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Abstract
Current Continual Test-Time Adaptation meth-
ods for Monocular Depth Estimation rely on
extra data and lack efficiency, using auxiliary
source models or adjacent video frames, which
increase computational demand. We propose to
use masked image modeling, extending Masked
Image Consistency, to address these limitations.
Together with the use of scale alignment to ac-
count for varying camera setups, our proposed
approach enforces consistency between masked
and unmasked image predictions, which shows
empirical results that highlight its effectiveness in
autonomous driving scenarios, achieving perfor-
mance comparable with state-of-the-art.

1. Introduction
Accurate 3D perception is essential for robotics and au-
tonomous driving applications. Monocular Depth Estima-
tion (MDE) enables this by solving the ill-posed problem
of estimating depth from a single RGB image, which is
challenging due to the infinitely many 3D scenes that can
project onto the same 2D image (Lee et al., 2019).

Some existing deep learning techniques tackle this is-
sue (Godard et al., 2019; Yuan et al., 2022). However,
in general, neural network-based approaches struggle in
open real-world environments, where the independent and
identically distributed assumption from training often fails,
causing significant performance drops or model failure. Out-
of-distribution data arises from factors like varying locations,
weather, or camera setups. Continual Test-Time Adaptation
(CTTA) (Wang et al., 2022) adapts a pre-trained model to
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Figure 1: The simple Masked Image Consistency (MIC)
technique performs on par with state-of-the-art approaches,
with lower computational demand and without the need for
additional source models or adjacent video frames.

continually shifting distributions of unlabeled data during
test-time without access to the source data.

The field of CTTA primarily focuses on classification-based
tasks, which differ fundamentally from depth estimation
due to the latter’s regression-based nature. Classic tech-
niques (Wang et al., 2021; Niu et al., 2022; 2023; Yuan et al.,
2023; Döbler et al., 2022) rely on categorical network out-
puts and are not directly applicable to depth estimation. Few
CTTA approaches address MDE of self-supervised models,
often referred to as test-time refinement. These methods
typically involve continuous finetuning of two networks (for
depth and ego-motion prediction) using photometric consis-
tency across adjacent video frames (Casser et al., 2019; Shu
et al., 2020; McCraith et al., 2020; Kuznietsov et al., 2021).
Such models either predict only relative depth or incorporate
additional data (e.g., ego-motion velocity) during adaptation
to achieve scale awareness (Kuznietsov et al., 2021).

To the best of our knowledge, CTTA methods adapting su-
pervised scale-aware MDE models are scarce, with only
two notable exceptions: (Li et al., 2023) (referred hereon as
ICRA’23) and SVDP (Yang et al., 2024). ICRA’23 simul-
taneously adapts self-supervised and supervised models on
adjacent video frames while preserving scale-awareness of
the supervised model. However, it requires two separately
trained neural networks (when counting self-supervised
depth and ego-motion prediction models as one), to con-
currently process multiple images, and to employ copies
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of the supervised model for regularization. These factors
make it computationally intensive and less practical com-
pared to simpler CTTA methods for classification, such as
TENT (Wang et al., 2021). In the SVDP paper, experiments
include MDE, but the authors did not provide the depth
estimation code, the setup description was unclear, and we
could not reproduce their results as presented.

The literature highlights the significant role of global image
context in depth estimation models (Zhao et al., 2022; Ibra-
hem et al., 2022; Rajapaksha et al., 2024). This context en-
ables models to better understand scene layouts and capture
inter-object relationships. To leverage this insight, we em-
ploy Masked Image Modeling, a powerful self-supervised
learning technique that promotes the use of the entire im-
age context to predict masked image patches. Specifically,
we choose the Masked Image Consistency (MIC) approach,
which enforces consistency between model predictions on
masked and unmasked versions of an image, promoting
an effective use of the global image context. Originally
developed for Unsupervised Domain Adaptation (Hoyer
et al., 2023), significantly different from CTTA, MIC has
primarily been evaluated on classification tasks.

In this work, we extend MIC to CTTA for the MDE task.
We believe that we are among the first to present the sim-
ple and effective, similar to entropy minimization (Wang
et al., 2021) for classification, CTTA approach for su-
pervised MDE models. The presented approach enhances
the use of global image context, while adapting to con-
tinuously shifting domains, significantly improving perfor-
mance over the source model without relying on secondary
models or adjacent video frames. We experimentally show
that our method achieves performance comparable to state-
of-the-art approaches (ICRA’23) with lower computational
overhead. Additionally, we adopt a classic CTTA method
(CoTTA (Wang et al., 2022)) for MDE and show that the
masked consistency used in MIC significantly outperforms
the augmentation consistency technique from CoTTA.

