99 0.01 99.99 0.01 99.99 0.01 99.60 1.61 99.89 0.41
Ours 100.00 0.00 100.00 0.00 99.99 0.01 99.63 1.40 99.91 0.35

ImageNet10
MCM 99.80 0.12 99.79 0.29 99.62 0.88 99.90 0.04 99.78 0.33

NegLabel 99.83 0.02 99.88 0.20 99.75 0.71 99.94 0.02 99.85 0.24
Ours 99.84 0.04 99.88 0.13 99.74 0.61 99.94 0.02 99.85 0.20

ImageNet20
MCM 99.66 1.02 99.50 2.55 99.11 4.40 99.03 2.43 99.33 2.60

NegLabel 99.95 0.15 99.51 1.93 98.97 4.40 99.11 2.41 99.39 2.22
Ours 99.96 0.10 99.65 1.07 99.13 3.20 99.24 1.68 99.50 1.51

ImageNet100
MCM 96.77 18.13 94.54 36.45 94.36 34.52 92.25 41.22 94.48 32.58

NegLabel 99.87 0.57 97.89 11.26 96.25 19.15 96.00 20.37 97.50 12.84
Ours 99.90 0.46 98.78 4.84 97.19 13.31 98.16 8.83 98.51 6.86

ImageNet-Sketch
MCM 87.74 63.06 85.35 67.24 81.19 70.64 74.77 79.59 82.26 70.13

NegLabel 99.34 2.24 94.93 22.73 90.78 38.62 89.29 46.10 93.59 27.42
Ours 99.49 1.60 96.41 15.30 92.51 31.41 92.95 29.86 95.34 19.54

ImageNet-A
MCM 79.50 76.85 76.19 79.78 70.95 80.51 61.98 86.37 72.16 80.88

NegLabel 98.80 4.09 89.83 44.38 82.88 60.10 80.25 64.34 87.94 43.23
Ours 99.15 2.91 91.06 42.70 85.16 59.87 93.08 30.50 92.11 34.00

ImageNet-R
MCM 83.22 71.51 80.31 74.98 75.53 76.67 67.66 83.72 76.68 76.72

NegLabel 99.58 1.60 96.03 15.77 91.97 29.48 90.60 35.67 94.55 20.63
Ours 99.79 0.89 98.49 6.16 95.41 18.46 96.44 10.16 97.53 8.92

ImageNetV2
MCM 91.79 45.90 89.88 50.73 86.52 56.25 81.51 69.57 87.43 55.61

NegLabel 99.40 2.47 94.46 25.69 90.00 42.03 88.46 48.90 93.08 29.77
Ours 99.54 1.76 96.10 17.16 91.66 34.12 92.76 29.65 95.02 20.67

C.4 Empirical evidence supporting our assertions

Performance trends related to the ratio r. In Fig. 1 and Table 8, we present the FPR95 performances
of our method and NegLabel against a progressively increasing ratio r, which represents the proportion
of selected OOD labels in the whole semantic pool. The color gradations displayed in the table clearly
illustrate an initial improvement in model performance followed by a subsequent decline as the ratio
r increases. This trend aligns with our derivation in Section 3.1.

Effect of simple lexicon expansion. In Fig. 2 and Table 9, we assess whether adopting larger lexicons
enhances performances. Our findings indicate that it does not always hold. When the semantic pool
covers the vast majority of common words, further expansion will introduce an excessive number of
uncommon words and (near-)synonyms, thus failing to meet the derived requirements for theoretical
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performance enhancement. The inefficacy of simple lexicon expansion indicates that viable expansion
manners move beyond merely selecting words from existing lexicons.

Table 8: OOD detection performance evaluated by the FPR95 metric with different candidate selection
ratios r. The results of our method and the baseline method NegLabel share similar trends.

FPR95 Performance of Ours FPR95 Performance of NegLabel
Ratio r iNaturalist SUN Places Textures Average iNaturalist SUN Places Textures Average

0.02 1.28 23.50 37.34 26.10 22.06 1.31 33.66 46.26 50.32 32.89
0.05 1.17 19.07 33.91 23.42 19.39 1.26 25.90 39.81 44.96 27.98
0.10 1.28 15.44 30.78 25.41 18.23 1.54 22.20 36.80 43.40 25.99
0.15 1.54 13.82 29.69 25.78 17.71 1.95 20.84 36.00 43.40 25.55
0.20 1.82 13.60 29.61 25.43 17.62 2.46 20.70 36.29 43.49 25.74
0.25 2.17 13.75 29.70 25.55 17.79 2.93 21.42 37.05 44.04 26.36
0.30 2.39 13.70 29.67 25.94 17.93 3.30 22.04 37.71 45.00 27.01
0.40 2.96 14.27 30.34 27.32 18.72 4.22 22.48 38.91 46.95 28.14
0.50 3.58 14.90 30.96 28.69 19.53 5.01 23.16 39.76 48.44 29.09
0.60 4.18 15.46 31.33 29.43 20.10 5.79 24.17 40.69 50.30 30.24
0.80 5.19 16.28 31.77 32.70 21.49 7.67 25.75 41.72 53.85 32.25
1.00 6.27 17.41 32.60 35.00 22.82 9.26 27.25 42.85 56.29 33.91

Table 9: Evaluation with different corpus sources. “Size” refers to the size of semantic pools.

