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Abstract
Transformer models have revolutionized a wide
spectrum of disciplines, especially in language
processing. The recent success has proven that
model size scalability is crucial for achieving su-
perior performance metrics. However, training
large transformer models is challenging even on
modern hardware with powerful GPUs and high-
speed interconnects. Existing studies primarily
focus on optimizing model training distribution
strategies to minimize memory footprint and en-
hance training speed, often overlooking the scala-
bility challenges related to model size and hard-
ware constraints. To address this oversight, we
thoroughly investigate computational, memory,
and network demands of training large transform-
ers using the Fully Sharded Data Parallel (FSDP)
distributed strategy across different hardware clus-
ters. We explore the intricate relationships be-
tween model size and hardware setups to iden-
tify configurations that ensure maximum model
and hardware efficiency, effective sequence length
management, and optimal training throughput. A
significant finding of our study is the critical in-
terplay of the cluster’s connection bandwidth and
GPU memory size compared to the computational
performance of GPUs. This interplay limits train-
ing efficiency, underscoring the role of both hard-
ware characteristics as a possible bottleneck. By
integrating theoretical analysis with simulations
and empirical tests, we demonstrate how hardware
limitations affect training efficacy, identifying key
hardware thresholds and the impact of network
connectivity. Our findings prompt a reassessment
of training strategies guiding users on the way to
finding hardware-optimal FSDP configurations,
enhancing training efficiency for large-scale trans-
former models.
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1. Introduction
Transformer models have significantly advanced sequential
data learning across various fields, including natural lan-
guage processing (Brown et al., 2020; Touvron et al., 2023),
image analysis (Dosovitskiy et al., 2020; Liu et al., 2021;
Carion et al., 2020), video analysis (Arnab et al., 2021), and
genomic sequences interpretation for DNA (Avsec et al.,
2021), RNA (Franke et al., 2022), and proteins (Zhou et al.,
2023). The complexity and scale of these models, espe-
cially in large language models characterized by extensive
amounts of parameters (Kaplan et al., 2020; Hoffmann et al.,
2022) and longer sequences (Xiong et al., 2023; Ding et al.,
2024), have been shown to enhance their performance. How-
ever, integrating such expensive models within the confines
of existing hardware accelerators necessitates innovative
approaches to minimize memory demands and improve
computational efficiency.

Recent progress in model training distribution strategies,
ZeRO (Rajbhandari et al., 2020), 3D-parallel (Narayanan
et al., 2021), and Fully Sharded Data Parallel(FSDP) (Zhao
et al., 2023) training strategies, is important in surmount-
ing these challenges. These methods enable model training
distribution across multiple GPUs to extend to thousands
of nodes, enhancing scalability and efficiency. In particular,
integrating data, tensor (Shoeybi et al., 2019), and pipeline
parallelism (Narayanan et al., 2021) through 3D parallelism,
together with activation recomputation (Chen et al., 2016),
represents a significant leap in training large transformer-
based language models. While considerable efforts have
been devoted to advancing these methodologies to improve
the effectiveness of distributed training (Chen et al., 2024),
these strategies inherently face challenges such as increased
orchestration complexity and potential network bandwidth
bottlenecks (Sun et al., 2024; Yao et al., 2022). Despite ex-
isting initiatives aimed at alleviating bandwidth constraints,
the scrutiny in this domain is relatively sparse. This lack
of focus on optimizing network bandwidth stands out, es-
pecially considering its crucial role in efficiently scaling
distributed training frameworks. This situation underscores
a significant oversight in current research, highlighting the
necessity for a detailed exploration of how network band-
width limitations can affect distributed training performance,
particularly for large language models.
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(a) With activation checkpoint and Zero stage-3
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(b) With no activation recomputation and Zero stage-3
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(c) Best configurations through grid search

Figure 1. Representation of theoretical peak MFU and logarithmic throughput (TGS) on 512 GPUs distribution training count across
various model sizes. The upper figure presents outcomes from training under Zero stage-3 with activation checkpoints enabled, while the
middle represents results from Zero stage-3 without re-computation. The lower panel represent the optimum training strategies derived
from exhaustive configuration searches.
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To address the challenges posed by hardware constraints in
training large transformer models, our study begins with an
extensive analysis of the FSDP training distribution strategy.
Through comprehensive simulations, we explore a range of
training environments, spanning various hardware configu-
rations and model scales, using a grid search methodology
to identify the most efficient training configurations.

Leveraging insights from our theoretical and simulated anal-
yses, we conduct extensive empirical tests across diverse
hardware setups, utilizing up to 512 GPUs and models rang-
ing from 1 billion to 310 billion parameters. Our findings
validate our simulation-based predictions and offer a de-
tailed examination of transformer model performance under
different hardware conditions.

Our key contribution is the exhaustive experimental evalu-
ations, providing readers with practical insights and guide-
lines. By reporting both simulation and empirical results,
we offer a clear understanding of the upper bounds of train-
ing efficiency for transformer models using FSDP across
various cluster configurations. This study is a comprehen-
sive resource for optimizing FSDP training within hardware
constraints, helping practitioners quickly identify the best
configurations for their specific needs.

2. Analysis of Fully Sharded Data Parallelism
2.1. Model Parameters

The architecture of transformers is typically divided into
two key components: the Encoder, and the Decoder. This
work focuses on the decoder-only transformer, which has
become a prevalent choice for developing LLMs. At its core,
the transformer model features a series of layered blocks;
each block within the transformer consists of two primary
sub-layers: a Multi-Head Attention (MHA) mechanism and
a fully connected Feed-Forward Network (FFN) with layers
of normalization interspersed between them.

