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ABSTRACT

Semi-supervised learning (SSL) for medical image segmentation is put forward
to mitigate the scarcity of annotation by leveraging unlabeled data. Recently pro-
posed SSL works focus on designing task-specific models that process different
tasks separately. This results in marginal improvement due to inadequate supervi-
sion from scarce labels of each single task. To address this, we advocate learning a
Unified Semi-supervised segmentation model for Medical imaging (UniSeMi) by
augmenting the label space, in which all pertinent task data are leveraged simul-
taneously. Specifically, UniSeMi can complete various missions using one single
model with a task-prompted dynamic head. Beyond that, UniSeMi can learn from
unlabeled data without requiring associated task information, i.e., which task the
unlabeled data belong to remains unknown. To achieve this, we first synthesize
an additional task by utilizing labeled data from pertinent tasks, and the synthetic
task aims to instruct UniSeMi to be aware of all task semantics. In the context of
unlabeled data learning, the aggregated prediction prompted by pertinent tasks is
constrained to be consistent with the prediction prompted by the synthetic task,
thus task information is not desired. We evaluate UniSeMi on four public med-
ical benchmarks, experiments show UniSeMi outperforms the second-best SSL
method by 2.69% and 8.92% according to the averaged Dice and HD score, re-
spectively. Code will be released.

1 INTRODUCTION

Semi-supervised medical image segmentation is a long-term discussed topic in medical image anal-
ysis (Shen et al., 2017; Cheplygina et al., 2019; Jiao et al., 2022; Zeng et al., 2023a). To alleviate the
scarcity of data annotation, semi-supervised learning (SSL) first learns from limited labels and then
generalizes to abundant unlabeled data. Generally, there are two popular SSL paradigms, called
pseudo-labeling and consistency regularization. The first paradigm aims to find out trustworthy
pseudo-labels for re-training, e.g., setting an adaptive threshold in terms of the learning process to
filter out unreliable predictions (Zhang et al., 2022). And the second focuses on making consis-
tent predictions with smoothness assumption (Van Engelen & Hoos, 2020), which forces the model
to make invariant results for the same input but under different augmentations (Sohn et al., 2020;
Miyato et al., 2018). Nevertheless, these works are restricted to a specific task where labeled and
unlabeled data share a single label space, which results in (1) poor generalization ability when facing
out-of-distribution data, and (2) limited performance triggered by inconsistent distribution learned
on labeled and unlabeled data. These issues primarily stem from insufficient supervision of each
single task, which is especially common in clinical.

Recent investigations into universal models have revealed encouraging results for a variety of tasks,
spanning both the computer vision (Kirillov et al., 2023; Xue et al., 2023) and medical imaging
communities (Liu et al., 2023; Ye et al., 2023; Xie et al., 2022). Universal models are typically
trained using two distinct methods, leveraging data from diverse domains and modalities. The first
approach involves pre-training the model using task-agnostic unlabeled data through self-supervised
learning, followed by fine-tuning on task-specific data for individual downstream tasks (Wang et al.,
2023; Xie et al., 2022; Zhou et al., 2022). The second method trains a model jointly using multiple
task-specific data in a supervised fashion (Chen et al., 2023b; Ye et al., 2023; Zhang et al., 2021).
Both approaches have shown superior performance than single models, further emphasizing the
importance of integrating data for enhanced representation learning. Based on our observations,
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Figure 1: A brief view of previous SSL methods (a) and our method (b). Compared to previous
methods where a separate SSL model was designed for each task, we advocate for using a single,
universal model to tackle all these SSL tasks. This unified model does not necessitate specific task
information when learning from unlabeled data. The figure on the right displays the average Dice
score across four SSL segmentation tasks, using label percentages of 10% and 20%. It is evident
that our method surpasses other competitors by a significant margin.

there is a pressing need to develop a unified SSL framework. Previous SSL research has largely
centered on addressing each task in isolation, neglecting the potential of jointly harnessing data
from diverse sources in a semi-supervised context. In contrast to individual SSL models, a unified
framework presents multiple advantages. It offers not just a versatile, all-encompassing solution but
also improved performance stemming from the availability of more labeled and unlabeled data.

