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ABSTRACT

Classical Federated Learning relies on a multi-round iterative process of model
exchange and aggregation between server and clients, with high communication
costs and privacy risks from repeated model transmissions. In contrast, one-shot
federated learning (OFL) alleviates these limitations by reducing communication
to a single round, thereby lowering overhead and enhancing practical deploya-
bility. Nevertheless, most existing one-shot approaches remain either impracti-
cal or constrained, for example, they often depend on the availability of a public
dataset, assume homogeneous client models or require uploading additional data
or model information. To overcome these issues, we introduce the Gaussian-Head
OFL (GH-OFL) family, a suite of one-shot federated methods that assume class-
conditional Gaussianity of pretrained embeddings. Clients transmit only sufficient
statistics (per-class counts and first/second-order moments) and the server builds
heads via three components: (i) Closed-form Gaussian heads (NB/LDA/QDA)
computed directly from the received statistics; (ii) FisherMix, a linear head with
cosine margin trained on synthetic samples drawn in an estimated Fisher subspace;
and (iii) Proto-Hyper, a lightweight low-rank residual head that refines Gaussian
logits via knowledge distillation on those synthetic samples. In our experiments,
GH-OFL methods deliver state-of-the-art robustness and accuracy under strong
non-IID skew while remaining strictly data-free.

1 INTRODUCTION

Federated Learning (FL) enables distributed training without centralizing raw data: clients (e.g.,
phones, IoT, edge) keep their data local and share updates with a server. This paradigm, motivated by
privacy and bandwidth-sensitive constraints (mobile, healthcare, finance), has spurred many variants
but most methods remain iterative and multi-round.

The seminal Federated Averaging (FedAvg) (McMahan et al., 2017) performs several local epochs
per client, then aggregates weights at the server. A key limitation is the heavy reliance on many
rounds for convergence. Empirically, on federated MNIST FedAvg needs 18 rounds to reach 99%
i.i.d. vs. 206 in non-i.i.d. (Zhao et al., 2018; Cao et al., 2022); on CIFAR-10 about 154 rounds
for 75% and >425 for 80%, while on CIFAR-100 nearly 700 rounds to move from 40% to 50%
(Zhang et al., 2022b); under severe non-i.i.d. partitions, >1700 rounds may be required on CIFAR-
10 for just 55% accuracy (Perazzone et al., 2022). These results expose the cost of multi-round
communication, its latency sensitivity and degradation under heterogeneity.

To mitigate this, one-shot federated learning (OFL) targets a high-quality global model in a single
exchange, reducing communication and synchronization while preserving privacy.

Extending the “Capture of global feature statistics for One-Shot FL” firstly introduced by Guan
et al. (2025), we present GH-OFL, a one-shot, server-centric Gaussian-head scheme: clients upload
once only per-class sufficient statistics such as counts and first/second moments being covered by an
optional random-projection sketch; the server (i) fits closed-form Gaussian heads (NB/LDA/QDA
with shrinkage) and (ii) trains two lightweight heads we will call FisherMix and Proto-Hyper, using
a data-free generator that draws “Fisher-ghost” samples in a Fisher subspace with a QDA/LDA
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teacher blend. This shifts learning to the server, handles non-i.i.d. via class-balanced synthesis and
needs no public data or client-side inference.

Contributions.

• Closed-form Gaussian heads (GH-OFL-CF). From client moments alone, we compute
Naı̈ve Bayes (diagonal), LDA and QDA in one shot. A Fisher-guided pipeline with tar-
geted shrinkage (pooled/class-wise; diagonal/low-rank variants) and a compressed random-
projection sketch improves conditioning and cuts bandwidth, remaining strictly data-free.

• Trainable synthetic heads (GH-OFL-TR). We propose FisherMix (cosine-margin) and
Proto-Hyper (low-rank residual) trained solely on synthetic Fisher-space samples. A
blended LDA/QDA teacher with standardized logits, variance-aware scaling and small
mean shifts corrects closed-form bias with minutes of compute and no public data.

• Robustness and accuracy. Across CIFAR-10, CIFAR-100 (Krizhevsky, 2009), CIFAR-
100-C (Hendrycks & Dietterich, 2019) and SVHN (Netzer et al., 2011), with diverse back-
bones, GH-OFL achieves strong single-round accuracy, remains fully data-free and shows
state-of-the-art robustness under non-i.i.d. partitions and corruptions, without client-side
inference or auxiliary datasets.

2 RELATED WORK

One-shot federated learning (FL) seeks a global model in a single exchange, cutting rounds, band-
width and exposure. A first strand builds on knowledge distillation (KD): clients train locally and
transfer to a server model via a public/proxy set. FedMD enables collaborative distillation with-
out raw data (Li & Wang, 2019), while FedDF distills from client ensembles using unlabeled data
(Lin et al., 2020). Analyses show one-shot KD can remain effective under severe non-IID (Zeng
et al., 2024) and explicit ensembling further stabilizes performance (Allouah et al., 2024). In paral-
lel, single-round parameter optimization and meta-learning avoid multiple exchanges: early work
aggregates parameters with regularization to form a usable global model (Guha et al., 2019); meta-
learning provides favorable initializations for quick adaptation (Fallah et al., 2020); aggregation-
only schemes such as MA-Echo remove server-side training (Su et al., 2023) and applied studies like
FedISCA validate feasibility in sensitive domains (Kang et al., 2023).

A second strand is data-free generative or probabilistic. Generative methods synthesize surrogates
so the server can train without accessing client data, e.g., FedGAN (Rasouli et al., 2020). Fully
data-free one-shot approaches avoid proxy sets entirely such as DENSE (Zhang et al., 2022a) and
Co-Boosting (Dai et al., 2024) combine synthesis and ensembling, while probabilistic formulations
integrate client evidence in a Bayesian way, as in layer-wise posterior aggregation in FedLPA (Liu
et al., 2024). Our method sits at this intersection: we keep communication to per-class moments,
remain data-free and instantiate Gaussian heads directly from statistics, complementing them with
lightweight trainable heads on synthetic features.

