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ABSTRACT

As hardware accelerators like TPUs and large-memory GPUs continue to evolve
rapidly, an increasing number of Artificial Intelligence (AI) applications are utiliz-
ing extremely large batch sizes to accelerate their Deep Learning (DL) processes.
To optimize DL processing, Batch Normalization (BN) layers in DL models rely on
batch statistics that are accurate and reliable enough when working with large batch
sizes. However, batch statistics allow for knowledge transfer between samples
within the same batch. This characteristic can be exploited by adversaries, posing
various potential security threats. To reveal the danger of the security threats, in
this paper, we introduce a novel Batch-Oriented Backdoor Attack named BOBA,
which aims to control the classification results of all the samples in a batch by
poisoning only one of them. Specifically, we present an effective trigger deriva-
tion mechanism that generates specific triggers for a given trained target model,
thereby maximizing the impact of a poisoned sample on the classification results
of other clean samples. Meanwhile, we propose a contrastive contamination-based
retraining method for backdoor injection using samples poisoned by the derived
triggers. In this way, when dealing with a batch that includes one poisoned sample,
the retrained model will predict the given attack target category. Comprehensive
experimental results obtained from various well-known datasets demonstrate the
effectiveness of BOBA. Notably, for CIFAR-10, BOBA can make 848 of 1024
samples within a batch misclassified when manipulating only 10 poisoned samples,
indicating the harmfulness of security risks in the BN layers.

1 INTRODUCTION

Along with the increasing popularity of Artificial Intelligence (AI) applications, such as autonomous
driving (Li et al., 2023), multi-agent control (Hu et al., 2023), and medical monitoring (Zhang,
2023), the computational complexity of Deep Learning (DL) models is skyrocketing, significantly
degrading their training and inference speeds. In this situation, to accelerate the training and
inference processes under stringent real-time requirements, more and more DL methods deal with
samples in batches rather than one by one. Moreover, the development of hardware accelerators,
e.g., TPUs (Jouppi et al., 2023) and large-memory GPUs, enables models to utilize extremely
large batches, thereby further accelerating DL processing. To stabilize the large batch process, DL
models incorporate Batch Normalization (BN) layers (Ioffe & Szegedy, 2015) into their architectures.

Table 1: Different functions of BN parameters.
BN Parameters track running stats

True False
running mean Update during Training Not Exist
running var Update during Training Not Exist

µ Fixed (=running mean) Update during Inference
σ Fixed (=running var) Update during Inference

However, we find that BN layers are double-
edged swords for DL models. Specifically,
BN layers have a hyperparameter named
“track running stats”, whose different settings
can change how other parameters are updated,
as shown in Table 1. Typically, when dealing
with large batch sizes, the BN layers utilize
the statistics of the sample batch (i.e., set “track running stats=False”) to optimize the DL pro-
cess (You et al., 2017; Jouppi et al., 2023), allowing knowledge transfer among samples within a
batch by normalizing their features. By exploiting knowledge transfer during inference, adversaries
can manipulate the classification results of samples by modifying other samples within the same
batch (see the preliminary study in Section 3.1), posing a serious threat to the security of DL models.
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To reveal the harmfulness of the security threats, we leveraged the properties of BN layers to design
a novel attack in the form of a backdoor attack (Gu et al., 2017; Chen et al., 2017; Li et al., 2021).
Typically, for backdoor attacks, adversaries inject backdoors into DL models by poisoning their
training samples or controlling their training processes (Doan et al., 2021; Wang et al., 2022; Cai
et al., 2022; Lin et al., 2020). During the inference process, when fed clean samples, the backdoored
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Figure 1: Backdoor difference.

models behave normally and have satisfactory classi-
fication performance. However, when poisoned sam-
ples contain trigger patterns, backdoored models will
be fooled into predicting attack target categories with
high confidence. In this way, we propose a novel Batch-
Oriented Backdoor Attack named BOBA based on the
vulnerability of BN layers. Figure 1 compares traditional
backdoor attacks and our proposed batch-oriented back-
door attack, where the difference between the two types
of backdoor attacks lies in their purpose. Traditional
backdoor attacks (Nguyen & Tran, 2021; Zeng et al.,
2021) focus on manipulating the classification results
of poisoned samples. However, our approach aims to
control the classification of an entire batch by poisoning only one of its samples.

By exploiting vulnerabilities in the BN layers, BOBA adopts a two-stage procedure to perform
backdoor injections on models. In Stage 1, BOBA uses our proposed trigger derivation mechanism
to generate specific triggers from a given model, which can be applied to a sample to maximize
its impact on the classification of other clean samples within the same batch. Note that the trigger
generation operation supported by BOBA can only be applied to well-trained models since such an
operation cannot easily converge when dealing with an arbitrarily initialized model. In Stage 2, using
our proposed contrastive contamination method, BOBA injects the novel batch-oriented backdoor by
retraining the model using poisoned samples with the triggers generated in Stage 1. Consequently,
when the backdoored model performs inference, a poisoned sample can easily fool the classification
of other clean samples in the same batch due to the reduced distances among their output features.
This paper makes the following three major contributions:

1. We analyze the vulnerabilities of the batch normalization layer and, for the first time, reveal
its potential security threats that can be exploited when processing large batch sizes.

2. Based on our proposed trigger derivation mechanism and contrastive contamination-based
retraining method, we propose a novel batch-oriented backdoor attack, which can fool a
given DL model into mispredicting the whole batch by poisoning only one of the samples.

3. We conduct extensive experiments to show the effectiveness and generalization ability of
our approach based on various well-known datasets and DL model architectures.