Source Size Method
OOD Datasets AverageiNaturalist SUN Places Textures

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Commom-20K 17K NegLabel 86.91 65.43 95.03 24.22 91.52 34.83 83.69 67.75 90.50 43.02
Ours 90.50 47.94 95.89 19.13 92.35 30.92 87.70 51.52 92.06 36.56

WordNet-v2.0 70K NegLabel 99.49 1.91 95.49 20.53 91.64 35.59 90.22 43.56 94.21 25.40
Ours 99.61 1.54 96.69 13.82 92.85 29.69 93.78 25.78 95.73 17.71

WordNet-v3.0 121K NegLabel 99.44 2.18 94.73 25.12 90.50 41.85 89.46 47.59 93.53 29.19
Ours 99.65 1.37 96.43 15.73 92.25 31.62 93.69 26.26 95.51 18.75

Part-of-Speech 319K NegLabel 98.57 6.23 94.21 26.50 89.95 44.56 88.09 51.19 92.71 32.12
Ours 98.82 5.02 95.14 21.46 90.99 38.49 91.90 32.70 94.21 24.42

C.5 Analysis of superclasses in conjugated semantic pool

The indices 1 through 14 in Table 10 represent the following superclasses, listed in alphabetical
order: area, creature, environment, item, landscape, object, pattern, place, scene, space, structure,
thing, view, vista. Table 10 displays the outcomes of multiple runs with 4, 7, and 10 randomly
selected superclasses. Although the selection of different superclasses results in some performance
fluctuations, any selection significantly enhances performance compared to not employing CSP (as
shown in the first row of the table), and achieves state-of-the-art results.

Acute readers may be concerned about performance fluctuations caused by different superclass sets.
However, despite the specific OOD categories being unknown in real-world applications, it is likely
that an approximate range of OOD superclasses can be estimated in advance based on the deployment
scenario and empirical evidence. Generally, users can preset a suitable superclass set to achieve
satisfactory performance enhancements provided by the conjugated semantic pool.

D Visualization

In this section, we present visualization results of images picked from the ImageNet-1k OOD detection
benchmark. Each subfigure includes the original image, the ground-truth label (for ID images only),
the image name in the dataset, and the top-5 softmax scores for ID labels (orange), OOD labels from
the original semantic pool (green), and OOD labels from the conjugated semantic pool (blue).

D.1 In-distribution examples

In Figs. 4 and 5, we present ID examples that have been correctly classified into the ground-truth ID
class with high and low confidence, respectively. Fig. 6 presents ID examples that have been correctly
classified into the ID class group but assigned the wrong specific classes. Figs. 7 and 8 display failure
cases where the ID image is misclassified into labels of the original semantic pool or our conjugated
semantic pool, respectively.
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Table 10: Analysis of the number of the superclasses constructing the conjugated Semantic Pool.
Superclasses of Conjugated Semantic Pool OOD Datasets AverageiNaturalist SUN Places Textures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

99.63 1.40 96.25 16.63 92.02 33.90 86.91 57.62 93.70 27.39

✓ ✓ ✓ ✓ 99.62 1.48 96.68 13.25 93.08 27.92 89.87 45.73 94.81 22.10
✓ ✓ ✓ ✓ 99.61 1.54 96.64 13.88 92.98 28.91 90.77 43.05 95.00 21.85
✓ ✓ ✓ ✓ 99.62 1.51 96.84 12.87 93.05 28.48 89.91 45.09 94.86 21.99

✓ ✓ ✓ ✓ 99.57 1.64 96.29 15.44 92.38 31.96 95.12 20.59 95.84 17.41
✓ ✓ ✓ ✓ 99.61 1.48 97.13 12.22 93.52 27.07 90.80 43.53 95.27 21.08

Average of above 5 runs using 4 superclasses 99.61 1.53 96.72 13.53 93.00 28.87 91.29 39.60 95.15 20.88

✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.59 1.6 96.2 15.42 92.32 31.95 94.67 22.06 95.70 17.76
✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.62 1.5 96.88 12.97 93.25 27.63 90.57 42.87 95.08 21.24
✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.62 1.52 96.53 14.22 92.71 30.09 91.12 41.21 95.00 21.76

✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.59 1.59 96.28 15.45 92.44 31.84 94.67 22.66 95.75 17.89
✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.61 1.52 96.78 13.47 93.09 28.51 91.20 40.74 95.17 21.06

Average of above 5 runs using 7 superclasses 99.61 1.55 96.53 14.31 92.76 30.00 92.45 33.91 95.34 19.94

