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Abstract

We propose a novel differentiable physics engine for system identification of complex spring-rod
assemblies. Unlike black-box data-driven methods for learning the evolution of a dynamical system
and its parameters, we modularize the design of our engine using a discrete form of the governing
equations of motion, similar to a traditional physics engine. We further reduce the dimension from
3D to 1D for each module, which allows efficient learning of system parameters using linear regres-
sion. As a side benefit, the regression parameters correspond to physical quantities, such as spring
stiffness or the mass of the rod, making the pipeline explainable. The approach significantly re-
duces the amount of training data required, and also avoids iterative identification of data sampling
and model training. We compare the performance of the proposed engine with previous solutions,
and demonstrate its efficacy on tensegrity systems, such as NASA’s icosahedron.
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1. Introduction
Performing experiments on real robots can be time-consuming, expensive, or dangerous. As such,
it is often preferable to explore policies in simulation first, and then transfer them to the real robot.
To minimize the reality gap, accurate system identification is important. The traditional approach
Swevers et al. (1997); Hansen and Ostermeier (2001) for system identification is to collect ground
truth data and subsequently optimize the dynamics model over certain parameters of a physics
simulation engine, so as to minimize the difference between the predicted trajectory and the ground
truth. This process is repeated iteratively until the difference becomes small enough. Apart from
being slow, this iterative process can potentially damage a vulnerable robot. As an alternative,
recent approaches have been exploring the use of a differentiable physics engine, such as a neural
network, that would allow for parameter inference using backpropagation. Nevertheless, training a
differentiable physics engine requires massive amounts of data. While there has been some work
on methods for online system identification Yu et al. (2017); Allevato et al. (2019), which can learn
parameters with much less real data, such methods are limited to a small number of parameters.
The problem of system identification becomes exacerbated for soft robots, which have infinite
degrees of freedom. Physics-based methods for simulation require accurate models that capture
non-linear material behavior, which are difficult to construct. In contrast, data-driven methods can
simulate any system from observed data, with sufficient training data. But the large number of
variables and non-linear material properties necessitate copious amounts of training data.
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Figure 1: A basic element with one rod connected by two springs (left). A complex assembly of
rods and springs forming a tensegrity robot in simulation (middle), and the real world (right).

Cable-driven robots are gaining increasing attention due to their adaptiveness and safety. Tenseg-
rity structures have many applications: from manipulation Lessard et al. (2016), locomotion Sabel-
haus et al. (2018), morphing airfoil Chen et al. (2020) to spacecraft lander Bruce et al. (2014).
While useful and versatile, they are difficult to accurately model and control. Identifying system
parameters is necessary, either to learn controllers in simulation (as real-world experiments are time-
consuming, expensive and dangerous), or for traditional model-based control. In all these cases, the
spring-rod representation considered in this work is the basic modeling element.

Motivated by these issues, we propose a data-driven differentiable physics engine that combines
the benefits of data-driven and physics-based models, while alleviating most of their drawbacks,
and is designed from first principles. Previous data-driven models have required large amounts of
data, because they learn the parameters and the physics of the system. Furthermore, the hidden
variables and black box nature of these models are not explainable, and difficult to transfer to new
environments. Our approach is based on the observation that the equations that govern the motion
of such systems are well-understood, and can be directly baked into the data-driven model. Such
a design can reduce demands on training data and can also generalize to new environments, as
the governing principles remain the same. We further simplify the differentiable engine by using
a modular design, which compartmentalizes the problem of learning the dynamics of the whole
system to smaller well-contained problems. For each module, we also reduce the dimension from
3D to 1D, by taking advantage the properties of spring-rod systems, which allows for efficient
parameter inference using linear regression. As a side benefit, the regression parameters correspond
to physical quantities, such as the spring stiffness or the mass of the rod, making the framework
explainable. A video accompanying this work is available here!.