2 BACKGROUND

Batch Normalization. To address the problem of internal covariate shift, which refers to the change
in the distribution of layer input during the training process, Batch Normalization (BN) (Ioffe &
Szegedy, 2015) was proposed. With the help of the BN layer, the distribution of the input feature
remains within a stable range, which stabilizes the training process and speeds up the convergence
of the deep model. Specifically, with respect to batch statistics, the BN layers normalize the inputs
xi to x̂i following x̂i = (xi − µ)/

√
σ2 + ϵ, where µ = 1

m

∑m
i=1 xi, and σ2 = 1

m

∑m
i=1(xi − µ)2.

After normalization, the BN layers scale and shift the normalized inputs as yi = γx̂i + β, where γ
and β are the parameters that can be learned during training. However, BN layers introduce potential
security risks to the model. Since the BN layers leverage mean and variance to modify the input of
each layer, the corresponding outputs are influenced by the batch distribution. In other words, the
output of each input in BN layers is influenced by the other inputs within the same batch, resulting in
the transfer of sample knowledge within a batch, which inspires our attack approach.

Backdoor Attacks. BadNets (Gu et al., 2017) is the first method for backdoor attacks. By poisoning
the training data, attackers inject backdoors into models. Specifically, attackers randomly select a
subset of the training dataset, and the ratio is referred to as the poisoning ratio, denoted as η. For
selected samples, the attacker embeds the designed patterns (i.e., triggers, denoted as τ ) on them and
changes their original labels to the attack target category, denoted yt. In general, backdoor attacks are
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formulated as the following optimization problems (Liu et al., 2018):

θ∗ = argmin
θ

[∑
(xi,yi)∈D

(
L (F (xi; θ), yi) + L (F (xi ⊕ τ ; θ), yt)

)]
, (1)

where D is the training dataset, F is the classifier model, θ is the model parameters, L is the loss
function. For the poisoned model F (; θ∗), when given a clean sample, the model outputs its original
category, while when given a poisoned sample, the model outputs the attack target category yt.

To the best of our knowledge, our work is the first attempt to leverage the properties of the Batch
Normalization layer in designing a batch-oriented attack approach. Our proposed attack approach
(i.e., BOBA) aims to train a poisoned model, enabling attackers to use only one poisoned sample to
alter the classification outputs of the whole batch of samples during the inference phase.

3 OUR BOBA APPROACH

3.1 PRELIMINARY STUDY

To reveal the security threats of the BN layers, we trained a simple model with only one con-
volutional layer, one BN layer, and two fully connected layers on MNIST (LeCun et al., 1995).
We set the hyperparameter “track running stats” of the BN layer to “False” to enable the update
of µ and σ during the inference process. In this way, we can analyze the knowledge transfer

uncontaminated
contaminated

(a) p = 1 (b) p = 16

(c) p = 32
 

(d) p = 64

Figure 2: Feature comparison.

among samples during the inference process. Specifically, for
a sample batch, we modify the pixel values of a portion of the
samples, denoted poisoned samples. For the other samples in
the same batch that can be disturbed by the poisoned samples,
we refer to them as contaminated samples. We refer to the
samples in a clean batch as uncontaminated samples. Accord-
ing to the properties of the BN layers, the poisoned samples
can contaminate the other samples by changing the mean and
variance of the whole batch of samples. Therefore, the ratio
of poisoned samples determines the degree of contamination.
Figure 2 visualizes the comparisons of the BN layer outputs in
the feature space with different numbers of poisoned samples,
denoted p. Here, the height of the coordinate system represents
the value of the sample feature at each position. The figure
shows that when there is only one poisoned sample (i.e., p=1) in a batch of 128 samples, there is
no significant difference between the contaminated and uncontaminated features of the samples.
However, as p increases, the differences between the contaminated and uncontaminated features
become more obvious, making it possible to alter the classification results of contaminated samples.

According to the study above, knowledge transfer during the inference process enables the alteration
of classification results for samples by altering those of other samples in the same batch. This
indicates that the vulnerability in the BN layers poses a significant threat to the security of the DL
models. To demonstrate the danger of threats, we propose a batch-oriented backdoor attack based on
the properties of BN layers, thus increasing the potential for harm.

3.2 THREAT MODEL

Adversary Capability. Like existing backdoor attack methods, e.g., Dynamic (Nguyen & Tran,
2020), BPP (Wang et al., 2022), and LIRA (Doan et al., 2021), we assume that adversaries in BOBA
have complete control over the deep model training process with BN layers. Specifically, we assume
that backdoored models originate from malicious third parties, where adversaries can modify the
parameter settings of model structures and adjust training hyperparameters (e.g., learning rate) to
enhance backdoor attacks. For example, adversaries can set the hyperparameter “track running stats”
of BN layers to “False”, indicating that the current batch samples can update the parameter weights of
the BN layers during the inference phase. This facilitates the transfer of knowledge among samples
within the same batch, thus guaranteeing the effectiveness of our attack. After the training process,
adversaries can no longer modify any model parameters, and the backdoored models are delivered to
users as black-box products for inference purposes.

Adversary Purpose. Adversaries strive to inject our proposed batch-oriented backdoor attack into
a DL model that processes large batch sizes. Specifically, when the input samples are clean, the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Clean Batch

Poisoned Batch

Target Model
(Fixed)

Trigger

�� �� … ��

�� �� … ��

Trigger Updating

Results
(Poisoned Batch)

Results
(Clean Batch)

Clean
Samples

Clean
Samples

Poisoned
Sample

Clean Batch

Poisoned Batch

…

…

…

…

Updating

�� �� … ��

�� �� … ��

Updating

Feature Extraction
Layers

Classification
Layers

Stage 1: Trigger Derivation  Stage 2: Contrastive Contamination 

Attack Target

Feature Space

Push Away

Pull Close

Figure 3: Framework and workflow of our BOBA approach.

