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CAMPILOT: IMPROVING CAMERA CONTROL IN VIDEO
DIFFUSION MODEL WITH EFFICIENT CAMERA RE-
WARD FEEDBACK
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Input Camera Control

Generated 3DGS

Generated Video

Generated Video
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Figure 1: Our model functions as a comprehensive framework for world-consistent video generation
and scene reconstruction. In the upper section, it excels at generating 3D-consistent scene videos
for world exploration by following custom camera trajectories. In the lower section, it efficiently
reconstructs high-quality 3D scenes in a feed-forward manner with generated video frames.

ABSTRACT

Recent advancements in camera-controlled video diffusion models have signif-
icantly improved video-camera alignment and enabled more accurate 3D scene
generation, driven by potential downstream applications such as virtual reality.
However, we reveal that existing approaches often struggle to precisely adhere
to the given camera conditions, leading to inconsistencies in the 3D geometry.
Inspired by Reward Feedback Learning in diffusion models, which has demon-
strated strong potential in aligning model outputs with task-specific objectives,
we build upon this paradigm and aim to further improve camera controllability.
Directly borrowing existing ReFL approaches faces several challenges. First, cur-
rent reward models lack the capacity to assess video-camera alignment. Second,
decoding latent into RGB videos for reward computation introduces substantial
computational overhead. Third, 3D geometric information is typically neglected
during video decoding. To address these limitations, we introduce a camera-aware
3D decoder that efficiently decodes video latent into 3D representations for reward
computation. Specifically, we project the video latent and camera pose into 3D
Gaussians, which supports efficient rendering from arbitrary views. In this pro-
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cess, the camera pose not only acts as an input variable but also serves as a pro-
jection parameter for determining the mean of each 3D Gaussian. If the generated
video does not match the camera conditions, the 3D structure becomes geometri-
cally inconsistent, leading to blurry rendered images. Based on this property, we
explicitly optimizing pixel-level consistency between rendered novel views and
ground-truth ones as reward feedback. To accommodate the stochastic nature, we
further introduce a visibility term that selectively supervises only deterministic
regions derived via geometric warping. Extensive experiments conducted on the
RealEstate10K and WorldScore benchmarks demonstrate the effectiveness of our
proposed method in enhancing both camera controllability and generation quality.

1 INTRODUCTION

Video diffusion models have recently achieved impressive progress (Blattmann et al., 2023; Yang
et al., 2024c; Liu et al., 2024), enabling the generation of high-quality and temporally coherent
videos conditioned on inputs such as text prompts or a single image. Despite these advances, real-
world applications often demand a higher degree of controllability. A key factor is camera control-
lability. Users not only expect visually realistic content but also require explicit control over camera
trajectories to support user-friendly and customizable content creation.

To address the need for camera-controlled video generation, several recent works (Yu et al., 2024;
Ren et al., 2025; Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent
et al., 2024; Bahmani et al., 2024a; He et al., 2024) have explored this task by fine-tuning pretrained
video models with paired camera conditioning. Recognizing that many downstream applications
such as virtual reality (Schuemie et al., 2001), robotics (Mateo et al., 2016), and game development
(Gregory, 2018) require not only high-quality visuals but also consistent 3D representations, these
methods have begun to bridge the gap between 2D generation and 3D reconstruction. A common
strategy is to reconstruct 3D by optimizing over generated novel views. Despite these advancements,
precise camera control is still difficult to achieve in practice, often resulting in inconsistent and sub-
optimal convergence during 3D reconstruction. In fact, improving the alignment between generated
content and given conditions is a long-standing problem in generative models.

Recent works (Prabhudesai et al., 2024; Li et al., 2024b; Liu et al., 2025; Zhang et al., 2024a; Xu
et al., 2023; Prabhudesai et al., 2023) have introduced Reward Feedback Learning (ReFL) for diffu-
sion models to further refine the model according to human preferences or task-specific objectives,
drawing inspiration from the Reinforcement Learning from Human Feedback (RLHF) (Grattafiori
et al., 2024; Yang et al., 2024a; Lee et al., 2023) of large language models (LLMs). For instance,
VADER (Prabhudesai et al., 2024) explores a range of reward functions—such as perceptual quality,
text-video semantic alignment, and aesthetic appeal—to enhance visual fidelity and semantic consis-
tency. Controlnet++ (Li et al., 2024b) leverages pixel-level cycle consistency as a reward to improve
image-based controllability. However, none of these approaches considers camera controllability.