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.60 1.56 96.72 13.66 92.83 29.63 94.36 23.85 95.88 17.18
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.62 1.49 96.93 12.36 93.28 27.19 90.1 45.07 94.98 21.53
✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.60 1.57 96.00 16.16 92.04 33.29 94.63 22.59 95.57 18.40
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.61 1.55 96.61 13.79 92.85 29.89 94.22 24.13 95.82 17.34

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.61 1.51 96.81 13.15 93.14 28.41 90.55 43.17 95.03 21.56

Average of above 5 runs using 10 superclasses 99.61 1.54 96.61 13.82 92.83 29.68 92.77 31.76 95.46 19.20

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 99.61 1.54 96.69 13.82 92.85 29.69 93.78 25.78 95.73 17.71

We observe that, for ID samples, incorrect OOD detection results mainly stem from the following
reasons: (1) Low image clarity or VLM limitations: Due to the low clarity of the images or the limited
capabilities of the VLM, the VLM provides incorrect classification results. For instance, the category
of image ImageNet_ILSVRC2012_val_00002364 in Fig. 7 is "coho (silver salmon)", but CLIP
mistakenly classifies it as "chum salmon", thereby identifying it as an OOD sample. (2) Inaccurate
ground truth labels: Some images have ground truth labels that are not precise enough. For example,
the image ImageNet_ILSVRC2012_val_00004471 in Fig. 8 is labeled as "coil or spiral", which is
not commonly used to refer to a spiral staircase. This leads the model to classify the image as a
"helter-skelter structure", a more accurate OOD category. (3) Multiple elements in images: Certain
images contain multiple elements that correspond to several appropriate labels. Although we selected
OOD labels with low similarity to the ID label space, it does not ensure that OOD labels are entirely
unrelated to the specific ID images. For instance, the image ImageNet_ILSVRC2012_val_00003031
in Fig. 8 is labeled as "doormat", but "cursive view" and "frosty view" are also suitable descriptions,
resulting in incorrect OOD detection.

Figure 4: ID Examples of correct OOD detection, correct classification, and high confidence.

D.2 Out-of-distribution examples

Figs. 9,11,13, and 15 show OOD images from the iNaturalist, Places, SUN, and Textures datasets,
respectively, that have been correctly classified as OOD samples. Contrarily, Figs. 10,12,14, and 16
display the failure cases, where OOD images are misclassified as ID ones.
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Figure 5: ID Examples of correct OOD detection, correct classification, and low confidence.

Figure 6: ID Examples of correct OOD detection and incorrect classification.

We observe that there are two primary reasons for OOD misdetection results in OOD datasets:
(1) Absence of suitable OOD labels: In the process of selecting potential OOD labels, elements in the
semantic pool that have a high similarity to ID labels are discarded. This may lead to the absence
of corresponding labels for OOD images. For example, in Fig. 16, the image named waffled_0103
depicts a waffle. However, the OOD label candidates do not include the label "waffle", resulting in
the image being incorrectly classified as the ID category "waffle iron". (2) Presence of ID category
objects within some OOD images: For instance, in Fig. 12, the image s_ski_slope_00004560 from the
Places dataset, whose label is "ski slope", depicts a man skiing on a ski slope. Actually, classifying it
as the ID category "ski" is entirely correct, and this image should not be considered an OOD sample.
Similarly, in Fig. 16, the label of the image striped_0032 from the Texture dataset, which shows part
of a zebra, is "striped", but it is also reasonable that CLIP directly classifies it as the ID category
"zebra". Thus, although the ImageNet-1k OOD detection benchmark established by [26] has been
widely used, constructing more accurate and comprehensive OOD datasets remains crucial for further
advancements in this field. We will pursue this as a future research direction.
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Figure 7: ID Examples of incorrect OOD detection classified into the original semantic pool.

Figure 8: ID Examples of incorrect OOD detection classified into the conjugated semantic pool.

Figure 9: OOD Examples of correct OOD detection from iNaturalist.
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Figure 10: OOD Examples of incorrect OOD detection from iNaturalist.

Figure 11: OOD Examples of correct OOD detection from Places.

Figure 12: OOD Examples of incorrect OOD detection from Places.
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Figure 13: OOD Examples of correct OOD detection from SUN.

Figure 14: OOD Examples of incorrect OOD detection from SUN.

Figure 15: OOD Examples of correct OOD detection from Textures.
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Figure 16: OOD Examples of incorrect OOD detection from Textures.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

29



Justification: The full set of assumptions and proofs is provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided necessary information for reproduction in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our source codes are available in https://github.com/MengyuanChen21/
NeurIPS2024-CSP.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our method does not require training. All the test details necessary to under-
stand the results have been provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the standard deviations, which are commonly used as error bars,
for the main experiment results under different random seeds in Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computational cost is analyzed in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: Given the focus on zero-shot OOD detection, the paper prioritizes discussing
technical methodologies and results rather than societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

32

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper exploring zero-shot OOD detection poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly credited the used assets. All the datasets and lexicons,
introduced in Appendix B, are available for free to researchers for non-commercial use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are well documented and the documentation
is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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