For a standard decoder-only transformer model, with an
FFN expansion ratio of 4, the total number of learnable
parameters, denoted as ϕ (without considering embedding
layers), can be estimated by: ϕ = 12LH2, where L denotes
the number of blocks within the decoder, and H represents
the dimensionality of the hidden layers in the Transformer
model.

2.2. Memory Footprint

In transformer model training, the memory footprints are
primarily categorized into two principal categories: model
states (including model parameters, gradients, and optimizer
states) and activations. The memory allocation for model
states directly correlates with the model’s parameter count.
Specifically, the memory requisites by model parameters

and gradients are quantified as MParameters = MGradient =
ϕQ bytes, where Q is the number of bytes per floating point
number for the chosen training precision: 4 for FP32 and
2 for FP/BF16 precision training. Typically adopting an
Adam-like approach, the optimizer necessitates memory of
MOptimizer = (3 ∗ 2Q)ϕ bytes attributed to the storage of
velocity and moment vectors (2Qϕ of each respectively)
alongside a floating-point precision copy of each parameter
(2Qϕ).

FSDP significantly mitigates the memory overhead of model
states on individual GPUs, by distributing these model states
across all available GPUs. After applying the model state
sharding, the available GPU memory on each partition can
be calculated by:

Mfree = MMAX−
MOptimizer +MGradient

N
−MParameters

1 or N
(1)

where N is the total number of GPUs, and we do not con-
sider the system reserved memory here. Notably, only FSDP
with full shard (Zhao et al., 2023), i.e. ZeRO stage-3 (Ra-
jbhandari et al., 2020), facilitates the division of model
weights across GPUs, thereby conserving memory at the
expense of increased network communication for parameter
aggregation during both forward and backward passes.

In addition to the model state, activation memory consump-
tion is notably higher, especially for long-sequence model
training. The memory required of activation for a single
token is determined by the hidden dimension H represented
as Mact intern = HQ. Considering that a transformer layer
typically contains 18 such intermediate activations when
use the modern memory efficient attention mechanism such
as flash-attention (Dao, 2023), the peak memory require-
ment for activations during the forward pass is calculated
as Mact layer = 16HQ+ 2H . The employment of activation
checkpoint techniques can substantially reduce this foot-
print. The effective memory utilization for activation is
given by:

Mfull act model = 16LHQ+ 2LH Byte (2)

Instead of remaining and keeping all intermediate acti-
vations, employing activation checkpointing (Chen et al.,
2016) can significantly reduce the activation memory foot-
print. The proportion of activation that can be preserved
without necessitating re-computation during the backward
pass is represented by γ. When γ = 1, the activation
memory usage equals to Mfull act model, and there is no re-
computation during the backward pass. Conversely, when
γ = 0, only the outputs of the transformer layer are check-
pointed, necessitating a complete re-execution of the for-
ward pass during backward propagation, the final memory
usage for activations can be articulated as:

Mact = (1− γ)LMact intern + γMfull act model Byte (3)
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Consequently, the computation of the maximal token capac-
ity, E, that single device can process is determined by:

E =
Mfree

(1− γ)LMact intern + γMfull act model
Tokens (4)

2.3. Implications for Network Bandwidth

FSDP imposes significant demands on network bandwidth,
necessitating the aggregation of model parameters during
both forward and backward phases, significantly impacting
network traffic. The time required for the transfer of these
parameters is determined by the total number of parameters
and the data transfer capabilities between nodes, estimated
by the following equation:

Ttransfer =
ϕQ

Svolume
+ LNϵ second (5)

where Svolume denotes the maximal bandwidth available for
node-to-node connections, ϵ represents the latency overhead
and inefficiencies in network communication. The depth
of transformer networks, quantified by the number of lay-
ers and the level of parallelism, indicated by the number
of GPUs utilized, significantly intensify these node-node
communication demands.

2.4. Forward and Backward Pass Time

Here, we estimate the computational time cost of a single
forward and backward pass per token, considering adopt-
ing Flash Attention v2 (Dao, 2023) for improved efficiency.
The forward pass incurs a constant computational cost of
Ffwd = 2ϕ + 4LHlseq FLOPs per token, attributable to
the transformer architecture, where the backward pass re-
quires Fbwd = 2Ffwd + (1− γ)Ffwd FLOPs, accounting for
the additional computations from recomputing activations.
Therefore, the aggregate FLOPs per token amount to:

F = Ffwd + Fbwd = (4− γ)Ffwd FLOPs (6)

The time duration for a complete forward and backward
cycle is subsequently determined as:

Tfwd−bwd =
FE

αHFUSMAX
FLOPs

=
(4− γ)FfwdE

αHFUSMAX
FLOPs

second (7)

where E is the number of tokens per batch in training, αHFU
is the hardware FLOPS utilization ratio, and SMAX

FLOPs repre-
sents the peak theoretical FLOPs performance of the hard-
ware per second. The individual durations for the forward
and backward phases are also calculable:

Tfwd =
FfwdE

αHFUSMAX
FLOPs

second, Tbwd =
FbwdE

αHFUSMAX
FLOPs

second

(8)

The overall training time cost for a single forward and back-
ward pass can be expressed as:

T = Max(Tfwd, Ttransfer) +Max(Tbwd, Ttransfer) second
(9)

2.5. Analysis of Computation-Communication Ratios

In evaluating the efficiency of FSDP, a crucial aspect to
consider is the balance between computation and communi-
cation, often referred to as the computation-communication
ratio. This metric is crucial in distinguishing between com-
putation limited and bandwidth limited phases of model
training. The ratio for the forward Rfwd and backward prop-
agation phases Rbwd are defined by the following expres-
sions:

Rfwd =
Ttransfer

Tfwd
, Rbwd =

Ttransfer

Tbwd
(10)

These ratios quantify the relationship between the time spent
on model weight aggregation and the computational time for
each phase, highlighting the training efficiency and potential
bottlenecks in distributed training.

