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ABSTRACT

Recent advances in Multimodal Large Language Models (MLLMs) have shifted
the anomaly detection paradigm from traditional classification-based approaches
toward a novel diagnostic framework based on MLLM-driven question answer-
ing. In contrast to conventional architectures characterized by “single-scenario,
single-purpose designs”, these models use pretraining to attain robust general-
ization capabilities and provide expert-level diagnostic performance. However,
current MLLM-based anomaly detection methods rely predominantly on internal-
ized knowledge of visual defects, which limits their effectiveness in open-domain
settings where anomalies demonstrate significant cross-scenario ambiguity. For
example, logical anomalies differ fundamentally from common visual defects,
and hence cannot be effectively identified using conventional visual defect-based
rules. To overcome this limitation, we propose an innovative Dynamic Context
Routing and Reasoning model (DCR²-AD), which integrates knowledge-routed
reasoning trajectory synthesis (KR-RTS) and knowledge-routed direct preference
optimization (KR-DPO) to improve the model’s capacity for appropriate external
knowledge utilization during reasoning. We first constructed an object-agnostic
knowledge base encompassing extensive defect-related knowledge. By substitut-
ing knowledge from correct reasoning trajectories with information drawn from
incorrect trajectories, we synthesized erroneous reasoning trajectories. Further-
more, we introduce the KR-DPO algorithm, which conditions on the selectively
routed knowledge to promote correct reasoning trajectories and suppress incor-
rect ones, thereby refining the model’s ability to identify optimal reasoning path-
ways. Through extensive experiments, our approach achieves state-of-the-art per-
formance, attaining 83.36% on the comprehensive MMAD benchmark, surpassing
the base model by 6.00%, outperforming ordinary human by 4.67%, and exceed-
ing the previous best method by 1.41%. These significant gains substantiate the
efficacy of our proposed framework. Our code and data will be made publicly
available upon publication of the paper.

1 INTRODUCTION

Automated industrial inspection constitutes an indispensable element of modern manufacturing
systems and is critical to ensuring efficient quality assurance throughout production processes
(Bergmann et al., 2019b;a; Cao et al., 2023; Chen et al., 2022; Huang et al., 2022; Li et al., 2024;
Gao, 2024; Jiang et al., 2022). To identify subtle defects, conventional approaches have introduced
”one-class” anomaly detection (AD) techniques (Chen et al., 2024; Fučka et al., 2024; Ho et al.,
2024; Hou et al., 2021; Lee & Choi, 2024), which model the distribution of normal samples and iden-
tify anomalies by quantifying deviations therefrom. Such methods, however, typically require col-
lecting a large number of defect-free samples from specific operational contexts, leading to limited
transferability. CLIP-based AD algorithms leverage pre-trained vision-language models to achieve
few-shot anomaly detection in general settings. Nevertheless, these methods are still confined to
classification and segmentation tasks, unlike human experts who perform diagnostic analysis based
on procedural evidence, thereby restricting their applicability to complex anomaly scenarios encoun-
tered in real-world industrial environments. The recent advancement of Multimodal Large Language
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Figure 1: Left: Comparison between original reasoning and our context-routed reasoning in
anomaly detection tasks. Our approach can route the reasoning to the correct path, improving the
model’s performance in specific contexts, such as logical anomaly detection. Right: Our approach
achieves the state-of-the-art performance on the MMAD benchmark (with the biggest area).

Models (MLLMs), endowed with strong universal pre-training and inference capabilities, offers a
promising pathway toward developing general-purpose expert-like anomaly detection systems.

Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant inno-
vation in anomaly detection methodologies. For instance, MMAD (Jiang et al., 2024) proposed a
comprehensive evaluation benchmark that comprehensively examines the model’s baseline capabil-
ities across seven dimensions, including defect detection, defect classification, object detection, and
more, becoming an important benchmark for general expert anomaly detection models. Anomaly-
OV was the first to apply MLLMs to zero-shot anomaly detection scenarios, demonstrating strong
generalization capabilities. Most other methods focus on improving model reasoning capabilities,
such as Anomaly-R1 (Chao et al., 2025), EMIT (Guan et al., 2025), IAD-R1 (Li et al., 2025), LR-
IAD (Zeng et al., 2025), and OmniAD (Zhao et al., 2025).These methods use the GRPO method
to enhance the high-quality Chain of Thought (CoT) generation capability during model reason-
ing. However, these methods focus on improving the model’s internal capabilities and ignore the
model’s use of external context, which is crucial for a highly scenario-specific problem like anomaly
detection.

Why is external context so critical for expert anomaly detection models? External context is essen-
tial for expert anomaly detection models because of the inherent contextual ambiguity of anomalies.
Specifically, the semantic meaning of an anomaly varies greatly and depends on the application.
For instance, as shown in Figure 1, appearance-based anomalies such as surface scratches or coat-
ing defects can often be detected using perceptual features derived from deep learning or image
processing. In comparison, logical anomalies such as misassembly, positional errors, or functional
failures require reasoning based on structured domain knowledge and contextual constraints, for
example assembly rules, spatial relations, or process sequences. Without integrating such external
context, models may be unable to interpret semantically complex anomalies, resulting in false posi-
tives or false negatives. Therefore, contextual integration is not only advantageous but necessary to
achieve robust, generalizable, and interpretable anomaly detection in diverse and dynamic industrial
environments.