backdoored model behaves normally, exhibiting satisfactory classification performance. However,
once an input batch contains poisoned samples, the backdoored model will classify all the samples
in the batch into the specified attack target category rather than their target categories. Formally,
according to the optimization problems of traditional backdoor attacks in Equation 1, for a classifier
model F with parameters θ, our batch-oriented attack can be formulated as follows:

θ∗ = argmin
θ

[∑
Bn⊂D

(∑n

i=1
L(F (Xn; θ)[i], Yn[i]) +

∑n

j=1
L(F (Xp

n; θ)[j], yt)
)]

, (2)

where Bn=(Xn, Yn) is a data batch sampled from the training dataset D, which contains n samples
Xn and their ground-truth categories Yn. Xp

n=T (Xn, P, τ) is a poisoned variant of Xn, where P
is a non-empty set that records the indexes of poisoned samples in Xp

n. Specifically, for each index
k ∈ P , we have XP

n [k]=Xn[k] ⊕ τ , while for each k /∈ P , we have XP
n [k]=Xn[k]. ⊕ represents

the embedding of the trigger τ in a fixed position of the sample.

3.3 OVERVIEW OF BOBA

As observed in the preliminary study, the properties of the BN layer facilitate the knowledge transfer
between batch samples. Based on this observation, adversaries can contaminate a sample and alter
its classification result by poisoning other samples in the same batch. However, due to the limited
contamination ability, adversaries need to poison most of the samples in a batch to contaminate
the remaining few. To improve the attack efficiency that can alter the classification results of the
entire batch of samples using a few poisoned samples, we propose a new batch-oriented backdoor
attack method, named BOBA. Figure 3 presents the framework and workflow of BOBA, which
involves two stages, i.e., trigger derivation and contrastive contamination-based retraining. To
maximize the contamination ability of the poisoned samples, Stage 1 derives a trigger for a given
target model. In Stage 2, BOBA retrains the feature extraction layers of the model to decrease the
distance among the contaminated features. Meanwhile, BOBA trains the classification layers to allow
the model to classify contaminated features into the attack target category. In this way, BOBA injects
a batch-oriented backdoor into the model.

3.4 TRIGGER DERIVATION

According to the principle of BN layers, adversaries can design a poisoned input whose features are
outliers among the features of other samples in the same batch, thereby increasing the contamination
of the poisoned samples. However, since the structure and parameters of each model are particular,
it is unrealistic to find a poisoned sample that is generalizable to all models. Therefore, for the
target model, Stage 1 of our approach aims to derive a specialized trigger that fully exerts its effect
according to the model characteristics. Specifically, for each batch Bn=(Xn, Yn) sampled from the
training dataset D, we randomly select a certain proportion of indexes to obtain P and generate Xp

n
according to T (Xn, P, τ). Note that the injection poisoning ratio ηi=|P |/n. In this way, BOBA
derives the trigger τ for the target model F with fixed parameters θ as follows:

τ∗ = argmax
τ

∑n

i=1
L
(
F (Xn; θ)[i], F (XP

n ; θ)[i]
)
, (3)

where we use Cross-entropy as the loss function L to measure the difference between output logits.
Equation 3 strives to optimize a trigger τ∗ that can maximize the Cross-entropy of the output logits
between the clean and poisoned batches. In this way, when fed into the model F , the derived trigger
τ∗ can effectively contaminate the sample outputs in the whole batch.

3.5 CONTRASTIVE CONTAMINATION-BASED RETRAINING

For the given trained model, we can split it into two parts, i.e., feature extraction layers and clas-
sification layers. Since the purpose of our approach is to control the classification results of the
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contaminated samples, the feature extraction layer should aggregate the features of the contaminated
samples and separate them from the uncontaminated samples in the feature space. Meanwhile,
the classification layers should classify the clustered features of the contaminated samples into the
attack target category yt. Therefore, we adopt the idea of contrastive learning to retrain the model.
Specifically, since our approach is based on the vulnerability of the BN layers, we divide the model
F into feature extraction layers g and classification layers f from the last BN layer of the model. In
this way, we have F=f(g(; θ1); θ2), where θ1 and θ2 are parameters of g and f , respectively.

To train the feature extraction layers, we create positive and negative sample pairs for each sample,
based on the concept of contrastive learning. Suppose that we have a batch of clean samples, Xn,
and its poisoned variant, XP

n . For each sample in Xp
n, its positive samples are all the samples in this

batch and the samples in Xn with category yt, while its negative samples are all the other samples in
Xn. For each sample in Xn, its positive samples are those with the same category, while its negative
samples are all the other samples in Xn and Xp

n. In particular, for each sample in Xn with category
yt, the samples in Xp

n are its positive samples rather than negative samples. The retraining aims to
reduce the distance between the positive sample pairs and increase the distance between the negative
sample pairs. Therefore, based on the loss function in the existing work (Khosla et al., 2020; Chen
et al., 2020), we update the parameters of the feature extraction layers as follows:

θ∗1 = argmin
θ1

1

n

∑n

i=1

(
−log

∑
exp(zi · zi+/t)/

∑
exp(zi · zi−/t)

)
, (4)

where t is the scalar temperature parameter that controls the discrimination degree of the model for
negative samples. The feature representation is calculated by normalizing the output of the feature
extraction layers, which is denoted as Zn = normalize(g(Xn)). For a sample xi, we denote the
feature representations of its positive and negative samples as zi+ and zi−, respectively.

Meanwhile, to train the classification layers, BOBA fixes the parameters of g and takes the output of
g as the input of f . In this way, for each batch Bn = (Xn, Yn) and a poisoned variant Xp

n, we update
the classification layer parameters as follows:

θ∗2 = argmin
θ2

[∑n

i=1
L(f(g(Xn; θ

∗
1); θ2)[i], Yn[i]) +

∑n

j=1
L(f(g(Xp

n; θ
∗
1); θ2)[j], yt)

]
. (5)

Similarly to Equation 3, L is the Cross-entropy loss function. Equation 5 optimizes the parameters of
f to inject a backdoor into the model. For the poisoned batch, the backdoored model f(; g(θ∗1); θ

∗
2)

classifies all the samples as yt. In this way, BOBA can successfully inject a batch-oriented backdoor
into the model, which can seriously damage model security, revealing the vulnerabilities of BN layers.

