
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPACT OF DATASET PROPERTIES ON MEMBERSHIP
INFERENCE VULNERABILITY OF DEEP TRANSFER
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We analyse the relationship between privacy vulnerability and dataset properties,
such as examples per class and number of classes, when applying two state-of-
the-art membership inference attacks (MIAs) to fine-tuned neural networks. We
derive per-example MIA vulnerability in terms of score distributions and statistics
computed from shadow models. We introduce a simplified model of membership
inference and prove that in this model, the logarithm of the difference of true and
false positive rates depends linearly on the logarithm of the number of examples
per class. We complement the theoretical analysis with empirical analysis by sys-
tematically testing the practical privacy vulnerability of fine-tuning large image
classification models and obtain the previously derived power law dependence be-
tween the number of examples per class in the data and the MIA vulnerability, as
measured by true positive rate of the attack at a low false positive rate. Finally, we
fit a parametric model of the previously derived form to predict true positive rate
based on dataset properties and observe good fit for MIA vulnerability on unseen
fine-tuning scenarios.

1 INTRODUCTION

Machine learning models are prone to memorising their training data, which makes them vulnerable
to privacy attacks such as membership inference attacks (MIAs; Shokri et al., 2017; Carlini et al.,
2022) and reconstruction attacks (e.g. Balle et al., 2022; Nasr et al., 2023). Differential privacy (DP;
Dwork et al., 2006) provides protection against these attacks, but strong formal protection often
comes at the cost of significant loss of model utility.

Finding the correct balance between making models resistant to attacks while maintaining a high
utility is important for many applications. In health, for example, many European countries and soon
also the EU within the European Health Data Space have requirements that models trained on health
data that are made publicly available must be anonymous, i.e. they must not contain information
that can be linked to an identifiable individual. On the other hand, loss of utility of the model due to
privacy constraints may compromise the health benefits that might be gained from it.

In this paper, our aim is to theoretically understand and systematically apply two state-of-the-art
MIAs, LiRA (Carlini et al., 2022) and RMIA (Zarifzadeh et al., 2024), to help understand practical
privacy risks when fine-tuning deep-learning-based classifiers without DP protections. We focus on
transfer learning using fine-tuning because this is increasingly used for all practical applications of
deep learning and especially important when labeled examples are limited, which would often be
the case in privacy-sensitive applications. Our case study focuses on understanding and quantifying
factors that influence the vulnerability of non-DP deep transfer learning models to MIA. In partic-
ular, we theoretically study the relationship between the number of examples per class, which we
denote as shots (S), and MIA vulnerability (true positive rate TPR at fixed false positive rate FPR)
for a simplified model of fine-tuning and derive a power-law relationship in the form

log(TPR − FPR) = −βS log(S)− β0. (1)

We complement the theoretical analysis with extensive experiments over many datasets with varying
sizes in the transfer learning setting for image classification tasks and observe the same power-
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law. This power-law has a practically remarkable implication that a practitioner could estimate the
membership privacy risk and how large a training set would be needed to mitigate the risk.

Related work There has been evidence that classification models with more classes are more vul-
nerable to MIA (Shokri et al., 2017), models trained on fewer samples can be more vulnerable (Chen
et al., 2020; Németh et al., 2023), and classes with less examples tend to be more vulnerable (Chang
& Shokri, 2021; Kulynych et al., 2022; Tonni et al., 2020). Larger generalisation error, which is
related to dataset size, has also been shown to be sufficient for MIA success (Song & Mittal, 2021),
though not necessary (Yeom et al., 2018). Similarly, minority subgroups tend to be more affected
by DP (Suriyakumar et al.; Bagdasaryan et al., 2019). Feldman & Zhang (2020) showed that neural
networks trained from scratch can memorise a large fraction of their training data, while the mem-
orisation is greatly reduced for fine-tuning. Additionally, Tobaben et al. (2023) reported how the
MIA vulnerability of few-shot image classification is affected by the number of shots. Yu et al.
(2023) studied the relationship between the MIA vulnerability and individual privacy parameters
for different classes. Nonetheless, the prior works do not consider the rate of change in the vul-
nerability evaluated at a low FPR, as dataset properties change. Our work significantly expands on
these works by explicitly identifying a quantitative relationship between dataset properties and MIA
vulnerability (i.e., the power-law in Equation (1)).

List of contributions We analyze the MIA vulnerability of deep transfer learning using two state-of-
the-art score-based MIAs, LiRA (Carlini et al., 2022) and RMIA (Zarifzadeh et al., 2024), which are
a strong realistic threat model. We first analytically derive the power-law relationship in Equation (1)
for both MIAs by introducing a simplified model of the optimal membership inference (Section 3).
We support our theoretical findings by an extensive empirical study on the MIA vulnerability of
deep learning models by focusing on a transfer-learning setting for image classification task, where
a large pre-trained neural network is fine-tuned on a sensitive dataset.

1. Closed-form per-example vulnerability: We derive closed-form per-example LiRA and RMIA
vulnerability (TPR at fixed FPR) in terms of MIA attack score distributions and statistics computed
from shadow models (see Section 3.3).

2. Power-law in simplified model of the optimal MI: We formulate a simplified model of member-
ship inference to quantitatively relate dataset properties and MIA vulnerability, in which LiRA is
the optimal attack. For this model, we prove a power-law relationship between the per-example
LiRA and RMIA vulnerability and the number of examples per class. We then extend the the
power-law relationship to the average-case LiRA and RMIA vulnerability (See Section 3.4).

3. Few-shot MIA: We conduct a comprehensive study of MIA vulnerability (TPR at fixed low FPR)
in the transfer learning setting for image classification tasks with target models trained using
many different datasets with varying sizes and confirm the theoretical power law between the
number of examples per class and the vulnerability to MIA (see Figure 1).

4. Regression model: We utilise our empirical observations to fit a regression model to predict MIA
vulnerability (log(TPR − FPR) at fixed low FPR) based on examples per class (logS) and number
of classes (logC), which follows the functional form of the theoretically derived power-law. We
show both very good fit on the training data as well as good prediction quality on unseen data
from a different feature extractor and when fine-tuning other parameterisations (see Figure 4).

2 BACKGROUND

Notation for the properties of the training dataset D: (i) C for the number of classes (ii) S for shots
(examples per class) (iii) |D| for training dataset size (|D| = CS). We denote the number of MIA
shadow models with M .

Membership inference attacks (MIAs) aim to infer whether a particular sample was part of the
training set of the targeted model (Shokri et al., 2017). Thus, they can be used to determine lower
bounds on the privacy leakage of models to complement the theoretical upper bounds obtained
through differential privacy.

Likelihood Ratio attack (LiRA; Carlini et al., 2022) While many different MIAs have been pro-
posed (Hu et al., 2022), in this work we consider the Likelihood Ratio Attack (LiRA). LiRA is a
strong attack that assumes an attacker that has black-box access to the attacked model, knows the
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training data distribution, the training set size, the model architecture, hyperparameters and training
algorithm. Based on this information, the attacker can train so-called shadow models (Shokri et al.,
2017) which imitate the model under attack but for which the attacker knows the training dataset.

LiRA exploits the observation that the loss function value used to train a model is often lower for
examples that were part of the training set compared to those that were not. For a target sample
(x, yx), LiRA trains the shadow models: (i) with (x, yx) as a part of the training set ((x, yx) ∈ D)
and (ii) without x in the training set ((x, yx) /∈ D). After training the shadow models, (x, yx) is
passed through the shadow models, and based on the losses (or predictions) two Gaussian distribu-
tions are formed: one for the losses of (x, yx) ∈ D shadow models, and one for the (x, yx) /∈ D.
Finally, the attacker computes the loss for the point x using the model under attack and determines
using a likelihood ratio test on the distributions built from the shadow models whether it is more
likely that (x, yx) ∈ D or (x, yx) /∈ D. We use an optimization by Carlini et al. (2022) for perform-
ing LiRA for multiple models and points without training a computationally infeasible number of
shadow models. It relies on sampling the shadow datasets in a way that each sample is in expectation
half of the time included in the training dataset of a shadow model and half of the time not. At attack
time each model will be attacked once using all other models as shadow models.

Robust Membership Inference Attack (RMIA; Zarifzadeh et al., 2024) Recently Zarifzadeh et al.
(2024) proposed a new MIA algorithm called RMIA, which aims to improve performance when the
number of shadow models is limited. Similar to LiRA, RMIA is based on shadow model training
and computing the attack statistics based on a likelihood ratio. The main difference to LiRA is that
RMIA does not compute the likelihood ratio based on aggregated IN/OUT statistics, but instead
compares the target data point against random samples (z, yz) from the target data distribution.
After computing the likelihood ratios over multiple (z, yz) values, the MIA score is estimated as
a proportion of the ratios exceeding a preset bound. This approach makes RMIA a more effective
attack when the number of shadow models is low.

Measuring MIA vulnerability Using the chosen MIA score of our attack, we can build a binary
classifier to predict whether a sample belongs to the training data or not. The accuracy profile of
such classifier can be used to measure the success of the MIA. More specifically, throughout the
rest of the paper, we will use the true positive rate (TPR) at a specific false positive rate (FPR) as a
measure for the vulnerability. Identifying even a small number of examples with high confidence is
considered harmful (Carlini et al., 2022) and thus we focus on the regions of small FPR.

3 THEORETICAL ANALYSIS

In this section, we seek to theoretically understand the impact of the dataset properties on the MIA
vulnerability. It is known that different data points exhibit different levels of MIA vulnerability de-
pending on the underlying distribution (e.g. Aerni et al., 2024; Leemann et al., 2024). Therefore, we
start with analysing per-example vulnerabilities for LiRA and RMIA. In order to quantitatively relate
dataset properties to these vulnerabilities, a simplified model is formulated. Within this model, we
prove a power-law between the per-example vulnerability and the number S of examples per class.
Finally, the per-example power-law is analytically extended to average-case MIA vulnerability, for
which we provide empirical evidence in Section 4.

3.1 PRELIMINARIES

First, let us restate the MIA score from LiRA as defined by Carlini et al. (2022). Denoting the logit
of a target model M applied on a target data point (x, yx) as ℓ(M(x), yx), the LiRA computes the
MIA score as the likelihood ratio

LR(x) =
p(ℓ(M(x), yx) | Qin(x, yx))

p(ℓ(M(x), yx) | Qout(x, yx))
, (2)

where the Qin/out denote the hypotheses that (x, yx) was or was not in the training set of M.
Carlini et al. (2022) approximate the IN/OUT hypotheses as normal distributions. Denoting
tx = ℓ(M(x), yx), the score becomes

LR(x) =
N (tx; µ̂in(x), σ̂

2
in(x))

N (tx; µ̂out(x), σ̂2
out(x))

, (3)

3
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where the µ̂in/out(x) and σ̂in/out(x) are the means and standard deviations for the IN/OUT shadow
model losses for (x, yx). Larger values of LR(x) suggest that (x, yx) is more likely in the training
set and vice versa. Now, to build a classifier from this score, the LiRA tests if LR(x) > β for some
threshold β.