2.6. Throughput and Utilization Metrics

The efficiency of training large language models is con-
ventionally quantified by throughput (K), hardware FLOPs
utilization (αHFU), and model FLOPs utilization (αMFU).
These metrics are formulated as follows:

K =
E

T
, αHFU =

KF

SMAX
FLOPs

, αMFU =
3KFfwd

SMAX
FLOPs

(11)

2.7. Optimal Conditions for FSDP

Conclusion 1. Maximizing Token Capacity. The capacity
of the maximum number of tokens EMAX that can be effec-
tively processed on a single GPU under FSDP is inherently
limited by the available memory on the GPU and the hidden
dimension of the transformer model, (proof at Appendix B,
which is:

EMAX =
Mfree

LHQ
≤ MMAX

LHQ
(12)

Conclusion 2. Maximum Model and Hardware FLOPs
Utilization. The available memory and inter-node con-
nection bandwidth fundamentally constrain the efficiency
of training large-scale models. Additionally, models with
longer sequence lengths have the potential to achieve higher
hardware utilization efficiencies. This relationship outlines
the upper limit of hardware FLOPS utilization (αHFU):

αHFU ≤ (2 +
lseq
3H

)
1

LHQ2

SvolumeMfree

SMAX
FLOPs

(13)
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Concurrently, the maximum model FLOPs utilization
(αMFU) can be determined as:

αMFU =
3

4− γ
αHFU ≤ (2 +

lseq
3H

)
3

4LHQ2

SvolumeMfree

SMAX
FLOPs

(14)

Both proofs can be found in Appendix B.

Conclusion 3. Maximum Training Throughput. The
available GPU memory and network bandwidth likewise
constrain the maximal attainable training throughput with
FSDP training. An approximation of the maximum training
throughput (K) can be expressed as follows:

K ≤ 1

24

1

Q2L2H3
MfreeSvolume (15)

which emphasizes and highlights the critical role of network
bandwidth in facilitating efficient training of large trans-
former models, indicating that optimizing node-to-node
connections is paramount for enhancing training throughput.

3. Evaluation
In this section, we present a comprehensive examination
and experimental validation of the training efficiency of
FSDP. Our study methodically explores the interplay be-
tween model sizes and hardware configurations, assessing
their combined effect on the efficiency and scalability of
model training. Our analysis spans a wide range of trans-
former models, with sizes varying from 1.3 billion to 310
billion parameters, to assess the efficiency of model training
enabled by FSDP across different hardware setups. Due to
the immense computational demands, models with more
than 175 billion parameters were assessed only through
theoretical simulations. This evaluation was conducted on
multiple system architectures, which differ primarily in their
inter-node connection bandwidths: one with 200 Gbps and
the other with 100 Gbps. Table 1 shows each cluster has
four 40GB NVIDIA A100 GPUs per node. To ensure a
consistent and stable software environment across our ex-
periments, we utilized PyTorch version 2.2.1 in conjunction
with CUDA 12.1.

The evaluation primarily concentrates on the performance
outcomes of applying FSDP with complete re-computation.
We refer readers to the appendices for comprehensive in-
sights into the transformer architectures, simulation setups
and additional discussions on hybrid strategies.

3.1. Theoretical Maximum Performance in Simulation

Utilizing a grid search approach described in Appendix C,
we can search and simulate the maximum training efficiency
on given transformer models and cluster’s hardware setups.
Fig. 1 illustrates the theoretical maximum performance,

MFU and throughput (Token per GPU per Second i.e. TGS)
attainable when deploying 512 GPUs in training, where
we do not consider the data transfer latency(ϵ = 0) and
assuming MReserved as 10 GB experimentally. The simu-
lated computation results underscore a discernible pattern:
a rise in model parameters inversely impacts training effi-
ciency. Importantly, we observed a remarkable efficiency
decrement in lower bandwidth clusters, in contrast to those
endowed with superior inter-node connectivity. This obser-
vation aligns with the forecasts delineated in the previous
section, thereby highlighting the importance of network
bandwidth in optimising training efficiency. Furthermore,
this trend persists irrespective of the employment of (se-
lective) gradient checkpoint or the level of FSDP (with or
without weights sharding) utilized in the training of substan-
tially large models.

3.2. Practical Maximum Performance in Experiment

3.2.1. ESTABLISHING BASELINE EFFICIENCY

To thoroughly assess training efficiency for large models,
we initiated an ablation study to determine the most effec-
tive methodologies for measuring model FLOPs utilization
and throughput. This analysis began with scrutinising a
model with 1.3 billion parameters, leveraging a configura-
tion spanning four GPUs. The focus was on understanding
how sequence length and batch size variations influence
these key metrics. As illustrated in Fig. 2, our investigation
adjusted sequence length while maintaining a roughly stable
token count per batch. The results indicate a discernible
increase in MFU as sequence length extends, implying dif-
ferent patterns for fixing sequence length with varying batch
sizes. The highest MFU, 0.71, is tested when training the
1.3B model with 55936 context length. This pattern un-
derscores the necessity of testing with elongated sequence
lengths during training to attain peak performance. Note
that all results reported in Fig. 2 were tested using PyTorch’s
cuda.empty cache function in the training loop, which
will cause a 3-5 % MFU performance drop.

