

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAMPILOT: IMPROVING CAMERA CONTROL IN VIDEO DIFFUSION MODEL WITH EFFICIENT CAMERA REWARD FEEDBACK

Anonymous authors

Paper under double-blind review

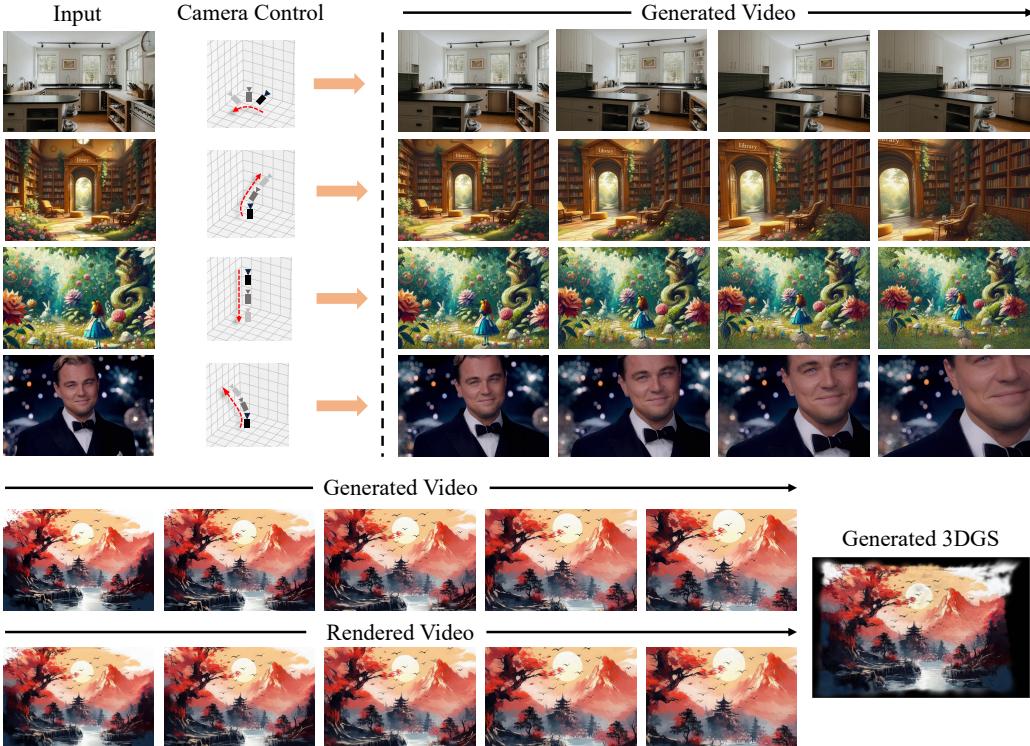


Figure 1: Our model functions as a comprehensive framework for world-consistent video generation and scene reconstruction. In the upper section, it excels at generating 3D-consistent scene videos for world exploration by following custom camera trajectories. In the lower section, it efficiently reconstructs high-quality 3D scenes in a feed-forward manner with generated video frames.

ABSTRACT

Recent advancements in camera-controlled video diffusion models have significantly improved video-camera alignment and enabled more accurate 3D scene generation, driven by potential downstream applications such as virtual reality. However, we reveal that existing approaches often struggle to precisely adhere to the given camera conditions, leading to inconsistencies in the 3D geometry. Inspired by Reward Feedback Learning in diffusion models, which has demonstrated strong potential in aligning model outputs with task-specific objectives, we build upon this paradigm and aim to further improve camera controllability. Directly borrowing existing ReFL approaches faces several challenges. First, current reward models lack the capacity to assess video-camera alignment. Second, decoding latent into RGB videos for reward computation introduces substantial computational overhead. Third, 3D geometric information is typically neglected during video decoding. To address these limitations, we introduce a camera-aware 3D decoder that efficiently decodes video latent into 3D representations for reward computation. Specifically, we project the video latent and camera pose into 3D Gaussians, which supports efficient rendering from arbitrary views. In this pro-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107

cess, the camera pose not only acts as an input variable but also serves as a projection parameter for determining the mean of each 3D Gaussian. If the generated video does not match the camera conditions, the 3D structure becomes geometrically inconsistent, leading to blurry rendered images. Based on this property, we explicitly optimizing pixel-level consistency between rendered novel views and ground-truth ones as reward feedback. To accommodate the stochastic nature, we further introduce a visibility term that selectively supervises only deterministic regions derived via geometric warping. Extensive experiments conducted on the RealEstate10K and WorldScore benchmarks demonstrate the effectiveness of our proposed method in enhancing both camera controllability and generation quality.

1 INTRODUCTION

Video diffusion models have recently achieved impressive progress (Blattmann et al., 2023; Yang et al., 2024c; Liu et al., 2024), enabling the generation of high-quality and temporally coherent videos conditioned on inputs such as text prompts or a single image. Despite these advances, real-world applications often demand a higher degree of controllability. A key factor is camera controllability. Users not only expect visually realistic content but also require explicit control over camera trajectories to support user-friendly and customizable content creation.

To address the need for camera-controlled video generation, several recent works (Yu et al., 2024; Ren et al., 2025; Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent et al., 2024; Bahmani et al., 2024a; He et al., 2024) have explored this task by fine-tuning pretrained video models with paired camera conditioning. Recognizing that many downstream applications such as virtual reality (Schuemie et al., 2001), robotics (Mateo et al., 2016), and game development (Gregory, 2018) require not only high-quality visuals but also consistent 3D representations, these methods have begun to bridge the gap between 2D generation and 3D reconstruction. A common strategy is to reconstruct 3D by optimizing over generated novel views. Despite these advancements, precise camera control is still difficult to achieve in practice, often resulting in inconsistent and sub-optimal convergence during 3D reconstruction. In fact, improving the alignment between generated content and given conditions is a long-standing problem in generative models.

Recent works (Prabhudesai et al., 2024; Li et al., 2024b; Liu et al., 2025; Zhang et al., 2024a; Xu et al., 2023; Prabhudesai et al., 2023) have introduced Reward Feedback Learning (ReFL) for diffusion models to further refine the model according to human preferences or task-specific objectives, drawing inspiration from the Reinforcement Learning from Human Feedback (RLHF) (Grattafiori et al., 2024; Yang et al., 2024a; Lee et al., 2023) of large language models (LLMs). For instance, VADER (Prabhudesai et al., 2024) explores a range of reward functions—such as perceptual quality, text-video semantic alignment, and aesthetic appeal—to enhance visual fidelity and semantic consistency. Controlnet++ (Li et al., 2024b) leverages pixel-level cycle consistency as a reward to improve image-based controllability. However, none of these approaches considers camera controllability.

In this work, we aim to enhance the adherence to camera conditioning through ReFL, a topic that remains under-explored in the context of video diffusion. However, there are three main challenges in adopting this strategy for camera-controlled video diffusion. First, current models struggle to assess the alignment of camera conditions in video generation. Second, reward computation necessitates decoding the generated latent into video, leading to VRAM inefficiency due to the resource-intensive nature of video decoders. Lastly, these methods often overlook the underlying 3D geometric structure during video decoding, which restricts their effectiveness in the 3D-like task. A naive approach would be to use COLMAP (Schönberger & Frahm, 2016) for camera pose estimation. However, the heavy computational cost and scale-invariant pose estimation make it infeasible for efficient training and precise pose supervision. Considering the three challenges, we introduce a camera-aware 3D decoder that enables computationally efficient evaluation of video-camera consistency without requiring heavy computation. Specifically, we project the video latent—obtained by encoding a raw video using the video VAE—along with the corresponding ground-truth camera poses into a 3D representation, namely 3D Gaussians (3DGS) (Kerbl et al., 2023). This representation supports efficient novel view rendering from arbitrary viewpoints and utilizes photometric loss for supervision. In this projection process, camera poses play a crucial role. On the one hand, they are transformed into Plücker embeddings (He et al., 2024) as part of the network input. On the other hand, the mean

of each 3D Gaussian is computed by projecting the camera pose along with the predicted depth. These two mechanisms ensure that when the generated video latent is misaligned with the input camera poses, the resulting 3DGS becomes geometrically inconsistent, leading to degraded renderings. Based on this property, we regard minimizing the pixel-level difference between the rendered videos and ground-truth sequences as a camera-aware reward. This design is consistent with the nature of the proposed camera-aware 3D decoder, which emphasizes low-level visual cues.