Next, let us restate how RMIA (Zarifzadeh et al., 2024) builds the MIA score. RMIA augments the
likelihood-ratio with a sample from the target data distribution to calibrate how likely you would
obtain the target model if (x, yx) is replaced with another sample (z, yz). Denoting the target model
parameters with θ, RMIA computes

LR(x, z) =
p(θ | x, yx)
p(θ | z, yz)

, (4)

and the corresponding MIA score is given as
ScoreRMIA(x) = Pr

(z,yz)∼D
(LR(x, z) > γ), (5)

where D denotes the training data distribution. Similar to LiRA, the classifier is built by checking
if ScoreRMIA(x) > β. In the following, we will use the direct computation of likelihood-ratio as
described in Equation 11 of Zarifzadeh et al. (2024) which approximates LR(x, z) using normal
distributions.

3.2 COMPUTING THE TPR FOR LIRA AND RMIA

Using the LiRA formulation of Equation (3), the TPR for the target point (x, yx) for LiRA is defined
as

TPRLiRA(x) = Pr
Dtarget∼D|D|,ϕM

(
N (tx; µ̂in(x), σ̂in(x)

2)

N (tx; µ̂out(x), σ̂out(x)2)
≥ β | (x, yx) ∈ Dtarget

)
, (6)

where β is a threshold that defines a rejection region of the likelihood ratio test,
µ̂in(x), µ̂out(x), σ̂in(x) and σ̂out(x) are LiRA statistics computed from shadow models, and ϕM
denotes the randomness in shadow set sampling and shadow model training (see Appendix A for
derivation).

For theoretical analysis of RMIA, we focus on the direct approach that is an approximation of
the efficient Bayesian approach, as Zarifzadeh et al. (2024) empirically demonstrates that these
approaches exhibit similar performances. Let µ̂a,b and σ̂a,b denote, respectively, the mean and
standard deviation of tb estimated from shadow models, where a denotes which of (x, yx) and (z, yz)
is in the training set. By Equation 11 in (Zarifzadeh et al., 2024), the per-example performance for
RMIA is given as

TPRRMIA(x) =

Pr
Dtarget∼D|D|,ϕM

(
Pr

(z,yz)∼D
(LR(x, z) ≥ γ) ≥ β | (x, yx) ∈ Dtarget ∧ (z, yz) /∈ Dtarget

)
(7)

LR(x, z) =
N (tx; µ̂x,x, σ̂

2
x,x)N (tz; µ̂x,z, σ̂

2
x,z)

N (tx; µ̂z,x, σ̂2
z,x)N (tz; µ̂z,z, σ̂2

z,z)
, (8)

where tz is the score on z similar to tx and ϕM denotes the randomness in shadow set sampling and
shadow model training (see Appendix A for derivation).

We define the average-case TPRs for LiRA and RMIA by taking the expectation over the data distri-
bution:

TPRLiRA = E(x,yx)∼D[TPRLiRA(x)] (9)

TPRRMIA = E(x,yx)∼D[TPRLiRA(x)] (10)

3.3 PER-EXAMPLE MIA VULNERABILITY

Although LiRA models tx by a normal distribution, we consider a more general case where the true
distribution of tx is of the location-scale family. That is,

tx =

{
µin(x) + σin(x)t if (x, yx) ∈ Dtarget

µout(x) + σout(x)t if (x, yx) /∈ Dtarget,
(11)
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where t has the standard location and unit scale, and µin(x), µout(x) and σin(x), σout(x) are the
locations and scales of IN/OUT distributions of tx. We assume that the target and shadow datasets
have a sufficient number of examples. This allows us to also assume that σ̂(x) = σ̂in(x) = σ̂out(x)
and σ(x) = σin(x) = σout(x), where σ̂(x) is the standard deviation of tx estimated from shadow
models and σ(x) is the true scale parameter of tx. (See Appendix B for the validity of these assump-
tions). The following result reduces the LiRA vulnerability to the location and scale parameters of
tx.
Lemma 1 (Per-example LiRA vulnerability). Suppose that the true distribution of tx is of
location-scale family with locations µin(x), µout(x) and scale σ(x), and that LiRA models tx by
N (µ̂in(x), σ̂(x)) and N (µ̂out(x), σ̂(x)). Assume that an attacker has access to the underlying dis-
tribution D. Then for a large enough number of examples per class and infinitely many shadow
models, the LiRA vulnerability of a fixed target example is

TPRLiRA(x) =

1− Ft

(
F−1
t (1− FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) > µ̂out(x)

Ft

(
F−1
t (FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) < µ̂out(x),

(12)

where Ft is the cdf of t with the standard location and unit scale.

Proof. See Appendix C.1.

Here we assume that an attacker trains shadow models with the true underlying distribution. How-
ever, in real-world settings the precise underlying distribution may not be available for an attacker.
We relax this assumption in Appendix B so that the attacker only needs an approximated underlying
distribution for the optimal LiRA as in Lemma 1.

Next we focus on the per-example RMIA performance. As in the case of LiRA, we assume that tx
and tz follow distributions of the location-scale family. We have

tx =

{
µx,x + σx,xt if (x, yx) ∈ Dtarget ∧ (z, yz) /∈ Dtarget

µz,x + σz,xt if (x, yx) /∈ Dtarget ∧ (z, yz) ∈ Dtarget
(13)

tz =

{
µx,z + σx,zt if (x, yx) ∈ Dtarget ∧ (z, yz) /∈ Dtarget

µz,z + σz,zt if (x, yx) /∈ Dtarget ∧ (z, yz) ∈ Dtarget.
(14)

It is important to note that µa,b and σa,b denote, respectively, a location and a scale, while previously
defined µ̂a,b and σ̂a,b are, respectively, a mean and a standard deviation. As for the analysis of LiRA,
we assume that the target and shadow sets have a sufficient number of examples per class, and that
σx = σx,x = σz,x, σz = σx,z = σz,z , σ̂x = σ̂x,x = σ̂z,x and σ̂z = σ̂x,z = σ̂z,z , where σx and σz
are, respectively, the true scales of tx and tz , and σ̂x and σ̂z are, respectively, standard deviations of
tx and tz estimated from shadow models (see Appendix B for the validity of these assumptions).
Lemma 2 (Per-example RMIA vulnerability). Suppose that the true distributions of tx and tz are of
location-scale family with locations µx,x, µz,x, µx,z, µz,z and scales σx, σz , and that RMIA models
tx and tz by normal distributions with parameters computed from shadow models. For a large
enough number of examples per class and infinitely many shadow models, the RMIA vulnerability
of a fixed target example is bounded by

TPRRMIA(x) ≤

1− Ft

(
F−1
t (1− α)− E(z,yz)∼D[q]

E(z,yz)∼D[A]

)
if E(z,yz)∼D[A] > 0

Ft

(
F−1
t (α)− E(z,yz)∼D[q]

E(z,yz)∼D[A]

)
if E(z,yz)∼D[A] < 0,

(15)

for some constant α ≥ FPRRMIA(x), where

q =
(µx,x − µz,x)(µ̂x,x − µ̂z,x)

σ̂2
x

− (µx,z − µz,z)(µ̂x,z − µ̂z,z)

σ̂2
z

(16)

A =
σx
σ̂2
x

(µ̂x,x − µ̂z,x) +
σz
σ̂2
z

(µ̂x,z − µ̂z,z). (17)

Proof. See Appendix C.2.

Note that here we must assume that the attacker has access to the underlying distribution for the
optimal RMIA as the Equations (16) and (17) depend on the parameters computed from shadow
models.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 A SIMPLIFIED MODEL OF THE OPTIMAL MEMBERSHIP INFERENCE

Now we construct a simplified model of membership inference that streamlines the data generation
and shadow model training.

We sample vectors on a high dimensional unit sphere and classify them based on inner product with
estimated class mean. This model is easier to analyse theoretically than real-world deep learning
examples. We generate the data and form the classifiers (which are our target models) as follows:

1. For each class, we first sample a true class mean mc on a high dimensional unit sphere that is
orthogonal to all other true class means (∀i, j ∈ {1, . . . , C} : mi ⊥ mj ∨ i = j).

2. We sample 2S vectors xc for each class. We assume that they are Gaussian distributed around
the the true class mean xc ∼ N (mc, s

2I) where the s2 is the in-class variance.

3. For each ”target model” we randomly choose a subset of size CS from all generated vectors and
compute per-class means rc.

4. The computed mean is used to classify sample x by computing the inner product ⟨x, rc⟩ as a
metric of similarity.

The attacker has to infer which vectors have been used for training the classifier. Instead of utilising
the logits (like in many image classification tasks), the attacker can use the inner products of a point
with the cluster means. Since the inner product score follows a normal distribution, LiRA with
infinitely many shadow models is the optimal attack by the Neyman-Pearson lemma (Neyman &
Pearson, 1933), which states that the likelihood ratio test is the most powerful test for a given FPR.

This simplified model resembles a linear (Head) classifier often used in transfer learning when adapt-
ing to a new dataset. We also focus on the linear (Head) classifier in our empirical evaluation in
Section 4. In the linear classifier, we find a matrix W and biases b, to optimize the cross-entropy
between the labels and logits Wv + b, where v denotes the feature space representation of the data.
In the simplified model, the rows of W are replaced by the cluster means and we do not include the
bias term in the classification.

Now, applying Lemma 1 to the simplified model yields the following result.

Theorem 3 (Per-example LiRA power-law). Fix a target example (x, yx). For the simplified model
with arbitrary C and infinitely many shadow models, the per-example LiRA vulnerability is given as

TPRLiRA(x) = Φ

(
Φ−1(FPRLiRA(x)) +

⟨x, x−mx⟩√
Ss||x||

)
, (18)

where mx is the true mean of class yx. In addition, for large S we have

log(TPRLiRA(x)− FPRLiRA(x)) ≈ −1

2
logS − 1

2
Φ−1(FPRLiRA(x))

2 + log
⟨x, x−mx⟩
||x||s

√
2π

. (19)

Proof. See Appendix C.3.

An immediate upper bound is obtained from Theorem 3 by the Cauchy-Schwarz inequality:

log(TPRLiRA(x)− FPRLiRA(x)) ≤ −1

2
logS − 1

2
Φ−1(FPRLiRA(x))

2 + log
||x−mx||
s
√
2π

. (20)

This implies that if ||x−mx|| is bounded, then the worst-case vulnerability is also bounded. Hence
we can significantly reduce the MIA vulnerability of all examples in this non-DP setting by simply
increasing the number of examples per class. Similarly, employing Lemma 2 and the simplified
model, we obtain the following upper bound for RMIA performance.

Theorem 4 (Per-example RMIA power-law). Fix a target example (x, yx). For the simplified model
with infinitely many shadow models, the per-example RMIA vulnerability is given as

TPRRMIA(x) ≤ Φ

(
Φ−1(α) +

ψ(x,C)√
Ss

)
, (21)

6
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where α ≥ FPRRMIA(x) and

ψ(x,C) =

E(z,yz)∼D
[
2||x− z||2 | yz = yx

]
+ (C − 1)E(z,yz)∼D

[
(||x−mx||2 + ||z −mz||2) | yz ̸= yx

]
E(z,yz)∼D [2||x− z|| | yz = yx] + (C − 1)E(z,yz)∼D [(||x−mx||+ ||z −mz||) | yz ̸= yx]

.

(22)

In addition, for large S we have

log(TPRRMIA(x)− FPRRMIA(x)) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

ψ(x,C)√
2π

. (23)

Proof. See Appendix C.4.

