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Abstract001

The generative large language models (LLMs)002
are increasingly used for data augmentation003
tasks, where text samples are paraphrased (or004
generated anew) and then used for downstream005
model fine-tuning. This is useful, especially006
for low-resource settings. For better augmen-007
tations, LLMs are prompted with examples008
(few-shot scenarios). Yet, the samples are009
mostly selected randomly, and a comprehen-010
sive overview of the effects of other (more “in-011
formed”) sample selection strategies is lack-012
ing. In this work, we compare sample selec-013
tion strategies existing in the few-shot learning014
literature and investigate their effects in LLM-015
based textual augmentation in a low-resource016
setting. We evaluate this on in-distribution and017
out-of-distribution model performance. Results018
indicate that while some “informed” selection019
strategies increase the performance of models,020
especially for out-of-distribution data, it hap-021
pens only seldom and with marginal perfor-022
mance increases. Unless further advances are023
made, a default of random sample selection024
remains a good option for augmentation practi-025
tioners.026

1 Introduction027

The emergence of recent large language models028

(LLMs) such as GPT-4, Gemini, Llama, and their029

wide availability prompted their use in augmen-030

tation of textual datasets (Ubani et al., 2023; Dai031

et al., 2023; Piedboeuf and Langlais, 2023; Cegin032

et al., 2023, 2024a). LLM augmentation has been033

used in various domains such as sentiment analy-034

sis (Onan, 2023; Piedboeuf and Langlais, 2023),035

intent classification (Cegin et al., 2023), news clas-036

sification (Piedboeuf and Langlais, 2023; Cegin037

et al., 2024a), and health symptoms detection (Dai038

et al., 2023). These augmentations are often per-039

formed in a low-resource setting with a limited040

number of seed samples. In most LLM-based aug-041

mentation scenarios, the dataset size is increased042

through paraphrasing of original samples or gen- 043

eration of completely new samples that adhere to 044

a specified label. This can be done without any 045

samples provided (zero-shot). Alternatively, one 046

can include already existing samples as part of the 047

prompt to better instruct the LLM (few-shot). The 048

augmented datasets are then used for training down- 049

stream models, which are usually much smaller 050

than the prompted LLMs, and thus cheaper and 051

more suitable for production environments. 052

Recent studies report better performance for few- 053

shot LLM-based augmentation, as compared with 054

zero-shot approaches (Cegin et al., 2024a; Pied- 055

boeuf and Langlais, 2024). Most existing few-shot 056

augmentation studies select the samples randomly, 057

and the potential of using more informed selection 058

strategies (existing elsewhere in few-shot learning 059

literature) is under-explored. Furthermore, aug- 060

mentation studies focus only on paraphrasing and 061

are evaluated on in-distribution data. 062

In few-shot learning, the informed sample se- 063

lection strategies aim to select the most relevant 064

samples that would lead to better outputs. The 065

samples can be selected based on their similarity, 066

diversity, informativeness, or quality (Li and Qiu, 067

2023; Zhang et al., 2022; Chang and Jia, 2023; 068

Pecher et al., 2024b). Through these methods, 069

LLMs can potentially produce better augmenta- 070

tions in return for the additional computation costs 071

of the informed sample selection. Literature shows 072

that the choice of samples for few-shot learning sig- 073

nificantly influences its outcomes (i.e., sensitivity 074

of sample selection) (Pecher et al., 2024a; Zhang 075

et al., 2022; Köksal et al., 2023; Agrawal et al., 076

2023). For example, recent studies have investi- 077

gated the effects of such sample selection strategies 078

for in-context learning (Zhang et al., 2022; Li and 079

Qiu, 2023) or LLM alignment (Zhou et al., 2024). 080

However, for augmentation scenarios, an investiga- 081

tion of sample selection strategies effects is lacking. 082

The goal of this paper is to compare existing 083
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sample selection strategies in few-shot text aug-084