In this work, we aim to enhance the adherence to camera conditioning through ReFL, a topic that re-
mains under-explored in the context of video diffusion. However, there are three main challenges in
adopting this strategy for camera-controlled video diffusion. First, current models struggle to assess
the alignment of camera conditions in video generation. Second, reward computation necessitates
decoding the generated latent into video, leading to VRAM inefficiency due to the resource-intensive
nature of video decoders. Lastly, these methods often overlook the underlying 3D geometric struc-
ture during video decoding, which restricts their effectiveness in the 3D-like task. A naive approach
would be to use COLMAP (Schönberger & Frahm, 2016) for camera pose estimation. However, the
heavy computational cost and scale-invariant pose estimation make it infeasible for efficient train-
ing and precise pose supervision. Considering the three challenges, we introduce a camera-aware
3D decoder that enables computationally efficient evaluation of video-camera consistency without
requiring heavy computation. Specifically, we project the video latent—obtained by encoding a raw
video using the video VAE—along with the corresponding ground-truth camera poses into a 3D
representation, namely 3D Gaussians (3DGS) (Kerbl et al., 2023). This representation supports ef-
ficient novel view rendering from arbitrary viewpoints and utilizes photometric loss for supervision.
In this projection process, camera poses play a crucial role. On the one hand, they are transformed
into Plücker embeddings (He et al., 2024) as part of the network input. On the other hand, the mean
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of each 3D Gaussian is computed by projecting the camera pose along with the predicted depth.
These two mechanisms ensure that when the generated video latent is misaligned with the input
camera poses, the resulting 3DGS becomes geometrically inconsistent, leading to degraded render-
ings. Based on this property, we regard minimizing the pixel-level difference between the rendered
videos and ground-truth sequences as a camera-aware reward. This design is consistent with the
nature of the proposed camera-aware 3D decoder, which emphasizes low-level visual cues.

However, computing pixel-level rewards presents unique challenges. High-level semantic rewards
can be meaningfully applied across multiple diverse diffusion samples, while low-level pixel align-
ment rewards are sensitive to diverse generation results. Camera-controlled video generation often
involves hallucinated content, making it difficult to enforce strict pixel-level consistency across all
pixels without suppressing generative diversity. To address this, our reward formulation is carefully
designed to focus only on deterministic regions that are visible in the conditioning image, while ig-
noring unconstrained areas that permit creative generation. To this end, we design a visibility-aware
reward objective that restricts reward computation to deterministic regions while avoiding penaliza-
tion in hallucinated or occluded areas. Since our camera-aware 3D decoder is inherently 3D-aware,
we can render depth maps from the 3DGS. By combining the rendered depth with camera poses, we
can determine the visibility of each pixel across all frames through geometric warping.

To summarize, our contributions are listed as follows.

• We propose a camera-aware 3D decoder that lifts the video latent along with the camera
pose into 3DGS, which supports efficient rendering from arbitrary viewpoints and enables
the evaluation of the alignment between camera conditions and the generated video.

• We employ reward-based feedback learning to further improve the alignment between the
video and the camera by regarding the minimization of the deterministic pixel-level differ-
ence between the rendered videos and ground-truth videos as a reward.

• Extensive experiments demonstrate the effectiveness of the proposed framework, signifi-
cantly improving camera controllability and visual quality.

2 RELATED WORK

2.1 CAMERA CONTROLLED VIDEO DIFFUSION MODELS

With the rapid advancements in video diffusion models, camera-controlled video generation (He
et al., 2024; Bahmani et al., 2024b;a; Yu et al., 2024; Ren et al., 2025; Gao et al., 2024; Wang
et al., 2024b; Hu et al., 2025) has garnered significant attention in the research community. Recent
works such as MotionCtrl (Wang et al., 2024b), CameraCtrl (He et al., 2024), and ViewCrafter (Yu
et al., 2024) inject various forms of camera conditioning—ranging from extrinsics and Plücker em-
beddings (Sitzmann et al., 2021) to point cloud renders—into pretrained video generation models.
More recently, AC3D (Bahmani et al., 2024a) has carefully explored the spatial and temporal points
at which camera representations should be injected. CameraCtrl2 (He et al., 2025) investigates this
task from a dataset curation perspective to enable dynamic scene generation with controllable cam-
eras. CamCo (Xu et al., 2024a) introduces epipolar constraints into attention layers, while Gen3C
(Ren et al., 2025) and FlexWorld (Chen et al., 2025) maintain a spatiotemporal 3D cache to enhance
robustness in camera control. Despite these advances, existing approaches still face challenges in
achieving precise control and remain largely constrained to 2D video generation. In this work, we
enhance camera controllability through reward feedback learning and, importantly, enable the si-
multaneous generation of corresponding 3D counterparts in an efficient feed-forward manner. Our
framework adopts Plücker embeddings as the camera condition. However, the proposed preference
fine-tuning is a general method and can be applied to any form of camera condition representation.

2.2 3D GENERATIVE MODELS

Object-level 3D generative models (Hong et al., 2023; Zhang et al., 2024b; Ge et al., 2024; 2023;
Zhang et al., 2024c; Jiang et al., 2025; Xu et al., 2024b) have made remarkable progress in recent
years, largely driven by the availability of large-scale 3D object datasets. However, 3D scene gen-
eration remains relatively under-explored. Most video diffusion based approaches (Yu et al., 2024;
Ren et al., 2025; Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent
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Figure 2: Overall of our framework. It consists of (a): a camera-controlled I2V model, where we
inject Plücker Embedding as camera condition using ControlNet. (b) A camera-aware 3D decoder
that decodes latent to 3DGS, supporting rendering for reward computation. (c) Camera reward
optimization that minimizes mask-aware difference between rendered videos and ground-truth ones.