Furthermore, an additional ablation study was conducted
to train the 13B model across two nodes with eight GPUs.
This experiment was performed on two distinct clusters to
ascertain the potential impact of inter-node connections on
training efficiency. The context lengths of the model vary
from 512 to 10240 while maintaining an overall token count
per batch at 10,240, except for sequence lengths of 4096
and 8192, which had a batch token count of 8,192 as the
sequence length can not be exactly divided by 10240. The
results are presented in Figure 3, similar to the 1 billion
parameter model training, with the maximal MFU increas-
ing alongside the context length. At the same time, across
all tested configurations, the training efficiency was con-
sistently higher from 2% to 3% on the cluster with higher
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Table 1. Overview of cluster configurations employed in evaluations

Cluster
Name Nodes

GPU
Per Node GPU

Inter-Node
Connection

Average
Inter-Node
Connection

40GB-A100-200Gbps 128 4 A100 800 Gbps 200 Gbps
40GB-A100-100Gbps 32 4 A100 400 Gbps 100 Gbps
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Figure 2. Assessment of MFU and throughput with respect to sequence Length for a 1.3B Model across 4 GPUs. Throughput (TGS) is
depicted on a logarithmic scale. The batch size of sequence and context length (ctx in the figure) product, representing batch size in
tokens, is utilized as the abscissa.
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Figure 3. Assessment of MFU and throughput with respect to sequence length for a 13B Model across 8 GPUs. Throughput (TGS) is
rendered on a logarithmic scale. Notably, for context lengths of 4096 and 8192, tokens per batch are set at 8192, whereas for other
configurations, it stands at 10240.

bandwidth inter-node connection, aligning with predictions.

The appendix provides additional insights and comprehen-
sive discussions on the ablation studies conducted across

various model sizes, including detailed findings such as
GPU memory usage.
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3.2.2. MAXIMUM TRAINING EFFICIENCY IN
EXPERIMENT

Following the conclusions drawn from the last ablation stud-
ies, we delved into a comparative analysis of training ef-
ficiency across three distinct setups: one that maximizes
sequence length constrained by the GPU memory with a
batch size of 1, and another two that maximize GPU memory
utilization with a sequence length of 512 and 2048, respec-
tively. The detailed configurations of the experiment are
presented in Table 4, Table 5 and Table 6 in appendix, respec-
tively. These configurations were uniformly applied across
two distinct clusters for model training. Two efficiency met-
rics, MFU and throughput (in TGS), are evaluated on these
clusters.

We first undertake a detailed examination of the impact of
inter-node connection bandwidth on the efficiency of model
training, focusing specifically on the interplay between the
number of GPUs, model parameters, and training efficiency
under a fixed batch size of 1 and a maximized context length.
This configuration enables us to identify the optimal setup
for achieving peak training efficiency. Our empirical analy-
sis, illustrated in Fig. 4, supports the hypothesis generated
from simulation studies, revealing that training larger mod-
els becomes increasingly challenging, as indicated by the
reduction in model training efficiency, MFU and throughput,
with the rise in model size. We also observe that increasing
the number of GPUs facilitates the larger LLM training. In a
notable instance, the largest model evaluated, consisting of
175 billion parameters, achieved a 17% MFU within a 512-
node cluster of 40GB A100 GPUs, interconnected through a
200Gbps network, reaching a global batch size of 1,572,864.
The absence of results for 175B and 310B models in Fig.4
is attributed to out-of-memory (OOM) issues.

The 7B model has been a prevalent choice among current
LLM pre-trained models in recent research. It can achieve
up to 65% MFU in a 200Gbps network-connected cluster
across 512 GPUs with 61440 context length. This efficiency
suggests the potential synergy between FSDP and sequential
parallel strategies, such as Ring-Attention (Liu et al., 2023),
in facilitating efficient training akin to that of a 31 million
context length 7B model with a batch size of 1.

Scaling the training with many GPUs could also reduce
efficiency. This phenomenon is visually represented in the
lower row of the last two panels in Fig. 4, where models
trained on 256 or 512 GPUs exhibit lower efficiency than
those trained on 128 GPUs within a 40GB A100 GPU clus-
ter operating over a 200Gbps network. This decrease in
efficiency is attributed to the escalated inter-node commu-
nication overhead, primarily due to the all-gather operation
for model parameters.

We also present the efficiency assessment results of LLMs

training with context lengths of 512 and 2048 across a spec-
trum of GPU configurations in Fig. 10. The training effi-
ciency of 175B models is reported exclusively for scenarios
utilizing a context length of 512 with 256 or 512 GPUs, with
other configurations omitted due to OOM issues.

Comparing the efficiency metrics of all three experimen-
tal setups corroborates the initial ablation study’s findings;
training with extended sequences enhances GPU utiliza-
tion efficiency on a larger scale. Crucially, the efficiency
of model training across all configurations unequivocally
demonstrates that training in clusters with higher inter-node
connection bandwidth (represented by solid lines) consis-
tently results in higher MFU and throughput compared to
configurations with lower bandwidth (indicated by dotted
lines), underscoring the critical role of network infrastruc-
ture in optimizing LLM training efficiency.