mentation for a low-resource setting. This compari-085

son is measured by the performance of downstream086

models trained on the augmented data. We inves-087

tigate the typical paraphrasing scenario, but also088

less covered generation of new samples. Along089

with more frequent in-distribution (ID), we also090

evaluate out-of-distribution (OOD) data. We run091

our experiments for various LLMs and tasks. We092

identify the best-performing sample selection strat-093

egy in each scenario (parameter combination) and094

compare it against two baselines: (1) the zero-shot095

augmentation and (2) the few-shot augmentation096

with random sample selection. We formulate the097

following research questions:098

RQ1: Considering downstream model perfor-099

mance, which sample selection strategy per-100

forms the best most consistently? (when101

considering both in-distribution and out-of-102

distribution setups).103

RQ2: Considering downstream model perfor-104

mance, when and how often do the best-105

performing sample selection strategies out-106

perform the baseline strategies?107

We compared 8 different sample selection strate-108

gies (see 3.1) against 2 baseline strategies (zero-109

shot/no-samples strategy and random samples strat-110

egy) on 3 different LLMs (Llama-3.1, Mistral-v0.3,111

and Gemma-2). We experimented with 8 differ-112

ent datasets (for sentiment analysis, news classi-113

fication, question topic classification, paraphrase114

detection, and natural language inference) with115

both in-distribution and out-of-distribution splits116

on RoBERTa as our downstream model. We used117

a low-resource setting, using only 20 samples per118

label. Furthermore, we also investigated the com-119

position of the examples from the point of labels120

(whether it is more beneficial to include samples121

only from the target label being augmented or also122

from other labels). We investigated two augmenta-123

tion techniques: paraphrasing of samples and gen-124

eration of completely new samples. We repeated125

the whole process 3 times with different random126

seeds, ensuring the robustness of our results.127

The most prominent findings are: 1) None of128

the existing sample selection strategies is consis-129

tently better than the baseline in the majority of130

cases for in-distribution, 2) Selecting examples at131

random yields the best performance in the majority132

of cases and does not require additional overhead,133

3) For out-of-distribution, the synthetic samples 134

dissimilarity selection strategy yields the highest 135

performance more often than the baseline strate- 136

gies. It can be considered for uses where overhead 137

selection costs are not an issue. 138

2 Related Work: LLM-based Text 139

Augmentation 140

Soon after their advent, new LLMs, such as GPT- 141

4 or Llama, started to be used as data augmen- 142

tation tools, leveraging their ability to produce a 143

diversity of texts. The LLM-based augmentation is 144

typically done through paraphrasing (Cegin et al., 145

2024a; Dai et al., 2023; Sen et al., 2023). Less 146

often, LLMs are used to create semantically new 147

samples adhering to a given label (Ubani et al., 148

2023). LLM-based augmentation has been used 149

for a variety of augmentation tasks such as auto- 150

mated scoring (Fang et al., 2023), low-resource 151

language generation (Ghosh et al., 2023), intent 152

classification (Sahu et al., 2022), sentiment anal- 153

ysis (Piedboeuf and Langlais, 2023; Ubani et al., 154

2023; Onan, 2023; Yoo et al., 2021), hate speech de- 155

tection (Sen et al., 2023), news classification (Pied- 156

boeuf and Langlais, 2023), content recommenda- 157

tion (Liu et al., 2024), and health symptoms classi- 158

fications (Dai et al., 2023). 159

Recent studies have also used few-shot learn- 160

ing as part of the augmentation by supplying the 161

LLM with various examples from the dataset in the 162

prompts. It has been leveraged for named entity 163

recognition (Ye et al., 2024), classification perfor- 164

mance (Cegin et al., 2024a) or text summariza- 165

tion (Sahu and Laradji, 2024). While the perfor- 166

mance of the few-shot approaches in augmentation 167

seems to outperform zero-shot ones (where no ex- 168

amples are used) (Piedboeuf and Langlais, 2024), 169

the effects of various sample selection strategies 170

are under-explored, as many studies simply select 171

the samples randomly. Only one study explored 172

other strategies (Cegin et al., 2024a), which used a 173

human-inspired sample selection strategy. 174

While sample selection strategies have found 175

their usage in various in-context learning tasks (sig- 176

nificantly altering the performance of LLMs) and 177

while some studies already hint at increased per- 178

formance of few-shot augmentation over zero-shot 179

augmentation (Cegin et al., 2024a; Piedboeuf and 180

Langlais, 2024), an investigation of various sample 181

selection strategies for LLM-based augmentation 182

methods is completely lacking. 183
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3 Study Design184