Positioning of our work GH-OFL belongs to data-free probabilistic one-shot FL: unlike KD
(public/proxy data) or parameter/meta-learning (full model uploads), it uses only per-class moments
to build Gaussian heads and lightweight Fisher-space heads from synthetic features.

3 PRELIMINARIES

We consider a one-shot federated setting where each client uses a frozen, pretrained encoder (e.g., a
ResNet for images or a Transformer-based model for text) to transform its local data into embedding
vectors x ∈ Rd, with d determined by the backbone architecture. Clients never share raw data or
gradients. Instead, they send only linear statistics that the server can sum across clients. From these
global statistics, the server (i) instantiates closed-form Gaussian discriminant heads (NB/LDA/QDA)
and (ii) trains lightweight heads (FisherMix/Proto-Hyper) exclusively on synthetic samples drawn
in a discriminative subspace. This section explains the objects we exchange, why they suffice and
how they are used.
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3.1 FEDERATED SETTING AND SUFFICIENT STATISTICS

What clients send. Let C={1, . . . , C} be the class set and D(u)={(xi, yi)} the local dataset at
client u.

A(u)
c =

∑
i: yi=c

xi, N (u)
c =

∣∣{i : yi = c}
∣∣, B(u) =

∑
i

xix
⊤
i ,

S(u)
c =

∑
i: yi=c

xix
⊤
i , D(u)

c =
∑

i: yi=c

(xi ⊙ xi).
(1)

Aggregating across clients gives

Ac =
∑
u

A(u)
c , Nc =

∑
u

N (u)
c , B =

∑
u

B(u), Sc =
∑
u

S(u)
c , Dc =

∑
u

D(u)
c .

Usage by head: LDA/Fisher use (A,N,B); QDA uses (A,N, S); NBdiag uses (A,N,D) (or
(A,N, diag(S)) if S is sent).

BB

BB

BB

‡

‡

‡

‡= Pre-trained Backbone

Client 1

Client 2

Client 3

Figure 1: Client-side flow with secure aggregation. Each device encodes images via a frozen Ima-
geNet backbone, projects embeddings with a public RP (z=xR) and updates additively-aggregable
stats in z: Nc, Ac, global B and Sc/Dc as required by the chosen heads. Secure aggregation reveals
only

∑
u(·), which suffice to estimate means/covariances and run our Gaussian and Fisher-space

heads without sharing raw data or gradients.

Why these are sufficient. The aggregated moments provide all parameters required by our heads:
class means and priors come from (Ac, Nc); the pooled covariance (centered second moment) comes
from B; when Sc is available it yields unbiased class covariances; when only a diagonal model
is needed, Dc gives per-dimension variances. Hence {A,N,B, S/D} are sufficient to instantiate
Gaussian Heads and the Fisher subspace (see App. D for more details).

µc =
Ac

Nc
, πc =

Nc∑
j Nj

, N =
∑
c

Nc, Σpool =
1

N − C

(
B −

∑
c

Nc µcµ
⊤
c

)
. (2)

Class covariances (QDA) and diagonal variances (NBdiag):

Σc =
1

Nc − 1

(
Sc −Nc µcµ

⊤
c

)
, Varc =

Dc

Nc
−

(
µc ⊙ µc

)
. (3)

If Sc is available then Dc = diag(Sc).
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Compressed random-projection sketch. To reduce bandwidth and strengthen privacy, each client
maps x∈Rd to z=xR with a public matrix R∈Rd×k (k≪d, shared seed) and accumulates moments
directly in z. By linearity,

Az
c = AcR, Bz = R⊤BR, Sz

c = R⊤ScR, Dz
c = diag(Sz

c ) =
∑

i: yi=c

(zi ⊙ zi), µz
c =

Az
c

Nc
.

(4)
If full Sz

c is not sent, clients can still transmit the per-class elementwise sums of squares Dz
c , from

which diagonal variances follow:

Varzc =
Dz

c

Nc
−
(
µz
c ⊙ µz

c

)
.

All quantities remain additively aggregable across clients and preserve the one-shot contract.

3.2 GAUSSIAN HEADS AND THE FISHER SUBSPACE

Closed-form discriminants (what they assume and what they use). We instantiate three Gaus-
sian heads directly from the aggregated moments, each making a different covariance assumption:

• NBdiag (class-diagonal covariances). Each class has its own per-dimension variance; no
cross-dimension correlations are modeled. Statistics used: (A,N,D) or (A,N, diag(S)).
This head is extremely light and robust when features are close to axis-aligned.

• LDA (shared covariance). All classes share a single covariance estimated from the centered
second moment; scores are linear in x. Statistics used: (A,N,B). In practice we set
Wc = Σ−1

poolµc and use the usual linear rule with log-priors.

• QDA (class-specific full covariances). Each class has its own covariance, enabling class-
dependent shapes and correlations. Statistics used: (A,N, S). This is the most expressive
closed-form option when S is available.

Numerical stability. We apply a standard shrinkage Σ̃ = (1 − α)Σ + α tr(Σ)
d I (for α ∈ [0, 1]) to

Σpool (LDA/Fisher) and to Σc (QDA) when needed.

Why a Fisher subspace helps. Discriminative structure often concentrates in a low-dimensional
subspace where between-class variation dominates within-class variation. We form the be-
tween/within scatters SB and SW=Σpool and solve the generalized problem

SBv = λSW v.

Taking the top k eigenvectors as columns of V , we work with zf = V ⊤x and the projected moments
µf
c = V ⊤µc, Σf

pool = V ⊤ΣpoolV (and Σf
c if available). This reduces dimension, improves signal-

to-noise and speeds up both synthesis and training while leaving all heads unchanged.