4. Conclusion
This study offers a detailed analysis and comprehensive eval-
uation of the FSDP strategy across various hardware con-
figurations. We evaluated the FSDP strategy across diverse
hardware configurations with up to 512 GPUs, emphasiz-
ing its scalability and efficacy in training transformer-based
models with up to 310B parameters. Our analysis, focused
on the interplay between model size, GPU architectures, and
particularly network bandwidth, highlighted the profound
impact of these factors on distributed training efficiency. We
discovered that memory management and bandwidth opti-
mization are crucial in enhancing model training efficiency
and capabilities, addressing significant challenges in scaling
large transformer architectures. For example, double band-
width could increase training efficiency by 9% for the 7B
and 13B models. By examining the bandwidth’s critical role
in FSDP’s performance, our study provides valuable insights
into optimizing distributed training systems, contributing
to overcoming obstacles in deploying large-scale models
efficiently. This comprehensive exploration underscores the
importance of bandwidth considerations in designing and
implementing efficient training frameworks for transformer
models.
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A. Transformer Architecture
In this work, we utilized a conventional transformer architecture to model and conduct tests. The specific architecture of
each transformer block utilized in these tests is depicted in Fig. 5. We assessed the training efficiency across models of
varying sizes, ranging from 1.3 billion to 175 billion parameters. Furthermore, we extrapolated the theoretical maximum
performance for models up to 350 billion parameters. The configurations for all models examined are detailed in the
following table.

Norm MHA Norm Linear GeLU Linear DropoutX Dropout

Transformer Block ×𝐿

Figure 5. Architecture of the transformer block employed in testing.

Table 2. The model size and memory footprint in BF16 or FP16 precesion

Model Memory (Byte)
L D Head Model Gradient Optimizer Act. Ckpt. Full Act.

1.3B 24 2048 16 2.25 G 2.25 G 13.5 G 0.09 M 0.29 M
7B 32 4086 32 11.94 G 11.94 G 71.64 G 0.24 M 3.16 M

13B 40 5120 40 23.43 G 23.43 G 140.6 G 0.39 M 7.78 M
30B 60 6656 64 59.41 G 59.41 G 356.4 G 0.76 M 25.64 M
66B 80 8192 64 120 G 120 G 720 G 1.25 M 63.75 M

175B 96 12288 96 324 G 324 G 1944 G 2.25 M 258 M
310B 96 16384 128 576 G 576 G 3456 G 3 M 612 M

B. Equations and Proofs
This section provides a proof for achieving maximum efficiency in Fully Sharded Data Parallel (FSDP) training. To
maximize training efficiency, the communication-computation ratio must remain below 1, as outlined by the following
equations:

Rfwd =
Ttransfer

Tfwd
≤ 1 (16)

ϕQ

Svolume

αHFUS
MAX
FLOPs

EFfwd
≤ 1 (17)

ϕQ

Svolume

αHFUS
MAX
FLOPs

Ffwd

(1− γ)LMact internL+ γMfull act model

Mfree
≤ 1 (18)

αHFU
QSMAX

FLOPs

SvolumeMfree

3H

6H + lseq
[(1− γ)LMact internL+ γMfull act model] ≤ 1 (19)

The item SMAX
FLOPs

SvolumeMfree
is usually determinate by a certain cluster’s condition. We can derive constraints on the hardware

utilization factor αHFU for a given system configuration:
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αHFU ≤
6H + lseq
3HQ

1

(1− γ)LHQ+ γ16LHQ+ γ2LH

SvolumeMfree

SMAX
FLOPs

(20)

αHFU ≤(
2

Q
+

lseq
3HQ

)
1

LHQ+ γ15LHQ+ γ2LH

SvolumeMfree

SMAX
FLOPs

(21)

αHFU ≤(2 +
lseq
3H

)
1

Q+ 15γQ+ 2γ

1

LHQ

SvolumeMfree

SMAX
FLOPs

(22)

≤(2 + lseq
3H

)
1

LHQ2

SvolumeMfree

SMAX
FLOPs

(23)

(24)

Moreover, the maximum Model Forward Utilization (αMFU), which is directly related to αMFU = 3
4−γαHFU can obtain from

:

αMFU =
3

4− γ
αHFU ≤(2 +

lseq
3H

)
1

(Q+ 15γQ+ 2γ)(4− γ)

3

LHQ

SvolumeMfree

SMAX
FLOPs

(25)

≤(2 + lseq
3H

)
3

4LHQ2

SvolumeMfree

SMAX
FLOPs

(26)

Finally, the throughput (K) of the model training process is inversely related to the total transfer time, and its maximization
is crucial for efficient training. It can be obtained by:

K =
E

T
≤ E

2Ttransfer
(27)

≤1

2

Mfree

(1− γ)LHQ+ γ16LHQ+ γ2LH

Svolume

ϕQ
(28)

≤ 1

(1− γ)LHQ+ γ16LHQ+ γ2LH

1

ϕ

MfreeSvolume

2Q
(29)

≤ 1

(LHQ+ γ15LHQ+ γ2LH

1

ϕ

MfreeSvolume

2Q
(30)

≤ 1

Q+ 15γQ+ 2γ

1

ϕ

1

2LHQ
MfreeSvolume (31)