2. Method
2.1. Preliminaries

CTTA aims to adapt the neural network model fθ pre-trained
on the labeled source data (XS ,YS) to the stream of un-
labeled data with continually changing data distributions
X T1 ,X T2 , . . . ,X Tn at test time. There is no access to the
source data during adaptation, and the test data has to be
processed on-the-fly, without the possibility of revisiting it.

2.2. Masked Image Consistency (MIC)

We adapt Masked Image Context (MIC) (Hoyer et al., 2023)
(Figure 2), a masked image modeling technique which en-
hances the model’s focus on the entire scene by masking a

portion of image patches and training the model to predict
depth across the full image.

Following (Hoyer et al., 2023), we generate the random
mask M sampled from a uniform distribution to mask a
fraction r of the test input image xT patches:

Mmb+1:(m+1)b,
nb+1:(n+1)b

= [v > r] with v ∼ U(0, 1) , (1)

xM = M⊙ xT , (2)

where [·] indicates the Iverson bracket, b the patch size, and
m,n∈ [0, . . . ,W/b−1] the patch indices. Then, the network
fθ predicts the depth ŷM for the whole masked image xM ,
using the unmasked context for the masked regions:

ŷM = fθ(x
M ) . (3)

We aim to ensure consistency between the depth prediction
on the masked image ŷM and the depth prediction on the
original image ŷT . In the absence of ground truth depth data,
ŷT serves as pseudo-labels for adaptation. However, noisy
pseudo-labels can impede model improvement. Therefore,
we employ an Exponential Moving Average (EMA) teacher
model (gϕ) to generate more reliable pseudo-labels (Tar-
vainen & Valpola, 2017):

ŷT = gϕ(x
T ) . (4)

The teacher predicts the depth using the original image xT ,
therefore it can utilize both local and global context, making
the pseudo-labels as accurate as possible. We employ the
L1-norm as the consistency loss Lt:

Lt = ∥ŷM − ŷT ∥1, (5)

Finally, the EMA teacher gϕ is updated using the EMA of
student’s weights θ with α as a smoothing factor:

ϕt+1 = αϕt + (1− α)θt , (6)

where t indicates the adaptation step.

Consistency
Loss

Random
Masking EMA

Figure 2: The Masked Image Consistency (MIC) technique.

2.3. Scale Alignment

To ensure a fair comparison and account for varying cam-
era setups, we adopt the very effective Scale Alignment
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(SA) from ICRA’23 (Li et al., 2023). This component is
essential for accurate scale-aware depth predictions on test
images, as the MDE network relies solely on object pro-
portions in the images to estimate depth with the correct
scale. Given the focal lengths of the source camera (fS) and
target camera (fT ), along with the camera heights above the
ground in an autonomous driving setup for the source (hS)
and target (hT ), the objective is to resize the target image
xT (HT ,WT ), with height HT and width WT , based on
the ratios of these parameters:

x̂T = xT (HT · f
S

fT
· h

S

hT
,WT · f

S

fT
· h

S

hT
) , (7)

where x̂T is the resized target image. We use this operation
for every experiment presented in the paper, including
baselines. It allows to obtain reasonable metric depth pre-
dictions without the need for ground truth median scaling.

3. Experiments

Benchmarks. Following (Li et al., 2023; Kuznietsov et al.,
2021), we evaluate on the split of KITTI dataset (Geiger
et al., 2013) introduced in (Eigen et al., 2014) as the source
data. For benchmarking CTTA, as in (Li et al., 2023), we
utilize datasets from an autonomous driving perspective:
DDAD (Guizilini et al., 2020) and Waymo (Sun et al., 2020).
The DDAD test sequence includes the entire validation split.
, consisting of 50 videos with a total of 3,850 frames. For
Waymo, we evaluate multiple scenarios: Sunny-Night-5
includes the first five ”sunny” night scenes from the val-
idation set; Rainy-5 comprises five rainy scenes from the
training split (one daytime, three dawn, and one night); All-6
includes six sequences from the training set, with one se-
quence for each combination of time of day (”day,” ”dawn,”
or ”night”) and weather (”sunny” or ”rain”), selected as the
first from each category; Sunny-Day-5 includes the first five
”sunny” day scenes from the evaluation split. Models adapt
continuously to each video without reset in between.

Baselines. We compare our approach with the state-of-the-
art CTTA method for depth estimation, ICRA’23 (Li et al.,
2023), which requires an additional self-supervised source
model and adjacent video frames for the model update. Ad-
ditionally, we present the results of a well-known CTTA
method, CoTTA (Wang et al., 2022), originally designed for
image classification and semantic segmentation, and which
we adjust for the depth estimation task.