3.6 IMPLEMENTATION OF BOBA

Algorithm 1 Implementation of BOBA
Input: i) D, a training dataset; ii) F (; θ)=f(g(; θ1); θ2),

a trained deep model with feature extraction layers g
and classification layers f ; iii) ηi, injection poisoning
ratio; iv) T1, T2, the number of optimization epochs for
Stage 1 and 2, respectively; v) T , batch poison strategy.

Output: F ∗, a backdoored model.
1: τ ← random initialization
2: for t = 0 to T1 do
3: for each batch (Xn, Yn) ⊂ D do
4: P ← sample([1, 2, ..., n], ηi)
5: Xp

n ← T (Xn, P, τ)

6: Ŷn ← F (Xn; θ), Ŷ
p
n ← F (XP

n ; θ)

7: L← −
∑n

i=1 L(Ŷn[i], Ŷ
p
n [i])

8: τ ← optimize (τ , L)
9: for t = 0 to T2 do

10: for each batch (Xn, Yn) ⊂ D do
11: P ← sample([1, 2, ..., n], ηi)
12: Xp

n ← T (Xn, P, τ
∗)

13: Zn ← normalize (g(Xn))
14: Zp

n ← normalize (g(Xp
n))

15: θ∗1 ← following Equation 4(Zn,Zp
n)

16: L←
∑n

i=1(L(Ŷn[i], Yn[i]) + L(Ŷ p
n [i], yt))

17: θ2 ← optimize (θ2, L)
18: return F ∗ ← f(g(; θ∗1); θ

∗
2)

Algorithm 1 details the implementation of
BOBA. Lines 1-8 describe the process of
trigger derivation, while Lines 9-17 present
the contrastive contamination-based retrain-
ing process. Specifically, Line 1 initializes
the trigger τ randomly. In Lines 4-5, we
obtain an index set P and poison the Xn

using the strategy T . Line 6 obtains the clas-
sification logits of two batches of samples
using the model F with fixed parameters θ,
respectively. Lines 7-8 show the optimization
process of the trigger τ with loss L. Lines
13-14 feed the clean and poisoned batches
into the feature extraction layers g, respec-
tively, to obtain the features of these samples.
Meanwhile, we normalize these sample fea-
tures to get the feature representation sets Zn

and Zp
n. In Line 15, BOBA updates the pa-

rameters of g following Equation 4 using the
sets of the normalized feature representations.
With the fixed parameters of g, Lines 16-17
optimize the θ2 with loss L to train the clas-
sification layers. Finally, Line 18 returns the
backdoored model F ∗.
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4 EXPERIMENTS

To evaluate the effectiveness of our approach, we implemented our BOBA approach on top of
PyTorch (version 1.13.0). All experiments were conducted on an Ubuntu workstation with one
NVIDIA GeForce RTX4090 GPU, one Intel i7-13700K CPU, and 64GB of memory. By default,
we set the trigger as a 3×3 square located in the upper right corner of the sample. We used the
Adam optimizer with a learning rate α = 0.01. We considered scenarios using extremely large batch
sizes, where the BN layers of the models directly use batch statistics for more efficient training and
inference processes. In this way, we set the default batch size n to 1024. Meanwhile, we set all the
hyperparameters “track running stats” of BN layers to “False” in the following experiments.

4.1 EXPERIMENTAL SETUP

Dataset and Model Settings. We investigated four classical datasets (i.e., MNIST (LeCun et al.,
1995), CIFAR-10 (Krizhevsky et al., 2009), GTSRB (Stallkamp et al., 2012), and Tiny-ImageNet (Rus-
sakovsky et al., 2015)). Since BOBA leverages the vulnerability in BN layers to attack batch process-
ing, we investigated four DL models with BN layers that are commonly used for batch processing
(i.e., CNN bn, PreAct-ResNet18 (He et al., 2016), VGG19 bn (Simonyan & Zisserman, 2014), and
EfficientNet-B3 (Tan & Le, 2019)). CNN bn is a self-defined structure model that consists of two
convolutional layers and two fully connected layers, with a BN layer after each convolutional layer.

Evaluation Metrics. To objectively evaluate the performance of the proposed attack approach, we
adopted two metrics, i.e., Clean Accuracy (CA) and Attack Contamination Rate (ACR). Specifically,
CA denotes the inference accuracy of clean samples, representing the stealthiness of the attack.
A higher CA indicates that the attack method has less impact on the normal classification task,
suggesting that the performance difference between the poisoned and benign models is minimal.
ACR is a novel metric designed to measure the effectiveness of batch-oriented backdoor attacks,
which indicates the rate of samples that are classified into the target category when poisoned samples
exist in the same batch. Note that BOBA aims to alter the classification results of the entire batch,
requiring only a very small proportion of samples to be poisoned, which differs significantly from the
purpose of traditional backdoors. Therefore, we cannot employ a typical ASR as a metric, nor can we
make a fair comparison between the effectiveness of BOBA and that of traditional backdoor attacks.

Poisoning Ratios. We considered two types of poisoning rates, i.e., the injection poisoning ratio,
denoted as ηi, and the attack poisoning ratio, denoted as ηa. Specifically, ηi indicates the ratio of
poisoned samples in a training batch. The adversary poisons ηi of the samples in each batch and
utilizes BOBA to inject backdoors. ηa indicates the ratio of poisoned samples in an inference batch.
The adversary can poison ηa of the samples in a batch to activate the backdoor, thereby altering the
classification results of all the samples. By default, we set ηi to 10% and ηa to 1%.