In this paper, we propose a Dynamic Context Routing and Reasoning framework for Anomaly De-
tection (DCR²-AD), designed to improve expert anomaly detection models’ capacity to utilize ex-
ternal knowledge for reasoning. The overall architecture includes two key components: knowledge-
routed reasoning trajectory synthesis (KR-RTS) and knowledge-routed direct preference optimiza-
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tion (KR-DPO). Specifically, in the KR-RTS stage, we first construct an object-agnostic contextual
knowledge base that summarizes a broad range of general defect and non-defect decision patterns.
This design ensures high transferability of the knowledge base and establishes a foundation for
subsequent context routing and reasoning. We then synthesize reasoning trajectories by manually
replacing incorrect contexts to generate negative samples for path rejection, enabling the model to
learn how to select accurate contextual reasoning paths. Furthermore, we introduce the KR-DPO
algorithm to optimize reasoning trajectories under given input and output conditions, encourag-
ing correct reasoning paths and suppressing incorrect ones. Through these three components, we
implement an efficient anomaly detection system that achieves state-of-the-art performance on the
comprehensive benchmark MMAD. Extensive experiments show that our 7B model attains 80.83%,
outperforming the base Qwen2.5-VL-7B model by 8.64%. Our 72B model achieves 83.36%, repre-
senting a 6.00% improvement over the base Qwen2.5-VL-72B model, a 4.67% improvement com-
pared to ordinary human performance, and a 1.41% gain over previous state-of-the-art (SOTA).
These significant improvements demonstrate the effectiveness and advancement of our method. Our
contributions can be summarized as follows:

• We propose a novel MLLM-based anomaly detection framework DCR2-AD that highlights
the importance of external context for AD tasks, focusing on enhancing the model’s abil-
ity to leverage external knowledge for reasoning and improving the overall capability of
MLLM-AD systems.

• We introduce two key components, KR-RTS and KR-DPO: KR-RTS improves the model’s
context selection ability through manually synthesized reasoning trajectories, while KR-
DPO enhances reasoning performance by reinforcing positive samples and penalizing neg-
ative ones.

• Our model achieves state-of-the-art performance on public benchmarks, demonstrating sig-
nificant improvements over base models and even human experts, which confirms the ef-
fectiveness and advancement of our algorithm.

2 RELATED WORK

Industrial Anomaly Detection (IAD). IAD is a task with wide application value in the field of
computer vision, playing an important role in promptly identifying abnormal components and opti-
mizing production processes. The key issue of IAD lies in identifying and locating anomalous ar-
eas and conducting diagnostic analysis. Traditional industrial anomaly detection methods discover
anomalies by using unsupervised methods such as comparing with memorized normal samples or
comparing with neighboring regions of samples, which including methods based on local area sim-
ilarity analysis (Li et al., 2024), methods based on memory banks (Gao, 2024; Jiang et al., 2022;
Wang et al., 2025), and methods that enhance training data by synthesizing anomalies (Zavrtanik
et al., 2021), etc. However, these models rely on pre-defined anomaly concepts, which limits their
generalization ability in new scenarios.

Multimodal Large Language Models for Anomaly Detection(MLLM-based AD). The recent
development of multimodal large models has promoted the MLLM-based methods. MMAD (Jiang
et al., 2024) defines 7 key subtasks of MLLM in industrial detection, providing a benchmark for
evaluating IAD models. AnomalyGPT (Gu et al., 2024) generates training data by simulating
abnormal images and creating corresponding text descriptions, then fine-tunes LLMs to directly
evaluate abnormal regions. Anomaly-OneVision (Xu et al., 2025) uses a ”look-twice” mechanism
to automatically select and highlight abnormal visual tokens, effectively improving performance
on anomaly reasoning tasks. LogSAD (Zhang et al., 2025) proposes a ”training-free” architecture
called ”thought matching,” which coordinates anomaly scores from different LLM detectors through
a calibration module, achieving good results in logical and structural anomaly detection. Most other
methods focus on improving model reasoning capabilities, such as Anoma- lyR1 (Chao et al., 2025),
EMIT (Guan et al., 2025), IAD-R1 (Li et al., 2025), LR-IAD (Zeng et al., 2025), and OmniAD (Zhao
et al., 2025). These methods use the GRPO method to enhance the high-quality CoT generation
capability during model reasoning.
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【Input】You are an 
industrial inspector who 
checks products by images. 
Question 1: Is there any 
defect in the object?
A. No.  
B. Yes.

【k_1】"gray_stroke": "The Gray Stroke Defect is 
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area…",
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Figure 2: The overall framework of the proposed DCR2-AD. (a) The process of KR-RTS, we con-
struct the object-agnostic knowledge base according to the collected domain knowledge. Then we
synthesize reasoning trajectories by replacing correct knowledge with incorrect ones. (b) We use
KR-DPO to optimize the whole framework. (c) The pipeline of inference, green text indicates that
external knowledge is correctly routed and utilized.

3 METHODS

3.1 PRELIMINARY: MLLM-BASED ANOMALY DETECTION VIA LINGUISTIC REASONING

The Multimodal Large Language Model (MLLM) based anomaly detection framework reformu-
lates the visual anomaly detection task as a language-guided, reasoning-intensive visual question
answering problem. The core idea is to leverage the powerful language understanding and genera-
tion capabilities of MLLMs to fuse visual information with textual instructions and context, thereby
conducting step-by-step CoT reasoning to arrive at a final detection decision.