As for the LiRA power-law, bounding ||x − mx|| and ||z − mz|| will provide a worst-case upper
bound for which the power-law holds. Now the following corollaries extend the power-law to the
average-case MIA vulnerabilities. We will also empirically validate these results in Section 4.
Corollary 5 (Average-case LiRA power-law). For the simplified model with arbitraryC, sufficiently
large S and infinitely many shadow models, we have

log(TPRLiRA − FPRLiRA) ≈ −1

2
logS − 1

2
Φ−1(FPRLiRA)

2 + log

(
E(x,yx)∼D

[
⟨x, x−mx⟩√

2π||x||s

])
.

(24)

Proof. See Appendix C.5.

Corollary 6 (Average-case RMIA power-law). For the simplified model with sufficiently large S
and infinitely many shadow models, we have

log(TPRRMIA − FPRRMIA) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

(
E(x,yx)∼D

[
ψ(x,C)√

2π

])
. (25)

Proof. See Appendix C.6.

4 EMPIRICAL EVALUATION OF MIA VULNERABILITY AND DATASET
PROPERTIES

In this section, we investigate how different properties of datasets affect the MIA vulnerability.
Based on our observations, we propose a method to predict the vulnerability to MIA using these
properties.

4.1 EXPERIMENTAL SETUP

We focus on a image classification setting where we fine-tune pre-trained models on sensitive
downstream datasets and assess the MIA vulnerability using LiRA and RMIA with M = 256
shadow/reference models. We base our experiments on a subset of the few-shot benchmark
VTAB (Zhai et al., 2019) that achieves a test classification accuracy > 80% (see Table A2).

We report results for fine-tuning a last layer classifier (Head) trained on top of a Vision Transformer
ViT-Base-16 (ViT-B; Dosovitskiy et al., 2021), pre-trained on ImageNet-21k (Russakovsky et al.,
2015). The results for using ResNet-50 (R-50; Kolesnikov et al., 2020) as a backbone can be found in
Appendix F.1. We optimise the hyperparameters (batch size, learning rate and number of epochs) us-
ing the library Optuna (Akiba et al., 2019) with the Tree-structured Parzen Estimator (TPE; Bergstra
et al., 2011) sampler with 20 iterations (more details in Appendix E.2). We provide the the code for
reproducing the experiments in the supplementary material.

Measuring the uncertainty for TPR The TPR values from the LiRA-based classifier can be seen as
maximum likelihood-estimators for the probability of producing true positives among the positive

7
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samples. Since we have a finite number of samples for our estimation, it is important to estimate
the uncertainty in these estimators. Therefore, when we report the TPR values for a single repeat of
the learning algorithm, we estimate the stochasticity of the TPR estimate by using Clopper-Pearson
intervals (Clopper & Pearson, 1934). Given TP true positives among P positives, the 1−α confidence
Clopper-Pearson interval for the TPR is given as

B(α/2; TP, P − TP + 1) < TPR

TPR < B(1− α/2; TP + 1, P − TP),
(26)

where B(q; a, b) is the qth-quantile of Beta(a, b) distribution.

4.2 EXPERIMENTAL RESULTS

Using the setting described above, we study how the number of classes and the number of shots
affect the vulnerability (TPR at FPR as described in Section 2) using LiRA. We make the following
observations:

• A larger number of S (shots) decrease the vulnerability in a power law relation as demonstrated
in Figure 1a. We provide further evidence of this in the Appendix (Figure A.2 and Tables A3
and A4).

• Contrary, a larger number of C (classes) increases the vulnerability as demonstrated in Figure 1b
with further evidence in Figure A.3 and Tables A5 and A6 in the Appendix. However, the trend
w.r.t. C is not as clear as with S.
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(b) as function of C (classes) at S = 32

Figure 1: LiRA vulnerability ((TPR − FPR) at FPR = 0.001) as a function of dataset properties
when attacking a ViT-B Head fine-tuned without DP on different datasets. We observe a power-law
relation between the MIA vulnerability and S (shots) in Figure 1a while the number of classes C has
a small effect on the MIA vulnerbility in Figure 1b. The solid line displays the median and the error
bars the minimum of the lower bounds and maximum of the upper bounds for the Clopper-Pearson
CIs over multiple seeds (six for Figure 1a and 12 for Figure 1b)

RMIA In Figure 2 we compare the vulnerability of the models to LiRA and RMIA as a function of
the number of S (shots) at FPR = 0.1. We observe the power-law for both attacks, but the RMIA
is more unstable than LiRA (especially for lower FPR). More results for RMIA are in Figures A.6
to A.8 in the Appendix.

4.3 MODEL TO PREDICT DATASET VULNERABILITY

The trends seen in Figure 1 suggest the same power law relationship that we derived for the sim-
plified model of membership inference in Section 3. We fit a linear regression model to predict
log(TPR − FPR) for each FPR = 10−k, k = 1, . . . , 5 separately using the logC and logS as covari-
ates with statsmodels (Seabold & Perktold, 2010). The general form of the model can be found in
Equation (27), where βS , βC and β0 are the learnable regression parameters.

log10(TPR − FPR) = βS log10(S) + βC log10(C) + β0 (27)
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Figure 2: LiRA and RMIA vulnerability ((TPR − FPR) at FPR = 0.1) as a function of shots (S)
when attacking a ViT-B Head fine-tuned without DP on different datasets. For better visibility, we
split the datasets into two panels. We observe the power-law for both attacks, but the RMIA is more
unstable than LiRA. The lines display the median over six seeds.

In Appendix F.2, we propose a variation of the regression model that predicts log10(TPR) instead
of log10(TPR − FPR) but this alternative model performs worse on our empirical data and predicts
TPR < FPR in the tail when S is very large.

We utilise MIA results of ViT-B (Head) (see Table A3) as the training data. Based on the R2

(coefficient of determination) score (R2 = 0.930 for the model trained on FPR = 0.001 data), our
model fits the data extremely well. We provide further evidence for other FPR in Figure A.4 and
Table A8 in the Appendix. Figure 3 shows the parameters of the prediction model fitted to the
training data. For larger FPR, the coefficient βS is around −0.5, as our theoretical analysis predicts.
However, the coefficient value decreases for small FPR. This is perhaps because the power-law in
Equation (24) only holds for large S, and for small FPR Equation (24) significantly underestimates
the vulnerability in small-S regime (see Appendix D).

0.00001 0.0001 0.001 0.01 0.1

FPR

−1.0

−0.8

−0.6

−0.4

co
ef

fic
ie

nt
va

lu
e

βS

0.00001 0.0001 0.001 0.01 0.1

FPR

0.00

0.25

0.50

0.75

βC

0.00001 0.0001 0.001 0.01 0.1

FPR

−2

−1

0

1
β0

Figure 3: Coefficient values for different FPR when fitting a regression model based on Equation (27)
fitted on data from ViT-B (Head) with LiRA (Table A3). The error bars display the 95% confidence
intervals based on Student’s t-distribution. Theoretical values in the simplified model is shown by
pink dotted lines (βS = 0.5 and βC = 0).

Prediction quality on other MIA target models We analyse how the regression model trained
on the ViT-B (Head) data generalizes to other target models. The main points are:

• R-50 (Head): Figure 4a shows that the regression model is robust to a change of the feature
extractor, as it is able to predict the TPR for R-50 (Head) (test R2 = 0.790).

• R-50 (FiLM): Figure 4b shows that the prediction quality is good for R-50 (FiLM) models.
These models are fine-tuned with parameter-efficient FiLM (Perez et al., 2018) layers (See Ap-
pendix E.1). Tobaben et al. (2023) demonstrated that FiLM layers are a competitive alternative to
training all parameters. We supplement the MIA results of Tobaben et al. (2023) with own FiLM
training runs. Refer to Table A7 in the Appendix.

• From-Scratch-Training: Carlini et al. (2022) provide limited results on from-scratch-training. To
the best of our knowledge these are the only published LiRA results on image classification
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(a) Predicted LiRA vulnerability ((TPR − FPR) at
FPR = 0.001) as a function of S (shots). The dots
show the median TPR for the train set (ViT-B; Ta-
ble A3) and the test set (R-50; Table A4) over six
seeds (datasets: Patch Camelyon, EuroSAT and CI-
FAR100). The linear model is robust to changing
the feature extractor from ViT-B to R-50.
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(b) Evaluating prediction performance for target mod-
els (i) left: fine-tuned with FiLM (data partially from
Tobaben et al. (2023), see Table A7) (ii) right: trained
from scratch (data from Carlini et al. (2022)). The lin-
ear model is robust to changing the fine-tuning method
from Head to FiLM, but from scratch training seems
to be more vulnerable than predicted. Note that the re-
sults from Carlini et al. (2022) use data augmentation
while we do not.

Figure 4: Performance of the regression model based on Equation (27) fitted on data from Table A3.

models. Figure 4b displays that our prediction model underestimates the vulnerability of the
from-scratch trained target models. We have identified two potential explanations for this (i) In
from-scratch-training all weights of the model need to be trained from the sensitive data and thus
potentially from-scratch-training could be more vulnerable than fine-tuning. (ii) The strongest
attack in Carlini et al. (2022) uses data augmentations to improve the performance. We are not
using this optimization.

5 DISCUSSION

Under the GDPR and similar legal regimes, machine learning (ML) models trained on personal data
that memorise the data are personal data and need to be carefully protected. Our work analyses in
which cases trained models would most likely be personal data and in which cases they might not
be. This will help in evaluating the risk of different kinds of models, favouring less risky models
when possible and paying extra attention to more risky cases.

As the best means of protecting privacy, differential privacy, reduces the utility of models, it is im-
portant to understand when it is necessary. Aligning with the prior literature, our results highlight
that models are the most vulnerable to MIA when the number of examples per class is low. A key
result of the present paper is, however, the power-law relationship. This has a potentially useful
implication that a practitioner could reduce the MIA vulnerability and estimate how large a dataset
would be needed to mitigate the vulnerability in the non-DP transfer learning setting. The practi-
tioner could focus on the class with least examples, while taking into account that the number of
classes would not be completely independent of the vulnerability.

One major reason for MIA vulnerability can be memorisation of the training data. Feldman & Zhang
(2020) experimentally test memorisation in neural network training, and find that according to their
definition, a large fraction of the training data are memorised when training from scratch, while only
few are when fine-tuning. This is aligned with our results that indicate from scratch training to be
more vulnerable than fine-tuning.

Limitations Despite the theoretical analysis on the optimal score-based MIA, the vulnerability to
white-box attacks and future stronger attacks might behave differently. Also, our results assume
well-behaved underlying distributions. Formal bounds on MIA vulnerability would require some-
thing like DP. In addition, both our theoretical and empirical analysis focus on deep transfer learning
using fine-tuning. Models trained from scratch are likely to be more vulnerable.
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A FORMULATING LIRA AND RMIA FOR SECTION 3

Let M be our target model and ℓ(M(x), yx) be the loss of the model on a target example (x, yx).
The goal of MIA is to determine whether (x, yx) ∈ Dtarget. This can be formulated as a hypothesis
test:

H0 : (x, yx) /∈ Dtarget (A1)
H1 : (x, yx) ∈ Dtarget. (A2)

A.1 LIRA

Following (Carlini et al., 2022), we formulate the Likelihood Ratio Attack (LiRA). LiRA exploits the
difference of losses on the target model under H0 and H1. To model the IN/OUT loss distributions
with few shadow models, LiRA employs a parametric modelling. Particularly, LiRA models tx by
a normal distribution. That is, the hypothesis test formulated above can be rewritten as

H ′
0 : tx ∼ N (µ̂out, σ̂out) (A3)

H ′
1 : tx ∼ N (µ̂in, σ̂in). (A4)

The likelihood ratio is now

LR(x) =
N (tx; µ̂in, σ̂in)

N (tx; µ̂out, σ̂out)
. (A5)

LiRA rejects H ′
0 if and only if

LR(x) ≥ β, (A6)
concluding that H ′

1 is true, i.e., identifying the membership of (x, yx). Thus, the true positive rate
of this hypothesis test given as

TPRLiRA(x) = Pr
Dtarget∼D|D|,ϕM

(
N (tx; µ̂in(x), σ̂in(x)

2)

N (tx; µ̂out(x), σ̂out(x)2)
≥ β | (x, yx) ∈ Dtarget

)
, (A7)

where ϕM denotes the randomness in the shadow set sampling and shadow model training.