Driven by the analysis, in this paper, we propose a Unified Semi-supervised Segmentation Model
(UniSeMi) for medical imaging. UniSeMi seamlessly establishes an enhanced label space by amal-
gamating pertinent task labels, when confronted with multiple SSL tasks. Specifically, UniSeMi
incorporates a versatile dynamic segmentation head that learns to segment task-of-interest objects,
i.e., organs and tumors, with task-specific prompts. With these prompts as a guide, UniSeMi can
flexibly generate parameters for the dynamic head, enabling it to adapt and effectively execute the
ongoing task. Furthermore, we position UniSeMi in a more demanding SSL context, in which the
task specifics of unlabeled data remain unknown during the training process (see Fig. 1b) To navi-
gate this challenge, UniSeMi employs the cutmix data augmentation technique on labeled data from
various pertinent tasks, producing synthetic data. This data spans a diverse range of foreground
targets within the expanded label space. Therefore, the synthetic task with synthetic data can di-
rect UniSeMi to recognize and segment potential foreground regions. When processing unlabeled
data, UniSeMi strives to align predictions generated from specific tasks with those derived from the
synthetic task, ensuring consistency across mixed unlabeled datasets. Hence, task-agnostic unla-
beled data learning is achieved by devising a synthetic task. Based on the aforementioned strategies,
UniSeMi is able to work in a more demanding SSL context and surpasses the second-best method
by 2.69% and 8.92% on the average Dice and HD scores, when using 10% labels.

Our contributions are in three aspects: (1) We propose UniSeMi, a universal semi-supervised frame-
work tailored for medical image segmentation. Leveraging a dynamic head, this framework is adept
at concurrently optimizing multiple semi-supervised tasks, achieving this with both efficiency and
precision; (2) We devise a ”synthetic task” that amalgamates labeled data from several pertinent
tasks. This design facilitates learning of unified foreground segmentation and subsequently uses this
segmentation ability as a constraint to mine unlabeled data from multiple sources; and (3) Extensive
experiments on four public datasets validate the superiority of UniSeMi, which presents remarkable
improvements when compared to the prior methods.

2 RELATED WORK

2.1 SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) (Chen et al., 2022b; Mey & Loog, 2022; Cheplygina et al., 2019) is
emerged to mitigate the issue of tedious data annotation, by learning from unlabeled data with scarce
labeled data. Many efforts are made to explore how to excavate information from unlabeled data
adequately. For instance, (Rizve et al., 2020) reduced unreliable pseudo-labels by calibrating mod-
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Figure 2: Illustration of UniSeMi. UniSeMi learns from all tasks simultaneously and doesn’t require
task information in context of unlabeled data.

els with uncertainty. (Zeng et al., 2023b) investigated the probability distribution of pseudo-labeled
data, and further proposed a selection standard from the perspective of loss distribution. (Chen et al.,
2022a; Wang et al., 2022) tried to address the quantity-quality trade-off issue with adaptive thresh-
old. Although these works present improved results compared to the prior, the gap between the
supervised baseline still can not be ignored. The main reason for the phenomenon is perhaps that
the learned representation is insufficient since there are usually limited labels in each dataset. To
address the mentioned issue, we advocate learning a unified SSL model with an integrated dataset,
where all procurable data from various tasks are leveraged at the same time.

2.2 REPRESENTATION LEARNING WITH INTEGRATED DATA

To improve the model performance and representation ability, some works propose to learn a uni-
fied model that can complete multiple tasks simultaneously, rather than training task-specific model
separately (Kim et al., 2022; Lee et al., 2023). For example, (Zhang et al., 2021) collected an abdom-
inal dataset from seven partially labeled datasets for model training, and presented better-averaged
results than training on every single dataset. (Liu et al., 2023) further advanced this idea by introduc-
ing CLIP embedding (Radford et al., 2021) to help the model capture anatomical relations between
different tumors and organs. (Ye et al., 2023) leveraged different modalities including CT, MRI and
PET, whose performance surpassed by those models trained with a single modality. These studies
underscore the importance of robust data engines, emphasizing the need to leverage as much acces-
sible data as possible. While the majority of these investigations focus on either fully supervised
learning (Ye et al., 2023; Liu et al., 2023) or self-supervised learning (Xie et al., 2022), we put forth
a unified SSL model designed to harness the strengths of both labeled and unlabeled data.