The process begins with multimodal input representation, where an input image I and a textual
query Q = (S, Cext) composed of an instruction component and external context are processed
through dedicated tokenizers. The visual tokenizer ϕvis transforms the image into a sequence of
visual tokens V = ϕvis(I) = [v1, v2, . . . , vM ], while the textual tokenizer ϕtxt converts the query
into text tokens Tq = ϕtxt(Q) = [t1, t2, . . . , tN ]. These token sequences are then concatenated to
form the unified multimodal input X = [V;Tq] for the MLLM.

The reasoning phase operates through autoregressive generation, where the model parameterized by
Θ produces an output sequence Y by sequentially predicting each token based on the entire input and
previously generated tokens, following the probability distribution P (yk|X, y<k; Θ). Critically, the
generation process typically produces not just a direct answer but first generates an internal reasoning
chain Cint that explicates the diagnostic steps, followed by the final anomaly classification A, such
that Y = [Cint,A]. This internal context Cint interacts with the external context Cext from the input
query through the model’s attention mechanisms, creating a synergistic effect that enhances both the
accuracy and interpretability of the final detection outcome. The overall process is summarized as
follows:

(I,S, Cext)︸ ︷︷ ︸
input

Tokenization−−−−−−→ (V,TQ)︸ ︷︷ ︸
tokens

MLLMΘ−−−−−→ (Cint,A)︸ ︷︷ ︸
y

(1)
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Key MVTec.zipper.combined

Knowledge
(k_1)

<[object] Defects>
Description: The examined [object] exhibit multiple defects that collectively affect their functionality and aesthetic integrity. Common issues include:
- Broken or split teeth: Sections of the [object] teeth are either missing or misaligned, disrupting the normal interlocking pattern necessary for the [object] 
to function properly, often located at the center or bottom area of the [object]. 
- Fabric border fraying: Areas along the fabric edges reveal signs of wear, such as frayed or torn fabric, suggesting improper stitching or material 
degradation. This fraying can threaten the structural integrity of the [object] attachment to the surrounding garment or fabric.
- Squeezed or misaligned teeth: Certain sections of the [object] have teeth that appear compressed or out of alignment, which can hinder the smooth 

operation of the [object] during usage.
- Fabric interior anomalies: There are visible irregularities in the fabric interior, such as pulled threads or snags, which can further compromise both the 
appearance and function of the [object].
Overall, these defects indicate a need for quality control measures, as they could lead to failure during use or an unsatisfactory visual presentation.

Figure 3: An example of an object-agnostic knowledge. Each defect is defined by a detailed expert
description. The red text represents the specific category of the object being replaced, ensuring that
the knowledge is object-agnostic.

The training paradigm for such models typically involves a two-stage approach. Initially, Supervised
Fine-Tuning (SFT) is employed using high-quality annotated data D = (Xi,Yi) to optimize the
model parameters by maximizing the likelihood of correct outputs:

LSFT(Θ) = −E(X,Y)∼D

L∑
k=1

logP (yk|X, y<k; Θ) (2)

Subsequently, reinforcement learning methods such as GRPO or PPO are applied to further align
the model outputs with human preferences, optimizing the objective:

LRL(Θ) = EX∼D,Y∼πΘ
[R(Y,X)]− β ·DKL(πΘ||πref) (3)

where R is a reward function that evaluates the quality of the output and the KL divergence term
ensures that the model does not deviate excessively from the SFT baseline πref.

3.2 DYNAMIC CONTEXT ROUTING AND REASONING ANOMALY DETECTION

The overall framework of our proposed DCR2-AD is shown in Figure 2, at the stage of KR-RTS, we
first constructed an object-agnostic knowledge base encompassing extensive defect-related knowl-
edge. By substituting knowledge from correct reasoning trajectories with information drawn from
incorrect trajectories, we synthesized erroneous reasoning trajectories. Furthermore, we introduce
the KR-DPO algorithm, which conditions on the selectively routed knowledge to promote correct
reasoning trajectories and suppress incorrect ones, thereby refining the model’s ability to identify
optimal reasoning pathways.

3.3 KNOWLEDGE-ROUTED REASONING TRAJECTORY SYNTHESIS (KR-RTS)

Knowledge Base Construction To validate the effectiveness of external knowledge bases, we
constructed one for subsequent experiments. We collected domain knowledge from the MMAD
dataset and manually constructed and expanded domain knowledge specific to Real-IAD, forming
sample pairs of < defect type, knowledge >. This contains specialized knowledge features for
determining each defect/non-defect, covering a variety of industrial quality inspection scenarios. We
then performed object-independent processing, replacing all words referring to object names with
the placeholder ”[object]”. This approach allows us to extract common information about defects
rather than information bound to objects, resulting in greater transferability. After this process, we
obtained 147 pieces of object-independent domain knowledge, an example is shown in Figure 3.