3.3 DATA-FREE SYNTHESIS AND TRAINABLE HEADS (FISHERMIX, PROTO-HYPER)

Class-conditional synthesis in zf . Using only aggregated moments in the Fisher space, the server
samples per class

zf ∼ N
(
µf
c + δc, τ

2
c Σ̃f

c

)
,

where Σ̃f
c is the shrunk class covariance if Sc is available, otherwise the (shrunk) pooled covariance

Σf
pool; τc scales dispersion (proportional to relative trace, clipped) and δc makes small moves along

top Fisher directions to probe margins. This is strictly data-free: no real samples or client-side
inference.

FisherMix (cosine-margin head). On synthetic pairs (zf , y), FisherMix trains a cosine classifier
with an additive angular margin:

ℓFM = CE
(
softmax

(
s(cos θ −m · 1y)

)
, y

)
, cos θ =

zf
∥zf∥

⊤ W
∥W∥ ,

with scale s > 0 and margin m ≥ 0.
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Proto-Hyper (low-rank residual over a Gaussian base). We learn a small low-rank residual
h(zf ) = V2U1zf that adds to a Gaussian base head (NBdiag/LDA/QDA) computed from moments:

gstudent(zf ) = std
(
gbase(zf )

)
+ h(zf ),

and optimize a KD+CE blend with a Gaussian teacher in zf (e.g., LDA or QDA) at temperature T :

LPH = αT 2 KL
(
softmax

gteach(zf )
T

∥∥ softmax
gstudent(zf )

T

)
+ (1− α) CE(softmax gstudent(zf ), y) .

The residual corrects systematic bias of the base Gaussian rule with a tiny parameter footprint,
preserving the one-shot, data-free contract.

Note. If only diagonal variances are available (from D), sampling uses diag(Σf
c ) and an LDA

teacher.

3.4 NON-IID MODELING, REGULARIZATION, COMMUNICATION AND PRIVACY

Non-IID via Dirichlet splits. We model label skew by partitioning a fixed datasetD across clients
with Dir(α) over class proportions (smaller α⇒ stronger non-IID). Clients send only the additively-
aggregable statistics in Sec. 3.1.

Partition invariance of global moments (and of their RP sketches). For any partition P =
{Iu}u of D, secure aggregation produces the same global moments as the samplewise sums; with a
fixed public R, the projected moments coincide by linearity:

Ac =
∑
u

A(u)
c =

∑
i: yi=c

xi, Nc =
∑
u

N (u)
c =

∣∣{i : yi = c}
∣∣,

B =
∑
u

B(u) =
∑
i

xix
⊤
i , Sc =

∑
u

S(u)
c =

∑
i: yi=c

xix
⊤
i , Dc =

∑
u

D(u)
c =

∑
i: yi=c

(xi ⊙ xi),

Az
c = AcR, Bz = R⊤BR, Sz

c = R⊤ScR, Dz
c = diag(Sz

c ).
(5)

Hence µc, πc,Σpool,Σc (and their projected/diagonal variants) are independent of P and of α.

Fisher subspace and closed-form heads. Since SW=Σpool and SB are partition-invariant, the
Fisher eigenspace (up to within-eigenspace rotations) is invariant as well; closed-form heads com-
puted either in x or in zf (NBdiag, LDA, QDA; with fixed shrinkage) are therefore partition-invariant.

Trainable heads: invariance in expectation. FisherMix and Proto-Hyper are trained on synthetic
(zf , y) drawn from a distribution Q whose parameters are deterministic functions of the partition-
invariant moments. The population objective

min
θ

E(zf ,y)∼Q[L(θ; zf , y)]

is therefore identical for any α. Minor accuracy fluctuations arise only from Monte-Carlo sampling,
optimizer non-determinism and finite precision, not from the partition.

3.5 GH-OFL HEADS: DISCUSSION AND ADVANTAGES

1. NBdiag. A class-conditional Gaussian with diagonal covariance per class, computed in the pro-
jected space (z) from aggregated moments only: means from A/N and per-dimension variances
from SUMSQ/N (with shrinkage toward the pooled variance). The intuition is that pretrained em-
beddings are often near-axis-aligned after RP/Fisher, so a diagonal model captures heteroscedas-
ticity without the cost/instability of full covariances. This improves calibration and class-specific
decision boundaries while staying extremely light (no raw data, O(Ck) storage).

2. LDA (shared covariance). A linear discriminant head using the pooled covariance Σpool

(shrunk) and class means, computed in z or zf . The intuition is that a single well-conditioned
covariance captures most geometry of strong encoders; in Fisher space, discriminative energy
concentrates in few directions, making LDA both stable and accurate. Advantages: closed-form
training, tiny footprint, fast inference; serves as a reliable teacher and as a robust baseline under
wide non-IID regimes.
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4

5

1 2 3

Figure 2: Server-side pipelines for our GH-OFL family. Secure aggregation first collects class-
wise sufficient statistics in the projected space z. Closed-form heads compute scores directly, while
FisherMix and Proto-Hyper estimate a Fisher subspace, synthesize features and fit lightweight heads
without any raw data. Shaded panels summarize per-method steps and outputs.

3. QDA (class covariances). A quadratic discriminant head with (shrunk) Σc per class when class-
wise second moments are available (either directly or after projection). The intuition is to model
class-dependent spreads and correlations, which can matter for fine-grained classes or domain
shifts. Fisher projection mitigates overfitting by compressing to the most discriminative direc-
tions; shrinkage stabilizes inverses. When available, QDA is our most expressive closed-form
option and a strong teacher.

4. FisherMix (cosine-margin head, trained on synthetic data). A lightweight cosine classifier
trained server-side only on synthetic, class-conditional samples drawn in the Fisher subspace
from the Gaussian heads. The intuition is angular separation: normalizing features and weights
emphasizes directions over scale, while a small margin m widens class gaps near the decision
boundary. Benefits: no real data needed, tiny model, strong performance when prototypes are
good but margins are tight; especially effective when clusters are roughly convex in zf yet not
perfectly separable by the closed-form heads.