To assess which sample selection strategies work185

best for LLM-based data augmentation, we per-186

formed a comparative study in a low-resource set-187

ting. The same basic scenario was used in each188

case: given a dataset, 20 seed samples were se-189

lected from each label. For each seed sample, a190

given LLM “augmented” the samples 5 times. This191

was repeated for each sample selection strategy and192

type of augmentation technique used (paraphrasing193

or creating completely new samples). Next, a down-194

stream model was fine-tuned on both sub-sampled195

data and augmented samples and then evaluated196

on in-distribution and out-of-distribution data. For197

in-distribution data, we used the original test splits198

of each dataset, while for the out-of-distribution199

data, we used test splits from a different dataset200

with the same task (e.g. Yelp dataset test split was201

used as out-of-distribution data when evaluating202

performance on the Tweet Eval dataset for senti-203

ment analysis).204

This scenario was repeated for all sample selec-205

tion strategies and baselines for a variety of pa-206

rameters (see below). Then, the performance of207

the models (measured by F1-macro) was compared208

for each sample selection strategy to answer the209

RQ1. This was followed by comparing the best-210

performing sample selection strategies against the211

best-performing baseline strategy of either zero-212

shot (no examples provided) or randomly selected213

examples to answer RQ2. We publish all of our214

results, the code, and the data used 1.215

We used a broad range of study parameters to en-216

sure the robustness of our results by using both the217

baseline strategies and the sample selection strate-218

gies in a variety of cases. We include the different219

augmentation techniques and example composi-220

tions in terms of labels to capture a wide variety of221

cases. The whole process was repeated 3 times, and222

different seed samples were selected. The study223

had the following parameters:224

• 8 sample selection strategies (Forgetting with225

2 variations, Cartography with 3 variations,226

Cosine similarity/dissimilarity and Synthetic227

samples dissimilarity) with 2 baseline strate-228

gies (zero-shot with no examples provided229

and random few-shot with examples selected230

randomly),231

1Data and code in the ZIP file

• 3 LLMs used as augmenters (LLama-3.1-8B, 232

Gemma-2-9B and Mistral-v0.3-7B), 233

• 8 datasets used (MNLI, QQP, Yelp, Tweet sen- 234

timent evaluation, AG News, News Topic, Ya- 235

hoo, Trec), 236

• 2 types of composition of examples used (ex- 237

amples used only from the target label or ex- 238

amples selected from all labels in the dataset), 239

• 2 augmentation techniques (either paraphras- 240

ing of existing samples or generation of new 241

label adhering samples), 242

This resulted in 1,300 combinations for which 243

downstream models were trained and evaluated 244

repeatedly. 245

3.1 Sample Selection Strategies 246

We used the best-performing sample selection 247

strategies identified by previous studies on sam- 248

ple selection in in-context learning (Pecher et al., 249

2024b; Li and Qiu, 2023; Chang and Jia, 2023; 250

Toneva et al., 2018; Zhang and Plank, 2021). We 251

used 5-shots per label for each of the sample selec- 252

tion strategies. 253

First, we used the Similarity and Dissimilarity 254

selections that are currently the most popular se- 255

lection strategies for in-context learning (An et al., 256

2023; Liu et al., 2022; Chang and Jia, 2023). To se- 257

lect the samples, we calculated the cosine similarity 258

between the feature representation of the samples 259

and then selected either the most similar or the 260

most dissimilar ones. In the case of paraphrasing, 261

we calculated the similarity of the sample we were 262

augmenting. In the case of generation, we first 263

randomly select one sample and then calculate the 264

similarity of this sample. 265

Second, we used the Synthetic samples dissim- 266

ilarity sample selection (Cegin et al., 2024a). To 267

select the samples, we first use the LLM to gen- 268

erate a set of synthetic samples and then use the 269

dissimilarity selection to select the set of examples 270

from this set. This is different from the Dissimilar- 271

ity above, as this method uses synthetic data, while 272

the original uses data from the dataset itself. 273

Third, we used the Forgetting strategy that se- 274

lects the samples based on how often they are for- 275

gotten (Toneva et al., 2018). To select the samples, 276

we first trained the model on the underlying task for 277

a fraction of the overall epochs and observed the 278

training dynamics. For each sample, we calculated 279

how often the prediction of the model was incor- 280

rect after it had already been correct in the previous 281
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Figure 1: Overview of our methodology. For each dataset, we randomly sample 20 samples per label, which are
then used to collect up to 5 augmented samples per seed sample. These seeds are used for fine-tuning with the
augmented samples to evaluate each sample selection strategy. This entire process is repeated 3 times with different
random seeds. Similar sample selection strategies have the same colour.

epoch. Afterward, these forgetting events are used282

to select the samples. We explored two different283

settings in our experiments and chose samples ac-284

cordingly: 1) Forgetting most, where we selected285

the samples that were the most often forgotten; and286

2) Forgetting least, where we selected the samples287

that were forgotten the least number of times.288

Finally, we used the Cartography sample selec-289

tion that measures how easy or hard it is to learn290

the different samples (Swayamdipta et al., 2020;291

Zhang and Plank, 2021). This ease of learning is292

determined by training the model on the underlying293

task for a fraction of the overall epochs and looking294

at the average confidence/probability of the correct295

predictions and the variance of this confidence. The296

samples with high confidence and low variance are297

considered to be the easy to learn samples. At298

the same time, the samples with small confidence299

and small to medium variance are considered the300

hard to learn ones. The remaining samples are con-301

sidered to be ambiguous (medium confidence or302

samples with high variance). We explored three303

different settings in our experiments. We chose304

the samples accordingly: 1) Easy samples, where305

we sorted the samples based on confidence and306

choose the top 5 samples with highest confidence;307

2) Hard samples, where we sorted the samples308

based on confidence and choose the bottom 5 sam-309

ples (i.e., the lowest confidence samples); 3) Easy310

+ Ambiguous, where we first calculated average311

confidence, selected the samples whose confidence312

is higher than the average, and then randomly sam-313

pled from them.314

Additionally, we opted against using active learn-315

ing methods: as observed by previous works on316

classification using ICL (Li and Qiu, 2023; Pecher317

et al., 2024c), as well as concurrent work on select-318

ing samples for augmentation (Wang et al., 2025),319

the active learning strategies perform on par (but320

often worse) than the other selection strategies. For 321

this reason, we have decided to forego the active 322

learning methods in our experiments, as they often 323

require more computation resources (due to their 324

iterative selection of samples). 325

3.2 Datasets 326

For a diverse evaluation, we selected 8 datasets 327

representing tasks of sentiment analysis, news clas- 328

sification, question topic classification, paraphrase 329

detection, and natural language inference. We used 330

the News Category (Misra, 2022; Misra and Grover, 331

2021) and AG news (Zhang et al., 2015a) for news 332

classification, Yahoo (Zhang et al., 2015b) and 333

Trec (Li and Roth, 2002) for question topic classi- 334

fication, MNLI dataset (Williams et al., 2018) for 335

natural language inference, Quora Question Pairs 336

Dataset (QQP) for paraphrase detection (Wang 337

et al., 2017) and TweetEval (Rosenthal et al., 2017) 338

and Yelp (Zhang et al., 2015a) for sentiment clas- 339

sification. All datasets were in English. For the 340

in-distribution evaluation of models, we used the 341

test split of each dataset. For out-of-distribution 342

evaluation for each dataset, we used the test split 343

of the dataset that is within the same domain, 344

e.g., we used the test split from Yelp for Tweet- 345

Eval and vice versa (with the exception of MNLI, 346

which has its own out-of-distribution test split and 347

QQP, for which we used the PAWS (Zhang et al., 348

2019) dataset as out-of-distribution). While still 349

of the same task, we considered these splits out- 350

of-distribution due to them being collected from 351

other domains or sources (e.g. sentiment analysis 352

of Yelp reviews for models trained on tweets). We 353

only generated/paraphrased hypotheses for MNLI, 354

given the premise from the dataset. We also only 355

generated/paraphrased one paraphrase for QQP and 356

left the others intact. Details about labels used and 357

preprocessing can be found in Appendix C. 358
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3.3 Evaluation Process359