Trajectory Synthesis KR-RTS aims to train the model to establish correct knowledge routing ca-
pabilities. The construction process is based on a key principle: performing perfect reasoning under
incorrect knowledge premises still leads to erroneous overall responses. The specific construction
method is as follows:

Given a training sample (x, yw), where x contains the query q and the true relevant knowledge
source kw, and yw is the correct response based on kw. We first randomly sample an incorrect
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knowledge source kl from the knowledge base K, satisfying kl ̸= kw and possessing certain decep-
tive similarities with the current query in surface features. Subsequently, we instruct annotators to
generate a logically consistent reasoning process that conforms to the norms of kl but is erroneous
relative to the actual scenario.

This process can be formally represented as: yselect
l = fgenerate(x, kl), where fgenerate maintains the

same reasoning rigor and linguistic as the positive sample, with the only difference being the initial
knowledge selection. For example, when detecting scratches on an [object] surface, the positive
sample selects ”Surface Defect Detection Standard” as the knowledge source, while the negative
sample may select ”Internal Structure Defect Standard” as the incorrect knowledge source, then
strictly follows the latter’s specifications to analyze the [object] surface image, producing a formally
correct but substantively erroneous judgment.

3.3.1 KNOWLEDGE-ROUTED DIRECT PREFERENCE OPTIMIZATION (KR-DPO)

The objective function of standard Direct Preference Optimization (DPO) is based on the Bradley-
Terry preference model, with its core mechanism involving implicit reward modeling to optimize the
policy. Given a preference data set D = {(x, yw, yl)}, where yw represents the preferred response
and yl represents the dispreferred response, the standard DPO loss function is defined as

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(4)

where σ denotes the sigmoid function, β is the temperature parameter, and πref represents the refer-
ence policy.

Within the KR-DPO framework, we decompose the complete response y into a knowledge selection
path p and a path-based reasoning content c, such that y = (p, c). The objective of KR-DPO is to
ensure the model selects the correct knowledge source pw rather than an incorrect one pl. We define
the path selection optimization objective as:

Lpath = −E(x,pw,pl,c)∼Dselect

[
log σ

(
β log

πθ(pw, c|x)
πref(pw, c|x)

− β log
πθ(pl, c|x)
πref(pl, c|x)

)]
(5)

where Dselect contains synthesized samples, meaning pl ̸= pw but the reasoning content c remains
logically self-consistent within their respective knowledge sources. This objective compels the
model to learn that even with perfect reasoning, an incorrect knowledge premise renders the overall
response unacceptable.

KR-DPO models knowledge selection as an integral part of the generation process rather than as a
separate classification task. The model explicitly generates the choice of the source of knowledge
and its justification.

4 EXPERIMENTS

4.1 DATASETS

We collected data from Real-IAD (Wang et al., 2024) and constructed the AD-Instruct-10K dataset
for supervised fine-tuning, and the AD-KRDPO-1K dataset for KR-DPO training. AD-KRDPO-1K
synthesizes the inference path through KR-RTS. For more information about the dataset, please refer
to the Appendix B.

4.2 EVALUATION

MMAD (Jiang et al., 2024) is an industrial anomaly detection dataset that uses GPT-4V (Hurst et al.,
2024) to generate semantic annotations, questions, and options for testing from publicly available
visual datasets. It contains 8,366 samples, seven key subtasks, and a total of 39,673 multiple-choice
questions. The seven sub-tasks are: Anomaly Discrimination, Anomaly Detection, Defect Classifi-
cation, Defect Localization, Defect Description, Defect Analysis, Object Classification, and Object

6
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Analysis. During evaluation, the model’s performance was compared across two settings: 1-shot,
0-shot. In the 1-shot setting, in addition to the query image, a random normal image from the dataset
is provided to the model, which can use this image as a template to understand the normal state; in
the 0-shot setting, no additional reference images are provided;

4.3 IMPLEMENTATION DETAILS

For supervised fine-tuning, we employed AdamW (Loshchilov & Hutter, 2019) as the optimizer
coupled with CosineAnnealingWarmRestarts (Loshchilov & Hutter, 2017) for learning rate schedul-
ing. We configured the initial learning rate at 1 × 10−5 with a warmup ratio of 0.05. The DCR2-
AD-7B model was trained on 2 A800 GPUs for a single epoch (requiring approximately 28 hours),
maintaining a per-device batch size of 1. For the larger DCR2-AD-72B variant, we implemented
LoRA-based fine-tuning across 6 A800 GPUs, also for a single epoch (approximately 60 hours),
while maintaining the same per-device batch size of 1. During the knowledge-routing DPO fine-
tuning phase, we utilized differential learning rates: 1 × 10−6 for the 7B model and 2 × 10−5 for
the 72B model, requiring 2 and 4 hours of computational time, respectively. For inference on the
MMAD benchmark, the 7B model required 12 hours of processing time, while the baseline 72B
model necessitated over 40 hours for complete evaluation. By implementing vLLM optimization
techniques for the 72B model, we successfully reduced inference time to 26 hours without any sta-
tistically significant degradation in performance metrics.

4.4 MAIN RESULTS

We conducted a detailed comparison of the current mainstream MLLM models, which can be
broadly categorized into two types: closed-source models and open-source models. Among the
closed-source models, we selected OpenAI’s GPT-4-o/GPT-4o-mini (Achiam et al., 2023), Google’s
Gemini-1.5-flash/pro (Reid et al., 2024), and Claude-3.5-sonnet (Anthropic). These commercial
closed-source models typically exhibit superior model performance, and we evaluated their effec-
tiveness through API calls. For open-source models, we compared a wide range of models, including
the LLaVA-NeXT series (Liu et al., 2024), InternVL series (Chen et al., 2023), Deepseek series (Wu
et al., 2024), Qwen series (Bai et al., 2025), and other custom models (Gu et al., 2024; Hu et al.,
2024; Team, 2025).