However, computing pixel-level rewards presents unique challenges. High-level semantic rewards can be meaningfully applied across multiple diverse diffusion samples, while low-level pixel alignment rewards are sensitive to diverse generation results. Camera-controlled video generation often involves hallucinated content, making it difficult to enforce strict pixel-level consistency across all pixels without suppressing generative diversity. To address this, our reward formulation is carefully designed to focus only on deterministic regions that are visible in the conditioning image, while ignoring unconstrained areas that permit creative generation. To this end, we design a visibility-aware reward objective that restricts reward computation to deterministic regions while avoiding penalization in hallucinated or occluded areas. Since our camera-aware 3D decoder is inherently 3D-aware, we can render depth maps from the 3DGS. By combining the rendered depth with camera poses, we can determine the visibility of each pixel across all frames through geometric warping.

To summarize, our contributions are listed as follows.

- We propose a camera-aware 3D decoder that lifts the video latent along with the camera pose into 3DGS, which supports efficient rendering from arbitrary viewpoints and enables the evaluation of the alignment between camera conditions and the generated video.
- We employ reward-based feedback learning to further improve the alignment between the video and the camera by regarding the minimization of the deterministic pixel-level difference between the rendered videos and ground-truth videos as a reward.
- Extensive experiments demonstrate the effectiveness of the proposed framework, significantly improving camera controllability and visual quality.

2 RELATED WORK

2.1 CAMERA CONTROLLED VIDEO DIFFUSION MODELS

With the rapid advancements in video diffusion models, camera-controlled video generation (He et al., 2024; Bahmani et al., 2024b;a; Yu et al., 2024; Ren et al., 2025; Gao et al., 2024; Wang et al., 2024b; Hu et al., 2025) has garnered significant attention in the research community. Recent works such as MotionCtrl (Wang et al., 2024b), CameraCtrl (He et al., 2024), and ViewCrafter (Yu et al., 2024) inject various forms of camera conditioning—ranging from extrinsics and Plücker embeddings (Sitzmann et al., 2021) to point cloud renders—into pretrained video generation models. More recently, AC3D (Bahmani et al., 2024a) has carefully explored the spatial and temporal points at which camera representations should be injected. CameraCtrl2 (He et al., 2025) investigates this task from a dataset curation perspective to enable dynamic scene generation with controllable cameras. CamCo (Xu et al., 2024a) introduces epipolar constraints into attention layers, while Gen3C (Ren et al., 2025) and FlexWorld (Chen et al., 2025) maintain a spatiotemporal 3D cache to enhance robustness in camera control. Despite these advances, existing approaches still face challenges in achieving precise control and remain largely constrained to 2D video generation. In this work, we enhance camera controllability through reward feedback learning and, importantly, enable the simultaneous generation of corresponding 3D counterparts in an efficient feed-forward manner. Our framework adopts Plücker embeddings as the camera condition. However, the proposed preference fine-tuning is a general method and can be applied to any form of camera condition representation.

2.2 3D GENERATIVE MODELS

Object-level 3D generative models (Hong et al., 2023; Zhang et al., 2024b; Ge et al., 2024; 2023; Zhang et al., 2024c; Jiang et al., 2025; Xu et al., 2024b) have made remarkable progress in recent years, largely driven by the availability of large-scale 3D object datasets. However, 3D scene generation remains relatively under-explored. Most video diffusion based approaches (Yu et al., 2024; Ren et al., 2025; Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent

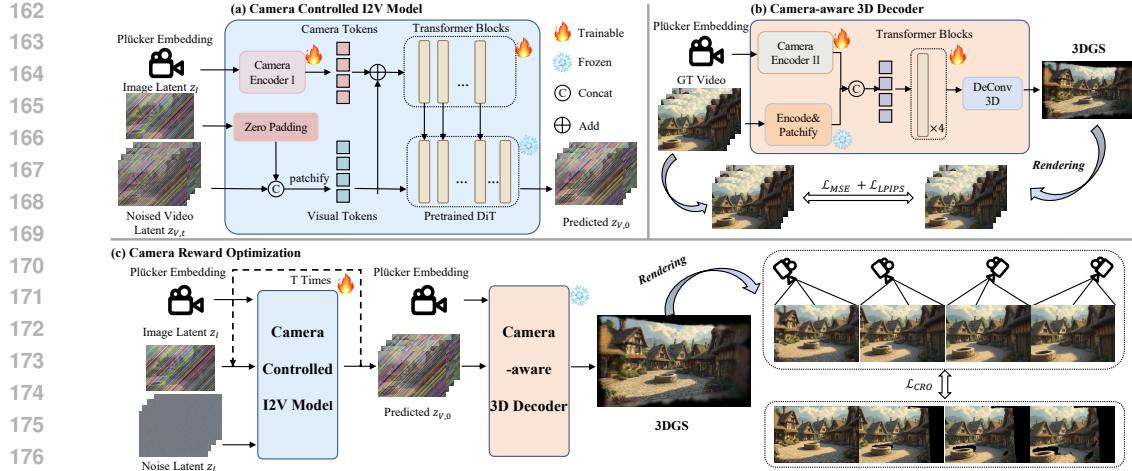


Figure 2: Overall of our framework. It consists of (a): a camera-controlled I2V model, where we inject Plücker Embedding as camera condition using ControlNet. (b) A camera-aware 3D decoder that decodes latent to 3DGS, supporting rendering for reward computation. (c) Camera reward optimization that minimizes mask-aware difference between rendered videos and ground-truth ones.

et al., 2024) typically adopt a two-stage pipeline. In the first stage, diffusion models are employed to generate novel views given sparse or single-view observations and target poses. In the second stage, per-scene optimization is conducted using the generated novel views and corresponding target poses. Object-level 3D generative models (Hong et al., 2023; Zhang et al., 2024b; Ge et al., 2024; Li et al., 2025; Zhang et al., 2024c; Jiang et al., 2025) have made remarkable progress in recent years, largely driven by the availability of large-scale 3D object datasets. However, 3D scene generation remains relatively under-explored. Most video diffusion based approaches (Yu et al., 2024; Ren et al., 2025; Gao et al., 2024; Sun et al., 2024; Voleti et al., 2024; Chan et al., 2023; Sargent et al., 2024) typically adopt a two-stage pipeline. In the first stage, diffusion models are employed to generate novel views given sparse or single-view observations and target poses. In the second stage, per-scene optimization is conducted using the generated novel views and corresponding target poses. Despite their effectiveness, such two-stage approaches suffer from two main limitations. First, the per-scene optimization process is time-consuming, making it difficult to scale to large numbers of scenes. Second, the quality of scene reconstruction is highly sensitive to the consistency between the generated novel views and the target camera poses. misalignment between them can lead to suboptimal convergence. In contrast, we propose a camera-aware 3D decoder that not only enables efficient 3D scene reconstruction in a feed-forward manner, but also serves as a reward function to minimize the misalignment between generated novel views and their corresponding target poses.

2.3 ALIGNING DIFFUSION MODELS WITH PREFERENCE

Drawing inspiration from Reinforcement Learning from Human Feedback (RLHF) in the field of large language models (LLMs), recent works have begun to incorporate similar paradigms into diffusion models to better align generation quality with human preferences (Yang et al., 2024b; Prabhudesai et al., 2024; Yuan et al., 2024; Liu et al., 2025; Li et al., 2024a,b; Xu et al., 2023; Zhang et al., 2024a). For instance, ControlNet++ (Li et al., 2024b) explicitly optimizes pixel-level cycle consistency between generated images and conditional controls for improving controllable generation. UniFL Zhang et al. (2024a) proposes a unified framework that leverages feedback learning to enhance diffusion models comprehensively. VADER (Prabhudesai et al., 2024) explores a variety of reward models to fine-tune video generation. However, these approaches require decoding the video latent into RGB video as input for the reward model to compute the reward gradient. This process introduces significant memory costs, constraining efficiency. Moreover, while these methods primarily focus on enhancing overall quality or alignment with text prompts, none explicitly address the challenge of improving camera controllability in video generation. To address this gap, we propose a novel camera-aware 3D decoder specifically designed to enhance camera controllability in video diffusion models through reward feedback learning.