We randomly selected 20 samples per label from360

each dataset and repeated this three times with dif-361

ferent random seeds. We chose 20 samples per la-362

bel as this number of seed samples per label should363

yield the highest effect for augmentation (Cegin364

et al., 2024b). We then augmented the entire se-365

lected subset of the dataset for each combination366

of augmentation technique (paraphrasing or gen-367

eration), sample selection strategy (including base-368

lines), augmenting LLM, and composition of the ex-369

amples from the point of labels. We instructed the370

LLM to collect 5 new samples per seed sample for371

each combination of parameters. Prompt templates,372

specific versions of LLMs used, and parameters373

used for the LLMs can be found in Appendix D.374

We did not check the validity of the collected sam-375

ples, as previous works have already shown that376

the validity of LLM augmentation methods is quite377

high (Cegin et al., 2023, 2024a).378

We used RoBERTa-base for fine-tuning and used379

the version of the model from Huggingface. The380

best working hyperparameters were found via hy-381

perparameter search, and these can be found in Ap-382

pendix B. We trained each model 10 times per each383

random seed and augmentation parameter combi-384

nation. The models were trained separately on385

the data collected from Llama-3.1, Gemma-2, and386

Mistral. Finally, we computed the F1-macro of387

all fine-tuned models to allow the comparison of388

sample selection strategies between themselves and389

against the baseline strategies.390

4 Study Results391

Our study has multiple parameter dimensions,392

which yielded more than 1,300 combinations. We393

aggregated the results for each of the used LLMs.394

During our analysis, we did not identify any LLM395

bias towards one of the sample selection strategies,396

as the 3 used LLMs performed similarly.397

To keep the comparison of various sample selec-398

tion strategies simple, we only compare the best-399

performing sample selection strategy combination400

on the dataset given the augmentation techniques of401

either generation or paraphrasing and composition402

of labels in terms of labels. We also use the same403

setting for the baseline strategies of zero-shot and404

random few-shot. We wish to identify strategies405

that provide the best performance most consistently406

(in most cases) and outperform the baselines the407

most. We analyze the different augmentation tech-408

niques and composition of labels and how they 409

influence the model performance in Appendix F. 410

We distinguish between the best-performing 411

sample selection strategy for in-distribution data 412

and out-of-distribution data for each of the datasets. 413

To identify the best-performing sample selection 414

strategy (including the baselines) in these cases, we 415

compute the mean of the model performance across 416

all of the random seeds and compare these means. 417

There were a total of 72 cases for 8 datasets, 3 dif- 418

ferent LLMs, and 3 different random seeds used. 419

After identifying the best-performing sample selec- 420

tion strategy, we statistically tested its distribution 421

of model performance against the best-performing 422

baseline strategy (either zero-shot or random few- 423

shot based on their mean) using Mann-Whitney-U 424

tests with p=0.05 to measure the number of times 425

the sample selection strategies are statistically sig- 426

nificantly better than the best baseline strategy. 427

4.1 Best Performing Sample Selection 428

Strategies 429

The number of times where each sample selection 430

strategy (including baseline strategies) performed 431

the best for each dataset for in-distribution (ID) 432

and out-of-distribution (OOD) data can be found 433

in Table 1. The comparison excluding baseline 434

strategies can be found in Appendix E, together 435

with the performance distributions for each sample 436

selection strategy and dataset. There is no ap- 437

parent strategy that performed the best across 438

all datasets for both in-distribution and OOD 439

model performance. However, certain sample se- 440

lection strategies did perform best overall for given 441

data distributions - the Cartography with easy and 442

ambiguous samples performed the best most of- 443

ten from all sample selection strategies (excluding 444

baseline strategies) for in-distribution data in 11 445

out of 72 cases (15.28%) and the Synthetic sam- 446

ples dissimilarity performed the best most often for 447

OOD data in 23 out of 72 cases (31.94%). 448

Some of the strategies seem biased for certain 449

datasets, performing well in those cases. For ex- 450

ample, the Synthetic samples dissimilarity strategy 451

is well suited for the MNLI dataset for both in- 452

distribution and OOD cases. 453

Considering the sample selection strategies with- 454

out the baselines, the Cartography eas.+ambig. 455

samples and Forgetting least strategies perform 456

best for in-distribution data, with both of them 457

achieving the best performance in 13 out of 72 458

cases (18.06%). For OOD comparison of strate- 459
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DATASET→ AGNEWS NTOPIC YAHOO TREC TEVAL YELP MNLI QQP TOTAL
Strategy↓ ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

Zero-shot 0 0 0 0 1 1 0 2 0 1 0 1 1 1 0 1 2 7
Random 1 0 4 1 1 0 3 0 2 1 4 0 1 1 0 0 16 8

Cos. sim. 0 0 1 3 1 1 1 0 0 0 0 0 0 0 1 0 4 4
Cos. dis. 0 1 0 0 0 1 0 1 1 0 0 2 1 1 0 0 6 6
Forget. most 2 0 1 2 0 3 0 1 1 1 0 0 0 0 1 0 5 7
Forget. least 2 3 1 0 0 0 3 0 2 1 0 1 0 0 1 1 9 6
Carto. hard 1 0 0 1 3 2 0 0 0 0 1 2 0 0 1 1 6 6
Carto. e.+amb. 0 1 0 0 2 1 0 2 2 1 3 1 1 1 3 1 11 8
Carto. easy 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 7 2
Synth. dis. 2 4 1 2 0 0 1 2 0 4 0 2 5 5 1 4 10 23

Table 1: No. cases for each sample selection strategy, including baseline strategies, where each strategy performed
the best for each dataset for in-distribution (ID) and out-of-distribution (OOD) data. The last Total column aggregated
all cases for that specific strategy. In total, only the Synthetic samples dissimilarity strategy on out-of-distribution
outperforms the baseline strategies most often, while the random few-shot baseline strategy works best for in-
distribution.