A.2 RMIA

By modelling tz by a normal distribution, Zarifzadeh et al. (2024) approximate the pairwise likeli-
hood ratio as

LR(x, z) =
p(θ | x, yx)
p(θ | z, yz)

≈
N (tx; µ̂x,x, σ̂

2
x,x)N (tz; µ̂x,z, σ̂

2
x,z)

N (tx; µ̂z,x, σ̂2
z,x)N (tz; µ̂z,z, σ̂2

z,z)
, (A8)

where µ̂a,b and σ̂a,b are, respectively, the mean and standard deviation of tb estimated from shadow
models when the training set contains a but not b. Then RMIA exploits the probability of rejecting
the pairwise likelihood ratio test over (z, yz) ∼ D:

ScoreRMIA(x) = Pr
(z,yz)∼D

(LR(x, z) ≥ γ) . (A9)

Thus, RMIA rejects H0 if and only if

Pr
(z,yz)∼D

(LR(x, z) ≥ γ) ≥ β, (A10)
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identifying the membership of x. Hence the true positive rate of RMIA is given as

TPRRMIA(x) = Pr
Dtarget∼D|D|,ϕM

(
Pr

(z,yz)∼D
(LR(x, z) ≥ γ) ≥ β | (x, yx) ∈ Dtarget ∧ (x, yx) /∈ Dtarget

)
,

(A11)
where ϕM denotes the randomness in the sahdow set sampling and shadow model training.

B ON THE ASSUMPTIONS IN SECTION 3

B.1 THE ASSUMPTION OF SHARED VARIANCES

In Section 3 we assumed that for LiRA σin = σout and σ̂in = σ̂out, and that for RMIA σx = σx,x =
σz,x, σz = σx.z = σz,z , σ̂x = σ̂x,x = σ̂z,x and σ̂z = σ̂x.z = σ̂z,z . Utilising the simplified model
formulated in Section 3.4, we show that for large enough number S of examples per class these
assumptions are reasonable.

From the proof of Theorem 3 (see Appendix C.3) we have

σ2
in = σ̂2

in = Var(s(in)yx
) =

1

S

(
1− 1

S

)
||x||2s2 (A12)

σ2
out = σ̂2

out = Var(s(out)yx
) =

1

S
||x||2s2 (A13)

Thus, the differences σin − σout and σ̂in − σ̂out are negligible for large S. Similarly, we have

σ2
x,x = σ̂2

x,x = Var(s(x)yx
(x)) =

1

S

(
1− 1

S

)
||x||2s2 (A14)

σ2
z,x = σ̂2

z,x = Var(s(z)yx
(x)) =

{
1
S

(
1− 1

S

)
||x||2s2 if yx = yz

1
S ||x||

2s2 if yx ̸= yz
(A15)

σ2
x,z = σ̂2

x,z = Var(s(x)yz
(z)) =

{
1
S

(
1− 1

S

)
||z||2s2 if yx = yz

1
S ||z||

2s2 if yx ̸= yz
(A16)

σ2
z,z = σ̂2

z,z = Var(s(z)yz
(z)) =

1

S

(
1− 1

S

)
||z||2s2. (A17)

Therefore, the differences σx,x − σz,x, σx.z − σz,z , σ̂x,x − σ̂z,x and σ̂x.z − σ̂z,z are negligible for
large enough S. Hence as long as the simplified model approximates classification tasks to which
Lemmas 1 and 2 are applied, these assumptions are reasonably justified.

B.2 RELAXING THE ASSUMPTION OF LEMMA 1

In Lemma 1 we assume that an attacker has access to the true underlying distribution. However, this
is not necessarily the case in real-world settings. Noting that the Equation (12) mainly relies on the
true location parameters µin(x), µout(x) and scale parameter σ(x), we may relax this assumption.

Notice that if we completely drop this assumption so that an attacker trains shadow models with an
arbitrary underlying distribution, then we may not be able to choose a desired FPRLiRA(x). From
Equation (A34) in the proof of Lemma 1 we have

σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µout

σ
=

{
F−1
t (1− FPRLiRA(x)) if µ̂in > µ̂out

F−1
t (FPRLiRA(x)) if µ̂in < µ̂out

(A18)

log β =


µ̂in−µ̂out

σ̂2

(
σF−1

t (1− FPRLiRA(x))− µ̂in+µ̂out

2 + µout

)
if µ̂in > µ̂out

µ̂in−µ̂out

σ̂2

(
σF−1

t (FPRLiRA(x))− µ̂in+µ̂out

2 + µout

)
if µ̂in < µ̂out,

(A19)

where we abuse notations by denoting µin to refer to µin(x) and similarly for other parameters.
Since we need to choose a rejection region of the likelihood ratio test such that β ≥ 1, we have

µ̂in−µ̂out

σ̂2

(
σF−1

t (1− FPRLiRA(x))− µ̂in+µ̂out

2 + µout

)
≥ 0 if µ̂in > µ̂out

µ̂in−µ̂out

σ̂2

(
σF−1

t (FPRLiRA(x))− µ̂in+µ̂out

2 + µout

)
≥ 0 if µ̂in < µ̂out.

(A20)
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Therefore, the sufficient condition about attacker’s knowledge on the underlying distribution for
Lemma 1 to hold is{

σF−1
t (1− FPRLiRA(x))− µ̂in+µ̂out

2 + µout ≥ 0 if µ̂in > µ̂out

σF−1
t (FPRLiRA(x))− µ̂in+µ̂out

2 + µout ≤ 0 if µ̂in < µ̂out.
(A21)

We summarise this discussion in the following:
Lemma A1 (Lemma 1 with a relaxed assumption). Suppose that the true distribution of tx is
of location-scale family with locations µin(x), µout(x) and scale σ(x), and that LiRA models
tx by N (µ̂in(x), σ̂(x)) and N (µ̂out(x), σ̂(x)). Assume that an attacker estimates parameters
µ̂in(x), σ̂(x), µ̂out(x) and σ̂out(x) with an approximated underlying distribution such that{

σF−1
t (1− FPRLiRA(x))− µ̂in+µ̂out

2 + µout ≥ 0 if µ̂in > µ̂out

σF−1
t (FPRLiRA(x))− µ̂in+µ̂out

2 + µout ≤ 0 if µ̂in < µ̂out.
(A22)

Then the LiRA vulnerability of a fixed target example is

TPRLiRA(x) =

1− Ft

(
F−1
t (1− FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) > µ̂out(x)

Ft

(
F−1
t (FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) < µ̂out(x),

(A23)
where Ft is the cdf of t with the standard location and unit scale.

C MISSING PROOFS OF SECTION 3

C.1 PROOF OF LEMMA 1

Lemma 1 (Per-example LiRA vulnerability). Suppose that the true distribution of tx is of
location-scale family with locations µin(x), µout(x) and scale σ(x), and that LiRA models tx by
N (µ̂in(x), σ̂(x)) and N (µ̂out(x), σ̂(x)). Assume that an attacker has access to the underlying dis-
tribution D. Then for a large enough number of examples per class and infinitely many shadow
models, the LiRA vulnerability of a fixed target example is

TPRLiRA(x) =

1− Ft

(
F−1
t (1− FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) > µ̂out(x)

Ft

(
F−1
t (FPRLiRA(x))− µin(x)−µout(x)

σ(x)

)
if µ̂in(x) < µ̂out(x),

(12)

where Ft is the cdf of t with the standard location and unit scale.

Proof. We abuse notations by denoting µin to refer to µin(x) and similarly for other statistics. We
have

log
N (tx; µ̂in, σ̂)

N (tx; µ̂out, σ̂)
≥ log β (A24)

−1

2

(
tx − µ̂in

σ̂

)2

+
1

2

(
tx − µ̂out

σ̂

)2

≥ log β (A25)

1

2σ̂2
(2txµ̂in − µ̂2

in − 2txµ̂out + µ̂2
out) ≥ log β (A26)

1

2σ̂2
(µ̂in − µ̂out)(2tx − µ̂in − µ̂out) ≥ log β (A27){

tx ≥ σ̂2 log β
µ̂in−µ̂out

+ µ̂in+µ̂out

2 if µ̂in > µ̂out

tx ≤ σ̂2 log β
µ̂in−µ̂out

+ µ̂in+µ̂out

2 if µ̂in < µ̂out.
(A28)

Then if µ̂in > µ̂out, in the limit of infinitely many shadow models

FPRLiRA(x) = Pr
t

(
µout + σt ≥ σ̂2 log β

µ̂in − µ̂out
+
µ̂in + µ̂out

2

)
(A29)

= Pr
t

(
t ≥ σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µout

σ

)
(A30)

= 1− Ft

(
σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µout

σ

)
, (A31)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

and if µ̂in < µ̂out, similarly,

FPRLiRA(x) = Pr
t

(
µout + σt ≤ σ̂2 log β

µ̂in − µ̂out
+
µ̂in + µ̂out

2

)
(A32)

= Ft

(
σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µout

σ

)
. (A33)

Thus

σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µout

σ
=

{
F−1
t (1− FPRLiRA(x)) if µ̂in > µ̂out

F−1
t (FPRLiRA(x)) if µ̂in < µ̂out.