216

3 METHOD

218 We begin with a brief overview of camera-controlled video diffusion models, feed-forward Gaussian
 219 models, and reward feedback learning in Section 3.1. Section 3.2 describes the training of the
 220 camera-controlled video diffusion model with miscellaneous improvements. We then introduce our
 221 camera-aware 3D decoder in Section 3.3, followed by the meticulously designed reward feedback
 222 learning objective in Section 3.4. An overview of the entire framework is shown in Figure 2.

224

3.1 PRELIMINARIES

226 **Camera controlled video diffusion model** learns to model the conditional distribution $p(\mathbf{x}_0|c, \mathbf{s})$
 227 of video tokens, where \mathbf{x}_0 denotes the video latent obtained from a video VAE (Yang et al., 2024c)
 228 , c refers to the text or image condition and \mathbf{s} is the camera condition. During training, noise ϵ_t is
 229 added to the latent \mathbf{x}_0 at each timestep $t \in [0, T]$ and a transformer model (Peebles & Xie, 2022) is
 230 optimized to predict this noise using the following objective:

$$231 L(\theta) = \mathbb{E}_{\mathbf{x}_0, \epsilon, c, \mathbf{s}, t} [\|\epsilon - \hat{\epsilon}_\theta(\mathbf{x}_t, c, \mathbf{s}, t)\|_2^2]. \quad (1)$$

232 Following prior methods (He et al., 2024; Bahmani et al., 2024a;b), we adopt the Plücker embedding
 233 (Sitzmann et al., 2021) as the camera condition, which provides pixel-aligned camera information
 234 and facilitates the use of ControlNet (Zhang et al., 2023) for conditioning.

235 **Feed-forward Gaussian model** aims to reconstruct 3DGS from a single image or multi-view images
 236 (Tang et al., 2024). It leverages a transformer-based architecture to project 2D images, along with
 237 their camera poses, into a pixel-aligned 3DGS. This 3D representation can then be differentiably
 238 rendered from arbitrary viewpoints, enabling photometric supervision and end-to-end optimization.

239 **Reward feedback learning** is a preference fine-tuning framework that directly optimizes the generation
 240 process using differentiable reward models and aims to improve the model by aligning the
 241 behavior of network output with external preference signals, such as human feedback or heuristic
 242 reward models (Wallace et al., 2024; Black et al., 2023; Xu et al., 2023).

244

3.2 ADDING CAMERA CONTROL TO VIDEO GENERATION

246 Following previous works (He et al., 2024; Bahmani et al., 2024b;a; Liang et al., 2024), we incorporate
 247 camera information (i.e., Plücker embeddings) into the denoising process through ControlNet
 248 (Zhang et al., 2023). The raw Plücker embeddings are first compressed along the spatial and temporal
 249 dimensions to align with the shape of the video latent, following the architectural design of Wonderland
 250 (Liang et al., 2024). To construct the ControlNet, we replicate the first several transformer
 251 blocks from the base video model and append a zero-initialized linear layer for stable training. In-
 252 spired by AC3D (Bahmani et al., 2024a), we copy only the first several transformer blocks, which
 253 has been shown to strike a balance between controllability and computational efficiency. AC3D
 254 further observes that video diffusion models tend to establish low-frequency camera motion during
 255 the early stages of the denoising process. As a result, injecting camera control signals at later
 256 timesteps provides limited benefits and may even impair visual quality, rendering late-stage condition-
 257 ing largely ineffective. Following this insight, we adopt a truncated normal distribution with
 258 a mean of 0.8 and a standard deviation of 0.075, restricted to the interval [0.6, 1], to bias timestep
 259 sampling toward earlier denoising steps where camera control is most effective. The network archi-
 260 tecture and training details can be found in the Appendix.

261 Despite these advancements, the overall camera controllability remains limited. Inspired by ReLF
 262 for video diffusion models, we aim to further improve the alignment by explicitly optimizing over
 263 denoising trajectories with reward feedback learning. To enable this, we first introduce a camera-
 264 aware 3D decoder that quantitatively evaluates the alignment of camera trajectory in the generated
 265 videos. This is followed by a dedicated reward objective for feedback learning.

266

3.3 CAMERA-AWARE 3D DECODER

268 ReFL methods primarily focus on enhancing visual quality or alignment with text through high-level
 269 semantic rewards, such as aesthetics evaluators or image-text similarity scores. However, existing
 270 models struggle to effectively assess how well the generated video matches the camera conditions.

270 A straightforward approach is to use COLMAP (Schönberger & Frahm, 2016), which can estimate
 271 camera poses from videos. Nonetheless, COLMAP demands substantial computational time to eval-
 272 uate a single video and produces scale-invariant pose estimates, making it unsuitable for real-time
 273 training and pose supervision. Additionally, ReFL methods typically require decoding latent into
 274 RGB format for reward computation. This process is computationally expensive and only includes
 275 2D information, whereas camera-controlled video generation inherently requires the video model to
 276 reason about 3D geometric information. Therefore, we aim to explore a 3D decoder for efficiently
 277 decoding video latent to video with 3D information incorporated. Moreover, the 3D decoder should
 278 also be camera-aware to ensure a quantitative assessment of the camera-video alignment.

279 To this end, we propose a latent-based feed-forward 3D Gaussian model as our camera-aware 3D
 280 decoder, which essentially extends video VAE to decode 3D representation. Specifically, we train
 281 a transformer that takes both video latent and their corresponding Plücker embeddings as input,
 282 and outputs per-pixel aligned 3DGS. The positions of these 3DGS are estimated by projecting the
 283 camera parameters together with the predicted ray distances t using the relation $\mathbf{u} = \mathbf{r}_o + t \cdot \mathbf{r}_d$. To
 284 train the decoder, we randomly select a stride s to sample a video sequence consisting of T frames.
 285 The video VAE encoder first compresses these T frames into latent, which are subsequently fed
 286 into trainable transformer blocks along with Plücker embeddings to predict the 3DGS. The training
 287 objective employs a combination of mean squared error (MSE) loss and LPIPS loss (Zhang et al.,
 288 2018a) between rendered images and ground-truth ones, ensuring both pixel-level accuracy and
 289 perceptual quality. To improve the rendering quality of unseen views and enforce 3D consistency, we
 290 additionally render novel views corresponding to the frames skipped during stride-based sampling.
 291 The detailed architecture can be found in the Appendix.

292 Within this framework, the camera poses play a crucial role in computing the final 3DGS, which
 293 act as input and projection variable. As a result, if the input latent and the camera poses are not
 294 well aligned, the 3D geometry deteriorates, leading to noticeably blurrier rendering. Based on this
 295 property, we design our reward for feedback learning.

296 3.4 CAMERA REWARD OPTIMIZATION

297 With the camera-aware 3D decoder, we propose Camera Reward Optimization (CRO) to use reward
 298 gradients to further improve the camera controllability. Considering the property that if the gener-
 299 ated videos misalign with the camera condition, the renderings become blurry, a naive approach is
 300 to penalize the blurriness. However, directly penalizing the blurriness easily leads to reward hack-
 301 ing issues (Skalse et al., 2022). This means that the generated content may become clearer, but
 302 it may not align with the trajectory of the ground truth video. Hence, we regard minimizing the
 303 pixel-level difference between the rendered videos and ground-truth sequences as the reward. This
 304 design is consistent with the nature of the proposed camera-aware 3D decoder, which acts as a 3D
 305 representation decoder and supports rendering novel views, emphasizing low-level visual cues.