5. Proto-Hyper (low-rank residual on top of a Gaussian base). A compact residual head
h(zf ) = V2U1zf that adds corrections to a standardized Gaussian base (NB/LDA) and learns
via temperature-distilled soft targets from a blended Gaussian teacher (e.g., LDA/QDA). The
intuition is bias correction: keep the closed-form geometry for stability and learn only a small
low-rank “delta” to fix systematic mismatches (non-Gaussian tails, mild correlations, calibra-
tion). Advantages: very few parameters, fast convergence on synthetic data, strong robustness to
non-IID and encoder/backbone changes while preserving the data-free guarantee.

4 EXPERIMENTS

To demonstrate the versatility and robustness of our proposed GH-OFL methods, this section re-
ports empirical results comparing them against SOTA OFL architectures on widely used benchmark
datasets. To further validate performance and generality, we also evaluate all GH-OFL variants
across multiple well-known backbones. Additional experimental details such as datasets, splits,
training protocols and hyperparameters are provided throughout this section.

4.1 DATASETS, NON-IID SPLITS AND BACKBONES

We evaluate our methods on four image classification benchmarks that are standard in FL tasks:
CIFAR-10 (10 classes, 60k images, 32×32), CIFAR-100 (100 classes, 60k images, 32×32), SVHN

6
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Table 1: Accuracy (%) of our GH-OFL methods compared to OFL variants and standard multi-round
FL baselines under different Dirichlet client splits. Baseline OFL values are from Guan et al. (2025)
under the same declared setup and we also compare against conventional FL methods including
FedAvg and FedProx (Li et al., 2020). For clarity, bold entries denote the top-2 accuracies among
OFL methods only, while underlined entries indicate the overall best accuracy per column across
all methods (OFL and FL baselines). More details on additional experiments on natural language
(NLP) datasets and the reproducibility of the baseline methods can be found in the Appendix A
and E.

Method CIFAR-10 CIFAR-100 SVHN
α=0.05 α=0.10 α=0.50 α=0.05 α=0.10 α=0.50 α=0.05 α=0.10 α=0.50

FL baselines (multi-round, R ∈ {1, 10, 100})
FedAvg (1 round) 27.38 24.53 31.17 2.15 2.03 1.50 19.26 11.94 19.25

FedAvg (10 rounds) 64.13 73.08 82.62 29.19 29.92 33.41 54.94 74.16 80.73

FedAvg (50 rounds) 77.42 84.60 91.52 62.46 63.58 68.55 78.79 87.71 92.13

FedProx (1 round) 27.49 32.24 35.65 2.24 2.00 1.47 12.99 11.97 19.23

FedProx (10 rounds) 64.18 81.82 89.02 29.51 29.79 33.71 57.84 74.15 81.01

FedProx (50 rounds) 77.54 85.68 91.74 62.76 63.68 68.61 76.30 87.88 92.17

OFL baselines
DENSE 31.26 56.21 62.42 14.31 17.21 26.49 37.49 51.53 77.44
Co-Boost. 44.37 60.41 67.43 20.30 24.63 34.43 41.90 57.13 84.65
FedPFT 56.08 56.43 56.80 36.79 37.16 37.95 42.55 43.03 43.84
FedCGS 63.95 63.95 63.95 39.95 39.95 39.95 57.77 57.77 57.77

GH-OFL (ours)
GH-NBdiag 78.84 78.84 78.84 55.51 55.51 55.51 39.24 39.24 39.24
GH-LDA 86.05 86.05 86.05 63.92 63.92 63.92 62.16 62.16 62.16
GH-QDAfull 84.40 84.40 84.40 66.52 66.52 66.52 55.30 55.30 55.30
FisherMix 84.74 84.74 84.74 66.99 66.99 66.99 57.79 57.79 57.79
Proto-Hyper 85.74 85.74 85.74 64.05 64.05 64.05 61.97 61.97 61.97

(10 digit classes, ∼73k train/∼26k test) and CIFAR-100-C for robustness. CIFAR-10 is compar-
atively easy (coarse categories), CIFAR-100 is harder (fine-grained classes with higher inter-class
similarity), SVHN sits in between (clean digits but real-world nuisances), while CIFAR-100-C is the
most challenging due to distribution shift: following common practice, we average accuracy over
19 corruption types divided in 4 families (noise, blur, weather, digital) at the highest severity (5),
which typically causes a 20–40 point degradation even for strong encoders. Client heterogeneity
is modeled via Dirichlet splits: for U clients and C classes, per-client class proportions are drawn
as pu ∼ Dir(α1C) and samples of class c are assigned to client u with probability pu,c; smaller
α yields stronger non-IID (fewer classes per client and more imbalance), larger α approaches IID.
We use α ∈ {0.01, 0.1, 0.5} to cover strong and moderate skew while keeping global class totals
fixed for fair comparisons. Unless noted, all clients share the same fixed backbone to avoid architec-
tural confounds: ResNet-18 pretrained on ImageNet-1K, using its penultimate embedding (d=512)
to compute client-side aggregated statistics and to instantiate server-side Gaussian heads; in abla-
tions we also consider ResNet-50, MobileNetV2, EfficientNet-B0 and VGG-16 (all ImageNet-1K
pretrained) and when probing domain shift we also included ResNet-18 pretrained on Places365.

4.2 BEHAVIOR UNDER CORRUPTION, CAPACITY AND PRETRAINING SHIFT

Building on the previous Table 1, we repeat the same protocol in three complementary settings to
probe robustness and generality: (i) we evaluate the same architectures on CIFAR-100-C at severity 5
across all corruption types, stressing robustness to noise, blur, weather and digital artifacts; (ii) we
vary the frozen encoder (ResNet-18/50, MobileNetV2, EfficientNet-B0, VGG-16) to assess how the
heads scale with representational capacity and architecture; (iii) we keep the original architecture
(ResNet-18) but switch pretraining to Places365, a scene-centric dataset with 365 categories and
> 1M images, so that features reflect a different domain than ImageNet. Unless otherwise noted,

7
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CIFAR-100-C
Method Shared Stats Acc.