et al., 2024) typically adopt a two-stage pipeline. In the first stage, diffusion models are employed to
generate novel views given sparse or single-view observations and target poses. In the second stage,
per-scene optimization is conducted using the generated novel views and corresponding target poses.
Object-level 3D generative models (Hong et al., 2023; Zhang et al., 2024b; Ge et al., 2024; Li et al.,
2025; Zhang et al., 2024c; Jiang et al., 2025) have made remarkable progress in recent years, largely
driven by the availability of large-scale 3D object datasets. However, 3D scene generation remains
relatively under-explored. Most video diffusion based approaches (Yu et al., 2024; Ren et al., 2025;
Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent et al., 2024) typi-
cally adopt a two-stage pipeline. In the first stage, diffusion models are employed to generate novel
views given sparse or single-view observations and target poses. In the second stage, per-scene op-
timization is conducted using the generated novel views and corresponding target poses. Despite
their effectiveness, such two-stage approaches suffer from two main limitations. First, the per-scene
optimization process is time-consuming, making it difficult to scale to large numbers of scenes. Sec-
ond, the quality of scene reconstruction is highly sensitive to the consistency between the generated
novel views and the target camera poses. misalignment between them can lead to suboptimal con-
vergence. In contrast, we propose a camera-aware 3D decoder that not only enables efficient 3D
scene reconstruction in a feed-forward manner, but also serves as a reward function to minimize the
misalignment between generated novel views and their corresponding target poses.

2.3 ALIGNING DIFFUSION MODELS WITH PREFERENCE

Drawing inspiration from Reinforcement Learning from Human Feedback (RLHF) in the field of
large language models (LLMs), recent works have begun to incorporate similar paradigms into dif-
fusion models to better align generation quality with human preferences (Yang et al., 2024b; Prab-
hudesai et al., 2024; Yuan et al., 2024; Liu et al., 2025; Li et al., 2024a;b; Xu et al., 2023; Zhang
et al., 2024a). For instance, ControlNet++ (Li et al., 2024b) explicitly optimizes pixel-level cycle
consistency between generated images and conditional controls for improving controllable genera-
tion. UniFL Zhang et al. (2024a) proposes a unified framework that leverages feedback learning to
enhance diffusion models comprehensively. VADER (Prabhudesai et al., 2024) explores a variety of
reward models to fine-tune video generation. However, these approaches require decoding the video
latent into RGB video as input for the reward model to compute the reward gradient. This process
introduces significant memory costs, constraining efficiency. Moreover, while these methods pri-
marily focus on enhancing overall quality or alignment with text prompts, none explicitly address
the challenge of improving camera controllability in video generation. To address this gap, we pro-
pose a novel camera-aware 3D decoder specifically designed to enhance camera controllability in
video diffusion models through reward feedback learning.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 METHOD

We begin with a brief overview of camera-controlled video diffusion models, feed-forward Gaussian
models, and reward feedback learning in Section 3.1. Section 3.2 describes the training of the
camera-controlled video diffusion model with miscellaneous improvements. We then introduce our
camera-aware 3D decoder in Section 3.3, followed by the meticulously designed reward feedback
learning objective in Section 3.4. An overview of the entire framework is shown in Figure 2.

3.1 PRELIMINARIES

Camera controlled video diffusion model learns to model the conditional distribution p(x0|c, s)
of video tokens, where x0 denotes the video latent obtained from a video VAE (Yang et al., 2024c)
, c refers to the text or image condition and s is the camera condition. During training, noise ϵt is
added to the latent x0 at each timestep t ∈ [0, T ] and a transformer model (Peebles & Xie, 2022) is
optimized to predict this noise using the following objective:

L(θ) = Ex0,ϵ,c,s,t

[
∥ϵ− ϵ̂θ(xt, c, s, t)∥22

]
. (1)

Following prior methods (He et al., 2024; Bahmani et al., 2024a;b), we adopt the Plücker embedding
(Sitzmann et al., 2021) as the camera condition, which provides pixel-aligned camera information
and facilitates the use of ControlNet (Zhang et al., 2023) for conditioning.

Feed-forward Gaussian model aims to reconstruct 3DGS from a single image or multi-view images
(Tang et al., 2024). It leverages a transformer-based architecture to project 2D images, along with
their camera poses, into a pixel-aligned 3DGS. This 3D representation can then be differentiably
rendered from arbitrary viewpoints, enabling photometric supervision and end-to-end optimization.

Reward feedback learning is a preference fine-tuning framework that directly optimizes the gen-
eration process using differentiable reward models and aims to improve the model by aligning the
behavior of network output with external preference signals, such as human feedback or heuristic
reward models (Wallace et al., 2024; Black et al., 2023; Xu et al., 2023).

3.2 ADDING CAMERA CONTROL TO VIDEO GENERATION

Following previous works (He et al., 2024; Bahmani et al., 2024b;a; Liang et al., 2024), we incorpo-
rate camera information (i.e., Plücker embeddings) into the denoising process through ControlNet
(Zhang et al., 2023). The raw Plücker embeddings are first compressed along the spatial and tempo-
ral dimensions to align with the shape of the video latent, following the architectural design of Won-
derland (Liang et al., 2024). To construct the ControlNet, we replicate the first several transformer
blocks from the base video model and append a zero-initialized linear layer for stable training. In-
spired by AC3D (Bahmani et al., 2024a), we copy only the first several transformer blocks, which
has been shown to strike a balance between controllability and computational efficiency. AC3D
further observes that video diffusion models tend to establish low-frequency camera motion dur-
ing the early stages of the denoising process. As a result, injecting camera control signals at later
timesteps provides limited benefits and may even impair visual quality, rendering late-stage con-
ditioning largely ineffective. Following this insight, we adopt a truncated normal distribution with
a mean of 0.8 and a standard deviation of 0.075, restricted to the interval [0.6, 1], to bias timestep
sampling toward earlier denoising steps where camera control is most effective. The network archi-
tecture and training details can be found in the Appendix.