306 However, video generation introduces inherent stochasticity, making it infeasible to directly mini-
 307 mize the pixel-level difference with ground-truth videos since newly generated parts cannot align
 308 with ground-truth videos. To accommodate the stochastic nature, we adopt a visibility-aware re-
 309 ward strategy that restricts supervision to pixels that are visible in the conditioning image, which is
 310 generally deterministic. Visible mask can be derived by geometric warping, which requires depth
 311 information and camera poses. Fortunately, due to the inherent 3D structure of our camera-aware
 312 3D decoder, we can obtain the rendered depth, which facilitates visibility estimation. Specifically,
 313 given the ground-truth video with corresponding camera poses $\mathbf{E} = [R; t] \in \mathbb{R}^{T \times 3 \times 4}$ and intrinsic
 314 matrix $K \in \mathbb{R}^{T \times 3 \times 3}$, and the image condition $\mathbf{I}_0 \in \mathbb{R}^{H \times W \times 3}$, which is the first frame of the video,
 315 we compute a per-frame visibility mask based on geometric warping. Omitting the temporal script,
 316 each pixel (u, v) from the target view is back-projected into 3D world coordinates using the rendered
 317 depth map \mathbf{D} , intrinsic matrix \mathbf{K} , and camera extrinsic matrix \mathbf{E} :

$$\mathbf{X}^{\text{world}}(u, v) = \mathbf{E} \cdot [\mathbf{D}(u, v) \cdot \mathbf{K}^{-1}[u, v]^T]. \quad (2)$$

318 Next, the 3D points are projected into the conditioned reference view using the its extrinsic matrix
 319 \mathbf{E}_0 and intrinsic matrix \mathbf{K}_0 . The projected 2D coordinates in the reference view are obtained by:

$$\mathbf{x}^{(0)}(u, v) = \mathbf{K}_0 \cdot \mathbf{E}_0^{-1} \cdot [\mathbf{X}^{\text{world}}(u, v)]. \quad (3)$$

320 We then sample the reference depth map \mathbf{D}_0 at the projected location to obtain $D_0^{\text{proj}}(u, v)$. A
 321 visibility mask \mathbf{M} is constructed by comparing the reprojected depth $\hat{z}^{(0)}(u, v)$ with the sampled

324 depth, and a pixel is considered visible if the two depths agree within a tolerance τ :
 325

$$326 M(u, v) = \begin{cases} 1, & \text{if } |\hat{z}^{(0)}(u, v) - D_0^{\text{proj}}(u, v)| < \tau \text{ and } D_0^{\text{proj}}(u, v) > 0, \\ 327 0, & \text{otherwise.} \end{cases} \quad (4)$$

329 With the visibility mask, we follow the VADER framework (Prabhudesai et al., 2024) and restrict the
 330 reward on deterministic pixels, defining a masked MSE loss and LPIPS loss between the rendered
 331 image $\hat{\mathbf{I}}$ and the ground-truth image \mathbf{I} as:
 332

$$333 \mathcal{L}_{\text{CRO}} = \mathcal{L}_{\text{MSE}}(\hat{\mathbf{I}}, \mathbf{I}, \mathbf{M}) + \lambda \cdot \mathcal{L}_{\text{LPIPS}}(\hat{\mathbf{I}}, \mathbf{I}, \mathbf{M}).$$

334 Here the ground-truth images include novel views that were skipped during stride-based sampling.
 335 The parameter λ is set empirically to 0.5. Different from VADER, gradients propagate through all
 336 denoising time steps and our lightweight camera-aware 3D decoder can decode all T frames.
 337

338 4 EXPERIMENTS

339 4.1 DATASETS AND EVALUATION PROTOCOL

340 **Training Datasets.** Following previous methods (Bahmani et al., 2024b; Wang et al., 2024b; He
 341 et al., 2024), we utilized RealEstate10K (RE10K) (Zhou et al., 2018) as our training data, which
 342 contains approximately 65K videos in the train split. We used these 65K videos for training both the
 343 camera-aware 3D decoder and the camera-controlled video diffusion model.
 344

345 **Testing Datasets.** Following previous works (Liang et al., 2024; Yu et al., 2024), we randomly
 346 selected 300 videos from the approximately 7K test sets of RE10K, ensuring no overlap with the
 347 training data. We also adopted the WorldScore (Duan et al., 2025) static benchmark for out of
 348 domain comparison, which consists of 2,000 static test examples.
 349

350
 351 Figure 3: Qualitative comparison of video generation: our model produces novel views that are
 352 better aligned with the camera poses with higher quality, outperforming other methods.
 353

354 **Evaluation Protocol.** We evaluated the quality of the generated videos using multiple metrics. Fol-
 355 lowing previous works (Liang et al., 2024; He et al., 2024; Bahmani et al., 2024b;a), we employed
 356 Fréchet Inception Distance (FID) (Heusel et al., 2017) and Fréchet Video Distance (FVD) (Unterthiner
 357 et al., 2019) to assess visual quality. Additionally, PSNR, LPIPS, and SSIM metrics were
 358 used to evaluate the quality of novel view synthesis, camera controllability, and the performance of
 359 scene reconstruction. Following the approach in Wonderland (Liang et al., 2024), we also compute
 360 these metrics for the first 14 frames due to the randomness in generation. For further evaluating cam-
 361 era controllability, we used rotation error (R_{err}) and translation error (T_{err}) computed via DROID-
 362 SLAM (Teed & Deng, 2021) following WorldScore (Duan et al., 2025). Furthermore, we evaluated
 363 WorldScore (Duan et al., 2025) on WorldScore static benchmark. In addition, we compared the
 364 decoded video (from the video VAE decoder) and the rendered video (from the camera-aware 3D
 365 decoder) using the same generated latent. We report PSNR, SSIM (Wang et al., 2004), and LPIPS
 366 (Zhang et al., 2018b) as metrics to further evaluate the camera controllability.
 367

378 4.2 IMPLEMENTATION DETAILS.
379380 We built our model upon CogVideoX-5B-I2V (Yang et al., 2024c). To inject camera conditioning,
381 we adopt ControlNet (Zhang et al., 2023), initializing the control branch with the first 8 base
382 transformer blocks from the pretrained video model. For the camera-aware 3D decoder, we used 4
383 transformer blocks with a hidden dimension of 1,024. Please refer to Appendix for more details.
384385 4.3 COMPARISON ON VIDEO GENERATION
386387 We compared the proposed framework with four baselines: MotionCtrl (Wang et al., 2024b), Cam-
388 eraCtrl (He et al., 2024), ViewCrafter (Yu et al., 2024), and FlexWorld (Chen et al., 2025). The
389 qualitative comparison is illustrated in Fig. 3, while the quantitative results are presented in Table 1.
390 Our method surpasses existing approaches in both novel view synthesis and camera controllability.
391

Method	Video Generation							3D Scene Generation		
	FID ↓	FVD ↓	R_{err} ↓	T_{err} ↓	PSNR ↑	LPIPS ↓	SSIM ↑	PSNR ↑	LPIPS ↓	SSIM ↑
Rec-only	-	-	-	-	-	-	-	27.57	0.181	0.883
MotionCtrl	24.67	205.27	0.153	0.385	14.24	0.520	0.532	14.02	0.536	0.533
CameraCtrl	22.17	96.52	0.078	0.222	17.58	0.586	0.360	17.30	0.391	0.573
ViewCrafter	17.92	109.30	0.039	0.194	19.33	0.326	0.710	18.57	0.383	0.688
FlexWorld	17.23	103.94	0.030	0.177	21.27	0.292	0.731	19.12	0.360	0.703
Ours	11.22	81.35	0.023	0.152	23.77	0.226	0.766	21.72	0.272	0.717