Implementation Details. We conduct experiments with
SwinTransformer (Liu et al., 2021) as the encoder and
NewCRF as the depth decoder (Yuan et al., 2022). We
use the model checkpoint provided by ICRA’23 (Li et al.,
2023) as the pre-trained model. Depth predictions are eval-
uated using the standard metrics described in (Eigen et al.,

2014). The parameters for CoTTA and our presented MIC
are selected using an oracle method. The parameters for
ICRA’23 are adopted directly from the paper, since they use
the same benchmarks. We set the mask ratio r to 0.5 and
the smoothing factor α to 0.999. The batch size is set to 1.

3.1. Analysis and results

ICRA’23 and MIC achieve comparable performance.
Results for all benchmarks are presented in Table 1. Both
methods achieve significant improvement over the Source
model in most cases, with ICRA’23 excelling on DDAD
and Sunny-Night-5, and MIC on All-6 and Rainy-5. MIC
achieves the best overall performance across most metrics,
despite ICRA’23 requiring an additional self-supervised
model and adjacent video frames for photometric consis-
tency, which highlights the effectiveness of our proposed
method. However, both ICRA’23 and MIC are outperformed
by the Source model on the Sunny-Day-5 benchmark, which
has the weather and time-of-day conditions most similar
to the source data, and thus requires the least adaptation.
This suggests that these methods might struggle to maintain
performance on data with minimal domain shift.

Masked consistency > augmentation consistency. The
results in Table 1 show that CoTTA is ineffective at adapting
the MDE model and is outperformed by the Source model in
most cases. This suggests that augmentation consistency, the
primary adaptation mechanism of CoTTA, is significantly
less effective for depth estimation adaptation compared to
masked image consistency (MIC).

MIC is significantly more efficient. Table 2 presents the
average wall-clock time and memory usage for processing
a single batch on an NVIDIA RTX 4080 GPU. Among the
methods evaluated, MIC stands out as the most efficient due
to its simpler design.

EMA teacher is a key component. Table 3 highlights
the importance of the EMA teacher for adaptation within
the proposed MIC. It shows that the improved accuracy of
pseudo-labels provided by the EMA teacher significantly
enhances the adaptation process.

The potential scale drifting problem. In theory, the scale
of depth predictions of a continually adapted model within
the MIC framework could drift over time, leading to inaccu-
rate metric depth estimates. We explore this issue using the
All-6 benchmark repeated 20 times (see Fig. 3). We mea-
sure RMSE and Median Ratio (ratio of median ground truth
depth to median predicted depth). Results show a slight
Median Ratio increase which stabilizes over time, while
RMSE rises initially but then continuously decreases. Over-
all, minor depth prediction deviations occur for both MIC
and ICRA’23 but do not seem significant, especially given
the sequence length and consistent RMSE reduction.
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Benchmark Method AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ σ < 1.25 ↑ σ < 1.252 ↑ σ < 1.253 ↑

DDAD

Source 0.144 1.516 7.950 0.228 0.788 0.938 0.976
CoTTA 0.144 1.523 7.983 0.229 0.786 0.937 0.976
ICRA’23 0.117 1.187 6.716 0.185 0.859 0.960 0.985
MIC 0.133 1.319 7.290 0.207 0.822 0.951 0.983

All-6

Source 0.260 4.765 12.130 0.457 0.580 0.762 0.831
CoTTA 0.262 4.814 12.190 0.461 0.577 0.759 0.828
ICRA’23 0.221 3.725 10.846 0.357 0.627 0.810 0.884
MIC 0.196 2.400 8.202 0.252 0.677 0.927 0.970

Rainy-5

Source 0.244 3.439 10.021 0.374 0.601 0.815 0.890
CoTTA 0.248 3.481 10.105 0.384 0.558 0.811 0.887
ICRA’23 0.233 2.731 8.889 0.317 0.556 0.850 0.938
MIC 0.238 2.862 8.684 0.290 0.582 0.877 0.949

Sunny-Day-5

Source 0.162 2.076 7.346 0.211 0.826 0.949 0.977
CoTTA 0.173 2.148 7.420 0.222 0.791 0.946 0.976
ICRA’23 0.168 2.179 7.239 0.212 0.818 0.947 0.976
MIC 0.185 2.271 7.410 0.229 0.769 0.941 0.975

Sunny-Night-5

Source 0.199 2.116 9.558 0.272 0.607 0.903 0.972
CoTTA 0.200 2.144 9.630 0.274 0.601 0.901 0.971
ICRA’23 0.165 1.726 8.568 0.229 0.731 0.930 0.984
MIC 0.197 1.836 8.787 0.253 0.570 0.935 0.985