Despite these advancements, the overall camera controllability remains limited. Inspired by ReLF
for video diffusion models, we aim to further improve the alignment by explicitly optimizing over
denoising trajectories with reward feedback learning. To enable this, we first introduce a camera-
aware 3D decoder that quantitatively evaluates the alignment of camera trajectory in the generated
videos. This is followed by a dedicated reward objective for feedback learning.

3.3 CAMERA-AWARE 3D DECODER

ReFL methods primarily focus on enhancing visual quality or alignment with text through high-level
semantic rewards, such as aesthetics evaluators or image-text similarity scores. However, existing
models struggle to effectively assess how well the generated video matches the camera conditions.
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A straightforward approach is to use COLMAP (Schönberger & Frahm, 2016), which can estimate
camera poses from videos. Nonetheless, COLMAP demands substantial computational time to eval-
uate a single video and produces scale-invariant pose estimates, making it unsuitable for real-time
training and pose supervision. Additionally, ReFL methods typically require decoding latent into
RGB format for reward computation. This process is computationally expensive and only includes
2D information, whereas camera-controlled video generation inherently requires the video model to
reason about 3D geometric information. Therefore, we aim to explore a 3D decoder for efficiently
decoding video latent to video with 3D information incorporated. Moreover, the 3D decoder should
also be camera-aware to ensure a quantitative assessment of the camera-video alignment.

To this end, we propose a latent-based feed-forward 3D Gaussian model as our camera-aware 3D
decoder, which essentially extends video VAE to decode 3D representation. Specifically, we train
a transformer that takes both video latent and their corresponding Plücker embeddings as input,
and outputs per-pixel aligned 3DGS. The positions of these 3DGS are estimated by projecting the
camera parameters together with the predicted ray distances t using the relation u = ro + t · rd. To
train the decoder, we randomly select a stride s to sample a video sequence consisting of T frames.
The video VAE encoder first compresses these T frames into latent, which are subsequently fed
into trainable transformer blocks along with Plücker embeddings to predict the 3DGS. The training
objective employs a combination of mean squared error (MSE) loss and LPIPS loss (Zhang et al.,
2018a) between rendered images and ground-truth ones, ensuring both pixel-level accuracy and
perceptual quality. To improve the rendering quality of unseen views and enforce 3D consistency, we
additionally render novel views corresponding to the frames skipped during stride-based sampling.
The detailed architecture can be found in the Appendix.

Within this framework, the camera poses play a crucial role in computing the final 3DGS, which
act as input and projection variable. As a result, if the input latent and the camera poses are not
well aligned, the 3D geometry deteriorates, leading to noticeably blurrier rendering. Based on this
property, we design our reward for feedback learning.

3.4 CAMERA REWARD OPTIMIZATION

With the camera-aware 3D decoder, we propose Camera Reward Optimization (CRO) to use reward
gradients to further improve the camera controllability. Considering the property that if the gener-
ated videos misalign with the camera condition, the renderings become blurry, a naive approach is
to penalize the blurriness. However, directly penalizing the blurriness easily leads to reward hack-
ing issues (Skalse et al., 2022). This means that the generated content may become clearer, but
it may not align with the trajectory of the ground truth video. Hence, we regard minimizing the
pixel-level difference between the rendered videos and ground-truth sequences as the reward. This
design is consistent with the nature of the proposed camera-aware 3D decoder, which acts as a 3D
representation decoder and supports rendering novel views, emphasizing low-level visual cues.

However, video generation introduces inherent stochasticity, making it infeasible to directly mini-
mize the pixel-level difference with ground-truth videos since newly generated parts cannot align
with ground-truth videos. To accommodate the stochastic nature, we adopt a visibility-aware re-
ward strategy that restricts supervision to pixels that are visible in the conditioning image, which is
generally deterministic. Visible mask can be derived by geometric warping, which requires depth
information and camera poses. Fortunately, due to the inherent 3D structure of our camera-aware
3D decoder, we can obtain the rendered depth, which facilitates visibility estimation. Specifically,
given the ground-truth video with corresponding camera poses E = [R; t] ∈ RT×3×4 and intrinsic
matrix K ∈ RT×3×3, and the image condition I0 ∈ RH×W×3, which is the first frame of the video,
we compute a per-frame visibility mask based on geometric warping. Omitting the temporal script,
each pixel (u, v) from the target view is back-projected into 3D world coordinates using the rendered
depth map D, intrinsic matrix K, and camera extrinsic matrix.E:

Xworld(u, v) = E ·
[
D(u, v) ·K−1[u, v]T

]
. (2)