397 Table 1: Quantitative comparison on video and 3D scene generation with the baseline methods.
398399 4.4 COMPARISON ON SCENE GENERATION
400401 To evaluate the effectiveness of our method for 3D scene generation, we compared the visual quality
402 of the rendering results with the same four baseline methods using PSNR, LPIPS and SSIM between
403 the renderings and ground-truth videos. To evaluate the upper bound of our camera-aware 3D de-
404 coder, we also reported the PSNR, LPIPS and SSIM between ground-truth video and rendered video
405 (denoted as “Rec-only”) using video and ground-truth camera pose as input. The quantitative results
406 are reported in Table 1 and the qualitative comparison is illustrated in Fig. 4.
407408 4.5 COMPARISON ON WORLDSCORE BENCHMARK
409410 We also compared on the WorldScore static benchmarks (Duan et al., 2025). The quantitative results
411 are reported in Table 2. Additional qualitative comparisons are in the Appendix. We reproduced the
412 officially released code on this benchmark using the same test settings and hyperparameters.
413414 4.6 ABLATION STUDY
415416 We conducted an ablation study to validate the effectiveness of each component in our framework.
417 The quantitative results are presented in Table 3, using PSNR, SSIM, and LPIPS metrics. These
418 metrics compare the decoded video (from the video VAE decoder) and the rendered video (pro-
419 duced by the reward model) from the same generated latent, denoted as “Rendered vs Generated.”
420 Additionally, they compare the generated videos and rendered videos with the ground-truth ones,
421 denoted as “Generated vs GT” and “Rendered vs GT,” respectively.
422423 **The effectiveness of reward feedback learning.** Reward feedback learning (ReFL) is crucial for
424 enhancing the camera controllability. We compared the results before and after applying ReFL (de-
425 noted as “w/o ReFL”) in Table 3. After implementing ReFL, the performance significantly improves,
426 indicating that the reward gradients is effective and can further enhance camera controllability. We
427 visualized a qualitative comparison and discuss further insights in the Appendix.
428

Methods	WorldScore Average	Camera Control	Object Control	Content Alignment	3D Consistency	Photometric Consistency	Style Consistency	Subjective Quality
MotionCtrl	64.15	58.65	44.54	48.42	89.87	88.13	67.37	52.07
CameraCtrl	65.42	65.72	45.31	49.10	90.07	92.42	64.70	50.64
ViewCrafter	65.47	72.40	50.71	52.34	60.56	88.30	78.29	55.68
FlexWorld	71.35	68.16	56.15	53.66	84.43	91.31	86.07	59.65
Ours	74.45	86.26	49.75	46.46	90.64	93.30	89.78	64.95

431 Table 2: Quantitative comparison across control and consistency metrics. Higher is better.
432

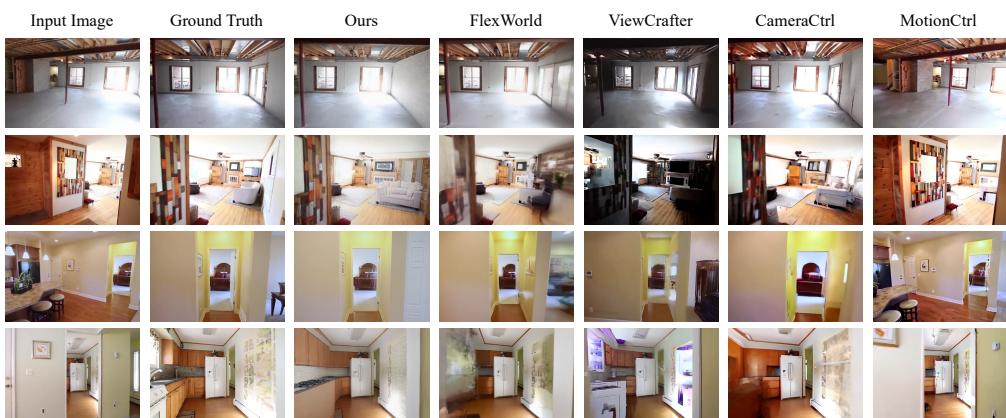


Figure 4: Qualitative comparison of 3D scene generation: our model produces more photorealistic novel view rendering that are aligned with the camera poses, outperforming other methods

Setting	Generated vs. GT			Rendered vs. GT			Rendered vs. Generated		
	Metric	PSNR↑	LPIPS↓	SSIM↑	PSNR↑	LPIPS↓	SSIM↑	PSNR↑	LPIPS↓
w/o ReFL	21.57	0.282	0.720	18.93	0.361	0.642	24.34	0.231	0.798
w/o visibility mask	22.75	0.241	0.749	20.52	0.293	0.694	26.14	0.219	0.815
w/o novel view	22.88	0.232	0.756	20.88	0.279	0.706	26.45	0.202	0.824
w/ CFG	23.30	0.235	0.751	21.04	0.282	0.709	27.08	0.193	0.841
Full model	23.77	0.226	0.766	21.72	0.272	0.717	27.13	0.192	0.844

Table 3: Ablation study to validate the effectiveness of each component.

The effectiveness of visibility mask. The visibility mask plays a crucial role in accommodating the stochastic nature of generative models by supervising only the deterministic pixels in the conditioned image. We conducted an experiment without using the visibility mask (denoted as “w/o visibility mask”) as shown in Table 3. The performance deteriorates without the visibility mask.

The effectiveness of novel views. Our camera-aware 3D decoder functions as a 3D decoder, projecting video latents into 3DGS. Unlike the video decoder, it can decode novel views in addition to the seen views that are input to the video encoder. This capability allows us to incorporate novel views as supervision. We conducted an ablation study to validate the effectiveness of using novel views, denoted as “w/o novel view” in Table 3. The performance of “w/o novel view” degrades, indicating the effectiveness of incorporating 3D geometric information.

The effect of class free guidance. During each denoising step, we have the option to use class-free guidance (CFG) or not. We conducted an ablation study to assess the impact of CFG on sampling. The qualitative comparison is presented in Table 3, labeled as “w/ CFG”. The performance is comparable to that without CFG. However, since CFG results in twice the computational overhead during training, we have opted to disable CFG in our experiments.

5 CONCLUSION AND LIMITATION

Limitation. Despite the effectiveness of our proposed method, several limitations remain. First, the performance of the 3D decoder determines the upper bound of ReFL. For efficiency, we used only a 4 transformer blocks and trained solely on RE10K. Scaling up the network and dataset may further improve this upper bound. Second, 3DGS can only represent static scenes and is not suitable for dynamic scene reconstruction. Exploring 4DGS as a reward model is a direction for future work.

Conclusion. In this work, we investigate the problem of camera-controlled video diffusion models and 3D scene generation, where the quality heavily relies on the alignment between camera conditions and the generated videos. To further improve this alignment, we introduce a camera-aware 3D decoder for efficient decoding video latent to rendered videos for reward computation. During camera reward optimization, we propose to aligns the deterministic pixels between rendered videos and ground-truth videos. Extensive experiments validate the effectiveness of the proposed method, outperforming existing methods by a large margin.

486 A REPRODUCIBILITY STATEMENT
487

488 In our work, we have provided detailed descriptions of the training data, training parameters, and
489 methodologies used in our experiments. We are committed to transparency and reproducibility in
490 research. To this end, we will be releasing the corresponding code and datasets to the public in the
491 near future. This will enable other researchers and practitioners to replicate our results and build
492 upon our work, fostering an open and collaborative scientific community.

494 REFERENCES
495

496 Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, An-
497 drea Tagliasacchi, David B Lindell, and Sergey Tulyakov. Ac3d: Analyzing and improving 3d
498 camera control in video diffusion transformers. *arXiv preprint arXiv:2411.18673*, 2024a.

499 Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian,
500 Michael Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, et al.
501 Vd3d: Taming large video diffusion transformers for 3d camera control. *arXiv preprint
502 arXiv:2407.12781*, 2024b.

503 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
504 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

505 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
506 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
507 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

508 Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W Bergman, Jeong Joon Park, Axel Levy,
509 Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel view syn-
510 thesis with 3d-aware diffusion models. In *Proceedings of the IEEE/CVF International Conference
511 on Computer Vision (ICCV)*, 2023.

512 Luxi Chen, Zihan Zhou, Min Zhao, Yikai Wang, Ge Zhang, Wenhao Huang, Hao Sun, Ji-Rong Wen,
513 and Chongxuan Li. Flexworld: Progressively expanding 3d scenes for flexible-view synthesis.
514 *arXiv preprint arXiv:2503.13265*, 2025.

515 Haoyi Duan, Hong-Xing Yu, Sirui Chen, Li Fei-Fei, and Jiajun Wu. Worldscore: A unified evalua-
516 tion benchmark for world generation. *arXiv preprint arXiv:2504.00983*, 2025.

517 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
518 Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
519 diffusion models. *arXiv preprint arXiv:2405.10314*, 2024.