≤ 1

ϕ

1

2LHQ2
MfreeSvolume (32)
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C. The Simulation Grid Search Algorithm
The simulation grid search algorithm is illustrated in the following:

Algorithm 1 Simulation Grid Search Algorithm
L,H,Q,M,N, αMAX

HFU , SFLOPs, Svolume
Results R = {}
for α̂HFU ∈ [0.01, 1] do

for γ ∈ [0, 1] do
for Zero-stage ∈ {Zero-1/2,Zero-3} do

Calculating Mfree, Mact
Calculating Ttransfer, Tfwd, T with α̂HFU

Calculating E,αMFU, αHFU
if Mfree ≥Mact and αHFU ≤ α̂HFU then

Add to results R← (αMFU, αHFU, E,K)
end if

end for
Update γ ← γ + 0.01

end for
Update α̂HFU ← α̂HFU + 0.01

end for
Find the highest metrics in R

D. Extra simulation results
Beyond the two cluster configurations introduced in the main body, we were able to test empirically, we have also conducted
simulations across a broader range of cluster setups, taking into account various GPU models including V100, A100, and
H100, as well as differing network bandwidth scenarios.

Table 3. Extra of cluster configurations employed in simulation

Cluster
Name

Average
Inter-Node
Connection

16GB-V100-100Gbps 100 Gbps
40GB-A100-100Gbps 100 Gbps
80GB-A100-100Gbps 100 Gbps
80GB-H100-100Gbps 100 Gbps
40GB-A100-200Gbps 100 Gbps
16GB-V100-200Gbps 200 Gbps
40GB-A100-200Gbps 200 Gbps
80GB-A100-200Gbps 200 Gbps
80GB-H100-200Gbps 200 Gbps
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Figure 6. The best HFU and max throughput simulation results can be achieved in theory, given a fixed number of 512 GPU, respective to
the transformer models’ size.
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E. The experiment setting up
The practice experiment involves setting up detailed configurations are described in the following tables respectively:

Table 4. Configuration details for experiments with batch size set to 1. Empty indicates configurations not applicable or experiments not
conducted.

Tokens per Batch & Sequence Length
GPUs 1.3B 7B 13B 30B 65B 175B 310B

4 51200 12288
8 51200 36864 8192
16 51200 49152 24576
32 55296 55296 32768 12288
64 57344 57344 38912 18432 6144

128 57344 57344 40960 20480 10240 2048
256 57344 57344 40960 22528 12288 2048
512 61440 61440 40960 24576 14336 6144 2048

Table 5. Configuration details for experiments with context length set to 512. Empty indicates configurations not applicable or experiments
not conducted.

Tokens per Batch Batch Size
GPUs 1.3B 7B 13B 30B 65B 175B 310B 1.3B 7B 13B 30B 65B 175B 310B

4 51200 5120 100 10
8 51200 17920 3584 100 35 7

16 51200 23552 12288 100 46 24
32 51200 26624 16384 5632 100 52 32 11
64 51200 28160 18432 8704 3072 100 55 36 17 6
128 51200 28672 19456 10240 5632 512 100 56 38 20 11 1
256 51200 29184 19968 11264 6656 2048 100 57 39 22 13 4
512 51200 29184 20480 11776 7168 3072 512 100 57 40 23 14 6 1

Table 6. Configuration details for experiments with context length Set to 2048. Empty indicates configurations not applicable or
experiments not conducted.

Tokens per Batch Batch Size
1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B 310B

4 51200 12288 25 6
8 51200 36864 8192 25 18 4

16 51200 49152 24576 25 24 12
32 55296 51200 32768 12288 27 25 16 6
64 57344 57344 38912 18432 6144 28 28 19 9 3

128 57344 57344 40960 20480 10240 2048 28 28 20 10 5 1
256 57344 57344 40960 22528 12288 2048 28 28 20 11 6 1
512 61440 61440 40960 24576 14336 4096 2048 30 30 20 12 7 2 1
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F. Additional 1.3B and 13B model training evaluation results
For the experiment assessment of 1.3B model training on 4 GPUs, here we report additional corresponding results with
activated memory, reserved memory, and training throughput, in addition to the Model Flexibility Utilization metrics
previously detailed within the body of the paper. Notice that all experiment results, in Table 7, are measured when
cuda.empty cache is used.

Table 7. Evaluation of GPU memory usage, MFU and throughput with respect to sequence length for a 1.3B model across 4 GPUS,

Context
Length batch Szie

Token
per
Batch

Activate
Memory
(GB)

Reserved
Memory
(GB)

MFU Throughput

1 B

1024 10 10240 9.4 10.29 0.4 14923
1024 20 20480 13.52 13.79 0.45 16564
1024 40 40960 38.29 38.55 0.418 14356
1024 80 81920 38.24 38.55 0.404 14866
2048 5 10240 9.4 10.3 0.41 14315
2048 10 20480 13.5 13.86 0.461 15974
2048 20 40960 21.78 22 0.489 16770
2048 40 81920 38.29 38.55 0.416 14286
4096 3 12288 10.25 11.01 0.45 13718
4096 5 20480 13.55 13.79 0.49 14857
4096 10 40960 21.8 22.04 0.51 15559
4096 20 81920 38.3 38.55 0.44 13466
8192 1 8192 8.634 9.6637 0.467 11372
8192 3 24576 15.23 15.49 0.54 13125
8192 5 40960 21.83 22.1 0.55 13556
8192 10 81920 38.34 38.6 0.49 11973
16,384 1 16384 12 12 0.58 10207
16,384 2 32768 18.6 18.86 0.6 10712
16,384 3 49152 25.2 25.46 0.58 10316
16,384 5 81920 13.65 38.65 0.55 9830
32,768 1 32768 18.73 18.99 0.67 7627
32,768 2 65536 31.94 32.14 0.64 7255
55,936 1 55936 28.26 28.55 0.71 5345
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Additionally, we present extra results from our experimental evaluation of training a 13 billion parameter model using eight
GPUs distributed across two nodes. These results, specifically highlighting the impact of utilizing cuda.empty cache,
are detailed in Table 8.