gies, the best strategy is the Synthetic samples dis.460

method in 28 out of 72 cases (38.89%) followed by461

the Cartography eas.+ambig. samples strategy in462

9 out of 72 cases (12.5%).463

We answer the RQ1 as follows: Considering464

the sample selection strategies without the base-465

line strategies, the most effective sample selection466

strategy is Cartography eas.+ambig. samples for467

in-distribution and Synthetic samples dis. method468

for OOD. However, we also note that in certain469

cases, both of these strategies fail to perform as470

the best strategy even once (e.g. NewsTopic for471

Cartography eas.+ambig. samples and Yahoo for472

Synthetic samples dis. method).473

4.2 Comparison of Best Sample Selection474

Strategies Against Baseline Strategies475

We compare the best-identified sample selection476

strategies from Section 4.1 against baseline strate-477

gies as per Table 1 and also provide aggregated478

difference across all cases in mean F1-Macro for479

various sample selection strategies against the best-480

performing baseline of either random few-shot or481

zero-shot in Figure 2.482

For in-distribution classifier performance, we483

identified as the best-performing sample selec-484

tion strategy the Cartography with easy and am-485

biguous samples performing best in 11 out of 72486

cases (15.28%). The best-performing baseline487

on in-distribution data is random few-shot, which488

achieved the best performance in 16 out of 72 cases489

(22.22%), an increase of 5 cases compared to the490

Cartography eas.+ambig. samples strategy. Out of491

the 11 cases where the Cartography eas.+ambig.492

samples performed best, it was statistically signif-493

icantly better than the best baseline strategy in 7 494

cases (63.63%). The random few-shot baseline also 495

achieved the best performance in a variety of cases 496

across all the datasets, which the Cartography 497

eas.+ambig. samples strategy did not and was out- 498

performed by the Cartography eas.+ambig. sam- 499

ples strategy only on the Yahoo and QQP datasets. 500

For OOD classifier performance, we identified as 501

the best-performing sample selection strategy the 502

Synthetic samples dissimilarity performing best in 503

23 out of 72 cases (22.22%). The best-performing 504

baseline on OOD data is random few-shot, which 505

performed best in 8 out of 72 cases (11.11%), per- 506

forming worse than the Synthetic samples dis. in 507

15 cases. Out of the 23 cases where the Synthetic 508

samples dis. performed best, it was statistically 509

significantly better than the best baseline strategy 510

in only 6 out of the 23 cases (26.09%). In compari- 511

son, the Synthetic samples dis. works well on most 512

datasets (as it achieves no best cases for NewsTopic 513

and Yahoo datasets); the same can not be said about 514

both the baselines: zero-shot strategy achieves no 515

best cases on two datasets and random few-shot 516

achieves no best cases on five datasets. However, 517

these positive occurrences are hindered by only a 518

few cases where the impact on performance is also 519

statistically significant. 520

All of the sample selection strategies fail to 521

make a consistent impact on model performance 522

over the baselines, as can be seen in Figure 2. 523

While there are cases where increases are apparent 524

in both in-distribution and OOD performance (on 525

the MNLI dataset), the sample selection strategies 526

fail to outperform consistently the best baseline 527

of either zero-shot with no examples or randomly 528
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Figure 2: Aggregated difference across all LLMs and random seeds in mean F1-Macro for models trained on various
sample selection strategies against the best-performing baseline of either random few-shot or zero-shot. While some
strategies perform well in certain cases, as per Table 1, they fail to make a positive impact on model performance
against baseline strategies in general.

selected samples for few-shot, as the increase in529

performance on one random seed is mitigated by530

losses of performance on another random seed with531

different seed samples.532

We answer the RQ2 as follows: When compar-533

ing in-distribution performance, the best baseline534

of random few-shot strategy performs better than535

the best sample selection strategy of Cartography 536

eas.+ambig. samples in 5 more cases. Additionally, 537

the random few-shot strategy works well across 538

nearly all datasets for in-distribution classifier per- 539

formance. When comparing OOD classifier per- 540

formance, the best sample selection strategy of 541

Synthetic samples dis. method performs better than 542
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the best baseline of random few-shot in 15 more543