3 METHOD

Fig. 2 presents the workflow of UniSeMi, which is developed to complete kinds of segmentation
tasks using one single model under SSL setting. Compared to existing SSL works, UniSeMi can
learn from unlabeled data without knowing associated task information. Below, Section 3.1 de-
scribes the flexibility of UniSeMi for its usage of dynamic kernel generation. Section 3.2 and Sec-
tion 3.3 present supervised and unsupervised learning on labeled and unlabeled data, respectively.

3.1 DYNAMIC CONVOLUTION WITH TASK PROMPT

As pointed out by (Zhang et al., 2021; Lei et al., 2022), the fixed kernel parameters optimized on
one task are not optimal for the others, and it is always a challenge to use a single model to complete
the segmentation of multiple organs and tumors. One intuitive way to address this issue is using a
multi-head model, but it suffers from severe computational overhead with the increase of on-coming
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tasks, thus is not suitable as a universal model. In this work, we adopt dynamic filter generation
to initialize the segmentation head, which can adaptively process different tasks with task-specific
prompts while the computational cost remains unchanged. The parameter generation is defined as:

wk = ψ(GAP (Embedding), [Prompt#k]; θψ), (1)
Pk = SoftMax(fD(Embedding) ∗ wk), (2)

where ψθ is one convolutional layer with parameter θ, which is employed to dynamically generate
parameterswk for the current Task#k with [Prompt#k]. Here one-hot encoding is used as a prompt,
which is concatenated with global averaged feature embedding before feeding into ψθ. Pk is the
prediction for Task#k, fD is the decoder and symbol ∗ represents convolution. With [Prompt#k],
UniSeMi can accurately perceive the ongoing task and flexibly adapt kernels to fit it.

3.2 LABELED DATA LEARNING WITH ADDITIONALLY SYNTHESIZED TASK

As the bottom-right of Fig. 2 shows, we construct a synthetic task (Task#5) based on labeled data
from pertinent tasks (Task#1 ∼ Task#4). Task#5 is built to help UniSeMi achieve task-agnostic
unlabeled data learning, as well as guiding UniSeMi to segment all foreground regions from mixed
data. The data generation of Task#5 is formulated as:

X l
syn = X l

i ⊙M+ X l
j ⊙ (1−M), (3)

Y lsyn = Y li ⊙M+ Y lj ⊙ (1−M), (4)

where X l
syn and Y lsyn are synthetic images and labels for Task#5. M is a mask with 30% ∼ 70%

random masked regions. Symbol ⊙ is element-wise multiplication. Note that Y li and Y lj are binary
masks, X l

i and X l
j are images from the i-th and j-th task, thus X l

syn can be regarded as mixed data
that contain various targets and background. For labeled data learning (containing Task#5), Dice
loss and cross-entropy loss are leveraged, defined as:

Lsup = LDice(F(X l
k, [Prompt#k]; Θ),Y lk) + Lce(F(X l

k, [Prompt#k]; Θ),Y lk), (5)
where Lsup is the supervised loss on labeled data. For simplicity, we use F(·; Θ) to define the
unified model with parameter Θ, which contains operations in Eq.1 and Eq.2. Based on the above
procedure, UniSeMi ought to have a semantic perception of all tasks if prompted by Task#5 (Fig. 4
presents a clear view).