(A34)

It follows that if µ̂in > µ̂out,

TPRLiRA(x) = Pr
t

(
µin + σt ≥ σ̂2 log β

µ̂in − µ̂out
+
µ̂in + µ̂out

2

)
(A35)

= Pr
t

(
t ≥ σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µin

σ

)
(A36)

= 1− Ft

(
F−1
t (1− FPRLiRA(x))−

µin − µout

σ

)
. (A37)

If µ̂in < µ̂out, then

TPRLiRA(x) = Pr
t

(
µin + σt ≤ σ̂2 log β

µ̂in − µ̂out
+
µ̂in + µ̂out

2

)
(A38)

= Pr
t

(
t ≤ σ̂2 log β

σ(µ̂in − µ̂out)
+
µ̂in + µ̂out

2σ
− µin

σ

)
(A39)

= Ft

(
F−1
t (FPRLiRA(x))−

µin − µout

σ

)
. (A40)

C.2 PROOF OF LEMMA 2

Lemma 2 (Per-example RMIA vulnerability). Suppose that the true distributions of tx and tz are of
location-scale family with locations µx,x, µz,x, µx,z, µz,z and scales σx, σz , and that RMIA models
tx and tz by normal distributions with parameters computed from shadow models. For a large
enough number of examples per class and infinitely many shadow models, the RMIA vulnerability
of a fixed target example is bounded by

TPRRMIA(x) ≤

1− Ft

(
F−1
t (1− α)− E(z,yz)∼D[q]

E(z,yz)∼D[A]

)
if E(z,yz)∼D[A] > 0

Ft

(
F−1
t (α)− E(z,yz)∼D[q]

E(z,yz)∼D[A]

)
if E(z,yz)∼D[A] < 0,

(15)

for some constant α ≥ FPRRMIA(x), where

q =
(µx,x − µz,x)(µ̂x,x − µ̂z,x)

σ̂2
x

− (µx,z − µz,z)(µ̂x,z − µ̂z,z)

σ̂2
z

(16)

A =
σx
σ̂2
x

(µ̂x,x − µ̂z,x) +
σz
σ̂2
z

(µ̂x,z − µ̂z,z). (17)

Proof. We have

LR(x, z) ≥ γ (A41)

exp

(
− 1

2

(
tx−µ̂x,x

σ̂x

)2
− 1

2

(
tz−µ̂x,z

σ̂z

)2)
exp

(
− 1

2

(
tx−µ̂z,x

σ̂x

)2
− 1

2

(
tz−µ̂z,z

σ̂z

)2) ≥ γ (A42)
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− 1

2

(
tx − µ̂x,x

σ̂x

)2

+
1

2

(
tx − µ̂z,x

σ̂x

)2

− 1

2

(
tz − µ̂x,z

σ̂z

)2

+
1

2

(
tz − µ̂z,z

σ̂z

)2

≥ log γ (A43)

1

2σ̂2
x

(2txµ̂x,x − µ̂2
x,x − 2txµ̂z,x + µ̂2

z,x)

+
1

2σ̂2
z

(2tzµ̂x,z − µ̂2
x,z − 2tzµ̂z,z + µ̂2

z,z) ≥ log γ (A44)

µ̂x,x − µ̂z,x

2σ̂2
x

(2tx − µ̂x,x − µ̂z,x) +
µ̂x,z − µ̂z,z

2σ̂2
z

(2tz − µ̂x,z − µ̂z,z) ≥ log γ. (A45)

When (x, yx) ∈ Dtarget and (z, yz) /∈ Dtarget, denote the left hand side of Equation (A45) by λx:

λx =
µ̂x,x − µ̂z,x

2σ̂2
x

(2µx,x + 2σxt− µ̂x,x − µ̂z,x) (A46)

+
µ̂x,z − µ̂z,z

2σ̂2
z

(2µx,z + 2σzt− µ̂x,z − µ̂z,z). (A47)

Similarly, when (x, yx) /∈ Dtarget and (z, yz) ∈ Dtarget, denoting the left hand side of Equa-
tion (A45) by λz , we have

λz =
µ̂x,x − µ̂z,x

2σ̂2
x

(2µz,x + 2σxt− µ̂x,x − µ̂z,x) (A48)

+
µ̂x,z − µ̂z,z

2σ̂2
z

(2µz,z + 2σzt− µ̂x,z − µ̂z,z) (A49)

=

σxσ̂2
x

(µ̂x,x − µ̂z,x) +
σz
σ̂2
z

(µ̂x,z − µ̂z,z)︸ ︷︷ ︸
A

 t (A50)

+
µ̂x,x − µ̂z,x

2σ̂2
x

(2µz,x − µ̂x,x − µ̂z,x) +
µ̂x,z − µ̂z,z

2σ̂2
z

(2µz,z − µ̂x,z − µ̂z,z)︸ ︷︷ ︸
B

(A51)

=At+B. (A52)

Notice that A and B are functions of z and independent of t. Thus E(z,yz)∼D[A] and E(z,yz)∼D[B]
will be constants. We abuse notations by denoting Ez and Prz to mean E(z,yz)∼D and Pr(z,yz)∼D,
respectively. Note that taking probability over t corresponds to calculating probability over sampling
of the rest of the dataset other than the target example. By Markov’s inequality, in the limit of
infinitely many shadow models we have

FPRRMIA(x) = Pr
t

(
Pr
z
(eλz ≥ γ) ≥ β

)
≤ Pr

t

(
Ez[e

λz ]

γ
≥ β

)
= Pr

t

(
Ez[e

λz ] ≥ γβ
)

(A53)

Assuming that λx and λz have finite second moments, we can choose ρ > 0 such that

Ez[e
λx ]− eEz [λx] ≤ ρ (A54)

Ez[e
λz ]− eEz [λz ] ≤ ρ (A55)

and ρ is almost independent of t. Noting that F−1
t is an increasing function, we have

FPRRMIA(x) ≤ Pr
t

(
Ez[e

λz ] ≥ γβ
)

(A56)

≤ Pr
t

(
eEz [λz ] + ρ ≥ γβ

)
(A57)

= Pr
t
(Ez[λz] ≥ log(γβ − ρ)) (A58)

= Pr
t
(Ez[A]t ≥ log(γβ − ρ)− Ez[B]) . (A59)
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Here we assume that γβ > ρ. Thus, assuming that Ez[A] ̸= 0, we can upper-bound FPRRMIA(x) ≤
α by setting

α =

1− Ft

(
log(γβ−ρ)−Ez [B]

Ez [A]

)
if Ez[A] > 0

Ft

(
log(γβ−ρ)−Ez [B]

Ez [A]

)
if Ez[A] < 0

(A60)

That is,
log(γβ − ρ)− Ez[B]

Ez[A]
=

{
F−1
t (1− α) if Ez[A] > 0

F−1
t (α) if Ez[A] < 0

(A61)

Now let

q = λx − λz =
(µx,x − µz,x)(µ̂x,x − µ̂z,x)

σ̂2
x

+
(µx,z − µz,z)(µ̂x,z − µ̂z,z)

σ̂2
z

. (A62)

Note that q is also independent of t, thereby Ez[q] being a constant. By Markov’s inequality, it
follows that

TPRRMIA(x) = Pr
t

(
Pr
z
(eλx ≥ γ) ≥ β

)
(A63)

= Pr
t

(
Pr
z
(eλz+q ≥ γ) ≥ β

)
(A64)

≤ Pr
t

(
Ez[e

λz+q]

γ
≥ β

)
(A65)

≤ Pr
t

(
eEz [λz+q] + ρ ≥ βγ

)
(A66)

= Pr
t
(Ez[λz + q] ≥ log(βγ − ρ)) (A67)

= Pr
t
(Ez[A]t ≥ log(βγ − ρ)− Ez[B]− Ez[q]) (A68)

=

Prt

(
t ≥ log(βγ−ρ)−Ez [B]

Ez [A] − Ez [q]
Ez [A]

)
if Ez[A] > 0

Prt

(
t ≤ log(βγ−ρ)−Ez [B]

Ez [A] − Ez [q]
Ez [A]

)
if Ez[A] < 0.

(A69)

Hence we obtain

TPRRMIA(x) =

1− F−1
t

(
F−1
t (1− α)− Ez [q]

Ez [A]

)
if Ez[A] > 0

Ft

(
F−1
t (α)− Ez [q]

Ez [A]

)
if Ez[A] < 0.

(A70)

C.3 PROOF OF THEOREM 3

Theorem 3 (Per-example LiRA power-law). Fix a target example (x, yx). For the simplified model
with arbitrary C and infinitely many shadow models, the per-example LiRA vulnerability is given as

TPRLiRA(x) = Φ

(
Φ−1(FPRLiRA(x)) +

⟨x, x−mx⟩√
Ss||x||

)
, (18)

where mx is the true mean of class yx. In addition, for large S we have

log(TPRLiRA(x)− FPRLiRA(x)) ≈ −1

2
logS − 1

2
Φ−1(FPRLiRA(x))

2 + log
⟨x, x−mx⟩
||x||s

√
2π

. (19)

Proof. Let Dtarget = {(xj,1, j), ..., (xj,S , j)}Cj=1. Then the LiRA score of the target (x, yx) is

s(in)yx
= ⟨x, 1

S

(
S−1∑
i=1

xyx,i + x

)
⟩ = ⟨x, 1

S

S∑
i=1

xyx,i⟩+ ⟨x, 1
S
(x− xyx,S)⟩ (A71)

s(out)yx
= ⟨x, 1

S

S∑
i=1

xyx,i⟩, (A72)
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respectively, when (x, yx) ∈ Dtarget and when (x, yx) /∈ Dtarget. Thus we obtain

µin − µout = E[s(in)yx
− s(out)yx

] =
1

S
⟨x, x−mx⟩ (A73)

σ2 = Var(s(out)yx
) =

1

S
Var(⟨x, xyx,i⟩) =

1

S
||x||2s2 (A74)

Noting that the LiRA score follows a normal distribution, by Lemma 1 we have

TPRLiRA(x) = 1− Φ

(
Φ−1(1− FPRLiRA(x))−

⟨x, x−mx⟩√
Ss||x||

)
(A75)

= Φ

(
Φ−1(FPRLiRA(x)) +

⟨x, x−mx⟩√
Ss||x||

)
, (A76)

where Φ is the cdf of the standard normal distribution. This completes the first half of the theorem.

Now we have

TPRLiRA(x) = Pr

(
η ≤ γ0 +

⟨x, x−mx⟩√
Ss||x||

)
, (A77)

FPRLiRA(x) = Pr(η ≤ γ0), (A78)

where γ0 is a tunable constant and η ∼ N (0, 1). Thus for large enough S we have

TPRLiRA(x)− FPRLiRA(x) ≈ pη(γ0)
⟨x, x−mx⟩√

S||x||s
(A79)

=
1√
2π
e−

1
2Φ

−1(FPRLiRA(x))2 ⟨x, x−mx⟩√
S||x||s

, (A80)

log(TPRLiRA(x)− FPRLiRA(x)) ≈ −1

2
logS − 1

2
Φ−1(FPRLiRA(x))

2 + log
⟨x, x−mx⟩
||x||s

√
2π

. (A81)

C.4 PROOF OF THEOREM 4

Theorem 4 (Per-example RMIA power-law). Fix a target example (x, yx). For the simplified model
with infinitely many shadow models, the per-example RMIA vulnerability is given as

TPRRMIA(x) ≤ Φ

(
Φ−1(α) +

ψ(x,C)√
Ss

)
, (21)

where α ≥ FPRRMIA(x) and

ψ(x,C) =

E(z,yz)∼D
[
2||x− z||2 | yz = yx

]
+ (C − 1)E(z,yz)∼D

[
(||x−mx||2 + ||z −mz||2) | yz ̸= yx

]
E(z,yz)∼D [2||x− z|| | yz = yx] + (C − 1)E(z,yz)∼D [(||x−mx||+ ||z −mz||) | yz ̸= yx]

.