cases. However, most of these increases are not544

statistically significant, and the aggregated model545

performance in Figure 2 shows little to no benefit in546

most cases. Neither the baselines nor the Synthetic547

samples dis. method performs well on all datasets.548

5 Discussion549

The results of our experiments lead to the following550

observations: First, the Cartography eas.+ambig.551

samples strategy was best among sample selection552

strategies for in-distribution classifier performance.553

Such selection strategies seem to influence LLMs554

for text generation in similar ways as they do mod-555

els fine-tuned on such selected data - they increase556

their performance on in-distribution data (Zhang557

and Plank, 2021).558

Second, the Synthetic samples dis. strategy was559

best among sample selection strategies for OOD560

model performance. The strategy used in (Cegin561

et al., 2024a) was inspired by crowdsourcing (Lar-562

son et al., 2020) methods for collecting data for563

better OOD performance. This method appears564

to force LLMs to create more diverse samples by565

leveraging outlier synthetic data as examples, mak-566

ing the downstream models more robust.567

Third, when comparing the best sample selection568

strategies against baseline strategies, the Cartogra-569

phy eas.+ambig. samples strategy does not outper-570

form the random few-shot selection strategy. Not571

only does the random few-shot strategy perform572

better more often, but it does so more consistently573

across multiple datasets. In contrast, the Cartogra-574

phy eas.+ambig. samples strategy fails to perform575

best even once for some datasets. This hinders the576

applicability of this method, where it is clearly out-577

performed in some cases by baseline strategies or578

other sample selection strategies.579

Fourth, the Synthetic samples dis. strategy out-580

performs the baseline strategies for OOD perfor-581

mance, but not across all datasets. However, neither582

the random few-selection selection strategy nor the583

zero-shot approach performs well on all datasets.584

This implies that increasing performance across all585

OOD cases for all datasets is a difficult problem.586

Additionally, the Synthetic samples dis. method is587

expensive, as it requires one additional inference588

from the LLM to select examples from.589

Fifth, as seen in Figure 2, the aggregated increase590

of classifier performance when using sample selec-591

tion strategies is small or negative, indicating that592

sample selection strategies do not work well for all 593

random seeds. Given the increased costs of using 594

sample selection strategies, this result favours the 595

baseline strategies for text augmentation in general. 596

Sixth, comparing the baseline strategies between 597

themselves, the random few-shot selection per- 598

forms the best on in-distribution classifier perfor- 599

mance. In contrast, the zero-shot strategy only per- 600

forms well on OOD classifier performance. This 601

might be due to the LLMs getting biased towards 602

the examples provided and thus being more likely 603

to produce augmentations that follow the distribu- 604

tion of the seed samples more closely. However, 605

this might not be robust enough for good OOD 606

classifier performance. 607

To summarise, while the Synthetic samples dis. 608

strategy outperforms the baseline strategies for 609

out-of-distribution classifier performance, the base- 610

line strategies outperform the sample selection 611

strategies for in-distribution classifier performance. 612

However, any increase in classifier performance 613

for both in-distribution and out-of-distribution is 614

marginal and increases costs for collecting text aug- 615

mentations. While sample selection strategies 616

work best in some cases, they do not so con- 617

sistently. This underlines the need for better 618

sample selection strategies for LLM-based text 619

augmentation. 620

6 Conclusion 621

We compared the effects of prominent sample selec- 622

tion strategies of few-shot learning for LLM-based 623

text augmentation scenarios in a low-resource set- 624

ting. We evaluated the downstream model perfor- 625

mance on in-distribution and out-of-distribution 626

data. We compared selection strategies against 627

2 baseline strategies (random few-shot and zero- 628

shot). This comparison was done using 3 different 629

LLMs, 8 different datasets, and 2 augmentation 630

techniques (paraphrases and new samples). 631

Our comparison indicates that the baseline strate- 632

gies outperform sample selection strategies for in- 633

distribution performance. For out-of-distribution 634

performance, the Synthetic sample dissimilarity 635

strategy is best in more cases than the base- 636

line strategies. However, the improvements are 637

marginal and are not present in all datasets. Given 638

the increased computations needed to use these 639

sample selection strategies and their lacklustre per- 640

formance, the baseline strategies represent a good 641

default for few-shot augmentation practitioners. 642
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Limitations643

We note several limitations to our work.644

First, we only used datasets, augmentation meth-645

ods, and LLMs for the English language and did646

not investigate cases of multi-lingual text augmen-647

tation.648

Second, we did not use various patterns of649

prompts and followed those used in previous stud-650

ies (Cegin et al., 2023; Larson et al., 2020). Dif-651

ferent prompts could have effects on the quality of652

text augmentations, but they would also radically653

increase the size of this study, and thus, we decided654

to leave this for future work and focused on the655

simplest prompts possible.656

Third, we did not use newer LLMs for down-657

stream model fine-tuning via PEFT methods (e.g.,658

fine-tuning of Llama-3 or Mistral using QLoRA).659

While such inclusion would strengthen our findings,660

we decided not to use these models as evaluation661

of these models is very costly and takes a long time662

due to their size, which results in them being mostly663

used with a small subset of the testing data (Chang664

and Jia, 2023; Li and Qiu, 2023; Gao et al., 2021;665

Köksal et al., 2023). This, in return, can lead to666

unintentionally cherry-picked results. We see the667

usage of such fine-tunings as the extension of our668

work left for future work.669

Fourth, for the LLM augmentation methods,670

we used only Llama-3.1-8B, Mistral-v0.3-7B, and671

Gemma-2-9B. We did not use larger models (e.g.,672

70B versions) as their increased performance in673

text augmentation for model accuracy has been674

shown (Cegin et al., 2024a) to be not that signif-675

icant when compared to variants of LLMs with676

fewer parameters, while the inference costs com-677

pared to these smaller models are much higher.678

Fifth, we used 5-shots on 20 seeds per label se-679

lected on each dataset. While a bigger number of680

seeds and shots could have been used, we opted for681

smaller numbers to keep the study manageable and682

the cost of the study low. In addition, a previous683

study (Pecher et al., 2024b) found that sample selec-684

tion is more impactful when choosing only a small685

set of samples, and using more samples does not686

necessarily lead to better results due to the limited687

context size of the models. Furthermore, obtaining688

larger annotated datasets (e.g., hundreds of sam-689

ples per class) is not feasible for many domains690

in practice. As such, our findings are beneficial691

even for these domains. The exploration of an ad-692

ditional number of shots and seeds is an interesting693

direction that can be explored in the future. 694

Sixth, we do not know if any of the 6 datasets 695

used in this study have been used for training the 696

LLMs we used for data collection and if this had 697

any effect on our results and findings. As such, we 698

do not know how much would be the comparison 699

of established and newer LLM augmentation meth- 700

ods different on new, unpublished datasets. This 701

limitation is part of the recognized possible “LLM 702

validation crisis”, as described by (Li and Flanigan, 703

2023). 704

Seventh, we used only one feature representa- 705

tion model for the sample selection strategies that 706

required similarity or dissimilarity of samples, and 707

the usage of different feature representation mod- 708

els could alter the performance of these sample 709

selection strategies. 710
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B Model fine-tuning details965