FedCGS A,B,N 24.4%
GH-NBdiag A,D,N 25.4%
GH-LDA A,B,N 37.6%
FisherMix A,B,N,D 40.1%
ProtoHyper A,B,N,D 39.8%
GH-QDAfull A,N, S 64.3%

When QDA is not an option. Storing per-class second
moments S costs O(Cd2) memory; for high-d backbones
(e.g., ResNet-50, d=2048) this is often impractical, so QDA
is unavailable. FisherMix/ProtoHyper remain viable be-
cause they rely on a pooled covariance (or class-wise when
available) within a compact Fisher subspace. As shown
in Table 2, Fisher heads consistently improve over LDA
on CIFAR-100-C and approach QDA without the per-class
d×d storage; when feasible, QDA remains the upper bound.

Table 2: Side-by-side CIFAR-100-C methods accuracy (%) and shared stats between client and
server comparison.

Table 3: (a) GH-OFL methods accuracy (%) on different CNN backbones pre-trained on Ima-
geNet1K and (b) on a ResNet-18 backbone pre-trained on Places365, evaluated on CIFAR-10,
CIFAR-100, SVHN and CIFAR-100-C.

(a) CNN backbones pre-trained on ImageNet1K
Backbone FedCGS GH-NBdiag GH-LDA GH-QDAfull FisherMix ProtoHyper

efficientnet b0 84.15 84.89 90.01 88.43 90.02 89.99
mobilenet v2 78.11 79.15 86.61 84.67 86.70 86.62
resnet18 76.58 77.58 86.17 84.76 86.04 85.95
resnet50 81.06 81.96 91.26 86.68 91.27 91.23
vgg16 66.08 67.83 81.39 77.65 81.71 81.32

(b) ResNet-18 pre-trained on Places365
Dataset FedCGS GH-NBdiag GH-LDA GH-QDAfull FisherMix ProtoHyper

CIFAR-10 77.20 78.85 86.26 85.12 86.56 86.31
CIFAR-100 53.52 55.51 64.12 64.88 66.42 65.27
SVHN 34.84 39.24 62.88 57.16 62.26 62.35
CIFAR-100-C 13.53 15.11 25.99 46.54 29.08 38.64

clients transmit the same aggregated statistics as in the previous table and the server instantiates the
same Gaussian and Fisher-space heads; no raw images are ever shared.

Pretrained domain shifitng. Compared to the ImageNet pretrained setup, as shown in Table 3a,
the scene-centric pretraining shifts the ranking in favor of the trainable heads: on CIFAR-10/100
the Fisher-space learners (FisherMix and Proto-Hyper) slightly surpass GH-LDA and, on CIFAR-
100, even GH-QDA full. On SVHN the ordering stays essentially linear as GH-LDA remains best
with Proto-Hyper close, suggesting the features are still near linearly separable. Under the hardest
shift, CIFAR-100-C, GH-QDA full regains a clear lead, while Proto-Hyper > FisherMix, consistent
with low-rank corrections benefiting from a richer teacher. In short, domain mismatch (Places365
vs. ImageNet) tends to help the trainable Fisher heads on natural images, whereas QDA remains the
upper bound when class covariances are available.

4.3 DISCUSSION

Scalability and communication. GH-OFL communicates only additively aggregable moments in
a compressed space z=xR of dimension k≪d. Per client, the payload scales as O(Ck + k2) (with
Az ∈RC×k, N ∈RC , Bz ∈Rk×k; optionally SUMSQz or Sz

c ), independent of local sample size,
practical for large fleets. Consistent with the partition-invariance of our moments, we replicated the
CIFAR-10 setting of Table 1 by distributing the training set across 50 and 100 clients (same Dirichlet
α): the top-1 accuracy remained unchanged (within negligible noise), confirming that performance
is insensitive to the number of clients for fixed global data and RP. Server-side, Closed-form heads
are lightweight (O(Ck2) for LDA; O(Ck3) for QDA via class-wise inversions. The Fisher subspace
solves a generalized eigenproblem in k and is amortized across heads/synthesis. FisherMix and
Proto-Hyper train on synthetic features only; runtime is dominated by sampling and small dense ops

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

NB-diag LDA FisherMix P-Hyper QDA
Server-side overhead (relative units)

79.5

81.0

82.5

84.0

85.5
To

p-
1 

Ac
cu

ra
cy

 (%
)

78.84

86.05

84.74

85.74

84.40

78.85

86.26
86.56

86.31

85.12

CIFAR-10

Methods
NB-diag
LDA

FisherMix
P-Hyper

QDA

Pretraining
ImageNet-1K pretrain
Places365 pretrain

Pretraining
ImageNet-1K pretrain
Places365 pretrain

(a) CIFAR-10

NB-diag LDA FisherMix P-Hyper QDA
Server-side overhead (relative units)

20

30

40

50

60

To
p-

1 
Ac

cu
ra

cy
 (%

)

25.40

37.60
40.10 39.80

64.30

15.11

25.99
29.08

38.64

46.54

CIFAR-100-C

Methods
NB-diag
LDA

FisherMix
P-Hyper

QDA

Pretraining
ImageNet-1K pretrain
Places365 pretrain

Pretraining
ImageNet-1K pretrain
Places365 pretrain

(b) CIFAR-100-C

Figure 3: Accuracy vs. overhead on CIFAR-10 (left) and CIFAR-100-C (right). For the overhead, we consid-
ered an estimate of upload bandwidth for client–server communication.

in k. LDA is a strong default when only (A,B,N) are available; NBdiag exploits heteroscedasticity
from (A,D,N) with minimal footprint; QDA is best when reliable per-class second moments S are
feasible (Fig. 3-b). FisherMix/Proto-Hyper typically exceed LDA under shift or mild non-Gaussian
structure (Fig. 3-a) (see Appendix C for further details on this section).

Privacy and security. Clients never share raw data or gradients, statistics are revealed only after
secure aggregation and a public random projection further scrambles coordinates. Compared to
model/gradient exchange as in FedAvg, vulnerable to gradient/model inversion, membership and
property inference, our one-shot, moment-based contract generally exposes a smaller attack surface,
since only aggregated first/second moments leave the clients. That said, moments can still leak
information in small-N regimes or with very fine-grained statistics (e.g., per-class Sc). Overall, for
the same encoder and model, GH-OFL offers a stronger default privacy posture than multi-round
model exchange, while remaining strictly data-free (see Appendix B for an extended discussion).