Next, the 3D points are projected into the conditioned reference view using the its extrinsic matrix
E0 and intrinsic matrix K0. The projected 2D coordinates in the reference view are obtained by:

x(0)(u, v) = K0 ·E−1
0 ·

[
Xworld(u, v)

]
. (3)

We then sample the reference depth map D0 at the projected location to obtain Dproj
0 (u, v). A

visibility mask M is constructed by comparing the reprojected depth ẑ(0)(u, v) with the sampled
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depth, and a pixel is considered visible if the two depths agree within a tolerance τ :

M(u, v) =

{
1, if

∣∣∣ẑ(0)(u, v)−Dproj
0 (u, v)

∣∣∣ < τ and Dproj
0 (u, v) > 0,

0, otherwise.
(4)

With the visibility mask, we follow the VADER framework (Prabhudesai et al., 2024) and restrict the
reward on deterministic pixels, defining a masked MSE loss and LPIPS loss between the rendered
image Î and the ground-truth image I as:

LCRO = LMSE(Î, I,M) + λ · LLPIPS(Î, I,M).

Here the ground-truth images include novel views that were skipped during stride-based sampling.
The parameter λ is set empirically to 0.5. Different from VADER, gradients propagate through all
denoising time steps and our lightweight camera-aware 3D decoder can decode all T frames.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

Training Datasets. Following previous methods (Bahmani et al., 2024b; Wang et al., 2024b; He
et al., 2024), we utilized RealEstate10K (RE10K) (Zhou et al., 2018) as our training data, which
contains approximately 65K videos in the train split. We used these 65K videos for training both the
camera-aware 3D decoder and the camera-controlled video diffusion model.

Testing Datasets. Following previous works (Liang et al., 2024; Yu et al., 2024), we randomly
selected 300 videos from the approximately 7K test sets of RE10K, ensuring no overlap with the
training data. We also adopted the WorldScore (Duan et al., 2025) static benchmark for out of
domain comparison, which consists of 2,000 static test examples.

Input Image Ground Truth Ours FlexWorld ViewCrafter CameraCtrl MotionCtrl

Figure 3: Qualitative comparison of video generation: our model produces novel views that are
better aligned with the camera poses with higher quality, outperforming other methods.

Evaluation Protocol. We evaluated the quality of the generated videos using multiple metrics. Fol-
lowing previous works (Liang et al., 2024; He et al., 2024; Bahmani et al., 2024b;a), we employed
Fréchet Inception Distance (FID) (Heusel et al., 2017) and Fréchet Video Distance (FVD) (Un-
terthiner et al., 2019) to assess visual quality. Additionally, PSNR, LPIPS, and SSIM metrics were
used to evaluate the quality of novel view synthesis, camera controllability, and the performance of
scene reconstruction. Following the approach in Wonderland (Liang et al., 2024), we also compute
these metrics for the first 14 frames due to the randomness in generation. For further evaluating cam-
era controllability, we used rotation error (Rerr) and translation error (Terr) computed via DROID-
SLAM (Teed & Deng, 2021) following WorldScore (Duan et al., 2025). Furthermore, we evaluated
WorldScore (Duan et al., 2025) on WorldScore static benchmark. In addition, we compared the
decoded video (from the video VAE decoder) and the rendered video (from the camera-aware 3D
decoder) using the same generated latent. We report PSNR, SSIM (Wang et al., 2004), and LPIPS
(Zhang et al., 2018b) as metrics to further evaluate the camera controllability.
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4.2 IMPLEMENTATION DETAILS.

We built our model upon CogVideoX-5B-I2V (Yang et al., 2024c). To inject camera condition-
ing, we adopt ControlNet (Zhang et al., 2023), initializing the control branch with the first 8 base
transformer blocks from the pretrained video model. For the camera-aware 3D decoder, we used 4
transformer blocks with a hidden dimension of 1,024. Please refer to Appendix for more details.

4.3 COMPARISON ON VIDEO GENERATION

We compared the proposed framework with four baselines: MotionCtrl (Wang et al., 2024b), Cam-
eraCtrl (He et al., 2024), ViewCrafter (Yu et al., 2024), and FlexWorld (Chen et al., 2025). The
qualitative comparison is illustrated in Fig. 3, while the quantitative results are presented in Table 1.
Our method surpasses existing approaches in both novel view synthesis and camera controllability.

Video Generation 3D Scene Generation

Method FID ↓ FVD ↓ Rerr ↓ Terr ↓ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑

Rec-only - - - - - - - 27.57 0.181 0.883

MotionCtrl 24.67 205.27 0.153 0.385 14.24 0.520 0.532 14.02 0.536 0.533
CameraCtrl 22.17 96.52 0.078 0.222 17.58 0.586 0.360 17.30 0.391 0.573
ViewCrafter 17.92 109.30 0.039 0.194 19.33 0.326 0.710 18.57 0.383 0.688
FlexWorld 17.23 103.94 0.030 0.177 21.27 0.292 0.731 19.12 0.360 0.703
Ours 11.22 81.35 0.023 0.152 23.77 0.226 0.766 21.72 0.272 0.717

Table 1: Quantitative comparison on video and 3D scene generation with the baseline methods.