We selected the best hyper-parameters after using966

a hyper-parameter search. We used the same batch967

size across all datasets using 64 batch size, used968

2e-5 learning rate, dropout 0.2, maximum number969

of tokens (512) trimmed and padded, and 50 num-970

ber of epochs. We used AdamW optimizer in all971

cases. We also removed outliers of a model fine-972

tuning’s results in some cases where the model’s973

results were particularly unstable to account for the974

possible instability during training.975

C Dataset details976

As we did not use all of the dataset labels and sam-977

ples in each of the datasets, we list our setup here.978

All used datasets are in English language. We ei-979

ther aggregated or relabelled the labels we used in980

datasets to ensure that datasets from all tasks of981

sentiment analysis, news classification, paraphrase982

detection, and question topic classification had the983

same labels. This made the out-of-distribution eval-984

uation much easier.985

We used all the labels for the TweetEval dataset,986

and for the Yelp dataset, we aggregated and rela-987

belled the one star and two stars labels as negative,988

the three stars as neutral and the four stars and five989

stars labels as positive.990

We used all the labels of the AG News dataset991

and for the News Topic dataset we aggregated and992

relabelled the WORLD NEWS, POLITICS as U.S.993

NEWS as World, SCIENCE, TECH as Science and994

Technology and additionally also used samples995

with labels Sports and Business.996

For the Yahoo dataset, we used labels Soci-997

ety & Culture, Science & Mathematics, Health,998

Education & Reference, Sports, Business & Fi-999

nance. We used only some labels of the Trec1000

dataset and mapped them to the Yahoo dataset1001

labels in the following way by aggregation and1002

relabelling: on the Society & Culture label1003

we mapped the HUM:gr, HUM:ind, NUM:date,1004

HUM:desc, ENTY:religion labels, on the Science1005

& Mathematics label we mapped the ENTY:animal,1006

NUM:volsize, ENTY:plant, NUM:temp labels, on1007

the Health label we mapped the ENTY:body,1008

ENTY:dismed labels, on the Education & Refer-1009

ence label we mapped the ABBR:abb, DESC:def,1010

DESC:desc labels, on the Sports label we mapped1011

the ENTY:sport label and on the Business & Fi-1012

nance label we mapped the ENTY:cremat label.1013

Finally, we used all the labels in the MNLI 1014

dataset and the QQP dataset. 1015

For the out-of-distribution split of the QQP 1016

dataset, we used the PAWS (Zhang et al., 2019) 1017

dataset, more specifically from the labelled_final 1018

subset and test split. 1019

D Prompts and parameters used for 1020

LLM-based augmentation 1021

For all of the LLMs used during augmentation, we 1022

used the same parameters: maximum number of 1023

new tokens set to 1024, sampling enabled, with top 1024

p set to 1 and temperature set to 1. We used 4-bit 1025

quantization for faster and cheaper inference on 1026

all LLMs and used instruction-tuned versions for 1027

each of the LLMs. Specifically, we used Mistral- 1028

v0.3-7B-instruct 2, Llama-3.1-8B-Instruct 3 and 1029

Gemma-2-9B-Instruct 4. We collected 1 response 1030

and asked the LLMs to produce 5 augmentations 1031

per seed or label of that seed. 1032

We used different prompts for generating new 1033

samples and paraphrasing existing samples. These 1034

prompts were also varied based on the dataset used. 1035

For paraphrasing with few-shot we used this 1036

prompt: You will be given examples from ’task’ 1037

dataset, each labelled with a specific category. 1038

Based on the examples, paraphrase a given text 1039

5 times with the ’label’ category. Output each 1040

paraphrased text in the form of a numbered list 1041

separated by new lines. The text: ’text’. Examples: 1042

examples 1043

For paraphrasing with zero-shot, we used this 1044

prompt: You are given a ’task’ dataset. Paraphrase 1045

a given text 5 times with the ’label’ category. Out- 1046

put each generated text in the form of a numbered 1047

list separated by new lines. The text: ’text’ 1048

For few-shot paraphrasing of the question topic 1049

classification datasets we used this prompt: You will 1050

be given examples of questions from ’task’ dataset, 1051

each labelled with a specific topic. Based on the 1052

examples of questions, paraphrase a given ques- 1053

tion 5 times with the ’label’ topic. Output each 1054

paraphrased question in the form of a numbered 1055

list separated by new lines. The question: ’text’ 1056

Examples: examples 1057

For paraphrasing with zero-shot of the question 1058

topic classification datasets, we used this prompt: 1059

2https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.3

3https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

4https://huggingface.co/google/gemma-2-9b-it
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You are given a ’task’ dataset. Paraphrase a given1060