3.3 UNLABELED DATA LEARNING WITH SELF-CONSISTENCY

Thanks to the design of semantic-aware Task#5, the unified SSL model learns from unlabeled data
without knowing the associated task information. Below we describe how this is achieved. Firstly,
CutMix (Yun et al., 2019) is conducted on all unlabeled data, making the input contain objects
of different tasks. Then the prediction with Task#5 Prompt is forced to be consistent with the
aggregated prediction using Task#1 Prompt ∼ Task#4 Prompt. The aggregated prediction can be
regarded as a combination of pseudo-masks for each task, and the prediction prompted by Task#5
can be considered as a direct pseudo-mask for all tasks. Therefore, the two predictions should be
identical. We call this operation self-consistency since no extra decoder or teacher model is required
for supervision. The entire process can be written as:

X u
syn = X u

1 ⊙M+ X u
2 ⊙ (1−M), (6)

Pagg = max
k∈(1,4)

(F(X u
syn, [Prompt#k]; Θ)), (7)

where X u
syn are mixed unlabeled data, X u

1 and X u
2 are randomly selected unlabeled data. Element-

wise maximization is performed to aggregate predictions prompted by Task#1 ∼ Task#4, and Pagg
is the final aggregated prediction. The overall loss L and unsupervised loss Lunsup are calculated
as:
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Table 1: Performance comparison with other seven state-of-the-art methods on the pancreas dataset,
in the scenario of leveraging 10% and 20% labeled data. The best and second best results are shown
in red and blue, respectively. Results using unlabeled task information are highlighted in gray .

Method Pancreas (10%/6 labeled data) Pancreas (20%/12 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

VNet 55.60 41.74 18.63 45.33 72.38 58.26 5.89 19.35

UA-MT (MICCAI’19) 66.34 53.21 4.57 17.21 76.10 62.62 2.43 10.84
DTC (AAAI’21) 69.21 54.06 5.95 17.21 78.27 64.75 2.25 8.36

ASE-Net (TMI’22) 71.54 56.82 5.73 16.33 79.03 66.57 2.30 8.62
CAML (MICCAI’23) 71.21 56.32 5.92 16.89 79.81 67.35 2.27 8.22

BCP (CVPR’23) 73.83 59.24 3.72 12.71 82.91 70.97 2.25 6.43
CauSSL (ICCV’23) 72.34 57.43 3.13 13.49 80.63 67.84 2.78 8.76

MagicNet (CVPR’23) 75.01 62.04 3.97 13.71 81.25 68.81 2.83 8.50

UniSeMi (Ours) 78.08 64.82 2.33 8.05 83.27 71.68 1.40 5.33
UniSeMi w/ Task Info 78.62 64.91 2.28 7.99 83.55 71.93 1.35 5.02

Table 2: Performance comparison with other seven state-of-the-art methods on the left atrium
dataset, in the scenario of leveraging 10% and 20% labeled data. The best and second best results
are shown in red and blue, respectively.

Method Left Atrium (10%/8 labeled data) Left Atrium (20%/16 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

VNet 82.74 71.72 3.26 13.35 84.89 77.32 2.97 11.60

UA-MT (MICCAI’19) 86.28 76.11 4.63 18.71 88.74 79.94 2.32 8.39
DTC (AAAI’21) 87.51 78.17 2.36 8.23 89.42 80.89 2.10 7.32

ASE-Net (TMI’22) 87.83 78.45 2.17 9.86 90.29 82.76 1.64 7.18
CAML (MICCAI’23) 89.62 81.28 2.02 8.76 90.78 83.19 1.68 6.11

BCP (CVPR’23) 89.62 81.31 1.76 6.81 91.25 83.85 1.47 5.96
CauSSL (ICCV’23) 88.37 79.50 2.74 9.24 90.46 82.37 1.96 6.62

MagicNet (CVPR’23) 88.65 79.89 3.01 9.78 90.17 82.24 2.14 7.83

UniSeMi (Ours) 89.01 80.52 2.57 9.03 90.89 83.48 1.72 5.38
UniSeMi w/ Task Info 89.83 81.27 2.38 8.62 91.29 84.08 1.86 5.62

L = Lsup + Lunsup, (8)

Lunsup = LDice(Pagg,F(X u
syn, [Prompt#5]; Θ)). (9)

4 EXPERIMENTS

4.1 SETUP

Datasets. We report the model segmentation results on four public datasets, including Task#1: NIH-
Pancreas (Roth et al., 2015), Task#2: Left Atrium (Xiong et al., 2021), Task#3: MSD-Spleen (An-
tonelli et al., 2022) and Task#4: MSD-Lung Tumor (Antonelli et al., 2022). Specifically, NIH-
Pancreas contains 82 contrast-enhanced abdomen CT scans, which are split into 62/20 scans for
training/test. The Left Atrium has 100 gadolinium-enhanced MR images, in which 80/20 images
are leveraged for training/test. MSD-Spleen contains 41 CT scans, and 30/11 scans are split for
training/test. MSD-Lung Tumor contains 63 CT scans, which are divided into 50/13 scans for train-
ing/test. All methods follow the same data split for fair comparisons, with the same pre-processing
as (Luo et al., 2021; Bai et al., 2023).