Table 2: Attack performance with different batch sizes.

Dataset Model

n = 512 n = 1024 n = 2048

Benign BOBA Benign BOBA Benign BOBA

CA (%) CA (%) ACR (%) CA (%) CA (%) ACR (%) CA (%) CA (%) ACR (%)

MNIST CNN bn 99.91 99.83 80.53 99.85 99.82 78.31 98.26 98.30 77.64

CIFAR-10
PreAct-ResNet18 92.51 90.22 82.16 91.16 90.31 82.05 88.37 88.46 81.90

VGG19 bn 91.35 87.39 81.43 90.43 87.28 80.39 86.42 86.96 79.34
EfficientNet-B3 66.48 61.92 79.17 64.69 59.46 79.22 61.62 59.12 80.16

GTSRB
PreAct-ResNet18 98.22 96.21 87.72 97.25 95.92 88.02 96.65 95.54 87.42

VGG19 bn 96.17 93.77 86.26 96.19 93.38 86.13 94.37 93.06 84.33
EfficientNet-B3 86.43 84.06 81.05 85.45 83.53 81.21 84.03 83.67 78.35

T-ImgNet
PreAct-ResNet18 55.96 51.35 77.73 54.17 51.62 74.31 53.26 50.96 74.79

VGG19 bn 47.31 45.28 78.22 46.33 45.31 77.56 45.78 44.11 77.42
EfficientNet-B3 41.56 37.16 71.19 40.35 36.46 70.36 38.66 35.30 70.51

4.2 EXPERIMENTAL RESULTS

Table 2 presents the attack performance of BOBA on four datasets using different model architectures,
considering three batch sizes, respectively. Specifically, for each case, we trained a benign model and
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set it as the target model to inject backdoors using our proposed BOBA. To evaluate the stealthiness of
BOBA, we compared CA in benign and backdoored models. From the table, we can find that BOBA
has CA comparable to that of the benign model. Note that the CA of benign models decreases as n
increases, due to the lower generalization ability resulting from a more accurate gradient estimation
in larger batch training. Meanwhile, as n increases, the CA of backdoored models becomes more
similar to that of benign models, indicating that BOBA even enhances the generalization ability
of the models. The experimental results demonstrate that BOBA exhibits satisfactory stealthiness
in CA, particularly in scenarios involving larger batch sizes. To evaluate the effectiveness of the
BOBA attack, we compared the ACR of backdoored models with different batch sizes. From the
table, we can find that BOBA can still attack successfully even under extremely large batch sizes
(i.e., n = 2048), altering the classification results of the majority of samples. Taking the CIFAR-
10 dataset using the PreAct-ResNet architecture as an example, 1677 out of 2048 samples were
misclassified into the specified target category, with only 20 poisoned samples used. Additionally,
BOBA demonstrates effective attack performance across various model architectures, suggesting its
applicability to multiple model architectures with BN layers.

4.3 ABLATION STUDIES

We investigated the impact of different stages, trained models, trigger shapes, trigger positions, and
poisoning ratios on BOBA performance. Due to space limitations, we only present the first two
experimental results in this section. Please refer to the appendix for more ablation studies.

Impact of Different Stages. The implementation of BOBA consists of two stages, where the
first stage aims to derive triggers from trained models, and the second stage attempts to re-
train the models using the derived triggers. To evaluate the effectiveness of the derived trig-
gers, we considered two variants of BOBA (i.e., “Fixed” and “Random”), where we used fixed

Table 3: Ablation study on two stages.

Dataset
Fixed (%) Random (%) Stage 1 (%) BOBA (%)

CA ACR CA ACR CA ACR CA ACR

MNIST 99.15 10.65 99.24 5.64 99.90 2.07 99.82 78.31
CIFAR-10 90.73 6.76 91.31 2.56 91.13 2.21 90.31 82.05
GTSRB 94.33 8.15 94.25 6.82 96.42 4.41 95.92 88.02

T-ImgNet 50.26 1.97 50.56 3.12 53.24 0.16 51.62 74.31

triggers and random triggers to retrain
the models in Stage 2, respectively,
instead of using the triggers derived
in Stage 1. Specifically, fixed triggers
are the 3×3 squares with a white color
(i.e., R,G,B=255), and random trig-
gers are sampled from a Gaussian dis-
tribution. Meanwhile, to examine the
impacts of these two stages, we con-
sidered another variant “Stage 1”, which directly uses the triggers derived in Stage 1 to attack the
models without implementing Stage 2. Table 3 presents the results of the ablation study in two stages
when batch size n=1024. Compared with “Fixed” and “Random”, BOBA achieves significantly
better attack performance. This means that the triggers derived from a model can help better inject
backdoors into this model, showing the effectiveness and necessity of Stage 1. Similarly, based
on the results of “Stage 1” and “BOBA”, we can observe that Stage 2 significantly improves the
effectiveness of attacks, demonstrating the necessity of Stage 2.

Impact of Trained Models. For a trained model, BOBA generates triggers based on our proposed
trigger derivation mechanism in Stage 1 and then uses poisoned samples embedded with the trigger to
retrain the model in Stage 2. However, BOBA may fail to work when dealing with an untrained model.

Table 4: Ablation study on untrained models.