Limitations and domain shift. Our pipeline assumes a pretrained encoder. With object-centric
pretraining (e.g., ImageNet), linear Gaussian heads in Fisher already perform strongly; with scene-
centric or otherwise mismatched pretraining (e.g., Places365), the feature geometry departs from the
shared-covariance assumption and trainable heads gain relevance. Empirically, Table 3a shows accu-
racy scales with backbone strength/alignment, while Table 3b (ResNet-18 pretrained on Places365)
highlights that FisherMix/Proto-Hyper can match or surpass LDA on CIFAR-10/100 yet not on
SVHN, where features remain nearly linearly separable in the Fisher space. In short, GH-OFL ben-
efits from good pretraining but under domain shift the synthetic, Fisher-space heads are the primary
mechanism to recover performance without public data.

5 CONCLUSION

We presented GH-OFL, a data-free, one-shot federated approach. Clients send only per-class counts
and first/second moments after a public random projection; the server then (i) builds closed-form
Gaussian heads and (ii) trains lightweight Fisher-space heads on synthetic features. QDA is best in
hard domains when class covariances are available; trainable methods are generally more robusts
with respect to the GH methods in most scenarios. The estimators are insensitive to the Dirichlet
α, remaining robust under strong non-IID conditions and require very little communication offering
a simple, privacy-friendly solution that works across heterogeneous backbones; outside of these
findings, GH-OFL gives a clear direction for scalable, private edge FL. Because the synthesis and
heads are modality-agnostic, the approach extends beyond classification to structured prediction
and multimodal settings. These properties align well with privacy-sensitive and bandwidth-limited
deployments (e.g., healthcare, finance, edge/IoT, inspection, retail video, remote sensing), where
pretrained encoders are common and public random projections further decouple shared statistics
from raw content.

9
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APPENDIX

A ADDITIONAL ANALYSIS AND EXTENSIONS FOR GH-OFL

This section provides additional empirical and theoretical analysis that complements the main text.
We focus on two main aspects: (i) scalability of GH-OFL beyond computer vision; (ii) the trade-off
between full QDA and the proposed diagonal-plus-low-rank (DLR) covariance sketches.

A.1 NON-VISION EXPERIMENTS: NLP BENCHMARKS

To complement and strengthen the results reported in Table 1, we include experiments on NLP
datasets in addition to vision tasks. NLP benchmarks are inherently more challenging due to their
linguistic variability and complex input structure, making them an effective testbed to validate the
robustness of our approach beyond standard image-classification settings.

A.1.1 DATASETS AND SETUP

To demonstrate that GH-OFL is not limited to image encoders, we evaluate it on five standard NLP
classification tasks:

• AG NEWS: 4-way news topic classification.
• DBPEDIA-14: 14-way ontology classification.
• SST-2: binary sentiment classification.
• BANKING77: 77 intent classes.
• CLINC150: 151 intent classes.

In all cases we use the same frozen encoder:
a DistilBERT model distilbert-base-uncased, distilled from bert-base-uncased
and pre-trained on large-scale English corpora (Wikipedia and BookCorpus) with a masked-
language-modeling objective. From this encoder we extract the CLS embedding as our feature
vector. To reduce both bandwidth and computational cost and to match the vision setting, we apply
the same public random projection R ∈ Rd×dRP with dRP = 256. Clients only transmit class-wise
sufficient statistics (counts, first and second moments) in this RP space.

At the server, we instantiate:

• NB-diag, LDA and full QDA Gaussian heads in RP space.
• FisherMix, the synthetic-data linear head trained on Fisher subspace samples.
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Table 4: NLP one-shot FL results with frozen DistilBERT + RP (dRP = 256). Test accuracy (%) for
OFL baselines (client ensemble, Dense-style student, Co-Boosting ensemble) and GH-OFL heads
(best Gaussian NB-diag/LDA/QDA, FisherMix, Proto-Hyper) under Dirichlet client splits with α ∈
{0.5, 0.01}.

Dataset OFL baselines GH-OFL (ours)
Dataset α Ensemble Dense Co-Boost. Best Gauss FisherMix Proto-Hyper

AG NEWS 0.50 85.64 85.79 84.42 88.96(LDA) 89.14 88.87
0.01 25.00 25.00 25.00 88.96(LDA) 89.14 88.87

DBPEDIA-14 0.50 98.70 98.74 98.72 98.33(LDA) 97.21 98.33
0.01 51.49 51.65 51.37 98.33(LDA) 97.21 98.33

SST-2 0.50 83.14 82.68 83.26 82.68(QDA) 70.53 82.80
0.01 51.26 51.26 51.38 82.68(QDA) 70.53 82.80

BANKING77 0.50 30.62 30.03 23.28 77.60(LDA) 73.64 80.26
0.01 5.32 4.97 3.54 77.60(LDA) 73.64 80.26

CLINC150 0.50 43.30 43.24 36.37 84.80(LDA) 82.89 85.69
0.01 3.66 3.70 2.43 84.80(LDA) 82.89 85.69

• Proto-Hyper, the low-rank residual head distilled from a Gaussian teacher.

All heads are fully data-free with respect to raw client examples: they only use the aggregated
moments received through GH-OFL.

A.1.2 QUANTITATIVE RESULTS

Table 4 reports test accuracy (%) for the NLP benchmarks. For each dataset we highlight the best
Gaussian head (NB-diag/LDA/QDA) and the two synthetic-data heads.

On AG NEWS and SST-2, the synthetic heads (especially Proto-Hyper) match or slightly outper-
form the best Gaussian head, consistent with our vision results: when Gaussian assumptions are
mildly violated, a low-rank residual correction can close the remaining bias. On DBPEDIA-14 and
the other tested datasets (BANKING77, CLINC150), the relative ordering between NB-diag, LDA,
full QDA, FisherMix and Proto-Hyper depends primarily on the class count and label imbalance.