2. Related Work

Traditional methods for system identification build a dynamics model by minimizing the prediction
error Swevers et al. (1997) Hansen and Ostermeier (2001). These methods require parameter re-
finement and data sampling in an iterative fashion, to decrease the prediction error. This iterative
process can be avoided using data-driven techniques that directly fit a physics model to data Rosen-
blatt (1958); Rumelhart et al. (1986); Asenov et al. (2019). However, these techniques treat the
dynamics as a black box, are data hungry, and require retraining in a new environment.

Instead of treating the environment as a black box, Battaglia et al. (2016) took the first step to
modularize objects and their interactions in an interaction network. Later, Mrowca et al. (2018)
introduced a hierarchical relation network for graph-based object representation of rigid and soft
bodies by decomposing them into particles. Recently, Li et al. (2019b) proposed the multi-step
propagation network and Greydanus et al. (2019) applied a Hamiltonian network to conserve an

1. https://rutgers.box.com/shared/static/i9vvxpc8152i5e0zg897{j47sanen7nj.mp4
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Figure 2: Flow chart showing the data flow when simulating one time step with our physics engine.

energy-like quantity without damping. While these methods are an improvement over previous
approaches, they still treat the interactions between different objects as black boxes and try to learn
them from data, even though the governing equations of motion are well-understood.

Koopman operator theory from dynamical systems provides an alternative approach to learning
the dynamics. The Koopman operator is a mechanism to “lift” lower dimensional non-linear fea-
tures into higher dimensional linear features, which can subsequently be used to compute a linear
dynamics model. Bruder et al. (2019) and Li et al. (2019a) have applied this technique to soft robot
dynamics identification. However, the design of the Koopman operator is non-trival, and the high
dimensional features are not explainable, making it challenging to estimate all physical parameters.

Quite a few authors have recently introduced differentiable physics engines that focus on many
aspects not central to our work. For example, Heiden et al. (2019) predict forward dynamics of
articulated rigid bodies, Hu et al. (2019b) solve inverse problems using the Material Point Method
(MPM), de Avila Belbute-Peres et al. (2018) address multi-body contact with linear complemen-
tarity problems (LCP), and Landry et al. (2019) treat nonlinear optimization with the augmented
Lagrangian method. To provide a general interface, Hu et al. (2019a) introduced a compiler for
differentiable programming. Ajay et al. (2019) use differentiable engines with traditional physics
simulators for control. Researchers have also proposed differentiable engines specific to certain
kinds of objects, such as molecules Schoenholz and Cubuk (2019), fluids Schenck and Fox (2018),
and cloth Liang et al. (2019). Our work on spring-rod systems is motivated by our recent work on
tensegrity robots Surovik et al. (2019); Littlefield et al. (2019); Surovik et al. (2018).

3. Methods

Our system views a spring-rod system as a composition of basic elements (see Fig. 1(left)), where
springs generate forces that influence rod dynamics. We subdivide each time step of the simulation
into three modules: force generation, acceleration computation, and state update/integration (see
Fig. 2). The physics engine takes as input the current rod state S; = {p, v, ¢, w}, where p is position,
v is linear velocity, ¢ is orientation (expressed as a quaternion), and w is the angular velocity. Based
on .S;, the position and linear velocity p™, v™ of the two rod endpoints is computed, and is used
to compute the relative compression (or expansion) and velocity Ap™, Av™ of the two attached
springs. Then, the first module predicts the spring forces f, the second module computes the linear
and angular accelerations a, a, and the third module computes the new state Sy .

3.1. System Topology Graph

We use a topology graph to represent interconnections be- 7 f2

tween different components of the spring-rod system. Each

rod and spring has a corresponding vertex, and directed .

edges represent relations between them. Figure 3 shows an ~ Figure 3: Element topology graph.
example topology graph for the basic spring-rod element shown in Figure 1(left). Unlike Battaglia
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Figure 5: Acceleration generation module, which uses dimensionality reduction similar to the force
generation module to compute rod accelerations, given spring forces at the two endpoints as input.

et al. (2016), who assumed all forces are applied at the center of mass of a rod, we apply forces at
the endpoints p™ of each rod, which is critical for accurate angular momentum computation.