(22)

In addition, for large S we have

log(TPRRMIA(x)− FPRRMIA(x)) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

ψ(x,C)√
2π

. (23)

Proof. To apply Lemma 2, we will calculate Ez[q] and Ez[A]. Let s(x)yx (x) (resp. s(z)yx (x)) denote the
score of the target x for class yx when the dataset contains (x, yx) but not (z, yz) (resp. when the
dataset contains (z, yz) but not (x, yx)). Let s(x)yz (z) and z(z)yz (z) be corresponding scores of example
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z. Then we have

s(x)yx
(x) =

1

S
⟨x,

S∑
i=1

xi + x− xS⟩ (A82)

s(z)yx
(x) =

{
1
S ⟨x,

∑S
i=1 xi + z − xS⟩ if yx = yz

1
S ⟨x,

∑S
i=1 xi⟩ if yx ̸= yz

(A83)

s(x)yz
(z) =

{
1
S ⟨z,

∑S
i=1 zi + x− zS⟩ if yx = yz

1
S ⟨z,

∑S
i=1 zi⟩ if yx ̸= yz

(A84)

s(z)yz
(z) =

1

S
⟨z,

S∑
i=1

zi + z − xS⟩ (A85)

where xi are samples with label yx and zi are samples with label yz when yx ̸= yz . Thus we obtain

µx,x = ⟨x,mx⟩+
1

S
⟨x, x−mx⟩ (A86)

µz,x =

{
⟨x,mx⟩+ 1

S ⟨x, z −mx⟩ if yx = yz
⟨x,mx⟩ if yx ̸= yz

(A87)

µx,z =

{
⟨z,mx⟩+ 1

S ⟨z, x−mx⟩ if yx = yz
⟨z,mz⟩ if yx ̸= yz

(A88)

µz,z = ⟨z,mx⟩+
1

S
⟨z, z −mx⟩ (A89)

σx =
1√
S
s||x|| (A90)

σz =
1√
S
s||z||, (A91)

where mz is the true class mean of yz when yx ̸= yz (see Appendix B for derivation of σx and σz).

Now recall that

q =
(µx,x − µz,x)(µ̂x,x − µ̂z,x)

σ̂2
x

+
(µx,z − µz,z)(µ̂x,z − µ̂z,z)

σ̂2
z

(A92)

A =
σx
σ̂2
x

(µ̂x,x − µ̂z,x) +
σz
σ̂2
z

(µ̂x,z − µ̂z,z) (A93)

In the limit of infinitely many shadow models, these can be written as

q =

(
µx,x − µz,x

σx

)2

+

(
µx,z − µz,z

σz

)2

(A94)

A =
µx,x − µz,x

σx
+
µx,z − µz,z

σz
. (A95)

Using the law of total expectation, we have

Ez[q] =Pr
z
(yz = yx)Ez[q | yz = yx] +

C∑
j=1,j ̸=yx

Pr
z
(yz = j)Ez[q | yz = j] (A96)

=
1

C
Ez

[(
⟨x, x− z⟩√
Ss||x||

)2

+

(
⟨z, x− z⟩√
Ss||z||

)2
∣∣∣∣∣ yz = yx

]
(A97)

+
C − 1

C
Ez

[(
⟨x, x−mx⟩√

Ss||x||

)2

+

(
⟨z, z −mz⟩√

Ss||z||

)2
∣∣∣∣∣ yz ̸= yx

]
(A98)

=
1

CSs2
Ez

[
⟨x, x− z⟩2

||x||2
+

⟨z, x− z⟩2

||z||2

∣∣∣∣ yz = yx

]
(A99)

+
C − 1

CSs2
Ez

[
⟨x, x−mx⟩2

||x||2
+

⟨z, z −mz⟩2

||z||2

∣∣∣∣ yz = yx

]
, (A100)
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and

Ez[A] =Pr
z
(yz = yx)Ez[A | yz = yx] +

C∑
j=1,j ̸=yx

Pr
z
(yz = j)Ez[A | yz = j] (A101)

=
1

C
Ez

[
⟨x, x− z⟩√
Ss||x||

+
⟨z, x− z⟩√
Ss||z||

∣∣∣∣ yz = yx

]
(A102)

+
C − 1

C
Ez

[
⟨x, x−mx⟩√

Ss||x||
+

⟨z, z −mz⟩√
Ss||z||

∣∣∣∣ yz ̸= yx

]
(A103)

=
1

C
√
Ss

Ez

[
⟨x, x− z⟩

||x||
+

⟨z, x− z⟩
||z||

∣∣∣∣ yz = yx

]
(A104)

+
C − 1

C
√
Ss

Ez

[
⟨x, x−mx⟩

||x||
+

⟨z, z −mz⟩
||z||

∣∣∣∣ yz = yx

]
. (A105)

Hence we obtain by the Cauchy-Schwarz inequality

Ez[q]

Ez[A]
=

1√
Ss

·
Ez

[
⟨x,x−z⟩2

||x||2 + ⟨z,x−z⟩2
||z||2 | yz = yx

]
+ (C − 1)Ez

[
⟨x,x−mx⟩2

||x||2 + ⟨z,z−mz⟩2
||z||2 | yz ̸= yx

]
Ez

[
⟨x,x−z⟩

||x|| + ⟨z,x−z⟩
||z|| | yz = yx

]
+ (C − 1)Ez

[
⟨x,x−mx⟩

||x|| + ⟨z,z−mz⟩
||z|| | yz ̸= yx

]
(A106)

≤ 1√
Ss

·
Ez

[
2||x− z||2 | yz = yx

]
+ (C − 1)Ez

[
(||x−mx||2 + ||z −mz||2) | yz ̸= yx

]
Ez [2||x− z|| | yz = yx] + (C − 1)Ez [(||x−mx||+ ||z −mz||) | yz ̸= yx]

.

(A107)
Since the score of the target is normally distributed in the simplified model, by symmetry Lemma 2
yields

TPRRMIA(x) ≤ Φ

(
Φ−1(α) +

∣∣∣∣ Ez[q]

Ez[A]

∣∣∣∣) . (A108)

Thus we have

TPRRMIA(x) ≤ Φ

(
Φ−1(α) +

ψ(x,C)√
Ss

)
, (A109)

where

ψ(x,C) =
Ez

[
2||x− z||2 | yz = yx

]
+ (C − 1)Ez

[
(||x−mx||2 + ||z −mz||2) | yz ̸= yx

]
Ez [2||x− z|| | yz = yx] + (C − 1)Ez [(||x−mx||+ ||z −mz||) | yz ̸= yx]

.

(A110)
This completes the first half of the theorem.

Now that

TPRRMIA(x) = Pr
η

(
Pr
z
(λz + q ≥ log γ) ≥ β

)
≤ Pr

η

(
η ≤ Φ−1(α) +

∣∣∣∣ Ez[q]

Ez[A]

∣∣∣∣) (A111)

FPRRMIA(x) = Pr
η

(
Pr
z
(λz ≥ log γ) ≥ β

)
≤ Pr

η
(η ≤ Φ−1(α)) (A112)

where η ∼ N (0, 1) corresponds to dataset sampling. In the proof of Lemma 2, we derive these
upper bound by Markov’s inequality and an upper bound of Jensen’s gap that is shared for both
TPRRMIA(x) and FPRRMIA(x) cases. Since Markov’s inequality is tighter when the threshold is
relatively large, inequality (A112) is tighter than inequality (A111). Therefore, for large enough S
we obtain

TPRRMIA(x)− FPRRMIA(x) ≤ Pr
η

(
η ≤ Φ−1(α) +

∣∣∣∣ Ez[q]

Ez[A]

∣∣∣∣)− Pr
η
(η ≤ Φ−1(α)) (A113)

≤ Pr
η

(
η ≤ Φ−1(α) +

ψ(x,C)√
Ss

)
− Pr

η
(η ≤ Φ−1(α)) (A114)

≈ pη(Φ
−1(α))

ψ(x,C)√
S

(A115)

=
1√
2π
e−

1
2Φ

−1(α)2 ψ(x,C)√
S

. (A116)
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Hence we have

log(TPRRMIA(x)− FPRRMIA(x)) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

ψ(x,C)√
2π

. (A117)

C.5 PROOF OF COROLLARY 5

Corollary 5 (Average-case LiRA power-law). For the simplified model with arbitraryC, sufficiently
large S and infinitely many shadow models, we have

log(TPRLiRA − FPRLiRA) ≈ −1

2
logS − 1

2
Φ−1(FPRLiRA)

2 + log

(
E(x,yx)∼D

[
⟨x, x−mx⟩√

2π||x||s

])
.

(24)

Proof. By theorem 3 and the law of unconscious statistician, we have for large S

TPRLiRA − FPRLiRA =

∫
D
Pr(x)(TPRLiRA(x)− FPRLiRA(x))dx (A118)

≈
∫
D
Pr(x)

1√
2π
e−

1
2Φ

−1(FPRLiRA)2 ⟨x, x−mx⟩√
S||x||s

dx (A119)

=
1√
2π
e−

1
2Φ

−1(FPRLiRA)2 1√
S

∫
D
Pr(x)

⟨x, x−mx⟩
||x||s

dx (A120)

=
1√
S
e−

1
2Φ

−1(FPRLiRA)2E(x,yx)∼D

[
⟨x, x−mx⟩√

2π||x||s

]
. (A121)

Note that here we fixed FPRLiRA(x) = FPRLiRA for all x. Then we obtain

log(TPRLiRA−FPRLiRA) ≈ −1

2
logS−1

2
Φ−1(FPR)2+log

(
E(x,yx)∼D

[
⟨x, x−mx⟩√

2π||x||s

])
. (A122)

C.6 PROOF OF COROLLARY 6

Corollary 6 (Average-case RMIA power-law). For the simplified model with sufficiently large S
and infinitely many shadow models, we have

log(TPRRMIA − FPRRMIA) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

(
E(x,yx)∼D

[
ψ(x,C)√

2π

])
. (25)

Proof. By theorem 4 and the law of unconscious statistician, we have for large S

TPRRMIA − FPRRMIA =

∫
D
Pr(x)(TPRRMIA(x)− FPRRMIA(x))dx (A123)

≤
∫
D
Pr(x)

1√
2π
e−

1
2Φ

−1(α)2 ψ(x,C)√
S

dx (A124)

=
1√
2π
e−

1
2Φ

−1(α)2
∫
D

ψ(x,C)√
S

dx. (A125)

=
1√
S
e−

1
2Φ

−1(α)2E(x,yx)∼D

[
ψ(x,C)√

2π

]
. (A126)

Hence we obtain

log(TPRRMIA − FPRRMIA) ≤ −1

2
logS − 1

2
Φ−1(α)2 + log

(
E(x,yx)∼D

[
ψ(x,C)√

2π

])
. (A127)
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D LIRA VULNERABILITY FOR SMALL FPR

In Section 3.4 we proved for the simplified model that for LiRA log(TPR − FPR) ≈ − 1
2 logS

ignoring additive constants when FPR is fixed (Corollary 5). In Section 4.3 we observed that the
coefficient βS for logS is around −0.5 for larger FPR, aligning with the theoretical value. However,
for smaller FPR the coefficient is smaller than −0.5. To understand this phenomenon, it is important
to note that the power-law (Theorem 3 and Corollary 5) only holds for sufficiently large S. Thus, it
can be explained that the difference of coefficient values βS for small and large FPR comes from the
small-S regime as follows.