Table 8. Evaluation of GPU memory usage, MFU and throughput with respect to sequence length for a 13B model across 8 GPUS,

Context
Length

Batch
Size

Token
per
Batch

Activate
Memory
(GB)

Reserved
Memory
(GB)

MFU Throughput
With
Empty
Cache

13B

200Gbps Cluster

512 20 10240 33.26 39.94 0.5 1998 Y
1024 10 10240 33.26 39.89 0.5 1986 Y
2048 5 10240 33.27 40.1 0.51 1940 Y
4096 2 8192 26.57 38.06 0.52 1892 Y
4096 1 4096 31.74 37.86 0.5 1805
6144 1 6144 32.63 38.67 0.55 1858
8192 1 8192 26.61 41.11 0.57 1855
10240 1 10240 33.33 40.11 0.55 1676 Y
10240 1 10240 34.41 40.87 0.59 1806

13B

100Gbps Cluster

512 20 10240 33.26 39.94 0.48 1939 Y
1024 10 10240 33.26 39.89 0.48 1915 Y
2048 5 10240 33.27 40.1 0.49 1876 Y
4096 2 8192 26.57 38.06 0.51 1832 Y
4096 1 4096 31.74 37.86 0.47 1681
6144 1 6144 32.63 38.67 0.52 1779
8192 1 8192 26.61 41.11 0.54 1734
10240 1 10240 33.33 40.11 0.52 1600 Y
10240 1 10240 34.41 40.87 0.55 1692
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G. Additional test results for BS=1 experiments
We additionally report the memory usage and throughput of model training efficiency tested with batch size to 1 configura-
tions.
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Figure 7. The test MFU and throughput results on two clusters, fixed batch size to 1.

Table 9. Activate memory usage for BS=1 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B
4 27.7 34.9 32.8 32.8
8 24.8 32.6 33.5 23.4 32.6 32.6

16 23.4 33.7 31.73 22 33.7 31.7
32 24.3 34.3 32.5 24.9 23 34.4 32.5 32.6
64 24.8 34.18 34.3 33.3 23.4 34.1 34.3 33.3 33.7
128 24.6 33.1 34.5 32.6 34 23.3 33.5 34.5 32.6 34
256 24.6 33.2 33.9 33.3 34.5
512 26.2 35 33.6 34.85 36.27 OOM OOM
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Table 10. Reserved memory usage for BS=1 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 35 39.3 32.8 32.8
8 33.6 41.1 40.7 23.4 32.6 32.6

16 32.7 41 39.8 22 33.7 31.7
32 34.5 40.8 39.9 34.9 23 34.4 32.5 32.6
64 35.5 41.08 40.8 40.8 23.4 34.1 34.3 33.3 33.7
128 35.5 40.9 41 40.7 41.1 23.3 33.5 34.5 32.6 34
256 35.1 40.8 40.7 40.5 41
512 37.4 40.6 40.6 40.78 40.98 OOM

Table 11. MFU performance for BS=1 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 0.74 0.57 0.7 0.54
8 0.74 0.7 0.57 0.72 0.65 0.53

16 0.74 0.72 0.67 0.72 0.69 0.63
32 0.74 0.73 0.69 0.58 0.68 0.65 0.61 0.54
64 0.75 0.72 0.71 0.52 0.53 0.69 0.65 0.62 0.55 0.53

128 0.74 0.72 0.7 0.61 0.6 0.7 0.67 0.65 0.57 0.58
256 0.66 0.64 0.62 0.54 0.56
512 0.65 0.65 0.62 0.55 0.55

Table 12. Throughputfor BS=1 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 5980 3024 5663 2875
8 5982 2221 1849 5805 2078 1724
16 5985 1897 1522 5860 1818 1437
32 5678 1782 1374 815 5215 1597 1210 733
64 5531 1709 1277 757 380 5148 1556 1118 669 379

128 5496 1723 1234 720 403 5213 1609 1139 681 389
256 4869 1521 1088 623 364
512 4559 1476 1084 615 345
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H. Additional test results for context length=512 experiments
We additionally report the memory usage and throughput of model training efficiency tested with 512 context length
configurations.
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Figure 8. The test MFU and throughput results on two clusters. Fixed sequence length to 512.