Implementation Details. Following previous works (Bai et al., 2023; Luo et al., 2021; Chen et al.,
2023a), V-Net (Milletari et al., 2016) was adopted as the baseline model for fair comparisons.
Adam optimizer was used with a learning rate of 0.001. The input size and batch size were set
to 96×96×96 and 8, respectively. Experiments were implemented by Pytorch (Paszke et al., 2019)
with four NVIDIA GeForce RTX 3080 Ti GPUs. Evaluation metrics of Dice, Jaccard, Average
Surface Distance (ASD) and 95% Hausdorff Distance (95HD) were reported.
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Table 3: Performance comparison with other seven state-of-the-art methods on the spleen dataset,
in the scenario of leveraging 10% and 20% labeled data. The best and second best results are shown
in red and blue, respectively.

Method Spleen (10%/3 labeled data) Spleen (20%/6 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

VNet 75.14 65.27 15.02 43.89 79.78 72.86 11.37 30.03

UA-MT (MICCAI’19) 79.63 68.62 15.94 44.71 83.11 75.98 8.92 25.41
DTC (AAAI’21) 80.27 69.00 14.53 41.56 84.59 75.91 9.75 31.77

ASE-Net (TMI’22) 80.65 69.48 14.37 41.31 85.02 75.68 12.53 37.26
CAML (MICCAI’23) 80.32 69.10 15.37 41.71 85.80 76.79 11.57 36.14

BCP (CVPR’23) 83.12 72.85 14.42 42.11 87.02 78.58 10.48 37.08
CauSSL (ICCV’23) 81.98 71.25 14.69 41.84 86.83 78.46 10.01 32.27

MagicNet (CVPR’23) 83.55 73.58 13.49 41.79 88.24 80.24 8.50 23.51

UniSeMi (Ours) 89.34 81.73 3.12 9.33 94.62 89.89 2.40 7.50
UniSeMi w/ Task Info 90.10 82.75 3.09 9.28 94.67 89.93 2.35 7.33

Table 4: Performance comparison with other seven state-of-the-art methods on the lung tumor
dataset, in the scenario of leveraging 10% and 20% labeled data. The best and second best results
are shown in red and blue, respectively.

Method Lung Tumor (10%/5 labeled data) Lung Tumor (20%/10 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

VNet 31.07 21.69 14.81 24.16 36.89 26.00 12.98 23.47

UA-MT (MICCAI’19) 33.46 25.88 15.08 24.78 44.33 30.80 10.28 22.82
DTC (AAAI’21) 34.97 26.82 12.88 24.34 48.46 34.49 7.70 21.22

ASE-Net (TMI’22) 34.18 25.86 13.09 22.91 53.15 38.29 3.77 12.87
CAML (MICCAI’23) 35.24 22.99 12.33 24.25 52.43 37.03 4.07 12.65

BCP (CVPR’23) 36.60 27.69 11.71 23.86 54.63 38.13 3.62 11.77
CauSSL (ICCV’23) 35.72 26.25 12.52 24.09 53.69 38.47 5.05 13.40

MagicNet (CVPR’23) 35.24 22.99 12.33 24.25 54.32 38.58 3.72 13.04

UniSeMi (Ours) 36.90 28.12 10.87 23.41 55.16 42.47 6.39 16.75
UniSeMi w/ Task Info 37.91 29.05 9.20 22.45 56.82 44.97 6.32 14.25

4.2 COMPARISON WITH EXISTING METHODS

We compare our UniSeMi with seven popular SSL methods, including uncertainty-aware mean-
teacher (UA-MT) (Yu et al., 2019), dual-task consistency (DTC) (Luo et al., 2021), adversarial con-
sistency and dynamic convolution (ASE-Net) (Lei et al., 2022), correlation-aware mutual learning
(CAML) (Gao et al., 2023), bidirectional copy-paste (Bai et al., 2023), causality-inspired semi-
supervised segmentation (CauSSL) (Miao et al., 2023) and cubic volume partition and recovery
(Magic-Net) (Chen et al., 2023a).