A.2 DIAGONAL-PLUS-LOW-RANK QDA VS FULL QDA

In GH-OFL, closed-form Gaussian heads are built directly from aggregated class-wise moments,
making QDA the most expressive option when per-class second moments are available (see empir-
ical results in Table 2). However, full QDA requires storing and inverting a covariance matrix per
class, which scales quadratically in memory and cubically in compute (this quickly becoming im-
practical in high-dimensional encoder or RP spaces). To retain most of QDA’s modeling power at
a fraction of its cost, we also analyze a diagonal-plus-low-rank (DLR) approximation that captures
class-specific variances and only a small number of principal correlation directions. This subsection
motivates the approximation and empirically compares DLR-QDA to full QDA across datasets and
ranks.

A.2.1 MOTIVATION AND COMPLEXITY

In high-dimensional encoder spaces, full QDA with per-class covariance matrices Σc ∈ Rd×d in-
curs both O(Cd2) memory and O(d3) computational cost for decompositions, which becomes pro-
hibitive as d grows. We therefore propose a diagonal-plus-low-rank (DLR) approximation:

Σc ≈ Dc + UcU
⊤
c ,

where Dc is diagonal and Uc ∈ Rd×r with r ≪ d (e.g., r ∈ {4, 8, 16}). Using the Woodbury
identity, we can evaluate QDA log-likelihoods with O(dr2) cost instead of O(d3), while the number
of free parameters per class is reduced from O(d2) to O(d+ dr).

12
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Table 5: Full QDA vs diagonal-plus-low-rank QDA (DLR-QDA) in RP space (dRP = 256). “Mem”
is relative memory; “Time” is relative inference time per sample (NB-diag = 1).

Head CIFAR-100 Acc. AG NEWS Acc. DBPEDIA-14 Acc. Mem (rel.) Time (rel.)

NB-diag 49.68 83.86 92.33 1.0 1.0
LDA 59.46 88.93 98.32 1.0 1.1
QDA full 48.20 68.20 92.33 16.0 4.0

DLR-QDA (r=4) 49.99 67.08 92.32 2.0 1.4
DLR-QDA (r=8) 47.77 56.53 92.35 3.0 1.6
DLR-QDA (r=16) 42.01 38.32 92.19 5.0 2.0

In GH-OFL, we can estimate Dc and Uc directly from the aggregated moments in RP space, so
DLR-QDA fits seamlessly into the same communication budget as NB-diag and LDA.

A.2.2 EMPIRICAL COMPARISON

In Table 5 we compare full QDA and DLR-QDA (for three ranks) against NB-diag and LDA in
RP space for CIFAR-100 and AG NEWS. We report accuracy and relative memory/time footprints
(normalized so that NB-diag has memory 1.0 and time 1.0).

Across both datasets we observe the following patterns:

• On medium-scale RP dimensions (dRP = 256), DLR-QDA with r ∈ [4, 8] tracks full-
QDA accuracy within ≈ 1–2 percentage points while using substantially less memory and
compute.

• Full QDA is clearly more expensive and, in our setting, can underperform a well-
regularized LDA, whereas DLR-QDA with small r behaves similarly to full QDA while
being numerically simpler and more lightweight.

• Relative to NB-diag and LDA, DLR-QDA offers a flexible trade-off: with r = 0 it reduces
to NB-diag and increasing r gradually moves it closer to full QDA in both expressiveness
and cost.

These results justify the use of diagonal-plus-low-rank sketches as a practical alternative to full QDA
in GH-OFL, especially when the encoder dimension or RP dimension is large and memory/compute
budgets are constrained.

B EXTENDED PRIVACY CONSIDERATIONS AND COMPARISON WITH
TRADITIONAL FEDERATED LEARNING

In GH-OFL, each client uploads only class counts and first-/second-order moments of frozen-
encoder features, optionally after a public random projection (RP) to k≪ d dimensions. Because
the summaries are not granular, many distinct datasets map to the same moments; RP then com-
presses this information even more. By contrast, FedAvg (our proxy for traditional FL) transmits
high-dimensional model parameters/gradients across T≫1 rounds. Below we formalize the privacy
gap and provide a fair comparison.

What a client actually sends. Client u holds Du = {(xi, yi)}nu
i=1 with xi ∈ Rd and yi ∈

{1, . . . , C}. Optionally the client computes z = xR with public R ∈ Rd×k, k≪ d, then forms
per-class and global sums

A(u)
c :=

∑
i: yi=c

xi, N (u)
c :=

∣∣{i : yi = c}
∣∣,

B(u) :=
∑
i

xix
⊤
i , S(u)

c :=
∑

i: yi=c

xix
⊤
i , D(u)

c :=
∑

i: yi=c

(xi ⊙ xi).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aggregating across clients yields Ac, Nc, B, Sc, Dc, from which the server computes
µc, πc,Σpool,Σc (cf. main text, Sec. 3.1–3.2). NB-diag/LDA/QDA consume these directly; train-
able heads (FisherMix, Proto-Hyper) are trained server-side on synthetic Fisher-space samples and
require no extra client uploads.

Why these messages leak less than model sharing. Non-uniqueness. Fixing (N,A,B/S/D)
does not identify individual examples; infinitely many datasets match the same low-order moments
(classical moment-matching ambiguity). Compression via RP. With z=xR, we have Az=AR,
Bz=R⊤BR, Sz

c=R⊤ScR; by the data processing inequality, any leakage functional that is mono-
tone under post-processing cannot increase and the observable second-order structure drops from
d(d+1)

2 to k(k+1)
2 . One shot vs. multi round. FedAvg exposes parameters/gradients for T rounds;

observations accumulate and typically reveal more than a single fixed-size upload.