Mean

Source 0.202 2.782 9.401 0.308 0.680 0.873 0.929
CoTTA 0.205 2.822 9.466 0.314 0.663 0.871 0.929
ICRA’23 0.181 2.310 8.452 0.260 0.718 0.900 0.953
MIC 0.190 2.138 8.075 0.246 0.684 0.926 0.972

Table 1: Depth estimation results on CTTA benchmarks using DDAD and Waymo datasets (All-6, Rainy-5, Sunny-Day-5,
Sunny-Night-5). Mean indicate the results averaged over all datasets. The results are averaged over 3 seeds.
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Figure 3: Mean RMSE and Median Ratio of MIC and ICRA’23 techniques for each loop of repeating the All-6 benchmark
20 times.

Method Time [ms] Memory [MB]

Source 27.2 1215.9
CoTTA 1508.6 9663.2
ICRA’23 363.1 10433.2
MIC 165.3 7017.7

Table 2: The average wall-clock time (milliseconds) and
memory usage (MB) for processing a single batch on an
NVIDIA RTX 4080 GPU.

4. Conclusions
We explore the MIC approach for CTTA in a scale-aware
MDE model, one of the first studies to apply CTTA to su-
pervised MDE networks. We demonstrate that adapting the
model while enhancing its focus on global image context
significantly improves performance in depth estimation task.

Method RMSE↓ σ < 1.25 ↑
Source 12.130 0.580
+ MIC (w/o EMA teacher) 10.775 0.552
+ MIC (w/ EMA teacher) 8.050 0.681

Table 3: MIC ablation study on All-6 benchmark. The learn-
ing rate for 2nd row was selected separately considering
increased plasticity without the EMA teacher model.

Our comprehensive evaluations reveal that MIC achieves
performance comparable to state-of-the-art approach while
requiring less data and computational resources. Addition-
ally, we find that CoTTA’s augmentation consistency is sig-
nificantly less effective for depth estimation compared to
masked consistency.
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Appendix

This appendix provides comprehensive analysis to support the main paper’s findings and outlines the details of experiments.
Section A.1 includes further details regarding the implementation of tested methods A.1.1 and the description of CoTTA
method adjustment for depth estimation task A.1.2. Section A.2 provides additional experimental results, including mask
ratio r value ablation A.2.1, example performance over time of tested methods A.2.2 and qualitative results A.2.3.

A.1. Additional Details
A.1.1. Methods Implementation Details

The experiments are conducted utilizing and adjusting the code repository of ICRA’23 (Li et al., 2023) method. We
integrated the code of CoTTA (Wang et al., 2022) and our approach into this unified code base.

The parameters for CoTTA and our presented MIC are selected using an oracle method. The parameters for ICRA’23 (Li
et al., 2023) are adopted directly from the paper, since they use the same benchmarks.

All of the tested methods utilize Adam optimizer. We set learning rate for CoTTA to 1e-7. ICRA’23 use the learning rate set
to 1e-5. The presented MIC utilize the learning rate of 5e-4 for Waymo-based benchmarks and 1e-4 for DDAD dataset.

All methods utilize the Adam optimizer. The learning rate for CoTTA is set to 1e-7, while ICRA’23 uses a learning rate of
1e-5. The presented MIC method uses a learning rate of 5e-4 for Waymo-based benchmarks and 1e-4 for the DDAD dataset.

For CoTTA, as in the original implementation for semantic segmentation task, we use the multi-scaling input with flip as the
augmentation method to generate augmentation-weighted pseudo-label with the scale factors of [0.5, 0.75, 1.0, 1.25, 1.5,
1.75, 2.0]. The restoration probability parameter p is set to 0.01 and smoothing factor α to 0.999.

For MIC, we set the mask ratio r to 0.5 and the smoothing factor α to 0.999.

A.1.2. CoTTA Adjustment for Depth Estimation Task

The original CoTTA method (Wang et al., 2022), designed for image classification and semantic segmentation, leverages
the categorical nature of predictions to update the network. To adapt it for depth estimation, modifications are necessary.
It originally updates the student model by minimizing the cross-entropy consistency between the teacher and the student
predictions. Depending on the prediction confidence, the pseudo-labels generated by the teacher model are the result of
averaging predictions on multiple, differently augmented images. Since traditional depth estimation networks do not provide
prediction confidence, the adapted version consistently uses averaged predictions from augmented images as pseudo-labels.
Additionally, cross-entropy loss is replaced with L1 loss to suit the regression nature of depth estimation.