Results on Pancreas Dataset. As shown in Table 1, we can find UniSeMi consistently surpasses
competitors on all metrics under different label percentages. For example, UniSeMi brings respec-
tively 3.07% and 5.66% improvements on Dice and HD score, when compared to the second best
method MagicNet with 10% labeled data. Beyond that, we can find the performance gains obtained
by UniSeMi are larger than the others when leveraging fewer labels. This phenomenon indicates
that UniSeMi is more applicable in annotation-efficient scenario.

Results on Left Atrium Dataset. As indicated by results in Table 2, UniSeMi achieves the second
place and BCP becomes the best one, but it is worth noting that the performance gap between the two
methods is marginal, usually less than 0.5% on Dice score. Moreover, we observe that all methods
can achieve nearly similar Dice score no matter using 10% or 20% labels, and the performance gap
between each other is also negligible. This result is mainly attributed to the larger size of dataset
and more slices used in each case, thus the model gains sufficient supervision from labeled data and
makes correct predictions on unlabeled data.

Results on Spleen Dataset. Table 3 presents the results of spleen segmentation. It is a surprise to
see that UniSeMi outperforms other competitive methods by a large margin. For instance, compared
to MagicNet, UniSeMi has respectively 32.46% and 16.01% performance gains on HD score with
10% and 20% labeled data. Similarly, UniSeMi surpasses CauSSL by 7.36% on Dice score under
10% label percentage.
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Table 5: A case study of the impact of other tasks on one specific task. Here spleen segmentation
task (Task #3) is selected as the baseline, as we find UniSeMi presents remarkable improvements on
this task when compared to other methods, and the purpose of this experiment is to figure out where
the performance gains come from.

Setting Spleen (10%/3 labeled data) Spleen (20%/6 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

Task #3 75.14 65.27 15.02 43.89 79.78 72.86 11.37 30.03
Task #3 + Task #1 85.62 75.96 4.90 17.07 90.00 82.18 5.27 15.81

Task #3 + Task #1 + Task #2 88.03 79.26 3.78 11.06 92.06 86.39 3.41 10.06
Task #3 + Task #1 + Task #2 + Task #4 89.34 81.73 3.12 9.33 94.62 89.89 2.40 7.50

image Ground TruthTask#3 Task#3+#1 Task#3+#1+#2 Task#3+#1+#2+#4

Figure 3: Visualization results of pancreas segmentation by incorporating other tasks sequentially.
We can find the model tends to produce more accurate segmentation with the increase of integrated
tasks, demonstrating the benefits of learning a unified model.
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Figure 4: Predictions made by
UniSeMi when facing mixed data.
Case 1 is the combination of left
atrium and lung tumor. Case 2
is the combination of pancreas and
spleen. We can find UniSeMi
can produce accurate masks if
prompted by Task#5.

To figure out where the gains come from, we conducted a
case study to see the impact of other tasks on spleen segmen-
tation (Task#3). As Table 5 and Fig. 3 show, there are con-
sistent improvements by gradually integrating data of other
tasks. In particular, we can find the results increase signifi-
cantly by singly integrating pancreas segmentation (Task#1),
whose performance has already outperformed other competi-
tive methods like MagicNet and BCP. Here we provide three
potential reasons for UniSeMi’s high performance on the
spleen segmentation task: (1) due to extremely limited labels
(10% labels are equal to 3 labeled data), competitors fail to
generalize the representation learned from labeled data to un-
labeled data, and mistakenly predict the background as fore-
ground (see Appendix.D). Therefore, a high HD score can be
observed; (2) owing to the same modality, e.g., Task#1 and
Task#3, the unified model can learn modality-related knowl-
edge and present better results. (see Fig. 7, the feature embed-
ding of pancreas and spleen are very close in the latent space,
both of them are abdominal organs); and (3) despite the foreground information of each task does
not increase, the various mixed background information can guide UniSeMi to learn which region
should not be segmented, thereby decreasing the HD score.