520 Wenhong Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong Chen. Ref-neus: Ambiguity-reduced
521 neural implicit surface learning for multi-view reconstruction with reflection. In *Proceedings of
522 the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.

523 Wenhong Ge, Jiantao Lin, Guibao Shen, Jiawei Feng, Tao Hu, Xinli Xu, and Ying-Cong Chen. Prm:
524 Photometric stereo based large reconstruction model. 2024.

525 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
526 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
527 of models. *arXiv preprint arXiv:2407.21783*, 2024.

528 Jason Gregory. *Game engine architecture*. AK Peters/CRC Press, 2018.

529 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
530 Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint
531 arXiv:2404.02101*, 2024.

532 Hao He, Ceyuan Yang, Shanchuan Lin, Yinghao Xu, Meng Wei, Liangke Gui, Qi Zhao, Gordon
533 Wetzstein, Lu Jiang, and Hongsheng Li. Cameractrl ii: Dynamic scene exploration via camera-
534 controlled video diffusion models. *arXiv preprint arXiv:2503.10592*, 2025.

540 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 541 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 542 *neural information processing systems (NeurIPS)*, 2017.

543 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
 544 Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. *arXiv preprint*
 545 *arXiv:2311.04400*, 2023.

546 Tao Hu, Haoyang Peng, Xiao Liu, and Yuwen Ma. Ex-4d: Extreme viewpoint 4d video synthesis
 547 via depth watertight mesh. *arXiv preprint arXiv:2506.05554*, 2025.

548 Lutao Jiang, Jiantao Lin, Kanghao Chen, Wenhong Ge, Xin Yang, Yifan Jiang, Yuanhuiyi Lyu,
 549 Xu Zheng, and Yingcong Chen. Dimer: Disentangled mesh reconstruction model. *arXiv preprint*
 550 *arXiv:2504.17670*, 2025.

551 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 552 ting for real-time radiance field rendering. *ACM Transactions on Graphics (ToG)*, 2023.

553 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 554 *arXiv:1412.6980*, 2014.

555 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
 556 Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement
 557 learning from human feedback with ai feedback. 2023.

558 Jiachen Li, Weixi Feng, Tsu-Jui Fu, Xinyi Wang, Sugato Basu, Wenhua Chen, and William Yang
 559 Wang. T2v-turbo: Breaking the quality bottleneck of video consistency model with mixed reward
 560 feedback. *arXiv preprint arXiv:2405.18750*, 2024a.

561 Ming Li, Taojinnan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen
 562 Chen. Controlnet++: Improving conditional controls with efficient consistency feedback: Project
 563 page: liming-ai. [github. io/controlnet_plus_plus](https://github.com/liming-ai/controlnet_plus_plus). In *European Conference on Computer Vision*
 564 (ECCV), 2024b.

565 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 566 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis
 567 using large-scale rectified flow models. *arXiv preprint arXiv:2502.06608*, 2025.

568 Hanwen Liang, Junli Cao, Vudit Goel, Guocheng Qian, Sergei Korolev, Demetri Terzopoulos, Kon-
 569 stantinos Plataniotis, Sergey Tulyakov, and Jian Ren. Wonderland: Navigating 3d scenes from a
 570 single image. *arXiv preprint arXiv:2412.12091*, 2024.

571 Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin
 572 Wang, Wenyu Qin, Menghan Xia, et al. Improving video generation with human feedback. *arXiv*
 573 *preprint arXiv:2501.13918*, 2025.

574 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
 575 Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
 576 opportunities of large vision models. *arXiv preprint arXiv:2402.17177*, 2024.

577 CM Mateo, P Gil, and F Torres. Visual perception for the 3d recognition of geometric pieces in
 578 robotic manipulation. *The International Journal of Advanced Manufacturing Technology*, 2016.

579 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint*
 580 *arXiv:2212.09748*, 2022.

581 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
 582 image diffusion models with reward backpropagation. 2023.

583 Mihir Prabhudesai, Russell Mendonca, Zheyang Qin, Katerina Fragkiadaki, and Deepak Pathak.
 584 Video diffusion alignment via reward gradients. *arXiv preprint arXiv:2407.08737*, 2024.

585 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 586 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video
 587 generation with precise camera control. *arXiv preprint arXiv:2503.03751*, 2025.

594 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang,
 595 Eric Ryan Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, et al. Zeronovs: Zero-shot 360-degree
 596 view synthesis from a single image. In *Proceedings of the IEEE/CVF Conference on Computer*
 597 *Vision and Pattern Recognition (CVPR)*, 2024.

598 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Confer-*
 599 *ence on Computer Vision and Pattern Recognition (CVPR)*, 2016.

600 Martijn J Schuemie, Peter Van Der Straaten, Merel Krijn, and Charles APG Van Der Mast. Research
 601 on presence in virtual reality: A survey. *Cyberpsychology & behavior*, 2001.

602 Vincent Sitzmann, Semon Rezhikov, Bill Freeman, Josh Tenenbaum, and Fredo Durand. Light field
 603 networks: Neural scene representations with single-evaluation rendering. *Advances in Neural*
 604 *Information Processing Systems (NeurIPS)*, 2021.

605 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
 606 izing reward gaming. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.

607 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 608 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion.
 609 *arXiv preprint arXiv:2411.04928*, 2024.

610 Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
 611 Large multi-view gaussian model for high-resolution 3d content creation. *arXiv preprint*
 612 *arXiv:2402.05054*, 2024.

613 Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.
 614 *Advances in neural information processing systems (NeurIPS)*, 2021.

615 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
 616 and Sylvain Gelly. Fvd: A new metric for video generation. 2019.

617 Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin, Chris-
 618 tian Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and 3d
 619 generation from a single image using latent video diffusion. In *European Conference on Com-*
 620 *puter Vision (ECCV)*, 2024.

621 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 622 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 623 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 624 *and Pattern Recognition (CVPR)*, 2024.

625 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 626 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the IEEE/CVF Con-*
 627 *ference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

628 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Ge-
 629 ometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 630 *and Pattern Recognition (CVPR)*, 2024a.

631 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 632 from error visibility to structural similarity. *IEEE transactions on image processing (TIP)*, 2004.

633 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 634 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 635 *ACM SIGGRAPH 2024 Conference Papers (SIGGRAPH)*, 2024b.

636 Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz, Zhangyang Wang, and Arash Vahdat. Camco:
 637 Camera-controllable 3d-consistent image-to-video generation. *arXiv preprint arXiv:2406.02509*,
 638 2024a.

639 Jiazhen Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 640 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 641 *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

648 Xinli Xu, Wenhang Ge, Jiantao Lin, Jiawei Feng, Lie Xu, HanFeng Zhao, Shunsi Zhang, and Ying-
 649 Cong Chen. Flexgen: Flexible multi-view generation from text and image inputs. *arXiv preprint*,
 650 2024b.

651

652 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 653 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 654 *arXiv:2412.15115*, 2024a.

655 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li.
 656 Using human feedback to fine-tune diffusion models without any reward model. In *Proceedings*
 657 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024b.

658

659 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 660 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 661 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024c.

662 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 663 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 664 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024.

665

666 Hangjie Yuan, Shiwei Zhang, Xiang Wang, Yujie Wei, Tao Feng, Yining Pan, Yingya Zhang, Zi-
 667 wei Liu, Samuel Albanie, and Dong Ni. Instructvideo: Instructing video diffusion models with
 668 human feedback. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 669 Recognition (CVPR)*, 2024.

670

671 Jiacheng Zhang, Jie Wu, Yuxi Ren, Xin Xia, Huafeng Kuang, Pan Xie, Jiashi Li, Xuefeng Xiao,
 672 Weilin Huang, Shilei Wen, et al. Unifl: Improve latent diffusion model via unified feedback
 673 learning. *Advances in Neural Information Processing (NeurIPS)*, 2024a.

674

675 Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang
 676 Xu. Gs-lrm: Large reconstruction model for 3d gaussian splatting. In *European Conference on
 677 Computer Vision (ECCV)*, 2024b.

678

679 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
 680 Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
 681 assets. *arXiv preprint arXiv:2406.13897*, 2024c.

682

683 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 684 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision
 685 (ICCV)*, 2023.