As shown in Table 1, among these models, our model achieves the current state-of-the-art (SOTA)
performance, achieving an average score of 80.37% across all seven tasks in the MMAD evaluation
metric. This surpasses the best closed-source model, GPT-4o, by 5.45% points, and the best open-
source model, Qwen2.5-VL-72B-Instruct, by 3.01% points. Upon further examination, it can be
observed that MLLM generally performs poorly in subtasks such as anomaly detection and defect
localization, with a significant gap compared to human performance. This is primarily because such
scenarios place greater demands on the model’s visual capabilities. In tasks such as defect classi-
fication and object classification; and in the three tasks of defect description, defect analysis, and
object analysis, large models leverage the powerful text capabilities of LLM to easily outperform
human performance. Our model, through in-depth learning of contextual information, also performs
exceptionally well in these tasks. Additionally, to balance both false positives (misdetections) and
false negatives (missed detections), we specifically evaluated the F1 score for the Anomaly Dis-
crimination task. Our 7B model achieved the best performance, attaining a score of 78.45% and
outperforming GPT-4o by 7.41%. In summary, our DCR2-AD-72B model achieves leading perfor-
mance in comprehensive benchmarks.

4.4.1 IMPACT OF DOMAIN KNOWLEDGE

MMAD provides domain knowledge to help improve model performance. In this setting, we can ex-
plore the capabilities of the model within the boundaries of domain expertise. Table 2 demonstrates
that our DCR2-AD-72B has been further improved from 80.37% to 83.36%, with this metric more
colse to expert human performance, marking a new milestone for MLLM large models in anomaly
detection tasks. It can also be concluded that as the model size increases, the gain from domain
knowledge diminishes, indicating that larger models inherently possess richer domain knowledge,
thereby reducing reliance on external knowledge.
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Table 1: Performance comparison in MMAD with the standard 1-shot setting. Bold type indicates
the best performance, underlined type indicates the second best performance.

Anomaly Defect Object
Model Scale F1 Dis. Cls. Loc. Des. Ana. Cls. Ana. Average

Random Chance - - 50.00 25.00 25.00 25.00 25.00 25.00 25.00 28.57

Human (expert) - - 95.24 75.00 92.31 83.33 94.20 86.11 80.37 86.65
Human (ordinary) - - 86.90 66.25 85.58 71.25 81.52 89.58 69.72 78.69

Claude-3.5-sonnet - 41.92 60.14 60.14 48.81 67.13 79.11 85.19 79.83 68.36
Gemini-1.5-flash - 72.40 58.58 54.70 49.10 66.53 82.24 91.47 79.71 68.90
Gemini-1.5-pro - 57.60 68.63 60.12 58.56 70.38 82.46 89.20 82.25 73.09
GPT-4o-mini - 68.67 64.33 48.58 38.75 63.68 80.40 88.56 79.74 66.29

GPT-4o - 71.04 68.63 65.80 55.62 73.21 83.41 94.98 82.80 74.92

AnomalyGPT 7B 76.68 65.57 27.49 27.97 36.86 32.11 29.84 35.82 36.52
InternLM-XComposer2-VL 7B 27.16 55.85 41.80 48.27 57.52 76.60 74.34 77.75 61.73

LLaVA-OneVision 7B 9.10 51.77 46.13 41.85 62.19 69.73 90.31 80.93 63.27
MiniCPM-V2.6 8B 45.31 57.31 49.22 43.28 65.86 75.24 92.02 80.80 66.25
LLaVA-NeXT 34B 54.44 57.92 48.79 52.87 71.34 80.28 81.12 77.80 67.16

InternVL2 76B 64.40 68.25 54.22 56.66 66.30 80.47 86.40 82.92 70.75
InternVL3 8B 41.23 68.69 55.09 59.98 70.83 80.58 87.24 82.92 72.19

Keye-VL-Preview 8B 58.41 65.25 45.34 43.53 56.56 40.57 81.59 77.81 58.66
Deepseek-vl2-small 2.8B 38.94 62.84 49.69 44.86 65.47 78.00 92.42 81.47 67.82

Qwen2.5-VL-Instruct 7B 72.49 71.10 56.02 60.69 64.13 78.26 91.49 83.67 72.19
Qwen2.5-VL-Instruct 32B 68.19 70.88 58.29 62.40 65.38 83.16 76.89 84.91 71.70
Qwen2.5-VL-Instruct 72B 74.08 72.96 62.71 68.58 74.65 82.12 94.41 86.12 77.36

MiMo-VL-SFT 7B 72.77 58.26 62.17 59.40 72.64 84.50 90.02 83.19 72.88
MiMo-VL-RL 7B 73.85 56.60 63.03 61.89 72.60 83.68 90.35 82.86 73.00

MiMo-VL-SFT(SFT) 7B 73.52 72.32 60.61 64.57 78.42 84.98 91.05 83.56 76.50
MiMo-VL-RL(SFT) 7B 74.30 69.89 60.20 70.36 78.11 84.28 89.29 83.33 76.49

Qwen2.5-VL-7B-Instruct(SFT) 7B 72.66 73.27 56.79 63.40 72.45 83.20 92.91 86.88 75.56
DCR2-AD-7B 7B 78.45 70.00 62.06 69.60 79.34 84.75 93.52 86.79 78.01

Qwen2.5-VL-72B-Instruct(SFT) 72B 76.25 74.60 64.15 72.40 81.16 86.18 93.92 88.45 80.12
DCR2-AD-72B 72B 75.59 74.37 64.60 71.71 82.23 87.17 93.24 89.28 80.37

Table 2: Performance comparison in MMAD with domain knowledge under the 1-shot setting. Bold
type indicates the best performance, underlined type indicates the second best performance.