Results on Lung Tumor Dataset. We also conduct experiments on the lung tumor segmentation
task. As Table 4 presents, our proposed UniSeMi achieves first place with 10% labeled data, and
surpasses MagicNet by 5.13% of Jaccard score. Under the label percentage of 20%, UniSeMi again
produces the highest Dice and Jaccard scores but also shows higher ASD and HD scores. We think
this is mainly caused by the misclassified tissues around the tumor and therefore the metrics related
to surface distance are increased. Whereas it should be noted that UniSeMi still has 3.89% Jaccard
performance gains with 20% label percentage, when compared to MagicNet.

Summary. Grounded on the segmentation results on four tasks, we can draw some findings as
follows: (1) The proposed UniSeMi presents obvious improvements compared to other SSL meth-
ods. For instance, according to the averaged Dice and HD score, UniSeMi respectively surpasses
the second-best method BCP by 2.69% and 8.92% with 10% labels, demonstrating the necessity of
learning a universal SSL model. (2) For the task with large dataset size, e.g., Task#2, most SSL
methods are comparable, including UniSeMi. (3) For the task with a smaller dataset size, e.g.,
Task#3, the unified model presents remarkable results compared to single models.
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Pancreas Left Atrium Spleen Lung Tumor

Figure 5: Kernel density estimation of UniSeMi and BCP when training with 10% labels. This
experiment is conducted to see the distribution of labeled and unlabeled data. Top is the distribution
generated by UniSeMi and Bottom is BCP (Bai et al., 2023). It is clear to see that UniSeMi aligns
the distribution better than BCP.

4.3 IN-DEPTH ANALYSIS

Incorporating unlabeled task information into UniSeMi. To explore the upper bound of
UniSeMi, we report the results when feeding task information of unlabeled data into UniSeMi. The
last row of Table 1 ∼ Table 4 with gray background are corresponding results. Given unlabeled
task information, UniSeMi can directly generate pseudo-mask based on task-specific data instead
of mixed data. From the results, we can find there is an improvement (0.78% gain on the averaged
Dice score with 10% labels) but not quite large, demonstrating UniSeMi has the ability to produce
accurate prediction when facing mixed data. (More description can be found in Appendix.B).

Copy-past choices of Task#5. Task#5 is generated based on CutMix, below we discuss the form
of cropped regions. As Table 7 shows, three types of masks are included, containing random mask,
slice-based mask and zero-centered mask (see Fig.6).

value 0 value 1

random mask slice-based mask zero-centered mask

30%-70% masked region

Figure 6: Copy-past choices.

The first one means cropping several random cubic patches
with a shape of 6×6×6. The second one stands for generating
slice-wise masks, which can be regarded as slice exchange be-
tween different unlabeled data. The last one represents crop-
ping one larger patch. As indicated by the results, the random
mask has the worst performance, as the randomly generated
cubic patches do not contain coherent foreground informa-
tion, and can be easily confused with the background of other tasks. Alternatively, the slice-based
mask shows better results than the random mask, since the integrity of the foreground is reserved.
By comparison, the zero-centered mask performs best, as the foreground and background of differ-
ent tasks have interacted while maintaining the coherence of targets. Therefore, CutMix with the
zero-centered mask is leveraged during the construction of Task#5.

Table 6: Adapting BCP and CauSSL into universal models. However, severe performance degrada-
tion can be seen when comparing Uni-BCP to BCP (Uni-CauSSL to CauSSL).