686

687 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 688 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 689 computer vision and pattern recognition (CVPR)*, 2018a.

690

691 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 692 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 693 computer vision and pattern recognition (CVPR)*, 2018b.

694

695 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 696 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

697

698

699

700

701

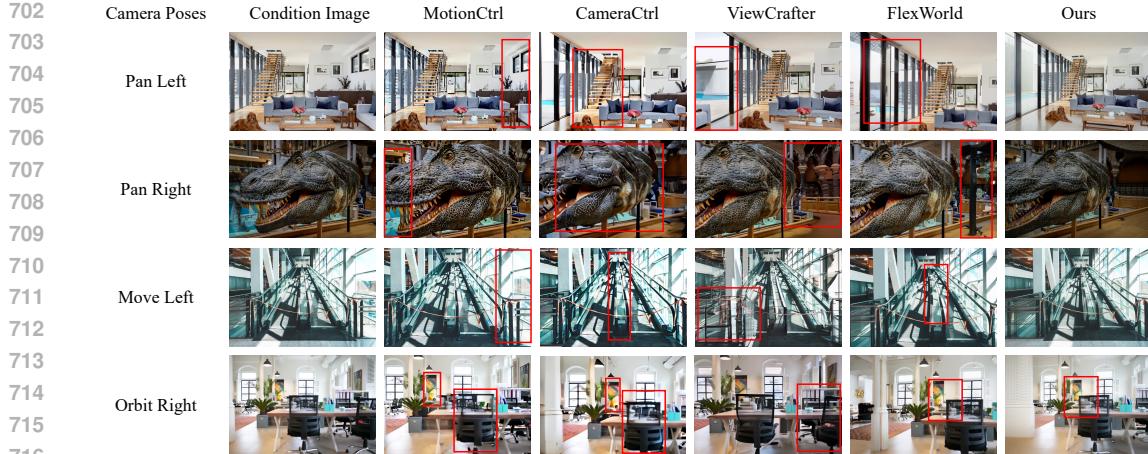


Figure 5: Qualitative comparison on WorldScore static benchmark.

A APPENDIX

A.1 USE OF LLMs

I utilize Large Language Models (LLMs) to assist and enhance my writing process. While LLMs provide valuable support, we remain the primary authors and take full responsibility for the final output, ensuring it aligns with my personal style and meets ethical standards.

A.2 QUALITATIVE COMPARISON ON WORLDSCORE STATIC BENCHMARK

We further visualize the qualitative comparison on the WorldScore static benchmark in Fig. 5. Our method generates more 3D consistent videos that match the given camera conditions.

A.3 FURTHER ANALYSIS AND DISCUSSION

Further Discussion on the Improvements of Using ReFL We discuss more improvements of after ReFL. We visualized a qualitative comparison in Fig. 6. From the first case, we can observe that “w/ ReFL” maintains better photometric consistency during camera motion. In the results “w/o ReFL,” there is an obvious photometric shift. Our camera-aware 3D decoder leverages 3DGS to represent the scene, which is typically photometrically consistent across novel views. This property is also distilled into the video diffusion model by ReFL, which is favorable for this task. Moreover, we found that “w/ ReFL” can effectively suppress dynamic generation, maintaining better 3D consistency in generated videos. Since 3DGS is essentially a static 3D representation, this property is also distilled into the video model to produce content that is both static and 3D consistent. The corresponding video can be found in the Supplementary Materials.

The scale of camera conditions. Although the camera poses in RE10K are normalized to a unified scale as described in (Zhou et al., 2018), we observed that there are still variations in scale within this unified framework. Specifically, some movements are more pronounced while others are subtler. During inference, we found that by manipulating the scale of the camera conditions, our model can effectively perceive these scale variations and generate videos that accurately reflect the intended degree of movement. We visualized some examples in Fig. 7, where the same image was used as a condition, but the scale of the camera pose was varied for each generation.

The choice of Plücker embeddings as conditions. Recent camera-conditioned video generation methods can be roughly divided into two categories: those that use point cloud renders as conditions and those that use Plücker embeddings as conditions. We chose Plücker embeddings due to their flexibility and generalization capabilities. However, our method is general and can also be employed in frameworks where point cloud renders are used as conditions. Using point cloud renders as conditions typically relies on external models (Wang et al., 2024a; 2025) for simultaneous point

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

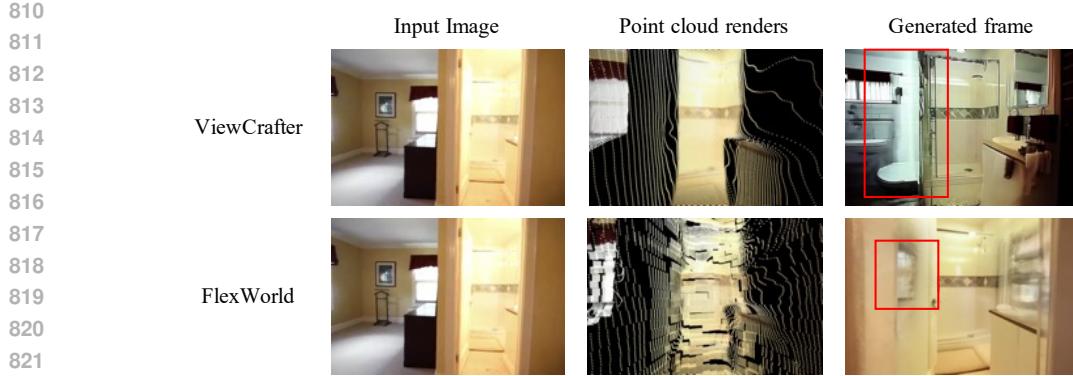
Figure 6: Qualitative comparison between “w/o ReFL” and “w/ ReFL”.

776
777
778
779
780
781

Figure 7: Our model is capable of perceiving scale variations and generating videos that accurately reflect the intended degree of movement. A larger scale results in more pronounced movements.

808

809



823
824
Figure 8: Using point cloud renders as camera condition incur a rendering leakage problem, affecting
the quality of novel view synthesis.

834
835
Figure 9: An example of ground-truth videos with varying exposure levels. The rendered video from
3DGS tends to exhibit an average exposure, which differs from the ground-truth video.

837
838
cloud and camera pose estimation to achieve alignment. If a dataset contains ground-truth metric
839
840 camera poses, the estimated point cloud should be further processed to align with the ground-truth
841 poses, while Plücker embeddings can be easily obtained without any preprocessing. Moreover, point
842 cloud renders incur a rendering leakage problem: as the camera view changes, background points
843 may be incorrectly rendered into the foreground due to improper handling of occlusion relationships,
844 affecting the realism and consistency. We show an example in Fig. 8.

845
846
847
848
849
The reconstruction performance of camera-aware 3D decoder. Our camera-aware 3D decoder is
850 exclusively trained on the RE10K dataset, which comprises estate videos exhibiting varying expo-
851 sure changes as the camera perspective shifts. The model generates per-frame 3DGS and uses them
852 as a global 3D representation for rendering. However, exposure changes result in variations in the
853 predicted spherical harmonics, which can degrade rendering quality to some extent. We show some
854 examples in Fig. 9. Collecting more consistent videos with precise camera poses can further enhance
855 the reconstruction performance of the camera-aware 3D decoder.

856 A.4 THE EFFICIENCY OF CAMERA-AWARE 3D DECODER

857
858
859 We compared the efficiency of our proposed camera-aware 3D decoder and video VAE decoder in
860 terms of GPU memory cost and time cost, as shown in Table 4. When using the video VAE decoder,
861 we can only decode 2 temporal latents in each iteration with 80GB of GPU memory during ReFL
862 training, while camera-aware 3D decoder can decode all 49 frames. Moreover, the visibility mask
863 is not available with video VAE decoder.