Anomaly Defect Object
Model Scale Dis. Cls. Loc. Des. Ana. Cls. Ana. Average Improv.

Human (expert) - 95.24 75.00 92.31 83.33 94.20 86.11 80.37 86.65 -
Human (ordinary) - 86.90 66.25 85.58 71.25 81.52 89.58 69.72 78.69 -

LLaVA-NeXT 34B 56.72 68.22 57.36 73.12 82.24 91.78 81.35 72.97 +5.81
InternVL2 26B 68.64 67.32 53.81 70.84 82.18 93.81 83.31 74.27 +5.66
InternVL2 40B 70.01 70.09 56.89 73.29 83.26 96.50 84.41 76.35 +6.75
InternVL2 76B 66.68 70.95 60.57 75.32 82.71 91.71 85.29 76.18 +5.43

Qwen2.5-VL-Instruct 7B 70.74 68.11 60.58 72.64 82.59 97.09 84.79 76.65 +4.46
Qwen2.5-VL-Instruct 72B 71.63 73.85 69.11 79.18 83.87 96.81 87.04 80.21 +2.85

MiMo-VL-SFT 7B 69.1 71.27 63.78 77.93 85.08 96.64 85.39 78.46 +5.58
MiMo-VL-RL 7B 66.87 71.93 65.65 77.19 85.91 96.26 84.30 78.30 +5.30

MiMo-VL-SFT(SFT) 7B 74.95 74.63 69.98 82.89 87.01 96.40 85.53 81.63 +5.13
MiMo-VL-RL(SFT) 7B 70.39 72.97 72.85 82.90 86.63 96.05 84.61 80.91 +4.42

Qwen2.5-VL-7B-Instruct(SFT) 7B 71.38 71.81 63.89 78.55 83.99 97.05 86.11 78.97 +3.41
DCR2-AD-7B 7B 70.46 74.28 68.07 83.69 86.01 96.9 86.40 80.83 +2.82

Qwen2.5-VL-72B-Instruct(SFT) 72B 73.10 76.01 73.68 85.01 87.87 96.74 88.77 83.02 +2.90
DCR2-AD-72B 72B 73.77 75.65 73.72 85.27 88.47 96.85 89.76 83.36 +2.99

4.4.2 ZERO-SHOT AD PERFORMANCE

Under zero-shot setting, the model has no reference to normal samples without defects, which further
tests the model’s ability to reason about visual features and internal knowledge. As shown in Table
3, we also achieved the best results in the MMAD zero-shot setting, 78.60%. This indicates that the
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Table 3: Performance comparison in MMAD under the 0-shot setting. Bold type indicates the best
performance, underlined type indicates the second best performance.

Anomaly Defect Object
Model Scale Dis. Cls. Loc. Des. Ana. Cls. Ana. Average

Gemini-1.5-flash - 58.43 49.93 53.11 63.07 82.83 - - 68.58
LLaVA-NEXT-Interleave 7B 58.39 36.98 48.98 51.51 66.64 - - 60.04

InternLM-XComposer2-VL 7B 58.33 43.10 54.56 57.84 75.30 - - 62.78
LLaVA-NeXT 34B 60.25 51.57 55.49 71.62 80.43 - - 68.45

Cambrian 8B 55.60 32.53 35.39 43.46 49.14 78.15 67.22 51.64
InternVL2 76B 64.30 51.19 54.20 63.46 79.92 89.34 83.48 69.41
InternVL3 8B 64.67 50.91 60.06 65.49 77.16 82.01 83.58 69.13

Keye-VL-Preview 8B 61.85 51.37 52.94 63.79 43.99 85.05 80.10 62.73
Deepseek-vl2-tiny 1B 50.60 43.21 54.97 65.52 75.66 88.64 76.88 65.07

Deepseek-vl2-small 2.8B 62.33 49.69 55.16 67.84 79.14 93.01 83.09 70.04
Qwen2.5-VL-Instruct 7B 60.45 50.16 57.80 60.73 75.31 93.24 84.96 68.95
Qwen2.5-VL-Instruct 72B 66.22 57.99 62.95 72.21 81.01 93.92 86.51 74.40

MiMo-VL-SFT 7B 64.80 55.90 54.52 68.29 83.39 91.29 84.87 71.87
MiMo-VL-RL 7B 66.06 57.78 56.95 69.48 83.72 91.63 84.97 72.94

MiMo-VL-SFT(SFT) 7B 67.59 58.06 61.99 76.10 84.51 91.52 83.28 74.72
MiMo-VL-RL(SFT) 7B 67.27 58.26 69.13 75.83 84.10 90.08 83.49 75.45

Qwen2.5-VL-7B-Instruct(SFT) 7B 65.55 51.44 63.03 68.72 81.49 92.64 85.97 72.69
DCR2-AD-7B 7B 66.2 60.77 68.45 77.52 83.97 94.42 86.05 76.77

Qwen2.5-VL-72B-Instruct(SFT) 72B 69.23 62.82 69.77 79.55 86.34 94.10 88.39 78.60
DCR2-AD-72B 72B 68.71 62.13 69.23 80.16 86.37 93.07 89.23 78.42

model itself has strong anomaly detection capabilities and can generalize to new scenarios without
samples. This is also a shortcoming that traditional unsupervised anomaly detection methods cannot
achieve.