3.2. Force Generation Module
The relative compression (or expansion) Ap™ and velocity Av™ of each spring is given as input to
the force generation module, which computes the spring forces f as per the equations below:

Ap™ = Ap™ — Ap™, Avm = (Av™ - Ap™) - (Ap™/[|AP]]) (1)
[ f|| = —K||Ap™|| F c||Av™|], F=1fI- (Ap™/]|Ap™|]) (2)

where K is the spring stiffness, ¢ is the damping parameter, and Ap™* is the spring rest length. To

exploit the one-dimensional nature of each spring, we reduce Ap" and Av™ from 3D to 1D along
the spring direction. This has the benefit of leaving only two unknown parameters, K and ¢, which
can be easily learned using linear regression in a data-efficient fashion. After computing the 1D
spring force f, we project it back to 3D by multiplying with the normalized spring direction vector.

3.3. Acceleration Generation Module
The spring forces f and control force f, are given as input to the acceleration generation module,
which computes the linear and angular accelerations a, o of each rod as per the equations below:

|1+ fo+ full = Mlal|, RT(r x (fi = fa) +ru X fu) = I(R Q) 3)
. St Eet e o
a= ||a|| Hfl"‘fQ‘i‘qu’ a=RI"R ( X (fl f2)+ru Xfu) “4)

where f1 and fo are spring forces on the two rod ends, f,, is control force, r is the half-length rod
vector, 7, is control force arm, R is the rod local/world frame rotation matrix, M is the rod mass and
1 is the local frame moment of inertia of the rod. M and I are unknown parameters to identify. In
a complex system where a rod is connected with multiple springs on one (or both) of its endpoints,
f1 and f5 denote the aggregate spring force. Analogous to the spring case, this work exploits the
1D nature of each rod by computing the norm of the cumulative force f1 + fo + fu, reducing the
dimension from 3D to 1D. After computing the 1D linear acceleration a, the next step is to map
them back to 3D using equation (4). We compute angular acceleration R” « in local frame, where
I is a diagonal 3x3 matrix because of the symmetry of a rod. This allows to represent it as a 3x1
vector instead, requiring less data for regression.
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3.4. Integration Module and Method Implementation

The integration module computes forward dynamics of each rod using the current accelerations
a, . We apply the semi-implicit Euler method Stewart and Trinkle (2000) to compute the updated
state Str1 = {Pt+1, Ve+1, @t+1,wrt1} at the end of the current time step.

The learning module receives the current state .Sy and returns a prediction S{H. The loss func-
tion is the MSE between the predicted S{H and ground truth state S;11. The proposed decomposi-
tion, first-principles approach and the cables linear nature allow the application of linear regression,
which helps with data efficiency. This linear regression step has been implemented as a single layer
neural network without activation function on pyTorch Paszke et al. (2019). We trained 30 epochs
with an Adam optimizer by a learning rate starting from 0.1 and reducing 50% every 3 epochs.