864
865
866
867
868
Table 4: Comparison of GPU Memory and Time Cost

869 870 871 872 873 Decoder Type	874 875 876 877 GPU Memory Cost (GB)	878 879 880 881 Time Cost (s)
874 875 876 877 Camera-aware 3D Decoder	878 879 880 881 8.44	882 883 884 0.559
874 875 876 877 Video VAE Decoder	878 879 880 881 43.17	882 883 884 5.602

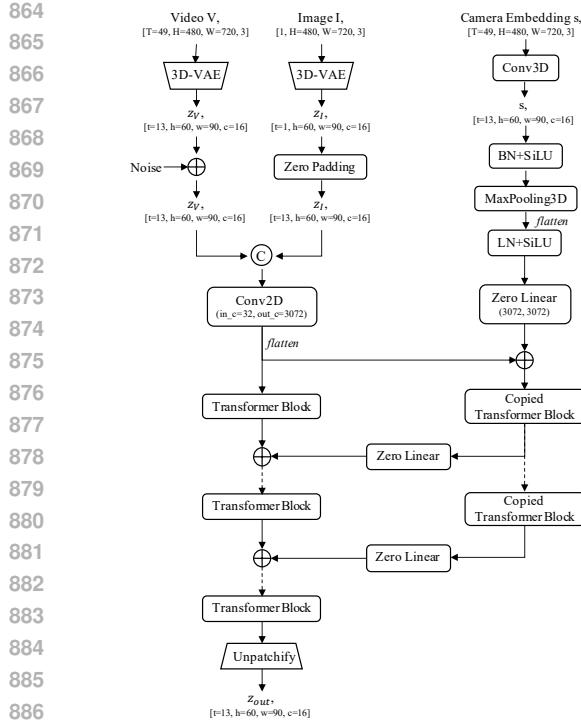


Figure 10: The detailed network architecture for camera-controlled video diffusion model.

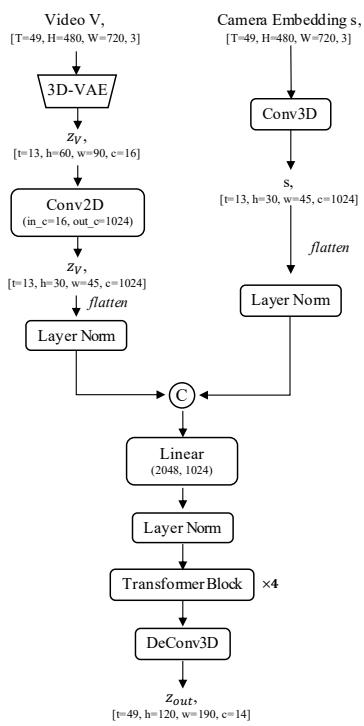


Figure 11: The detailed network architecture for camera-aware 3D decoder.

A.5 OPTIMIZATION AND ADDITIONAL MODEL DETAILS

Optimization Details. We used the Adam optimizer (Kingma & Ba, 2014). In the first stage, the learning rate was set to 1×10^{-4} . In the second stage, the learning rate was set to 3×10^{-4} , and in the third fine-tuning stage, the learning rate was set to 1×10^{-5} . In the first stage, we used 16 NVIDIA A800 GPUs for basic camera-controlled video model training with a batch size of 16 for 10K steps. In the second stage, we used 32 NVIDIA A800 GPUs to train our camera-aware 3D decoder with a batch size of 32 for 100K steps. In the third stage, we used 16 NVIDIA A800 GPUs for reward-based feedback learning with a batch size of 16 for 5K steps. In this stage, we perform denoising a total of 7 times, and the reward gradient propagates through all the denoising steps.

Network architecture. Our network architecture is similar to that of Wonderland (Liang et al., 2024). The details of the network for the first stage are shown in Fig. 10. Pixel-aligned Plücker embeddings are compressed via a Conv3D layer, ensuring the camera latent shares the same dimension with the video latent. Then, batch normalization, an activation layer, and a max pooling layer are used to convert the camera latent into sequential tokens as ControlNet input. For efficiency considerations, we only copied the first 8 transformer blocks.

For the camera-aware 3D decoder, we elaborate on the network architecture in Fig. 11. We convert the video latent using Conv2D into visual tokens. To ensure the same dimension for the camera embedding, we leverage Conv3D for spatial-temporal compression. Then, visual tokens and camera tokens are concatenated along the channel dimension. Four Transformer blocks and a DeConv3D layer are used to process the concatenated tokens into pixel-aligned 3DGS. Note that we do not recover the original spatial resolution for 3DGS, which we found is sufficient to represent a scene. During training, we employed 49 supervision views, where 14 frames are randomly sampled from the source video clip as seen views, and the remaining 35 are selected from disjoint frames as unseen views to ensure 3D consistency

918 A.6 PLÜCKER EMBEDDINGS DERIVATION
919

920 Given a camera trajectory with extrinsic parameters $\mathbf{E} = [\mathbf{R}; \mathbf{t}] \in \mathbb{R}^{3 \times 4}$ and intrinsic matrix $\mathbf{K} \in \mathbb{R}^{3 \times 3}$, we derive the Plücker representation $\mathbf{s} = (\mathbf{o} \times \mathbf{d}', \mathbf{d}')$ for each pixel (u, v) . The camera's world-space origin \mathbf{o} is defined by the translation vector \mathbf{t} . The direction vector \mathbf{d} from the camera center to the pixel is computed as:

$$925 \quad \mathbf{d} = \mathbf{R}\mathbf{K}^{-1}[u, v, 1]^T + \mathbf{t}$$

927 where $\mathbf{K}^{-1}[u, v, 1]^T$ transforms the pixel coordinates into normalized camera coordinates, and \mathbf{R}
928 rotates these coordinates into the world space. The unit-normalized direction \mathbf{d}' is obtained by
929 normalizing \mathbf{d} :

$$931 \quad \mathbf{d}' = \frac{\mathbf{d}}{\|\mathbf{d}\|}$$

933 The Plücker representation \mathbf{p} is then given by:

$$936 \quad \mathbf{s} = (\mathbf{o} \times \mathbf{d}', \mathbf{d}')$$

938 where $\mathbf{o} \times \mathbf{d}'$ represents the moment of the line, calculated as the cross product of the camera origin
939 and the unit direction vector. We generate a per-frame Plücker tensor $\mathbf{P}_i \in \mathbb{R}^{6 \times h \times w}$, ensuring that
940 its spatial dimensions h and w align with those of the video, which is favorable for conditioning
941 with ControlNet.

942 A.7 PROJECTION FORMULATION FOR THE MEAN OF 3DGS
943

944 In this section, we describe how the XYZ positions of the 3DGS are obtained through Plücker
945 embedding. Plücker embedding defines the ray origin and direction for each pixel, allowing us to
946 map the network's output depth to spatial coordinates.

947 The Plücker embedding provides a representation of lines in 3D space using two vectors: the ray
948 origin \mathbf{o} and the ray direction \mathbf{d} . For each pixel, these vectors define a line in space. The depth
949 value z output by our network can be used to compute the XYZ position \mathbf{p} of the 3DGS using the
950 following mapping formula:

$$952 \quad \mathbf{p} = \mathbf{o} + z \cdot \mathbf{d}$$

954 Here, \mathbf{o} is the origin of the ray, \mathbf{d} is the direction of the ray, and z is the depth value. This formulation
955 allows us to convert depth information into precise spatial coordinates, effectively reconstructing the
956 3D geometry of the scene.

957 By leveraging Plücker embedding, our approach ensures that each pixel's depth is accurately pro-
958 jected into 3D space, facilitating the generation of a pixel-aligned 3DGS representation. However, if
959 the generated video latent does not match the camera condition, the projection may lead to degraded
960 geometry, which further affects the rendering quality.

962 A.8 THE EFFECT OF MISMATCHED CAMERA POSE
963

964 During our camera-aware 3D decoder training, we pair the video latent with the ground-truth cam-
965 era pose as input. It is crucial to describe the scenario where the input pose does not align with the
966 camera motion in the video. Since the pose serves as both the network input and a key projection
967 parameter during the camera-aware 3D decoder training, any inconsistency can lead to blurred ren-
968 dering effects. As illustrated in the Fig. 12, when perturbations are added to the ground-truth pose,
969 the rendered images become noticeably blurred.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

Figure 12: We add perturbation to the given camera pose, and the rendered image becomes noticeably blurred, indicating the importance of aligned poses for rendering photorealistic images.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025