A.2. Additional Experiments
A.2.1. Mask Ratio Ablation

In Table A.1, we evaluate the impact of varying the mask ratio r parameter, as defined in Eq. 1. The results show that
optimal values differ across benchmarks, with no consistent pattern emerging. Nevertheless, a mask ratio of 0.5 appears to
offer the most robust performance overall.

7



Adaptive Monocular Depth Estimation with Masked Image Consistency

Benchmark Mask Ratio r AbsRel↓ SqRel↓ RMSE↓ RMSElog↓ σ < 1.25 ↑ σ < 1.252 ↑ σ < 1.253 ↑

DDAD

0.1 0.134 1.364 7.583 0.213 0.814 0.948 0.981
0.3 0.134 1.339 7.432 0.210 0.818 0.950 0.982
0.5 (Def.) 0.133 1.319 7.290 0.207 0.822 0.951 0.983
0.7 0.133 1.311 7.171 0.204 0.825 0.952 0.983
0.9 0.135 1.355 6.938 0.201 0.827 0.950 0.983

All-6

0.1 0.230 3.549 10.231 0.343 0.622 0.846 0.911
0.3 0.210 2.872 9.116 0.283 0.648 0.901 0.951
0.5 (Def.) 0.196 2.400 8.202 0.252 0.677 0.927 0.970
0.7 0.188 2.178 7.962 0.245 0.693 0.932 0.973
0.9 0.208 2.674 8.247 0.258 0.661 0.927 0.970

Rainy-5

0.1 0.250 3.365 8.689 0.291 0.592 0.879 0.945
0.3 0.236 2.871 8.488 0.284 0.594 0.882 0.950
0.5 (Def.) 0.238 2.862 8.684 0.290 0.582 0.877 0.949
0.7 0.251 3.331 8.745 0.293 0.590 0.872 0.941
0.9 0.247 2.955 9.975 0.325 0.521 0.831 0.937

Sunny-Day-5

0.1 0.182 2.300 7.502 0.230 0.774 0.941 0.975
0.3 0.194 2.497 7.824 0.236 0.753 0.942 0.975
0.5 (Def.) 0.185 2.271 7.410 0.229 0.769 0.941 0.975
0.7 0.186 2.278 7.460 0.231 0.765 0.943 0.975
0.9 0.228 3.025 8.944 0.267 0.677 0.913 0.970

Sunny-Night-5

0.1 0.195 1.882 8.514 0.245 0.620 0.942 0.986
0.3 0.193 1.845 8.855 0.250 0.607 0.934 0.985
0.5 (Def.) 0.197 1.836 8.787 0.253 0.570 0.935 0.985
0.7 0.203 1.893 8.946 0.261 0.522 0.933 0.985
0.9 0.254 3.472 11.887 0.357 0.452 0.809 0.912

Mean

0.1 0.198 2.492 8.504 0.264 0.684 0.911 0.959
0.3 0.193 2.285 8.343 0.253 0.684 0.922 0.969
0.5 (Def.) 0.190 2.138 8.075 0.246 0.684 0.926 0.972
0.7 0.192 2.198 8.057 0.247 0.679 0.926 0.971
0.9 0.214 2.696 9.198 0.282 0.627 0.886 0.954

Table A.1: Depth estimation results on CTTA benchmarks using DDAD and Waymo datasets (All-6, Rainy-5, Sunny-Day-5,
Sunny-Night-5). Mean indicate the results averaged over all datasets. The results are averaged over 3 seeds.
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Figure A.1: The RMSE for each frame of All-6 benchmark for each tested method (lower is better). The displayed images
are examples from the video in corresponding benchmark section.
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A.2.2. Performance Over Time

Figure A.1 presents the RMSE for each frame of All-6 benchmark. It can be seen that MIC improves the performance of the
Source model even under significant domain shifts (towards the end of All-6 benchmark).

A.2.3. Qualitative Results

Figures A.2, A.3, A.4, A.5 and A.6 show the qualitative results for teach of the benchmarks and tested methods. Our analysis
indicates that the MIC method shows greater improvement in depth estimation at higher depth values.
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Figure A.2: Qualitative results on DDAD benchmark. Column labels indicate the frame number in the benchmark.
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Figure A.3: Qualitative results on All-6 benchmark. Column labels indicate the frame number in the benchmark.
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Figure A.4: Qualitative results on Rainy-5 benchmark. Column labels indicate the frame number in the benchmark.
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Figure A.5: Qualitative results on Sunny-Day-5 benchmark. Column labels indicate the frame number in the benchmark.
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Figure A.6: Qualitative results on Sunny-Night-5 benchmark. Column labels indicate the frame number in the benchmark.
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