4. Experiments
We use two setups: 1) a simple spring-rod system (Fig. 1(a)) and 2) a complex tensegrity system
(Fig. 1(b)). For the tensegrity, we first assume uniform parameters for all rods and springs and then
non-uniform ones, which is more realistic. The comparison methods represent two categories: 1)
techniques that treat the system as a black box, such as Least Square (L.S) optimization (L-BFGS-
B: Swevers et al. (1997)), Covariance Matrix Adaptation Evolution Strategy (CMA-ES: Hansen
and Ostermeier (2001)), 2) methods that reason about physics and system topology, such as the
Interaction Network Battaglia et al. (2016) and Koopman operator theory Koopman (1931), which
have been used for dynamics model identification Bruder et al. (2019) Li et al. (2019a) Abraham
et al. (2017). All these approaches get access to the system state along executed trajectories, i.e.,
the 3D position, 3D linear velocity, quaternion and 3D angular velocity of each rigid element. This
work does not use any additional information, such as spring forces, accelerations, etc. The task is
to estimate system parameters including spring stiffness K, damping c and rod mass M, inertia I.
These comparison algorithms were optimized to improve performance on the target experi-
ments. For LS and CMA-ES: the search was constrained to a reasonable range, which increases
success ratio. The CMA tolerance was adjusted to 1, which allows to tune the trade-off between
accuracy and speed. For the Interaction Network: instead of using the raw object state as in the
original paper, the performed experiments used the relative position and velocity corresponding to
spring-based models, which is easier for the neural network to learn. For the Koopman operator:
instead of basis functions like sinusoids/exponentials, a physics and topology-aware operator was
used. All these adaptations increased performance. The methods were tested on an Intel Core i7
6700K CPU, 32G DRAM, 1T SSD and a GeForce GTX TITAN X Pascal GPU.

4.1. Simple Spring-Rod System Identification

This system contains 2 springs and 1 rod as in Fig. 1(a). Each spring is attached to one end of a
rod and a fixed nail. The system is modeled in MuJoCo Todorov et al. (2012). Each rod is 2 meters
long. The rest length of each spring is 1 m and 1.414 m. Gravity is ignored in this case.

BLACK B0OX SYSTEM IDENTIFICATION Comparisons to black box identification methods are in-
cluded since one of this paper’s objectives is to emphasize the limitations of such increasingly
popular black-box models. Note that the black-box models have full access to the dynamics, as
they resample a new trajectory from the simulator after each optimization iteration. The proposed
method doesn’t. It instead integrates knowledge from first principles into the optimization process
of a differentiable physics engine. We sample 100 trajectories with different initial conditions as
ground truth data in order to train the methods. Each trajectory is 2000 time steps long.
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The task is to estimate stiffness /K, damping ¢ and mass M, which are set to 100, 10 and
10 for ground truth. To assist the optimizer of LS and CMA-ES, we assume inertia [ is inferred
from the rod geometry and constrain the range of solution to a positive interval [0.1,1000] for
K > 0,c > 0, whilst the proposed approach doesn’t benefit. From equations (2) (3), we can
infer that: « = —(K/M)(Axy + Axs) — (¢/M)(Avy + Awy). Thus, any parameter combination
satisfying K/M = 100/10 = 10 and ¢/M = 10/10 = 1 is a solution. Instead of evaluating the
absolute parameters K, ¢, we test the relative ratios K /M and ¢/M. MSE in Fig.6 means difference
in relative parameters K /M, c/M. Success is achieved when the parameter error within 5% of the
ground truth. The proposed approach works best whilst both LS and CMA-ES failed in most of the
cases as this problem is non-convex and has infinite number of possible answers. The additional
blackbox experiments can be found in appendix A.

Relative Params

60 = LS
CMA-ES

method  K/M c/M sec/itr  success%
GT 10 1
LS 19.194+7.91 1.51+£1.16 1.97£1.43  0.01
CMA-ES 10.29+£3.73 3.614+8.22 2.25+0.30 0.18
Ours  10.00+0.01 1.00+£0.00 0.11+0.01 1.00

40

MSE

20
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Figure 6: (left) mean square error after /V iterations for the simple rod-spring systeml; (right) pa-
rameters estimated after 30 iterations. The proposed approach is the most accurate and the fastest.

PHYSICS AND SYSTEM TOPOLOGY AWARE IDENTIFICATION We consider alternatives, which

do reason about physical properties. Interaction is an improved version of the Interaction Network

Battaglia et al. (2016) as shown in Fig. 7. It has two Multilayer Perceptrons (MLPs), one to generate

spring forces f and the other to generate rod state S;;. Unlike Battaglia et al. (2016), which takes

raw state S; as input, we apply equation (1) to generate Apt ,Avt as input. Interaction+Int
appends the integration module to the Interaction Network, and replaces input S; by r.