Approach
MNIST (%) CIFAR-10 (%) GTSRB (%) T-ImgNet (%)

CA ACR CA ACR CA ACR CA ACR

Bengin 99.85 - 91.16 - 97.25 - 51.62 -
Untrained 98.52 4.31 61.33 7.54 65.42 4.30 30.18 1.17

BOBA 99.82 78.31 90.30 82.05 95.92 88.02 51.62 74.31

This is because untrained models lack
sufficient knowledge to derive effec-
tive triggers. Meanwhile, since the
generated triggers are ineffective, our
contrastive contamination-based re-
training may also fail to establish a
connection between the triggers and
the attack target category. To evaluate
the impact of trained models on the attack performance of BOBA, we considered a variant of BOBA
(i.e., “Untrained”) that derives the trigger for an untrained model. Then, “Untrained” trains the model
and implements Stage 2 of BOBA. Table 4 presents the results of the ablation study when the batch
size n=1024. The table shows that the CA and ACR of “Untrained” are lower than those of BOBA,
indicating that obtaining triggers for untrained models makes both models and triggers difficult to
converge, resulting in the failure of the attack.
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5 DISCUSSION

To investigate possible solutions to the vulnerability revealed in the BN layers, we explored the
adaptive defenses to BOBA, discussed the resistance of BOBA to existing defenses (i.e., STRIP (Gao
et al., 2019), Neural Cleanse (Wang et al., 2019), and SentiNet (Chou et al., 2020)), and analyzed
limitations and future work. Due to space limitations, this section only presents the investigation of
adaptive defenses. Please refer to the appendix for more discussion.

5.1 ADAPTIVE DEFENSES

In response to the security risks that we revealed in the BN layers, we discuss possible effective
adaptive defenses against our proposed BOBA. Adaptive defenses aim to reduce the effectiveness
of our BOBA while ensuring the availability of models. Assuming that the defenders have all prior
knowledge of BOBA, they can leverage the characteristics of the method to design adaptive defenses.
We considered two defense scenarios, i.e., black-box and white-box scenarios. In black-box scenarios
where defenders are unable to access or alter the model parameters, we consider two sample-level
adaptive defenses, i.e., sample noise addition and statistical variance check. In white-box scenarios,
assuming that defenders can modify the parameters of the backdoored model to defend against BOBA,
we consider two model-level adaptive defenses, i.e., differential privacy and hyperparameter repair.

Table 5: Performance of sample noise addition against BOBA.

σ

MNIST CIFAR-10 GTSRB Tiny-ImageNet

Benign BOBA Benign BOBA Benign BOBA Benign BOBA

CA(%) CA(%) ACR(%) CA(%) CA(%) ACR(%) CA(%) CA(%) ACR(%) CA(%) CA(%) ACR(%)

0 99.85 99.82 78.31 91.16 90.31 82.05 97.25 95.92 88.02 54.17 51.62 74.31
0.05 98.02 98.42 74.52 83.21 81.27 70.25 90.36 88.24 73.48 48.99 45.24 68.27
0.10 94.17 93.56 65.13 68.57 65.13 61.30 83.49 77.17 65.56 36.12 34.30 52.60
0.20 90.06 88.27 41.24 53.22 48.50 36.12 64.55 60.36 42.93 30.89 22.86 33.44
0.30 82.51 74.33 18.33 42.17 37.61 25.33 48.12 42.35 18.64 21.52 15.10 16.37

Sample Noise Addition. Since BOBA can only be activated by optimized triggers on poisoned
samples, defenders can counter attacks by adding noise to each sample, thus destroying potential
triggers. To investigate the performance of the sample noise addition defense, we conducted exper-
iments on four datasets. Specifically, we added random Gaussian noise z to each input sample x
following the equation xm = (1− σ)x+ σz (z ∼ N (0, I), where σ controls the noise intensities.
We considered different noise intensities, i.e., σ = 0, 0.05, 0.10, 0.20, and 0.30, respectively, when
the batch size n=1024. The experimental results are presented in Table 5, which shows that the
addition of low-intensity noise cannot reduce the effectiveness of BOBA. In contrast, the addition of
high-intensity noise results in a significant decrease in CA, rendering the classification task unusable.
Therefore, the sample noise addition defense is not a viable adaptive defense against BOBA.

Statistical Variance Check. Since BOBA aims to contaminate the whole batch using a few
poisoned samples, clean samples should take the majority of a batch. Therefore, defenders can
identify and exclude poisoned samples by counting the overall statistics of the batch to per-
form a Statistical Variance Check (SVC). To investigate the performance of the SVC defense,

Table 6: Defense performance of SVC.

Dataset
F1 Score

n=512 n=1024 n=2048

MNIST 0.15 0.14 0.15
CIFAR-10 0.08 0.09 0.14
GTSRB 0.10 0.09 0.10

T-ImgNet 0.15 0.14 0.13

we conducted experiments considering three different
batch sizes, i.e., n=512, 1024, and 2048, on four datasets,
respectively. Specifically, for a batch of n samples, where
the ratio of poisoned samples is 1%, we calculate the mean
and variance of the pixel values throughout the batch, in-
dicated as µB and σB , respectively. In this way, we can
identify that a sample x is poisoned if |µ− µB | > η · σB ,
where µ is the mean value of the pixels of x. For each case,
we changed the degree of η until the False Positive Rate
(FPR) was 10% and calculated the F1 score. The experimental results are presented in Table 6, which
indicates that the statistical variance check defense is ineffective in identifying poisoned samples,
suggesting that this defense is not a viable adaptive defense against BOBA.

Differential Privacy. Since the BOBA injects the backdoor by retraining model parameters, the
attack may lose its effectiveness when the parameters are perturbed. Therefore, defenders can

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

compromise the injected backdoor by imposing Differential Privacy (DP) (Arachchige et al., 2019) on
the model parameters. To investigate the performance of differential privacy defense, we conducted
experiments considering various levels of DP when the batch size n=1024. Specifically, we use εr to

Table 7: Performance of differential privacy.