4.4 COMPARISON ON SCENE GENERATION

To evaluate the effectiveness of our method for 3D scene generation, we compared the visual quality
of the rendering results with the same four baseline methods using PSNR, LPIPS and SSIM between
the renderings and ground-truth videos. To evaluate the upper bound of our camera-aware 3D de-
coder, we also reported the PSNR, LPIPS and SSIM between ground-truth video and rendered video
(denoted as “Rec-only”) using video and ground-truth camera pose as input. The quantitative results
are reported in Table 1 and the qualitative comparison is illustrated in Fig. 4.

4.5 COMPARISON ON WORLDSCORE BENCHMARK

We also compared on the WorldScore static benchmarks (Duan et al., 2025). The quantitative results
are reported in Table 2. Additional qualitative comparisons are in the Appendix. We reproduced the
officially released code on this benchmark using the same test settings and hyperparameters.

4.6 ABLATION STUDY

We conducted an ablation study to validate the effectiveness of each component in our framework.
The quantitative results are presented in Table 3, using PSNR, SSIM, and LPIPS metrics. These
metrics compare the decoded video (from the video VAE decoder) and the rendered video (pro-
duced by the reward model) from the same generated latent, denoted as “Rendered vs Generated.”
Additionally, they compare the generated videos and rendered videos with the ground-truth ones,
denoted as “Generated vs GT” and “Rendered vs GT,” respectively.

The effectiveness of reward feedback learning. Reward feedback learning (ReFL) is crucial for
enhancing the camera controllability. We compared the results before and after applying ReFL (de-
noted as “w/o ReFL”) in Table 3. After implementing ReFL, the performance significantly improves,
indicating that the reward gradients is effective and can further enhance camera controllability. We
visualized a qualitative comparison and discuss further insights in the Appendix.

Methods
WorldScore

Average
Camera
Control

Object
Control

Content
Alignment

3D
Consistency

Photometric
Consistency

Style
Consistency

Subjective
Quality

MotionCtrl 64.15 58.65 44.54 48.42 89.87 88.13 67.37 52.07
CameraCtrl 65.42 65.72 45.31 49.10 90.07 92.42 64.70 50.64
ViewCrafter 65.47 72.40 50.71 52.34 60.56 88.30 78.29 55.68
FlexWorld 71.35 68.16 56.15 53.66 84.43 91.31 86.07 59.65
Ours 74.45 86.26 49.75 46.46 90.64 93.30 89.78 64.95

Table 2: Quantitative comparison across control and consistency metrics. Higher is better.
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Input Image Ground Truth Ours FlexWorld ViewCrafter CameraCtrl MotionCtrl

Figure 4: Qualitative comparison of 3D scene generation: our model produces more photorealistic
novel view rendering that are aligned with the camera poses, outperforming other methods

Setting Generated vs. GT Rendered vs. GT Rendered vs. Generated

Metric PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑

w/o ReFL 21.57 0.282 0.720 18.93 0.361 0.642 24.34 0.231 0.798
w/o visibility mask 22.75 0.241 0.749 20.52 0.293 0.694 26.14 0.219 0.815
w/o novel view 22.88 0.232 0.756 20.88 0.279 0.706 26.45 0.202 0.824
w/ CFG 23.30 0.235 0.751 21.04 0.282 0.709 27.08 0.193 0.841
Full model 23.77 0.226 0.766 21.72 0.272 0.717 27.13 0.192 0.844

Table 3: Ablation study to validate the effectiveness of each component.

The effectiveness of visibility mask. The visibility mask plays a crucial role in accommodating the
stochastic nature of generative models by supervising only the deterministic pixels in the conditioned
image. We conducted an experiment without using the visibility mask (denoted as “w/o visibility
mask”) as shown in Table 3. The performance deteriorates without the visibility mask.

The effectiveness of novel views. Our camera-aware 3D decoder functions as a 3D decoder, pro-
jecting video latents into 3DGS. Unlike the video decoder, it can decode novel views in addition to
the seen views that are input to the video encoder. This capability allows us to incorporate novel
views as supervision. We conducted an ablation study to validate the effectiveness of using novel
views, denoted as “w/o novel view” in Table 3. The performance of “w/o novel view” degrades,
indicating the effectiveness of incorporating 3D geometric information.

The effect of class free guidance. During each denoising step, we have the option to use class-free
guidance (CFG) or not. We conducted an ablation study to assess the impact of CFG on sampling.
The qualitative comparison is presented in Table 3, labeled as “w/ CFG”. The performance is compa-
rable to that without CFG. However, since CFG results in twice the computational overhead during
training, we have opted to disable CFG in our experiments.

5 CONCLUSION AND LIMITATION

Limitation. Despite the effectiveness of our proposed method, several limitations remain. First, the
performance of the 3D decoder determines the upper bound of ReFL. For efficiency, we used only a
4 transformer blocks and trained solely on RE10K. Scaling up the network and dataset may further
improve this upper bound. Second, 3DGS can only represent static scenes and is not suitable for
dynamic scene reconstruction. Exploring 4DGS as a reward model is a direction for future work.