Recently, researchers focus on the Koop-

Position MSE Quaternion MSE man operator to fit dynamical models. It

e nteraction 2 Interaction applies the kernel trick, similar to SVMs,

LEER Interactlonﬂnt- “* = InteractionfIhf  to map nonlinear features to many dimen-

— KOOPmaﬁHnt ! e Koiping sions, where we can find linear relations.
_/‘4}}2‘5—— - Instead of kernels, we construct Koopman

0 0 operators based on the physical properties.

0 ) ! 20 . ! 2 We apply the following polynomial basis
Time Step x10° Time Step x10° functi " lued functi t

Figure 9: Physics and Topology-aware Identifica- unctions as vector-valued tunctions to-gen-

tion erate the approximate Koopman operator:

B(X) = [, AP}, Apg, Avf, Avy', ],

where ¢; = a®b% a,b € [r;, (Apk )js (Avk )il and j € {x,y, 2}, k € {1,2}.The terms ¢; and j;
are non-negative integers, index ¢ tabulates all the combinations such that o; + 3; < Q and @ > 1
defines the largest allowed polynomial degree. We define () = 2. Detailed derivation can be found
in Appendix B. We only use the Koopman operator to predict accelerations and apply the Integra-
tion Module to map them to S, 1, which helps to reduce the complexity of the basis functions.
We denote the approach as Koopman+Int (Fig. 8). We sampled 1000 trajectories, lasting 2,000
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Figure 7: Interaction Network Figure 8: Koopman with Integration Module

time steps, with different initial conditions for training and 200 for validation, and 100 for test-
ing. Trajectories are converted to (S;, S;+1) pairs for training. Position/Quaternion MSE in Fig.9
means accumulated trajectory difference. Interaction only predicts a Sy41 in training data that is
close to S;. Interaction+Int experiences increasing error from accumulated prediction errors. The
Koopman operator Koopman+Int designed from first principles gives accurate predictions similar
to Ours in this simple system.

4.2. Complex Tensegrity Model Identification

We consider an icosahedron tensegrity system as shown in Fig. 1 (c). It is composed of 6 rods and
24 springs. Each rod is connected to 8 springs and has a length of 1.04m. Each spring’s rest length
is 0.637m. We set the gravity constant to g = —9.81 in Mujoco. We collect 1000 trajectories with
different initial conditions for training, 200 for validation and 100 for testing. Since only Koopman
operator performs well in the simple system, it is the comparison point in this complex setup.
TENSEGRITY WITH UNIFORM PARAMETERS Initially, we set uniform parameters for all rods and
springs, i.e. set the mass of rod to 10, and set stiffness and damping to 100 and 10. Thus we keep
the number of parameters to estimate, but increase the complexity of the environment. The structure
of the Koopman operator is the same as before. The result is shown in Figure 10. Our approach
outperforms Koopman+Int because designing basis functions for The Koopman operator has an
increased data requirement relative to our approach.

«10-2 Position MSE «10-1 Quaternion MSE /-1 Position MSE 10-1 Quaternion MSE
4 2 PR

e KoopmantInt = Koopman+laf Ve .’. 5.0 e,

# . .

e Ours 1 e Ours 5 : ) ¢’ A ,' '0. =

2 ¥+ Single W® 55 usf Single
o= Multiple 7= Multiple

0 0 0 0.0

0 1 2 0 1 2 0 1 2 0 1 2

Time Step x10° Time Step x103 Time Step x10° Time Step x10?
a) Uniform Parameters b) Different Parameters

Figure 10: Comparison with the Koopman approach on the complex tensegrity system.
TENSEGRITY WITH NON-UNIFORM PARAMETERS On a real platform the parameters of each ele-
ment are not the same. We added Gaussian noise to each parameter with u = 0, 0 = 0.2xparameter
resulting in 54 parameters for rod masses, spring stiffness and damping. To deal with this, we use
individual regressors for each of rod and spring, which can adapt parameter divergence and achieve
higher accuracy. Fig. 10 b) compares two versions of our approach. The Multiple uses individual
regressors to achieve lower error compared relative to the Single regressor. The errors reduce at
later time steps because of the periodical property of spring oscillation.