In the proof of Corollary 5 and Theorem 3 the only approximation that could introduce some bias is
Equation (A80). That is,

TPRLiRA(x)− FPRLiRA(x) = Pr
(
η ≤ Φ−1(FPRLiRA(x)) + r

)
− Pr

(
η ≤ Φ−1(FPRLiRA(x))

)
(A128)

≈ pη
(
Φ−1(FPRLiRA(x))

)
r, (A129)

where η ∼ N (0, 1), r is a shift that scales O(1/
√
S) and pη is the pdf of η. Figure A.1 numeri-

cally illustrates this approximation. It can be observed that for small S the approximation does not
hold, underestimating the true vulnerability. Particularly, this effect is remarkably larger for small
FPRLiRA(x). In other words, the simplified model overestimates the coefficient value βS for small
FPRLiRA(x) by underestimating the true vulnerability in the small-S regime.
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Figure A.1: True vs. approximated TPRLiRA(x) − FPRLiRA(x) for the simplified model with in-
class standard deviation s = 0.1 and dimension d = 100. One target example (x, yx) is randomly
sampled from the underlying distribution. Numbers in the plots are percentages of the approximated
vulnerabilities over the true vulnerabilities. Figures illustrate the approximation for different S (a)
when FPRLiRA(x) = 0.1 and (b) when FPRLiRA(x) = 0.00001.
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E TRAINING DETAILS

E.1 PARAMETERIZATION

We utilise pre-trained feature extractors BiT-M-R50x1 (R-50) (Kolesnikov et al., 2020) with 23.5M
parameters and Vision Transformer ViT-Base-16 (ViT-B) (Dosovitskiy et al., 2021) with 85.8M
parameters, both pretrained on the ImageNet-21K dataset (Russakovsky et al., 2015). We download
the feature extractor checkpoints from the respective repositories.

Following Tobaben et al. (2023) that show the favorable trade-off of parameter-efficient fine-tuning
between computational cost, utility and privacy even for small datasets, we only consider fine-tuning
subsets of all feature extractor parameters. We consider the following configurations:

• Head: We train a linear layer on top of the pre-trained feature extractor.
• FiLM: In addition to the linear layer from Head, we fine-tune parameter-efficient FiLM (Perez

et al., 2018) adapters scattered throughout the network. While a diverse set of adapters has been
proposed, we utilise FiLM as it has been shown to be competitive in prior work (Shysheya et al.,
2023; Tobaben et al., 2023).

E.1.1 LICENSES AND ACCESS

The licenses and means to access the model checkpoints can be found below.

• BiT-M-R50x1 (R-50) (Kolesnikov et al., 2020) is licensed with the Apache-2.0 license and can be
obtained through the instructions on https://github.com/google-research/big_
transfer.

• Vision Transformer ViT-Base-16 (ViT-B) (Dosovitskiy et al., 2021) is licensed with the
Apache-2.0 license and can be obtained through the instructions on https://github.com/
google-research/vision_transformer.

E.2 HYPERPARAMETER TUNING

Our hyperparameter tuning is heavily inspired by the comprehensive few-shot experiments by To-
baben et al. (2023). We utilise their hyperparameter tuning protocol as it has been proven to yield
SOTA results for (DP) few-shot models. Given the input D dataset we perform hyperparameter tun-
ing by splitting the D into 70% train and 30% validation. We then perform the specified iterations of
hyperparameter tuning using the tree-structured Parzen estimator (Bergstra et al., 2011) strategy as
implemented in Optuna (Akiba et al., 2019) to derive a set of hyperparameters that yield the highest
accuracy on the validation split. This set of hyperparameters is subsequently used to train all shadow
models with the Adam optimizer (Kingma & Ba, 2015). Details on the set of hyperparameters that
are tuned and their ranges can be found in Table A1.

Table A1: Hyperparameter ranges used for the Bayesian optimization with Optuna.

lower bound upper bound

batch size 10 |D|
clipping norm 0.2 10
epochs 1 200
learning rate 1e-7 1e-2

E.3 DATASETS

Table A2 shows the datasets used in the paper. We base our experiments on a subset of the the
few-shot benchmark VTAB (Zhai et al., 2019) that achieves a classification accuracy > 80% and
thus would considered to be used by a practitioner. Additionally, we add CIFAR10 which is not part
of the original VTAB benchmark.
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Table A2: Used datasets in the paper, their minimum and maximum shots S and maximum number
of classes C and their test accuracy when fine-tuning a non-DP ViT-B Head. The test accuracy for
EuroSAT and Resics45 is computed on the part of the training split that is not used for training the
particular model due to both datasets missing an official test split. Note that LiRA requires 2S for
training the shadow models and thus S is smaller than when only performing fine-tuning.

dataset (max.) min. max. test accuracy test accuracy
C S S (min. S) (max. S)

Patch Camelyon (Veeling et al., 2018) 2 256 65536 82.8% 85.6%
CIFAR10 (Krizhevsky, 2009) 10 8 2048 92.7% 97.7%
EuroSAT (Helber et al., 2019) 10 8 512 80.2% 96.7%
Pets (Parkhi et al., 2012) 37 8 32 82.3% 90.7%
Resics45 (Cheng et al., 2017) 45 32 256 83.5% 91.6%
CIFAR100 (Krizhevsky, 2009) 100 16 128 82.2% 87.6%

E.3.1 LICENSES AND ACCESS

The licenses and means to access the datasets can be found below. We downloaded all datasets
from TensorFlow datasets https://www.tensorflow.org/datasets but Resics45 which
required manual download.

• Patch Camelyon (Veeling et al., 2018) is licensed with Creative Commons Zero v1.0 Universal
(cc0-1.0) and we use version 2.0.0 of the dataset as specified on https://www.tensorflow.
org/datasets/catalog/patch_camelyon.

• CIFAR10 (Krizhevsky, 2009) is licensed with an unknown license and we use version 3.0.2
of the dataset as specified on https://www.tensorflow.org/datasets/catalog/
cifar10.

• EuroSAT (Helber et al., 2019) is licensed with MIT and we use version 2.0.0 of the dataset as
specified on https://www.tensorflow.org/datasets/catalog/eurosat.

• Pets (Parkhi et al., 2012) is licensed with CC BY-SA 4.0 Deed and we use version 3.2.0
of the dataset as specified on https://www.tensorflow.org/datasets/catalog/
oxford_iiit_pet.

• Resics45 (Cheng et al., 2017) is licensed with an unknown license and we use version 3.0.0
of the dataset as specified on https://www.tensorflow.org/datasets/catalog/
resisc45.

• CIFAR100 (Krizhevsky, 2009) is licensed with an unknown license and we use version 3.0.2
of the dataset as specified on https://www.tensorflow.org/datasets/catalog/
cifar100.

E.4 COMPUTE RESOURCES

All experiments but the R-50 (FiLM) experiments are run on CPU with 8 cores and 16 GB of host
memory. The training time depends on the model (ViT is cheaper than R-50), number of shots S
and the number of classes C but ranges for the training of one model from some minutes to an hour.
This assumes that the images are passed once through the pre-trained backbone and then cached as
feature vectors. The provided code implements this optimization.

The R-50 (FiLM) experiments are significantly more expensive and utilise a NVIDIA V100 with 40
GB VRAM, 10 CPU cores and 64 GB of host memory. The training of 257 shadow models then
does not exceed 24h for the settings that we consider.

We estimate that in total we spend around 7 days of V100 and some dozens of weeks of CPU core
time but more exact measurements are hard to make.
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F ADDITIONAL RESULTS

In this section, we provide tabular results for our experiments and additional figures that did not fit
into the main paper.

F.1 ADDITIONAL RESULTS FOR SECTION 4

This Section contains additional results for Section 4.

F.1.1 VULNERABILITY AS A FUNCTION OF SHOTS

This section displays additional results to Figure 1a for FPR ∈ {0.1, 0.01, 0.001} for ViT-B and R-50
in in Figure A.2 and Tables A3 and A4.
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(c) ViT-B Head TPR − FPR at FPR = 0.01
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(d) R-50 Head TPR − FPR at FPR = 0.01
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(e) ViT-B Head TPR − FPR at FPR = 0.001
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Figure A.2: MIA vulnerability as a function of shots (examples per class) when attacking a pre-
trained ViT-B and R-50 Head trained without DP on different downstream datasets. The errorbars
display the minimum and maximum Clopper-Pearson CIs over six seeds and the solid line the me-
dian.
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Table A3: Median MIA vulnerability over six seeds as a function of S (shots) when attacking a
Head trained without DP on-top of a ViT-B. The ViT-B is pre-trained on ImageNet-21k.

dataset classes (C) shots (S) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 2 256 0.266 0.086 0.032

512 0.223 0.059 0.018
1024 0.191 0.050 0.015
2048 0.164 0.037 0.009
4096 0.144 0.028 0.007
8192 0.128 0.021 0.005

16384 0.118 0.017 0.003
32768 0.109 0.014 0.002
65536 0.105 0.012 0.002

CIFAR10 (Krizhevsky, 2009) 10 8 0.910 0.660 0.460
16 0.717 0.367 0.201
32 0.619 0.306 0.137
64 0.345 0.132 0.067

128 0.322 0.151 0.082
256 0.227 0.096 0.054
512 0.190 0.068 0.032

1024 0.168 0.056 0.025
2048 0.148 0.039 0.013

EuroSAT (Helber et al., 2019) 10 8 0.921 0.609 0.408
16 0.738 0.420 0.234
32 0.475 0.222 0.113
64 0.400 0.159 0.074

128 0.331 0.155 0.084
256 0.259 0.104 0.049
512 0.213 0.080 0.037

Pets (Parkhi et al., 2012) 37 8 0.648 0.343 0.160
16 0.745 0.439 0.259
32 0.599 0.311 0.150

Resics45 (Cheng et al., 2017) 45 32 0.672 0.425 0.267
64 0.531 0.295 0.168

128 0.419 0.212 0.115
256 0.323 0.146 0.072

CIFAR100 (Krizhevsky, 2009) 100 16 0.814 0.508 0.324
32 0.683 0.445 0.290
64 0.538 0.302 0.193

128 0.433 0.208 0.114

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table A4: Median MIA vulnerability over six seeds as a function of S (shots) when attacking a
Head trained without DP on-top of a R-50. The R-50 is pre-trained on ImageNet-21k.

dataset classes (C) shots (S) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 2 256 0.272 0.076 0.022

512 0.195 0.045 0.011
1024 0.201 0.048 0.011
2048 0.178 0.041 0.010
4096 0.163 0.033 0.008
8192 0.143 0.026 0.006

16384 0.124 0.019 0.004
32768 0.118 0.016 0.003
65536 0.106 0.012 0.002

CIFAR10 (Krizhevsky, 2009) 10 8 0.911 0.574 0.324
16 0.844 0.526 0.312
32 0.617 0.334 0.183
64 0.444 0.208 0.106

128 0.334 0.159 0.084
256 0.313 0.154 0.086
512 0.251 0.103 0.051

1024 0.214 0.082 0.038
EuroSAT (Helber et al., 2019) 10 8 0.846 0.517 0.275

16 0.699 0.408 0.250
32 0.490 0.236 0.121
64 0.410 0.198 0.105

128 0.332 0.151 0.075
256 0.269 0.111 0.056
512 0.208 0.077 0.036

Pets (Parkhi et al., 2012) 37 8 0.937 0.631 0.366
16 0.745 0.427 0.227
32 0.588 0.321 0.173

Resics45 (Cheng et al., 2017) 45 32 0.671 0.405 0.235
64 0.534 0.289 0.155

128 0.445 0.231 0.121
256 0.367 0.177 0.088

CIFAR100 (Krizhevsky, 2009) 100 16 0.897 0.638 0.429
32 0.763 0.549 0.384
64 0.634 0.414 0.269
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F.1.2 VULNERABILITY AS A FUNCTION OF THE NUMBER OF CLASSES