4.5 ABLATION STUDY

Figure 4: Ablation study of DPO.

Anomaly Defect
Model Dis. Cls. Loc. Des. Ana. Average

Full model 70.00 62.06 69.6 79.34 84.75 78.01

w/o. KR-DPO 73.27 56.79 63.40 72.45 83.20 75.56
w/o. SFT 71.10 56.02 60.69 64.13 78.26 72.19

We validate the effectiveness of KR-
DPO through an ablation experi-
ment on Qwen2.5-VL-7B-Instruct,
with results presented in Table 4. The
baseline model, fine-tuned only with
SFT, achieves an average score of
75.56%. By incorporating our KR-
DPO stage, the full model’s perfor-
mance is boosted to 78.01%. This
marked improvement demonstrates
that KR-DPO plays a crucial role in
aligning the model with desired behaviors and significantly contributes to its final performance.

5 CONCLUSIONS

In this study, we introduced the Dynamic Context Routing and Reasoning model for Anomaly Detec-
tion (DCR²-AD), a novel framework designed to overcome the limitations of existing MLLM-based
approaches in open-domain anomaly detection. By integrating knowledge-routed reasoning path
synthesis (KR-RPS) and knowledge-routed direct preference optimization (KR-DPO), the model
effectively leverages external knowledge to enhance reasoning accuracy and adaptability across di-
verse anomaly types. Extensive experimental results on the MMAD benchmark demonstrate that
our method achieves state-of-the-art performance with an accuracy of 83.36%, outperforming both
baseline models and ordinary human, thereby validating the efficacy of the proposed approach. For
future work, we plan to extend the knowledge base to include more domains and explore real-time
adaptive routing mechanisms.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including AD-Instruct-10K and AD-KRDPO-1K,
were sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We
have taken care to avoid any biases or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
DCR2−AD, to assist others in reproducing our experiments.

Additionally, public anomaly detection datasets, such as MMAD, Real-IAD, are publicly available,
ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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A APPENDIX

B DATASETS

B.1 AD-INSTRUCT-10K

Existing industrial anomaly detection datasets (Bergmann et al., 2019b; Wang et al., 2024) primarily
emphasize object class labels, visual mask annotations, and defect class labels. However, they of-
ten lack contextual annotations, limiting their utility for multimodal understanding. To address this
limitation, we introduce AD-Instruct-10K, a meticulously curated instruction-tuning dataset specif-
ically designed for industrial visual anomaly detection. AD-Instruct-10K not only preserves the
authentic characteristics of industrial anomalies but also supplements them with precisely localized,
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Figure 5: Statistical overview of AD-Instruct-10K. The innermost layer represents image compo-
nents, the middle layer depicts subtask composition, and the outermost layer illustrates object cate-
gories.

domain-specific contextual annotations that capture the subtle nuances of various manufacturing
defects across diverse industrial sectors.

Our AD-Instruct-10K represents a significant advancement through its novel construction method-
ology—a multi-stage generation pipeline that systematically transforms and enriches real-world in-
dustrial defect images from the Real-IAD dataset (Wang et al., 2024). For initial QA generation,
we implement a sophisticated templated question-answer (QA) generation framework and leverage
GPT-4o with carefully engineered prompts that include explicit instructions. Next, we employ a
strategic randomization process for answer options, deliberately shuffling both the answer desig-
nators (A, B, C, D) and their corresponding textual content. This crucial step ensures that models
trained on our dataset learn the substantive content of anomaly descriptions rather than memorizing
positional patterns of correct answers. For quality assurance, we implement a secondary verification
mechanism utilizing the pixel-precise segmentation masks available in the Real-IAD dataset to val-
idate the spatial accuracy of GPT-4o’s defect localization descriptions, thereby ensuring annotation
fidelity to the actual anomaly boundaries.

In the end, there are five distinct types of question-answer pairs generated for each image, closely
following MMAD’s established paradigm. AD-Instruct-10K thus presents a comprehensive and
extensible resource for advancing the state-of-the-art in visual anomaly detection within the field of
industrial inspection and quality control.