4.3. Data Efficiency Experiment

The proposed method has relatively small data requirements as shown in Fig. 11 a). Instead of
training on 1000 trajectories, which have 736,167 time steps in total, we train our model with less
data and evaluate performance. We randomly select 10%, 1%, 0.1%, 0.01% of the 736,167 time
steps for training. The model achieves good performance even with 73 time steps for training. All
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trajectories are from the complex tensegrity setup with different parameters. We performed similar
experiments on the Koopman operator, which can be found in Appendix C.

Position MSE 5 Quaternion MSE Position MSE 4+ Quaternion MSE

x1075 x10~ x1075 X107~
— 0.01% — 0.01% 4
g == 0.1 —_— 0.1%
L — 1% 1 2 /
0 0 0 0
0 1 2 0 1 2 0 1 2 0 1 2
Time Step x10° Time Step x10° Time Step x10* Time Step x10*
a) Efficiency on Various Training Set b) Generalization on New Testing Set

Figure 11: Data Efficiency and Model Generalization Experiment.

The proposed solution achieves very low error at a magnitude of 102, since it: 1) introduces a
first-principles approach in learning physical parameters (compared against the popular Interaction
Network); 2) removes redundant data from regression (compared to the Koopman operator); 3)
operates -for now- over relatively clean data from simulation before moving to real-world data.

4.4. Model Generalization Experiment

This section generalizes the physics engine g hfu Acceleration |, o
. . . f ’ Generation
trained with a dataset without external forces to ———— ] Module
2
a dataset with such forces. We are interested Figure 12: Control Force Scalar

in evaluating: 1) how the physics engine performs for longer time horizons (e.g., after 2000 time
steps); 2) if it can adapt to new scenarios. We generate a new test set for the complex tensegrity
setup with different parameters: 100 trajectories lasting 20,000 time steps. We also add a random
directed perturbation force f, to a random selected rod every 100 time steps. The external force
fu does not have the same scale as the internal spring forces, so we add a new module that aims to
account for the external force, i.e. the control force scalar module, containing only one parameter
h, as in Fig. 12. We also apply dimensionality reduction to improve data efficiency. The tuning
process is to freeze all other modules’ weights and train with object states from the new dataset.
The module converges to a stable value. The error graphs are shown in Fig. 11 b). The results on a
third data set (with 4,000 time steps) is available in Appendix D.

5. Conclusion and Future Work

This paper proposes a differentiable physics engine for system identification of spring-rod systems
based on first principles. The engine has three modules: force generation, acceleration generation
and integration, which express the corresponding physical processes of spring-rod systems. This
results in reduced data requirements and improved parameter accuracy. It also provides an explain-
able, accurate and fast physics engine. In the future, we plan to address contacts and friction. This
will involve replacing the linear regressor with nonlinear models in the existing modules. To over-
come noise in real data, we plan the addition of a residual network along with the nonlinear model.
These changes may also help with temporal scalability.
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Appendix A. Simple Spring-Rod System Black Box Identification

Comparison with Numerical Optimization Methods We assume the rod mass is known, i.e.
M = 10kg, and only try to identify spring stiffness K and damping c. The ground truth stiffness and
damping are set to K = 100 and ¢ = 10 respectively. For each method, a ground truth trajectory is
used as reference and then the mean and standard deviation are computed for robustness evaluation.
To assist the optimizer of LS and CMA-ES, we constrain the range of solution to a positive interval
[0.1,1000] for K > 0, c > 0. Success is achieved when the parameter error within 5% of the ground
truth. MSE in Fig.13 means difference in parameters K, c.