εr
MNIST (%) CIFAR-10 (%) GTSRB (%) T-ImgNet (%)

CA ACR CA ACR CA ACR CA ACR

+∞ 99.82 78.31 90.31 82.05 95.92 88.02 51.62 74.31
30 92.11 75.34 83.71 68.21 92.16 71.36 42.22 59.05
20 90.24 71.17 74.50 56.93 85.23 65.50 36.41 42.61
10 85.06 59.28 65.42 39.88 81.10 54.83 29.69 35.78
5 61.30 15.31 40.06 17.25 62.98 38.22 12.66 18.42

specify the privacy budget of DP, where a
lower value of εr indicates a higher level
of DP. Note that when εr=+∞, DP is not
applied to the models. The experimental re-
sults are presented in Table 7, which shows
that when the level of DP is low, it can-
not destroy the backdoors injected in the
modes, resulting in the failure of defenses.
In contrast, when the level of DP is high,
there is a significant loss of CA, indicating that the models are unusable. Therefore, differential
privacy defense is not a viable adaptive defense against BOBA.

Hyperparameter Repair. Since the BN vulnerability can be exploited by BOBA only when
the “track running stats” hyperparameter in the last BN layer of a model is set to “False”, de-
fenders can change this hyperparameter to “True” to defend against attacks. Meanwhile, consid-
ering the differences in the BN parameters under different “track running stats” settings, shown
in Table 1, to make models available, defenders must assign values to the additional parameters,

Table 8: Performance of hyperparameter repair.

Dataset Model
Clean Accuracy (%)

No Defense Random Gaussian

MNIST CNN bn 99.82 73.18 91.33

CIFAR-10
PreAct-ResNet18 90.31 61.42 79.78

VGG19 bn 87.28 49.50 74.12
EfficientNet-B3 59.46 40.12 51.97

GTSRB
PreAct-ResNet18 95.92 71.88 87.25

VGG19 bn 93.38 67.60 82.69
EfficientNet-B3 83.53 57.51 74.30

T-ImgNet
PreAct-ResNet18 51.62 27.24 41.06

VGG19 bn 45.31 21.83 32.67
EfficientNet-B3 36.46 15.16 25.47

i.e., “running mean” and “running var”.
To effectively perform hyperparameter re-
pair defense, we considered two assign-
ment strategies, i.e., random initialization
and Gaussian distribution. The former strat-
egy randomly initializes the values of two
parameters. The latter strategy follows the
Gaussian distribution to assign values, i.e.,
running mean= 0 and running var= 1. We
conducted experiments to investigate the
performance of hyperparameter repair de-
fense on four datasets using various model
architectures when the batch size n=1024.
The experimental results show that when
“track running stats” is set to “True”, BOBA fails to attack in any case, indicating the success of
defenses. However, both assignment strategies lead to a decrease in Clean Accuracy (CA), shown in
Table 8. From the table, we can find that when using the Gaussian distribution strategy, the drop in
accuracy is acceptable. Therefore, the use of hyperparameter repair defense is regarded as a viable
defense method, despite its drawbacks of operational complexity and accuracy loss.

5.2 LIMITATION AND FUTURE WORK

In the discussion above, we conclude that when defenders identify security risks in the BN layers and
focus on examining the hyperparameter “track running stats”, they can implement hyperparameter
repair defense to defend against BOBA, although with some accuracy loss. In this way, we can
investigate more effective and available batch-oriented backdoor attacks that can bypass such adaptive
defenses. Meanwhile, our work does not pay attention to the visual stealthiness of triggers. Therefore,
more advanced batch-oriented attacks with invisible triggers are worth studying further. Additionally,
whether the other normalization layers (e.g., LN, IN, and GN) in models can be exploited to inject
backdoors is also a worthy area for future study.

6 CONCLUSION

This paper reveals a potential threat to DL models posed by their BN layers when processing extremely
large batch sizes. To demonstrate the danger of security threats, we leveraged the properties of BN
layers to design a novel batch-oriented backdoor attack named BOBA. Based on our proposed trigger
derivation mechanism and contrastive contamination-based retraining method, BOBA can control
the classification results of all samples in the batch by poisoning only one of them. Comprehensive
experiments conducted on various well-known datasets and models demonstrate the effectiveness of
BOBA, highlighting the detrimental impact of security risks in the BN layers.
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A APPENDIX

A.1 ADDITIONAL ABLATION STUDIES

Impact of Trigger Shapes. The first stage of our approach (i.e., trigger derivation) generates specific
triggers for a trained model. The shape of these triggers significantly impacts the effectiveness of
the optimization process. To evaluate the impact of different trigger shapes, we considered various
triggers and conducted experiments on different datasets. Figure 4 presents examples of poisoned
samples embedded with different trigger shapes of CIFAR-10. Table 9 shows the results of the
ablation study on different trigger shapes. From this table, we can observe that as the number of
pixels contained in the triggers increases, the ACR of the attack increases. This means that more
pixels can contain more knowledge, allowing BOBA to derive the best triggers for maximizing the
contamination on clean samples. Meanwhile, we observe that as the ACR of the attack increases, the
CA decreases, which means that the injection of backdoors occupies part of the classification ability
of models, resulting in a decrease in the classification performance. Therefore, when the capacity of
the model reaches its upper bound, it is difficult to improve the ACR of the model while maintaining
CA by increasing the sizes of triggers.

Table 9: Ablation study on different trigger shapes.

Trigger
Shape

MNIST (%) CIFAR-10 (%) GTSRB (%) T-ImgNet (%)

CA ACR CA ACR CA ACR CA ACR

1×1 99.90 1.39 83.25 3.30 96.42 5.35 53.23 0.32
1×2 99.91 15.54 82.74 15.96 96.27 13.48 52.42 12.58
1×3 99.89 38.38 81.63 41.52 95.96 25.47 52.10 43.35
3×3 99.82 78.31 90.31 82.05 95.92 88.02 51.62 74.31
5×5 99.61 81.17 77.68 83.34 88.61 88.24 43.41 75.26
7×7 99.42 81.94 77.34 84.20 87.14 89.97 41.40 75.55

1×3 3×3 5×5 7×7
Figure 4: Samples with triggers of different shapes.