question 5 times with the ’label’ category. Output1061

each generated question in the form of a numbered1062

list separated by new lines. The question: ’text’1063

For few-shot paraphrasing of the MNLI dataset,1064

we used this prompt: You will be given a premise1065

and hypothesis pair together with their label from1066

a Natural Language Inference dataset. Based on1067

the examples, paraphrase 5 times a hypothesis1068

that ’label’ the given premise. The given premise:1069

’premise’. Output each paraphrased hypothesis in1070

the form of a numbered list separated by new lines.1071

The hypothesis: ’text’ Examples: examples1072

For paraphrasing with zero-shot of the MNLI1073

dataset, we used this prompt: You will be given a1074

premise from a Natural Language Inference dataset.1075

Paraphrase 5 times a hypothesis that ’label’ the1076

given premise. The given premise: ’premise’. Out-1077

put each paraphrased hypothesis in the form of a1078

numbered list separated by new lines. The hypothe-1079

sis: ’text’1080

For few-shot paraphrasing of the QQP dataset,1081

we used this prompt: You will be given a question1082

from a Paraphrase Detection dataset. Based on the1083

examples, paraphrase 5 times a question. Output1084

each paraphrased question in the form of a num-1085

bered list separated by new lines. The question:1086

’text’ Examples: examples1087

For paraphrasing with zero-shot of the QQP1088

dataset, we used this prompt: You will be given1089

a question from a Paraphrase Detection dataset.1090

Output each paraphrased question in the form of a1091

numbered list separated by new lines. The question:1092

’text’1093

For generating new samples with few-shot we1094

used this prompt: You will be given examples from1095

’task’ dataset, each labelled with a specific category.1096

Based on the examples, generate 5 new texts that1097

fit the ’label’ category. Output each generated1098

question in the form of a numbered list separated1099

by new lines. Examples: examples1100

For generating new samples with zero-shot, we1101

used this prompt: You are given a ’task’ dataset.1102

Generate 5 new texts that fit the ’label’ category.1103

Output each generated question in the form of a1104

numbered list separated by new lines.1105

For few-shot generating new samples of the1106

question topic classification datasets, we used this1107

prompt: You will be given examples of questions1108

from the ’task’ dataset, each labeled with a specific1109

topic. Based on the examples of questions, gener-1110

ate 5 new questions that fit the ’label’ topic. Output1111

each generated question in the form of a numbered 1112

list separated by new lines. Examples: examples 1113

For generating new samples with zero-shot of the 1114

question topic classification datasets, we used this 1115

prompt: You are given a ’task’ dataset. Generate 5 1116

new questions that fit the ’label’ category. Output 1117

each generated question in the form of a numbered 1118

list separated by new lines. 1119

For few-shot generating new samples of the 1120

MNLI dataset, we used this prompt: You will be 1121

given a premise with a label from a Natural Lan- 1122

guage Inference dataset. Based on the examples, 1123

generate 5 new hypotheses that ’label’ the given 1124

premise. The given premise: ’premise’. Output 1125

each generated hypothesis in the form of a num- 1126

bered list separated by new lines. Examples: exam- 1127

ples 1128

For generating new samples with zero-shot of 1129

the MNLI dataset, we used this prompt: You will 1130

be given a premise with a label from a Natural 1131

Language Inference dataset. Generate 5 new hy- 1132

potheses that ’label’ the given premise. The given 1133

premise: ’premise’. Output each generated hypoth- 1134

esis in the form of a numbered list separated by 1135

new lines. 1136

For few-shot generating new samples of the QQP 1137

dataset, we used this prompt: You will be given 1138

a question from a Paraphrase Detection dataset. 1139

Based on the examples, generate 5 new questions 1140

which are ’label’ considering the question. The 1141

given question: ’question’. Output each generated 1142

question in the form of a numbered list separated 1143

by new lines. Examples: examples 1144

For generating new samples with zero-shot of 1145

the QQP dataset, we used this prompt: You will 1146

be given a question from a Paraphrase Detection 1147

dataset. Generate 5 new questions which are ’la- 1148

bel’ considering the question. The given question: 1149

’question’. Output each generated question in the 1150

form of a numbered list separated by new lines. 1151

E Additional Results and Visualisations 1152

for Sample Selection Strategies and 1153

Their Effect on Model Performance 1154

We provide the comparison of all sample selection 1155

strategies between each other without the baselines 1156

in Table 2. Additionally, we also provide boxplot 1157

visualization for the aggregated performance of all 1158

LLMs and random seeds in F1-Macro for mod- 1159

els trained on various sample selection strategies 1160

together with the baselines of either random few- 1161
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shot or zero-shot for both in-distribution and out-1162

of-distribution data in Figures 3 and 4.1163

F Effects of Composition of Examples1164

and Augmentation Techniques on1165

Model Performance1166

As our study had multiple parameters mentioned1167

in Section 3, we additionally also report results for1168

two different parameters used: composition of ex-1169

amples based on labels (using only examples from1170

the label under augmentation or using examples1171

from every label in the dataset) and augmentation1172

techniques (using either paraphrasing of existing1173

samples or generation of new samples). We report1174

results for both parameters in Tables 3 and 4.1175

Each augmentation technique has the best effect1176

on performance for either in-distribution or out-of-1177

distribution as per Table 3. For out-of-distribution1178

performance, the generation of new samples is the1179

most often, while for in-distribution performance,1180

the paraphrasing of existing samples works best.1181

Exceptions to this are in the Yelp dataset, where1182

paraphrasing of existing samples is best for out-1183

of-distribution performance and generation of new1184

samples for in-distribution performance.1185

The difference between composition of examples1186

based on labels is much smaller than for augmen-1187

tation techniques, as is shown in Table 4. While1188

including samples from all labels in the dataset is1189

better more often, the difference is quite small for1190

out-of-distribution data. We noticed that for out-of-1191

distribution performance, including samples from1192

all labels worked best on question topic classifica-1193

tion datasets and TweetEval dataset. In contrast,1194

the other datasets worked better with only exam-1195

ples from the label under augmentation used. For1196

in-distribution, only using examples from the target1197

label generally leads to better downstream model1198

performance.1199
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DATASET→ AGNEWS NTOPIC YAHOO TREC TEVAL YELP MNLI QQP TOTAL
Strategy↓ ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD ID OOD

Cos. sim 0 0 2 3 1 2 1 0 0 0 2 0 0 0 1 0 7 5
Cos. dis. 0 1 1 0 0 1 0 1 1 0 0 2 1 1 0 0 3 6
Forgetting most 2 0 2 2 1 3 0 1 1 1 0 0 0 0 1 0 7 7
Forgetting least 3 3 2 0 0 0 3 0 3 2 1 1 0 0 1 1 13 7
Carto. hard 1 0 0 1 3 2 0 0 1 0 1 2 0 0 1 2 7 7
Carto. easy+amb. 0 1 0 1 2 1 2 2 2 1 3 1 1 1 3 1 13 9
Carto. easy 1 0 1 0 2 0 1 1 1 0 2 0 1 1 1 1 10 3
Synth. dis. 2 4 1 2 0 0 2 4 0 5 0 3 6 6 1 4 12 28

Table 2: No. cases for each sample selection strategy without baseline strategies where each strategy performed the
best for each dataset for in-distribution (ID) and out-of-distribution (OOD) data. The last Total column aggregated
all cases for that specific strategy. The Synthetic samples dissimilarity strategy performs best on out-of-distribution
model performance, while the Cosine similarity strategy performs best on in-distribution model performance.

Type of Augmentation Best for ID Best for OD

Generation 20 (27.78%) 43 (59.72%)
Paraphrasing 52 (72.22%) 29 (40.28%)

Table 3: No. cases where each type of augmentation
performed the best for in-distribution (ID) and out-of-
distribution (OD) data. The generation augmentation
works best for out-of-distribution data, while the para-
phrasing augmentation works best for in-distribution
data.

Composition of Examples Type Best for ID Best for OD

Only From Label Under Aug. 45 (62.5%) 35 (48.61%)
From All Labels 27 (37.5%) 37 (51.39%)

Table 4: No. cases where each type of composition
of examples type performed the best for in-distribution
(ID) and out-of-distribution (OD) data. While including
examples from all the labels in the dataset works best,
the increase in no. cases is small.
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Figure 3: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on in-distribution data.
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Figure 4: Aggregated performance across all LLMs and random seeds in F1-Macro for models trained on various
sample selection strategies together with the baselines of either random few-shot or zero-shot on out-of-distribution
data.
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