Params

300
method  stiffness K damping c sec/iter  success%
GT 100 10
LS 98.02+50.71 51.49+247.58 1.32+3.14 042
CMA-ES 102.35+16.73 11.01£5.88 1.944+0.22 0.92
Ours  100.00£0.07 10.00+0.01 0.11+£0.01 1.00

MSE

100

0 10 20 30
Iteration

Figure 13: (left) mean square error after IV iterations for the simple rod-spring system; (right)
parameters estimated after 30 iterations. The proposed approach is the most accurate and the fastest.

The initial guess for LS and CMA-ES is 1. The initial parameters in our physics engine are also
set to 1. The CMA tolerance is set to 1. Our approach can converge to a precise model within 10
optimization iterations and takes 1.1s. LS has a large variance as it often doesn’t converge. CMA-ES
is more stable but still worse than our solution.

Comparison against a Neural Network We consider two baselines as in Fig. 14. A Multi Layer
Perceptron, MLP, takes S; as input and predicts S;+;. MLP has 6 fully connected layers. Each layer
has 30 hidden variables. The second baseline MLP+Int appends the integration module to MLP.
It takes .S; as input to predict accelerations ay, oy, and then integrates for S;1. We sampled 1000
trajectories with different initial conditions from Mujoco. Each trajectory has 2,000 time steps. We
convert the trajectories to pairs (.S, S¢4+1) for training and sample 100 more trajectories for testing.
Position/Quaternion MSE in Fig.15 means accumulated trajectory difference. Qur method outper-
forms the alternatives, which fail as they do not reason about the underlying physics.

Position MSE Quaternion MSE
2
L y(MLP }—- 5 «es MLREEmiedY | -+ MERSHNS
S S — Qurs‘ —
a,o ’
—>(MLP }——»(Integration Module}ig 0 0 &

0 1 2 0 1 2
Time Step x10° Time Step x10°
Figure 14: MLP architectures Figure 15: Comparison against Neural Networks
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Appendix B. Koopman Operator Derivation from First Principles

In scenarios without external forces f;,,, we design a physics based Koopman operator from first

principles.
From equations (2), we could infer that

a=(fi+ f2)/M
= (=K AP — cAv) + (=K Ap§ — cAvg)) /M
= (—K(Ap]' + Apg) — c(Av] + Avg)) /M

K - ~ c ~ N
= —M(APT + Apy') — M(AU{” + Avg'))

Thus a can be got with a linear function with AE){”, A]Aogn, A{ﬂl”, A{ﬂz”.
From equations (3), we could infer that

a=RIT'R"(r x (fi - f2))

. [0~ o | (- fo)e
=RIT'R" | r. 0 —ro| [(fi— fo)y
—Try T 0 (fr— f2)2

[—r-(fi = fa)y + 1y (f1 = fo)-
= RIT'RT ro(fi — f2)e — m2(f1 — fo)»
__ry(fl - fQ)x + Tx(fl — fg)y

—ro (AP — Ap§)y + ry (AT — Apg).
~K(RIT'RY) | r (AP — ApD), — ro(ApT — ApP).
—Ty(Ap’f"” — ApY) e + o (ApT — Apé”)y
—r, (AU — AVTY), 4 1y (A0T — A,
— c(RIT'RYY | 7 (Av] — Ao, — ro(A0T — AvZ),
—ry(Av]" — AvE)p + ra (AT — Avgh),
i _TZ(AAIAH ) + Tz(Algz ) + Ty(A}A?T)Z - Ty(Aj?gn)z
—K(RIT'R") Tz(Ap} ) 7“Z(Ap2 o — rx(ApE”)z + rI(Apg‘)z
—ry(Ap")s + Ty(Apgn) + 7z (Apy")y — r2(Apy)y
_Tz(évl )y + 12 (Avy), +7’y(év{n)z - TyAAv?Qn)z
—¢(RIT'RY) | r(Av™), — rZ(AUQ ) — o (AU, + 1o (AVD),
—1y (AU g + 1y (AVE) g + o (AT — ro(AvT),
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[—ro (=K (Ap]" = Apg) — c(Av]" — Avg")), + ry (=K (Ap] — Apy)y — c(Avp —