This section displays additional results to Figure 1b for FPR ∈ {0.1, 0.01, 0.001} for ViT-B and R-50
in in Figure A.3 and Tables A5 and A6.
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(d) R-50 Head TPR − FPR at FPR = 0.01
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(e) ViT-B Head TPR − FPR at FPR = 0.001
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Figure A.3: MIA vulnerability as a function of C (classes) when attacking a ViT-B and R-50 Head
fine-tuned without DP on different datasets where the classes are randomly sub-sampled and S = 32.
The solid line displays the median and the errorbars the min and max clopper-pearson CIs over 12
seeds.
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Table A5: Median MIA vulnerability over 12 seeds as a function of C (classes) when attacking a
Head trained without DP on-top of a ViT-B. The Vit-B is pre-trained on ImageNet-21k.

dataset shots (S) classes (C) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 32 2 0.467 0.192 0.080
CIFAR10 (Krizhevsky, 2009) 32 2 0.494 0.167 0.071

4 0.527 0.217 0.115
8 0.574 0.262 0.123

EuroSAT (Helber et al., 2019) 32 2 0.306 0.100 0.039
4 0.298 0.111 0.047
8 0.468 0.211 0.103

Pets (Parkhi et al., 2012) 32 2 0.232 0.045 0.007
4 0.324 0.092 0.035
8 0.296 0.094 0.035

16 0.406 0.158 0.069
32 0.553 0.269 0.136

Resics45 (Cheng et al., 2017) 32 2 0.272 0.084 0.043
4 0.322 0.119 0.056
8 0.496 0.253 0.148

16 0.456 0.204 0.108
32 0.580 0.332 0.195

CIFAR100 (Krizhevsky, 2009) 32 2 0.334 0.088 0.035
4 0.445 0.150 0.061
8 0.491 0.223 0.121

16 0.525 0.256 0.118
32 0.553 0.276 0.153
64 0.612 0.350 0.211

Table A6: Median MIA vulnerability over 12 seeds as a function of C (classes) when attacking a
Head trained without DP on-top of a R-50. The R-50 is pre-trained on ImageNet-21k.

dataset shots (S) classes (C) tpr@fpr=0.1 tpr@fpr=0.01 tpr@fpr=0.001
Patch Camelyon (Veeling et al., 2018) 32 2 0.452 0.151 0.041
CIFAR10 (Krizhevsky, 2009) 32 2 0.404 0.146 0.060

4 0.560 0.266 0.123
8 0.591 0.318 0.187

EuroSAT (Helber et al., 2019) 32 2 0.309 0.111 0.050
4 0.356 0.144 0.064
8 0.480 0.233 0.123

Pets (Parkhi et al., 2012) 32 2 0.249 0.068 0.029
4 0.326 0.115 0.056
8 0.419 0.173 0.075

16 0.493 0.245 0.127
32 0.559 0.294 0.166

Resics45 (Cheng et al., 2017) 32 2 0.310 0.103 0.059
4 0.415 0.170 0.083
8 0.510 0.236 0.119

16 0.585 0.311 0.174
32 0.644 0.382 0.218

CIFAR100 (Krizhevsky, 2009) 32 2 0.356 0.132 0.054
4 0.423 0.176 0.087
8 0.545 0.288 0.163

16 0.580 0.338 0.196
32 0.648 0.402 0.244
64 0.711 0.476 0.320
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F.1.3 DATA FOR FILM AND FROM SCRATCH TRAINING

Table A7: MIA vulnerability data used in Figure 4b. Note that the data from Carlini et al. (2022)
is only partially tabular, thus we estimated the TPR at FPR from the plots in the Appendix of their
paper.

model dataset classes shots source tpr@ tpr@ tpr@
(C) (S) fpr=0.1 fpr=0.01 fpr=0.001

R-50 FiLM CIFAR10 10 50 This work 0.482 0.275 0.165
(Krizhevsky, 2009)
CIFAR100 100 10 Tobaben et al. (2023) 0.933 0.788 0.525
(Krizhevsky, 2009) 25 Tobaben et al. (2023) 0.766 0.576 0.449

50 Tobaben et al. (2023) 0.586 0.388 0.227
100 Tobaben et al. (2023) 0.448 0.202 0.077

EuroSAT 10 8 This work 0.791 0.388 0.144
(Helber et al., 2019)
Patch Camelyon 2 256 This work 0.379 0.164 0.076
(Veeling et al., 2018)
Pets 37 8 This work 0.956 0.665 0.378
(Parkhi et al., 2012)
Resics45 45 32 This work 0.632 0.379 0.217
(Cheng et al., 2017)

from scratch CIFAR10 10 2500 Carlini et al. (2022) 0.300 0.110 0.084
(Krizhevsky, 2009)

(wide ResNet) CIFAR100 100 250 Carlini et al. (2022) 0.700 0.400 0.276
(Krizhevsky, 2009)

F.1.4 PREDICTING DATASET VULNERABILITY AS FUNCTION OF S AND C

This section provides additional results for the model based on Equation (27)

Table A8: Results for fitting Equation (A130) with statsmodels Seabold & Perktold (2010) to ViT
Head data at FPR ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}. We utilize an ordinary least squares. The
test R2 assesses the fit to the data of R-50 Head.

coeff. FPR R2 test R2 coeff. value std. error t p > |z| coeff. [0.025 coeff. 0.975]
βS (for S) 0.1 0.952 0.907 -0.506 0.011 -44.936 0.000 -0.529 -0.484

0.01 0.946 0.854 -0.555 0.014 -39.788 0.000 -0.582 -0.527
0.001 0.930 0.790 -0.627 0.019 -32.722 0.000 -0.664 -0.589

0.0001 0.852 0.618 -0.741 0.035 -21.467 0.000 -0.809 -0.673
0.00001 0.837 0.404 -0.836 0.045 -18.690 0.000 -0.924 -0.748

βC (for C) 0.1 0.952 0.907 0.090 0.021 4.231 0.000 0.048 0.131
0.01 0.946 0.854 0.182 0.026 6.960 0.000 0.131 0.234

0.001 0.930 0.790 0.300 0.036 8.335 0.000 0.229 0.371
0.0001 0.852 0.618 0.363 0.065 5.616 0.000 0.236 0.491

0.00001 0.837 0.404 0.569 0.085 6.655 0.000 0.400 0.737
β0 (intercept) 0.1 0.952 0.907 0.314 0.045 6.953 0.000 0.225 0.402

0.01 0.946 0.854 0.083 0.056 1.491 0.137 -0.027 0.193
0.001 0.930 0.790 -0.173 0.077 -2.261 0.025 -0.324 -0.022

0.0001 0.852 0.618 -0.303 0.138 -2.202 0.029 -0.575 -0.032
0.00001 0.837 0.404 -0.615 0.180 -3.414 0.001 -0.970 -0.260

Figure A.4 shows the performance for all considered FPR.
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Figure A.4: Predicted MIA vulnerability as a function of S (shots) using a model based on Equa-
tion (27) fitted Table A3 (ViT-B). The triangles show the median TPR − FPR for the train set (ViT-B;
Table A3) and circle the test set (R-50; Table A4) over six seeds. Note that the triangles and dots for
C = 10 are for EuroSAT.
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F.2 SIMPLER VARIANT OF THE PREDICTION MODEL

The prediction model in the main text (Equation (27)) avoids predicting TPR < FPR in the tail when
S is very large. In this section, we analyse a variation of the regression model that is simpler and
predicts log10(TPR) instead of log10(TPR − FPR). This variation fits worse to the empirical data and
will predict TPR < FPR for high S.

The general form this variant can be found in Equation (A130), where βS , βC and β0 are the learn-
able regression parameters.

log10(TPR) = βS log10(S) + βC log10(C) + β0 (A130)

Table A9 provides tabular results on the performance of the variant.

Table A9: Results for fitting Equation (A130) with statsmodels Seabold & Perktold (2010) to ViT
Head data at FPR ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001}. We utilize an ordinary least squares. The
test R2 assesses the fit to the data of R-50 Head.

coeff. FPR R2 test R2 coeff. value std. error t p > |z| coeff. [0.025 coeff. 0.975]
βS (for S) 0.1 0.908 0.764 -0.248 0.008 -30.976 0.000 -0.264 -0.233

0.01 0.940 0.761 -0.416 0.011 -36.706 0.000 -0.438 -0.393
0.001 0.931 0.782 -0.553 0.017 -32.507 0.000 -0.586 -0.519

0.0001 0.865 0.628 -0.697 0.031 -22.274 0.000 -0.758 -0.635
0.00001 0.862 0.400 -0.802 0.040 -20.311 0.000 -0.880 -0.725

βC (for C) 0.1 0.908 0.764 0.060 0.015 3.955 0.000 0.030 0.089
0.01 0.940 0.761 0.169 0.021 7.941 0.000 0.127 0.211

0.001 0.931 0.782 0.297 0.032 9.303 0.000 0.234 0.360
0.0001 0.865 0.628 0.371 0.059 6.328 0.000 0.255 0.486

0.00001 0.862 0.400 0.580 0.076 7.679 0.000 0.431 0.729
β0 (intercept) 0.1 0.908 0.764 0.029 0.032 0.913 0.362 -0.034 0.093

0.01 0.940 0.761 -0.118 0.045 -2.613 0.010 -0.208 -0.029
0.001 0.931 0.782 -0.295 0.068 -4.345 0.000 -0.429 -0.161

0.0001 0.865 0.628 -0.387 0.125 -3.104 0.002 -0.633 -0.141
0.00001 0.862 0.400 -0.683 0.159 -4.288 0.000 -0.996 -0.369

Figure A.5 plots the performance of the variant similar to Figure 4a in the main text.
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(d) TPR at FPR = 0.0001
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Figure A.5: Predicted MIA vulnerability as a function of S (shots) using a model based on Equa-
tion (A130) fitted Table A3 (ViT-B). The triangles show the median TPR for the train set (ViT-B;
Table A3) and circle the test set (R-50; Table A4) over six seeds. Note that the triangles and dots for
C = 10 are for EuroSAT.
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F.3 EMPIRICAL RESULTS FOR RMIA

Figures A.6 to A.8 report additional results for RMIA Zarifzadeh et al. (2024).
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Figure A.6: RMIA (Zarifzadeh et al., 2024) vulnerability (TPR − FPR at fixed FPR) as a function
of S (shots) when attacking a ViT-B Head fine-tuned without DP on different datasets. We observe
at power-law relationship but especially at low FPR the relationship is not as clear as with LiRA
(compare to Figure A.2). The solid line displays the median and the error bars the minimum of the
lower bounds and maximum of the upper bounds for the Clopper-Pearson CIs over six seeds.
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Figure A.7: Predicted MIA vulnerability ((TPR − FPR) at FPR) based on LiRA vulnerability data
as a function of S (shots) in comparison to observed RMIA (Zarifzadeh et al., 2024) vulnerability
on the same settings. The triangles show the highest TPR when attacking (ViT-B Head) with RMIA
over six seeds (datasets: Patch Camelyon, EuroSAT and CIFAR100). Especially at FPR = 0.1 the
relationship behaves very similar for both MIAs, but RMIA shows more noisy behavior at lower
FPR.
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Figure A.8: LiRA and RMIA vulnerability ((TPR − FPR)) as a function of shots (S) when attacking
a ViT-B Head fine-tuned without DP on different datasets. For better visibility, we split the datasets
into two panels. We observe the power-law for both attacks, but the RMIA is more unstable than
LiRA. The lines display the median over six seeds.
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