Conclusion. In this work, we investigate the problem of camera-controlled video diffusion models
and 3D scene generation, where the quality heavily relies on the alignment between camera con-
ditions and the generated videos. To further improve this alignment, we introduce a camera-aware
3D decoder for efficient decoding video latent to rendered videos for reward computation. During
camera reward optimization, we propose to aligns the deterministic pixels between rendered videos
and ground-truth videos. Extensive experiments validate the effectiveness of the proposed method,
outperforming existing methods by a large margin.
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A REPRODUCIBILITY STATEMENT

In our work, we have provided detailed descriptions of the training data, training parameters, and
methodologies used in our experiments. We are committed to transparency and reproducibility in
research. To this end, we will be releasing the corresponding code and datasets to the public in the
near future. This will enable other researchers and practitioners to replicate our results and build
upon our work, fostering an open and collaborative scientific community.
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Figure 5: Qualitative comparison on WorldScore static benchmark.

A APPENDIX

A.1 USE OF LLMS

I utilize Large Language Models (LLMs) to assist and enhance my writing process. While LLMs
provide valuable support, we remain the primary authors and take full responsibility for the final
output, ensuring it aligns with my personal style and meets ethical standards.

A.2 QUALITATIVE COMPARISON ON WORLDSCORE STATIC BENCHMARK

We further visualize the qualitative comparison on the WorldScore static benchmark in Fig. 5. Our
method generates more 3D consistent videos that match the given camera conditions.

A.3 FURTHER ANALYSIS AND DISCUSSION

Further Discussion on the Improvements of Using ReFL We discuss more improvements of after
ReFL. We visualized a qualitative comparison in Fig. 6. From the first case, we can observe that “w/
ReFL” maintains better photometric consistency during camera motion. In the results “w/o ReFL,”
there is an obvious photometric shift. Our camera-aware 3D decoder leverages 3DGS to represent
the scene, which is typically photometrically consistent across novel views. This property is also dis-
tilled into the video diffusion model by ReFL, which is favorable for this task. Moreover, we found
that “w/ ReFL” can effectively suppress dynamic generation, maintaining better 3D consistency in
generated videos. Since 3DGS is essentially a static 3D representation, this property is also distilled
into the video model to produce content that is both static and 3D consistent. The corresponding
video can be found in the Supplementary Materials.

The scale of camera conditions. Although the camera poses in RE10K are normalized to a unified
scale as described in (Zhou et al., 2018), we observed that there are still variations in scale within
this unified framework. Specifically, some movements are more pronounced while others are subtler.
During inference, we found that by manipulating the scale of the camera conditions, our model can
effectively perceive these scale variations and generate videos that accurately reflect the intended
degree of movement. We visualized some examples in Fig. 7, where the same image was used as a
condition, but the scale of the camera pose was varied for each generation.

The choice of Plücker embeddings as conditions. Recent camera-conditioned video generation
methods can be roughly divided into two categories: those that use point cloud renders as conditions
and those that use Plücker embeddings as conditions. We chose Plücker embeddings due to their
flexibility and generalization capabilities. However, our method is general and can also be employed
in frameworks where point cloud renders are used as conditions. Using point cloud renders as
conditions typically relies on external models (Wang et al., 2024a; 2025) for simultaneous point
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Input Camera Control Generated Video Rendered Video

w/o ReFL
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Figure 6: Qualitative comparison between “w/o ReFL” and “w/ ReFL”.

Generated Video

Scale 1

Scale 4

Scale 1

Scale 4

Scale 2
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Figure 7: Our model is capable of perceiving scale variations and generating videos that accurately
reflect the intended degree of movement. A larger scale results in more pronounced movements.
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Input Image Point cloud renders Generated frame

ViewCrafter

FlexWorld

Figure 8: Using point cloud renders as camera condition incur a rendering leakage problem, affect-
ing the quality of novel view synthesis.

GT Video

Rendered 
Video

Figure 9: An example of ground-truth videos with varying exposure levels. The rendered video from
3DGS tends to exhibit an average exposure, which differs from the ground-truth video.

cloud and camera pose estimation to achieve alignment. If a dataset contains ground-truth metric
camera poses, the estimated point cloud should be further processed to align with the ground-truth
poses, while Plücker embeddings can be easily obtained without any preprocessing. Moreover, point
cloud renders incur a rendering leakage problem: as the camera view changes, background points
may be incorrectly rendered into the foreground due to improper handling of occlusion relationships,
affecting the realism and consistency. We show an example in Fig. 8.

The reconstruction performance of camera-aware 3D decoder. Our camera-aware 3D decoder is
exclusively trained on the RE10K dataset, which comprises estate videos exhibiting varying expo-
sure changes as the camera perspective shifts. The model generates per-frame 3DGS and uses them
as a global 3D representation for rendering. However, exposure changes result in variations in the
predicted spherical harmonics, which can degrade rendering quality to some extent. We show some
examples in Fig. 9.Collecting more consistent videos with precise camera poses can further enhance
the reconstruction performance of the camera-aware 3D decoder.

A.4 THE EFFICIENCY OF CAMERA-AWARE 3D DECODER

We compared the efficiency of our proposed camera-aware 3D decoder and video VAE decoder in
terms of GPU memory cost and time cost, as shown in Table 4. When using the video VAE decoder,
we can only decode 2 temporal latents in each iteration with 80GB of GPU memory during ReFL
training, while camera-aware 3D decoder can decoder all 49 frames. Moreover, the visibility mask
is not available with video VAE decoder.