|7y (—K (AP — ApgY) — c( AV — Avg))y + 1o (— K (AP — Aps), — c(Av] —

Avy)).
= RIT'RT | r(—=K(Ap]" — Apg) — c(Av}" — Avg")), — ro( =K (Apy — Ap§), — c(Av]" — Avg))
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Figure 16: Torque in Rod Local Frame

Consider a uniform solid cylinder of mass M, radius R, height 2 as shown in Fig. 16. The
moment of inertia of rod in local frame is

1
— R2 0 0
5"t . . Iy 0 0
I=M 0 —r24+ZR?2 0 |=|0 Ii1 O
12 4 . 0 0 In
0 0 5R?

Since r is parallel to z axis in local frame, the local frame torque 7 = r x f is perpendicular to z
axis, i.e. 7[2] = 0.

Tworld = lworld®
Tworld = RIRTO(
R yoria = 1(R" )
T =I(RTa)
I"'r=RTa
Since 7[2] = 0, we can get that I~17[2] = 0 as well no matter what I33 is. Thus we can set
I33 = I11. Then we have
RIT'RT = R(I'diag(1,1,1))RT = I;'RRT = I}'E

where E is a 3x3 identity matrix. Thus

*TZ(AAZH )y + rZ(Ap2 )y + ry(AgA)l )z — ry(A}A’?)z

o= _Klfll Tz(Apl ) — TZ(APQ )o — Tx(Apl )z + Tx(Ap§”)z
—ry (ADT)z + 7y (APE )2 + 72 (APT)y — 1 (APEY),

—ro(AVP)y + 72 (D) + ry (AVP), — 7y AuE).,

— Il rz(AzAJAl o — TZ(AUQ )z — rw(A;)i")z —i—rw(AqA)é")z
—ry(Av")y + Ty(Avgn) + re(Av")y — ra(Avyh)y

Thus « is a linear combination of ri(A{)m) and n(Apb )j where i, j € {z,y,z}and a,b € {1,2}.
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Appendix C. Data Efficiency Experiment on Koopman operator

Since all parameters are different, recent work compositional Koopman operator Li et al. (2019a)
is no longer applicable, but our physics and topology-ware Koopman operator is still easy to scale
up by adding more linear regressors. Here we apply six linear regressors for six rods. Koopman
has larger error because of the non-triviality of Koopman basis functions design as we discussed in
4.2. Especially Koopman would also fail for training on a very small dataset, 0.01%, because the
redundant basis functions may form a wrong linear function.

Quaternion MSE

«10-1 Position MSE x1071
1.5 3 —().01%
—(0).1%
2 — 1%
1.0 — 10%
— 100%
0.5 1
0.0 0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Time Step %103 Time Step %103

Figure 17: Position and quaternion error comparison of Koopman operator with different amount
of training data in tensegrity model identification with different parameters for rods and springs

Appendix D. Model Generalization Experiment on 4,000 Time Steps Test Set

Position MSE

Quaternion MSE

x107° %«10-5
2.5
1.5 2.0 ,4..“"
1.5
10 -~
1.0
0.5
0.5
0.0 0.0
0 1 2 3 4 0 1 2 3 4
Time Step x10% Time Step x10°

Figure 18: Position and quaternion error for 4,000 time steps test set of Ours tensegrity model
identification with different parameters for rods and springs, adding an arbitrary force every 100
time steps.
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