Method Pancreas (10%/6 labeled data) Left Atrium (10%/8 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

Uni-BCP 68.59 53.73 7.33 20.62 85.73 75.06 10.17 30.33
Uni-CauSSL 65.35 49.09 6.16 20.89 83.40 72.43 8.84 34.94

UniSeMi (Ours) 78.08 64.82 2.33 8.05 89.01 80.52 2.57 9.03

Method Spleen (10%/3 labeled data) Lung Tumor (10%/5 labeled data)
Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓ Dice ↑ Jaccard ↑ ASD ↓ 95HD ↓

Uni-BCP 74.80 58.89 17.11 54.06 31.01 21.32 11.35 24.36
Uni-CauSSL 73.06 57.85 18.28 55.51 25.38 20.20 15.06 28.72

UniSeMi (Ours) 89.34 81.73 3.12 9.33 36.90 28.12 10.87 23.41
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UniSeMiUni-BCPUni-CauSSL

Pancreas Left Atrium Spleen Lung Tumor

Figure 7: t-SNE visualization of feature embedding for four tasks. The implemented Uni-CauSSL,
Uni-BCP and our proposed UniSeMi are compared.

Learned distribution on labeled and unlabeled data. Distribution mismatch between labeled
and unlabeled data is a commonly encountered issue in SSL, which is mainly caused by unbal-
anced/partial distribution learned from labeled data (Zeng et al., 2023b; Chen et al., 2023a). Fig. 5
presents the kernel density estimation of UniSeMi and BCP when training with 10% label per-
centage. We can find that: (1) for Task#2 (left atrium segmentation) with large data scale, both
UniSeMi and BCP show much-aligned distribution, which is mainly attributed to ample representa-
tion learned from labeled data, thus models can successfully generalize to unlabeled data and show
comparable performance; (2) for the rest tasks, severe inconsistent distribution is observed for single
model BCP, whereas UniSeMi significantly aligns the learned distribution. This demonstrates that
properly learning a universal model is beneficial to unlabeled data mining, since the mismatch issue
between labeled and unlabeled data is largely alleviated.

Can other SSL methods process all tasks simultaneously? To answer this question, we revise
CauSSL and BCP into the form of the universal model. There are two changes compared to their
previous versions. (1) The input data cover four tasks and are randomly fed into the model with the
associated task id. (2) Changing the number of output channels to match the number of tasks, which
is different from UniSeMi as UniSeMi has a dynamic task-prompted head with two output channels.

Table 7: Design choices
of copy-past for the gen-
eration of Task#5. The
averaged Dice and 95HD
scores on four tasks are
reported under label per-
centage of 10%.
Strategy Dice ↑ 95HD ↓
Random mask 70.21 15.32
Slice-based mask 72.16 13.88
Zero-centered mask 73.33 12.46

As Table 6 shows, the results produced by Uni-BCP and Uni-CauSSL
are far inferior to UniSeMi, and compared to their original single model
version, significant performance degradation can be observed. For in-
stance, according to the averaged Dice score with 10% labeled data,
BCP vs Uni-BCP (70.79% vs 65.03%), 5.76% drop can be found. And
CauSSL vs Uni-CauSSL (69.60% vs 61.80%), 7.80% degradation is
discovered. This phenomenon is mainly triggered by chaotic represen-
tation learned from all task data, and also indicates that naively learning
from all tasks simultaneously is not effective and even harmful to the
single task. Moreover, we plot the t-SNE visualization of feature em-
bedding to have a clear view. As Fig. 7 exhibits, UniSeMi presents
a distinguishable decision boundary while others show mixed and dis-
persed embedding. This demonstrates that task-specific prompts are essential, especially in learning
a universal model, as such prior can guide the model to have a clear understanding of the ongoing
task, thus showing discernible and concentrated representation for each single task.

5 CONCLUSION

In this paper, we propose a semi-supervised segmentation model UniSeMi for medical imaging.
Compared to existing SSL works, UniSeMi can flexibly process kinds of tasks using one single
model, and can learn from unlabeled data without requiring associated task information. Benefiting
from the task-prompted dynamic head, UniSeMi successfully learns dividable feature embedding for
different tasks, while the representation learned by other implemented universal models (Uni-BCP,
Uni-CauSSL) is in chaos. Extensive experiments validate the effectiveness of UniSeMi especially
for tasks with few labels. Limitations: We can find UniSeMi also produces mixed embedding (see
Fig. 7) and the model performance sometimes falls behind single models. We think this is attributed
to conflicts among data of tasks. Despite standardized normalization being conducted, a de-biased
strategy for data processing may be helpful to further mitigate the contradiction.
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