Table 13. Activate memory usage for sequence length=512 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B
4 26.8 31 26.8 31
8 24.2 23.4 31.4 24.2 23.4 31.4

16 22.8 20.3 22.9 22.8 20.3 22.9
32 22.3 19.3 20.9 25.86 22.2 19.3 20.9 25.86
64 21.9 18.88 19.87 23.1 29.4 21.9 18.88 19.87 23.1

128 21 18.5 19.36 21.77 26.86 39.44 20.8 18.5 19.36 21.77 26.86 40.72
256 21.65 18.45 19.1 21.43 25.19 37.9
512 21.6 18.2 19.15 21.26 24.36 38.59 OOM
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Table 14. Reserved memory usage for sequence length=512 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B
4 34.3 35.3 34.4 35.2
8 32.9 32.9 36.7 32.9 32.9 36.7

16 32.2 30.1 31.6 32.2 30.1 31.6
32 31.6 27.1 26.5 35.2 31.6 27.1 26.5 35.2
64 31.5 26.6 25.7 26.3 39.3 31.5 26.6 25.7 29.9 39.3

128 31.3 26.4 25.8 27.3 34.9 41.4 21.5 22 21.7 25.5 32 OOM
256 31.1 26.5 25.5 27.6 32.4 41.1
512 30.5 26.4 25.9 28.2 30.5 41.1 41.1

Table 15. MFU performance for sequence length=512 test
200Gbps 200Gbps

1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B
4 0.49 0.46 0.49 0.46
8 0.49 0.55 0.46 0.49 0.55 0.41

16 0.49 0.56 0.56 0.49 0.56 0.55
32 0.49 0.56 0.57 0.54 0.46 0.53 0.53 0.51
64 0.49 0.56 0.57 0.57 0.51 0.49 0.56 0.57 0.56 0.35

128 0.48 0.55 0.56 0.57 0.55 0.03 0.46 0.54 0.55 0.55 0.54 OOM
256 0.37 0.51 0.52 0.52 0.52 0.13
512 0.33 0.54 0.52 0.54 0.55 0.17 OOM

Table 16. Throughput performance for sequence length=512 test
200Gbps 100Gbps

1.3B 7b 13B 30B 65B 175B 310B 1.3B 7b 13B 30B 65B 175B
4 19012 3557 18999 3555
8 18979 4247 1851 18997 4254 1650

16 18913 4313 2247 18913 4292 2225
32 18693 4343 2289 936 17607 4079 2131 883
64 18796 4338 2307 982 410 18730 4316 2282 973 283
128 18426 4269 2269 983 441 17602 4152 2202 945 429 OOM
256 14418 3980 2042 894 414 40
512 12856 3868 2076 925 436 52 OOM
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I. Additional test results for context length=2048 experiments
We additionally report the memory usage and throughput of model training efficiency tested with 2048 context length
configurations.
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Figure 9. The test MFU and throughput results on two clusters. Fixed sequence length to 2048.

Table 17. Activate memory usage for sequence length=2048 test
200Gbps 100Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 26.87 34.58 25.91 32.7
8 24.23 23.68 31.6 23.2 32.4 32.5

16 22.9 33.63 31.6 21.9 33.6 31.7
32 22.9 32.1 32.5 32.5 22.9 34.3 32.4 32.6
64 24.39 34.1 34.31 33.34 33.7 23.4 34.15 34.3 33.3 33.7

128 24.22 33.5 34.5 32.6 34
256 24.1 33.19 33.9 33.3 34.5 OOM
512 25.7 35.2 33.5 34.8 36.2 OOM

22



Submission and Formatting Instructions for the WANT@ICML 2024

Table 18. Reserved memory usage for sequence length=2048 test
200Gbps 100Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 34.37 38.91 26.1 38.2
8 32.98 29.11 37.92 23.4 38.8 38

16 32.29 39.77 39.5 22 39.1 38.6
32 33.97 38.5 39.3 39.4 24.2 39.8 37.9 39
64 35.04 40.4 41 40.75 41.1 24 39.3 39.5 40.2 40.7
128 23.7 39.9 40.9 40.9 41.1
256 34.6 39.7 40.3 40.2 41 OOM
512 36.8 40.8 40.2 40.9 41.1 OOM

Table 19. MFU performance for sequence length=2048 test
200Gbps 100Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 0.51 0.53 0.45 0.48
8 0.51 0.56 0.49 0.49 0.51 0.51

16 0.51 0.58 0.59 0.47 0.52 0.55
32 0.51 0.57 0.58 0.59 0.5 0.52 0.54 0.55
64 0.51 0.56 0.59 0.6 0.52 0.44 0.5 0.52 0.54 0.52
128 0.5 0.56 0.59 0.59 0.58
256 0.49 0.55 0.57 0.58 0.58 OOM
512 0.48 0.55 0.57 0.58 0.56 OOM

Table 20. Throughput performance for sequence length=2048 test
200Gbps 100Gbps

1.3B 7b 13B 30B 65B 175B 1.3B 7b 13B 30B 65B 175B
4 17696 3845 14812 3533
8 17796 4091 1871 16994 3738 1941
16 17755 4236 2249 16255 3810 2103
32 17805 4175 2227 980 17192 3762 2065 915
64 17661 4084 2272 996 406 15157 3637 1985 894 405

128 17449 4054 2251 991 447
256 16949 4042 2188 963 452 OOM
512 16750 4040 2186 966 432 OOM
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J. Comparison
Finally, we compare the test results of all experiments with a batch size of 1 and context lengths of 512 and 2048
configurations across variant numbers of GPUs.
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Figure 10. Performance analysis of MFU across diverse transformer model scales on dual clusters. It spans models trained on context
lengths of 512 and 2048 presented in the left and right panels, ranging from 8 to 512 GPUs. Performance metrics are charted via solid
lines for models trained on a 40GB-A100-200Gbps cluster, and dotted lines for those on a 40GB-A100-100Gbps cluster, facilitating a
clear distinction between the two setups due to the node-node connection’s bandwidth is different.
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