Table 4: Comparison of GPU Memory and Time Cost
Decoder Type GPU Memory Cost (GB) Time Cost (s)
Camera-aware 3D Decoder 8.44 0.559
Video VAE Decoder 43.17 5.602
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Figure 10: The detailed network architecture
for camera-controlled video diffusion model.
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Figure 11: The detailed network architecture
for camera-aware 3D decoder.

A.5 OPTIMIZATION AND ADDITIONAL MODEL DETAILS

Optimization Details. We used the Adam optimizer (Kingma & Ba, 2014). In the first stage, the
learning rate was set to 1 × 10−4. In the second stage, the learning rate was set to 3 × 10−4, and
in the third fine-tuning stage, the learning rate was set to 1 × 10−5. In the first stage, we used 16
NVIDIA A800 GPUs for basic camera-controlled video model training with a batch size of 16 for
10K steps. In the second stage, we used 32 NVIDIA A800 GPUs to train our camera-aware 3D
decoder with a batch size of 32 for 100K steps. In the third stage, we used 16 NVIDIA A800 GPUs
for reward-based feedback learning with a batch size of 16 for 5K steps. In this stage, we perform
denoising a total of 7 times, and the reward gradient propagates through all the denoising steps.

Network architecture. Our network architecture is similar to that of Wonderland (Liang et al.,
2024). The details of the network for the first stage are shown in Fig. 10. Pixel-aligned Plücker
embeddings are compressed via a Conv3D layer, ensuring the camera latent shares the same di-
mension with the video latent. Then, batch normalization, an activation layer, and a max pooling
layer are used to convert the camera latent into sequential tokens as ControlNet input. For efficiency
considerations, we only copied the first 8 transformer blocks.

For the camera-aware 3D decoder, we elaborate on the network architecture in Fig. 11. We convert
the video latent using Conv2D into visual tokens. To ensure the same dimension for the camera
embedding, we leverage Conv3D for spatial-temporal compression. Then, visual tokens and camera
tokens are concatenated along the channel dimension. Four Transformer blocks and a DeConv3D
layer are used to process the concatenated tokens into pixel-aligned 3DGS. Note that we do not
recover the original spatial resolution for 3DGS, which we found is sufficient to represent a scene.
During training, we employed 49 supervision views, where 14 frames are randomly sampled from
the source video clip as seen views, and the remaining 35 are selected from disjoint frames as unseen
views to ensure 3D consistency
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A.6 PLÜCKER EMBEDDINGS DERIVATION

Given a camera trajectory with extrinsic parameters E = [R; t] ∈ R3×4 and intrinsic matrix K ∈
R3×3, we derive the Plücker representation s = (o × d′,d′) for each pixel (u, v). The camera’s
world-space origin o is defined by the translation vector t. The direction vector d from the camera
center to the pixel is computed as:

d = RK−1[u, v, 1]T + t

where K−1[u, v, 1]T transforms the pixel coordinates into normalized camera coordinates, and R
rotates these coordinates into the world space. The unit-normalized direction d′ is obtained by
normalizing d:

d′ =
d

∥d∥

The Plücker representation p is then given by:

s = (o× d′,d′)

where o×d′ represents the moment of the line, calculated as the cross product of the camera origin
and the unit direction vector. We generate a per-frame Plücker tensor Pi ∈ R6×h×w, ensuring that
its spatial dimensions h and w align with those of the video, which is favorable for conditioning
with ControlNet.

A.7 PROJECTION FORMULATION FOR THE MEAN OF 3DGS

In this section, we describe how the XYZ positions of the 3DGS are obtained through Plücker
embedding. Plücker embedding defines the ray origin and direction for each pixel, allowing us to
map the network’s output depth to spatial coordinates.

The Plücker embedding provides a representation of lines in 3D space using two vectors: the ray
origin o and the ray direction d. For each pixel, these vectors define a line in space. The depth
value z output by our network can be used to compute the XYZ position p of the 3DGS using the
following mapping formula:

p = o+ z · d

Here, o is the origin of the ray, d is the direction of the ray, and z is the depth value. This formulation
allows us to convert depth information into precise spatial coordinates, effectively reconstructing the
3D geometry of the scene.

By leveraging Plücker embedding, our approach ensures that each pixel’s depth is accurately pro-
jected into 3D space, facilitating the generation of a pixel-aligned 3DGS representation. However, if
the generated video latent does not match the camera condition, the projection may lead to degraded
geometry, which further affects the rendering quality.

A.8 THE EFFECT OF MISMATCHED CAMERA POSE

During our camera-aware 3D decoder training, we pair the video latent with the ground-truth cam-
era pose as input. It is crucial to describe the scenario where the input pose does not align with the
camera motion in the video. Since the pose serves as both the network input and a key projection
parameter during the camera-aware 3D decoder training, any inconsistency can lead to blurred ren-
dering effects. As illustrated in the Fig. 12, when perturbations are added to the ground-truth pose,
the rendered images become noticeably blurred.
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Input Image Decoded frame by video VAE decoder Rendered frame by our 3D decoder 

Figure 12: We add perturbation to the given camera pose, and the rendered image becomes notice-
ably blurred, indicating the importance of aligned poses for rendering photorealistic images.
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