Impact of Trigger Positions. To investigate the impact of trigger positions on BOBA, we conducted
experiments involving three different trigger positions. In Table 10, we use the notation “Corner”,
“Edge”, and “Center” to represent the three typical cases, where triggers are placed in the corners,
middle of edges, and center of all samples, respectively. Note that, for “Corner” and “Edge”,
we considered the average attack performance of triggers placed in all four corners and edges of
the samples, respectively. From this table, we can find that BOBA demonstrates a similar attack
performance for triggers with different positions. Since the triggers in “Corner” are much stealthier,
we have embedded the triggers in the upper right corners of the samples by default.

Table 10: Ablation study on different trigger positions.

Trigger
Positon

MNIST (%) CIFAR-10 (%) GTSRB (%) T-ImgNet (%)

CA ACR CA ACR CA ACR CA ACR

Corner 99.82 78.31 90.31 82.05 95.92 88.02 51.62 74.31
Edge 99.71 81.84 88.14 82.57 94.25 88.59 50.02 74.48

Center 99.60 80.96 87.35 86.13 94.37 89.10 49.93 74.35

Impact of Injection Poisoning Ratios. In our approach, we use ηi to control the ratios of poisoned
samples in batches during the training phase. To explore the impact of ηi on the performance of our
approach, we investigated different ηi to train backdoored models on different datasets. Table 11
shows the results of the ablation study on different ηi. From this table, we can find that as the values
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of ηi increase, the CA decreases while the ACR values increase. When ηi increases from 10% to
20%, the corresponding ACR keeps increasing with gradually lower growth rates. Meanwhile, the
CA of the backdoored models continues to decrease, which indicates that too many poisoned samples
during the training process will not improve the performance of our proposed attack.

Table 11: Ablation study on different ηi.

ηi(%)
MNIST (%) CIFAR-10 (%) GTSRB (%) T-ImgNet (%)

CA ACR CA ACR CA ACR CA ACR

1 99.90 15.86 92.37 18.21 95.93 15.71 54.56 5.82
2 99.91 41.52 92.05 31.18 95.82 35.43 53.14 16.87
5 99.85 68.47 91.41 45.23 95.42 67.82 51.90 36.22

10 99.82 78.31 90.31 82.05 95.92 88.02 51.62 74.31
20 98.51 81.43 85.35 83.02 94.30 88.22 42.37 75.64

Impact of Attack Poisoning Ratios. In our approach, we use ηa to control the ratios of poisoned
samples in batches during the inference phase. To explore the impact of ηa on the performance
of our approach, we investigated the performance of BOBA using different ηa on various datasets.
Table 12 shows the results of the ablation study on different ηa. From this table, we observe that as
the values of ηa increase, the ACR values also increase. In this way, when the size of the inference
batch increases, the adversary only needs to increase the number of poisoned samples to maintain
high attack effectiveness. Meanwhile, from the table, we can find that when ηa increases from 2% to
4%, the value of ACR remains stable and almost no longer increases, meaning that it is unnecessary
to poison too many samples to obtain satisfactory ACR.

Table 12: Ablation study on different ηa.

ηa(%)
ACR (%)

MNIST CIFAR-10 GTSRB T-ImgNet

0.1 51.68 62.39 70.10 60.06
0.5 62.35 73.11 81.23 59.54
1 78.31 82.05 88.02 74.31
2 80.54 83.40 89.92 75.33
4 80.79 83.66 90.03 76.05

A.2 ADDITIONAL DISCUSSION
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Figure 5: The results of STRIP and Neural Cleanse.

STRIP (Gao et al., 2019) detects poisoned samples based on the prediction randomness of samples
generated by embedding various patterns in suspicious samples, which means that when embedded
with different patterns, clean samples will be randomly classified as different categories, while
poisoned samples will always be classified as the same category. Randomness is quantified by the
entropy of the average prediction of the samples. Figure 5 (a) shows the average entropy of clean
and poisoned samples of CIFAR-10. From the figure, we can find that the entropy of our proposed
approach is close to that of the clean model, showing the difficulty for STRIP to detect our attack.
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Neural Cleanse (NC) (Wang et al., 2019) aims to invert the different triggers that can change the
classification results of clean samples for each category. By detecting whether the size of the inversion
trigger (i.e., anomaly index) exceeds the anomaly threshold, NC can identify whether a model is
poisoned. Therefore, for a backdoor attack, the smaller the anomaly index of its inversion triggers,
the more difficult it is for NC to detect. Figure 5 (b) shows the NC results of our approach and four
advanced backdoor methods (i.e., Blend (Chen et al., 2017), ISSBA (Li et al., 2021), LIRA (Doan
et al., 2021), and BppAttack (Wang et al., 2022)) on the CIFAR-10 dataset. From this figure, we
can find that the anomaly index of our approach is slightly higher than that of a clean model but
significantly lower than that of existing attacks. The comparison results reveal that NC cannot invert
the effective triggers of our backdoored model, indicating that BOBA can bypass NC detection.

Clean Poisoned 
Figure 6: Heatmaps of clean and poisoned samples.

SentiNet (Chou et al., 2020) leverages Grad-CAM (Selvaraju et al., 2017) to identify the most
important regions (i.e., heatmaps) of samples that contribute to the model classification results. By
comparing the similarities of Grad-CAM with different samples, SentiNet can identify the trigger
regions of the samples. Figure 6 shows the heatmaps of clean and poisoned samples with a backdoored
model trained by our approach. From this figure, we can observe that there is no obvious difference
between the heatmaps, showing that BOBA is robust to both SentiNet and other Grad-CAM-based
defense methods.
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