B.2 AD-KRDPO-1K

Building upon AD-Instruct-10K, we developed a systematic approach to extract challenging sam-
ples for Direct Preference Optimization (DPO) fine-tuning. We first employed our model previously
fine-tuned on AD-Instruct-10K to generate predictions across the entire dataset. We then imple-
mented a precise filtering criterion, preserving only samples where the probability assigned to the
ground-truth answer exhibited marginal deviation from random chance performance. Specifically,
we retained two categories of samples: those with probabilities slightly exceeding random guessing
(indicating correct but uncertain predictions) and those with probabilities marginally below random
guessing (representing incorrect but potentially recoverable predictions). To operationalize this se-
lection mechanism, we established a quantitative threshold of 0.1 for defining ”marginal deviation.”
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Anomaly Discrimination Defect Classification

Q: Is there any defect in the object? A. Yes. B. No. Here is some optional 

knowledge. “Normal”: “The [object] is intact with no visible defects such as 

cracks, dents…”; “Surface Scratches”: “The defect is characterized by the 

presence of scratches on the [object] surface that disrupt the natural grain 

pattern… ”

A: Yes, there is a thin straight line resembling a scratch on the surface.

Q: There is a defect in the object. Where is the defect located? A. Top left of image. 

B. Top right of image. C. Bottom left of image. D. Bottom right of image. Here is 

some optional knowledge. “Contamination”: “The contamination often presents as 

irregular discolorations or uneven textures…”; “Surface Scratches”: “The defect is 

characterized by the presence of scratches on the [object] surface that disrupt the 

natural grain pattern… ”

A: The defect is located at bottom left of the image. 

Q: There is a defect in the object. What is the type of the defect? A. pit. B. scratch. C. 

damage. D. abrasion. Here is some optional knowledge. “Contamination”: “The 

contamination often presents as irregular discolorations or uneven textures…”; 

“Surface Scratches”: “The defect is characterized by the presence of scratches on the

[object] surface that disrupt the natural grain pattern… ”

A: The type of the defect is scratch. 

Defect Localization

Q: There is a defect in the object. What is the appearance of the defect? A. A small,

whitish scuff mark disrupting the black surface. B. A significant crack running along 

the edge. C. An indentation impacting the overall shape of the object. D. A cluster of 

small raised bumps on the surface. Here is some optional knowledge. 

“Contamination”: “The contamination often presents as irregular discolorations or 

uneven textures…”; “Surface Scratches”: “The defect is characterized by the 

presence of scratches on the [object] surface that disrupt the natural grain pattern… ”

A: The defect is a small, whitish scuff mark disrupting the black surface.

Defect Description

Q: There is a defect in the object. What is the potential effect of the defect on its 

functionality? A. Reduced visual appeal. B. Altered chemical composition. C. 

Improved operational efficiency. D. Leakage or improper fluid containment. Here is 

some optional knowledge. “Contamination”: “The contamination often presents as 

irregular discolorations or uneven textures…”; “Surface Scratches”: “The defect is 

characterized by the presence of scratches on the [object] surface that disrupt the 

natural grain pattern… ”

A: The defect might cause leakage or improper fluid containment. 

Defect Analysis

Q: What kind of product is in the image? A. toothbrush. B. zipper. C. vcpill. D.

terminalblock. Here is some optional knowledge. “Toothbrush”: “The toothbrush 

has a symmetrical arrangement of bristles…”; “Terminalblock”: “The 

terminalblock  has a block-like structure with terminal holes and metal…”

A: Terminalblock. It is an object with terminal holes and metal connectors. 

Object Classification

Q: What can be inferred about the condition of the object in the image? A. The 

object is brand new and unused. B. The object is slightly worn but still functional.

C. The object is heavily worn and shows signs of deterioration. D. The object has 

cosmetic imperfections but no significant damage. Here is some optional 

knowledge. “Toothbrush”: “The toothbrush has a symmetrical arrangement of

bristles…”; “Terminalblock”: “The terminalblock  has a block-like structure with 

terminal holes and metal…”

A: The object is  heavily worn according to its frayed bristles. 

Object Analysis

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Q: What is the structural layout of the object shown in the image? A. A single chain 

surrounded by fabric. B. Parallel rows of fabric interwoven with metallic threads. C.

Alternating metallic loops connected by a central fabric. D. A plain metallic coil 

without fabric integration. Here is some optional knowledge. “Toothbrush”: “The 

toothbrush has a symmetrical arrangement of bristles…”; “zipper”: “The zipper is 

design with a series of interlocking metal teeth. The surrounding fabric consists of 

two strips made from a textured, woven material, likely black or a very dark hue. ”

A: The object has a metal-loop and fabric-linked structure. 

Figure 6: Examples of 7 subtasks of AD-KRDPO-1K. Each question is presented in a multiple-
choice format and includes several distractor options. We present different categories of objects in
various examples to demonstrate the diversity.

This rigorous filtration process resulted in 1K chosen instruct data, a concentrated subset of bound-
ary cases ideally suited for preference-based optimization.

Further, we augmented each question-answer pair with structured knowledge elements to create AD-
KRDPO-1K, a dataset specifically engineered for knowledge-guided reasoning. For each sample,
we systematically incorporated multiple knowledge selections—comprising precisely one correct
knowledge path and several deliberately crafted erroneous alternatives. This resulted in a sophis-
ticated structure where each sample contains one or more <knowledge><answer> pairs, creat-
ing a controlled experimental environment for discriminative learning. The primary objective of
AD-KRDPO-1K is to facilitate the development of robust knowledge routing capabilities, enabling
models to accurately identify, select, and apply relevant knowledge fragments while systematically
rejecting misleading or irrelevant information paths. This approach represents a significant advance-
ment in training visual reasoning systems that can transparently justify their decisions through ex-
plicit knowledge utilization.

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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