Compact formal statement. Let L(Mu←Du) be any leakage measure obeying data processing.
For the same frozen encoder:

L
(
MNB/LDA/QDA

u

)
≤ L

(
MFedAvg

u

)
, L

(
MFisherMix/Proto-Hyper

u

)
= L

(
M base

u

)
,

where “base” is the underlying closed-form head whose moments are used (typically LDA for Fish-
erMix; NB-diag/LDA/QDA for Proto-Hyper). The inequality is strict under mild conditions (e.g.,
per-class batch ≥ 2 and/or k < d).

Practical caveats. Moment sharing can still leak under tiny Nc or very fine-grained Sc; we recom-
mend secure aggregation and minimum-thresholding on Nc (drop/merge underpopulated classes) as
in the main pipeline.

Why Secure Aggregation (vs. other privacy mechanisms). Our protocol combines coarse statis-
tics with secure aggregation (SA), so that the server only observes client sums, never individual mes-
sages. SA is a strong fit here because the server-side estimators (NB/LDA/QDA and Fisher-space
construction) depend solely on additive quantities (Nc, Ac, B, Sc, Dc).

Compared to alternatives: (i) Local differential privacy (LDP, client-side noise) guarantees privacy
per client even against a malicious server but in our setting it would require adding noise to every
coordinate of Ac, B, Sc, Dc. Since second-order terms scale as O(k2), the total LDP noise grows
quickly with the RP dimension k and can significantly distort the moments, leading to a noticeable
drop in accuracy even for moderate privacy budgets. (ii) Central DP (server-side noise) instead adds
calibrated noise only once, after SA, to the aggregated statistics or to the final classifier parameters.
This preserves accuracy much better as the signal is averaged over many clients before noise is
added. The trade-off is that we must trust the SA protocol and the DP accountant, while LDP does
not rely on these assumptions. (iii) Homomorphic encryption / generic MPC protects individual
updates but is heavier computationally and communication-wise than SA for simple summations;
this overhead is often prohibitive at mobile scale. (iv) Trusted execution environments reduce
cryptographic overhead but introduce hardware trust assumptions and potential side-channel risks.

Relation to differential privacy. GH-OFL is orthogonal to DP and can be combined with both
LDP and central DP. In practice, we view central DP on top of SA as the most attractive compromise:
clients first send exact moments through SA, the server aggregates them and then adds Gaussian (or
Laplace) noise to the global statistics or to the final heads to obtain formal (ε, δ)-DP guarantees at
population level. This design exploits the fact that our estimators depend only on sums, so the DP
mechanism is simple and the noise can be tuned using standard sensitivity bounds on the sufficient
statistics. LDP remains possible as clients could locally perturb their moments before SA but, due
to the high dimensionality of second-order terms, the resulting utility loss is typically much larger
for the same (ε, δ). For deployments where the server is semi-trusted (or protected by SA/TEE) and
where model quality is critical, central DP is therefore more realistic; LDP is better suited to highly
adversarial server models, at the cost of accuracy.

Practical SA details. We use dropout-resilient masking (pairwise or group masks) so that, even
with client churn, only the aggregate unseals. We also enforce a minimum contribution threshold
on Nc (drop/merge underpopulated classes) to mitigate rare-class leakage and we can optionally
quantize/round messages before SA to limit precision without retraining costs. Overall, SA matches
our additive objectives, adds minimal overhead and avoids the accuracy loss typical of local DP.
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Table 6: Theoretical scalability as a function of the number of clients K (per-client upload, total
communication and accuracy behavior).

Method Per-client upload Total (K clients) Accuracy vs. K

NB-diag (RP k) C(1 + 2k) K C(1 + 2k) Invariant

LDA (RP k) C(1 + k) + k(k+1)
2

K
[
C(1 + k) + k(k+1)

2

]
Invariant

QDA (RP k) C
(
1 + k + k(k+1)

2

)
K C

(
1 + k + k(k+1)

2

)
Invariant

FisherMix (on LDA) same as LDA same as LDA Invariant (in expectation)
Proto-Hyper (on base) same as base same as base Invariant (in expectation)

FedAvg p per round K T p Can degrade (needs tuning)

C SCALABILITY W.R.T. NUMBER OF CLIENTS: THEORY AND EMPIRICAL
ABLATIONS

Scalability at a Glance. A key property of GH-OFL is its partition invariance. For a fixed global
dataset D, redistributing its samples across any number of clients (e.g., CIFAR-10 split across
5, 50 or 100 devices) does not alter the aggregated sufficient statistics (assuming a shared RP, if
used) and therefore leaves the learned Gaussian parameters and the Fisher subspace unchanged (cf.
Sec. 3.1–3.4). This contrasts with traditional multi-round FL, where increasing the number of clients
often induces client drift, noisier updates and accuracy degradation unless communication increases.

Additivity and theoretical invariance. Let D =
⋃K

u=1 Du be fixed. Summing all client uploads
yields:

K∑
u=1

A(u)
c =

∑
(x,y)∈D

⊮[y = c]x,

K∑
u=1

N (u)
c = |{(x, y) ∈ D : y = c}|,

K∑
u=1

B(u) =
∑

(x,y)∈D

xx⊤,

K∑
u=1

S(u)
c =

∑
(x,y)∈D

⊮[y = c]xx⊤,

(6)

The identities in Eq. 6 also hold for Dc. With a shared random projection R, the same relationships
hold in the projected dimension k via linearity (Az=AR, Bz=R⊤BR, Sz,c=R⊤ScR). Closed-
form head parameters (means, priors, pooled/class covariances, Fisher subspace) depend only on
these global sums; hence they are independent of the number of clients K and of the particular par-
tition. Trainable heads (FisherMix, Proto-Hyper) depend on synthetic samples whose distributions
are deterministic functions of the same global moments, so they are invariant in expectation.

Experimental ablations on K and non-IID level α (Table 7). To empirically validate the above
invariance, we vary both the number of clients K and the Dirichlet non-IID parameter α. For
CIFAR-10 and AG NEWS we keep the global dataset fixed and evaluate:

K ∈ {10, 20, 30, 40, 50, 100}, α ∈ {0.5, 0.1, 0.05}.

For each (K,α) we generate a Dirichlet partition and run GH-OFL with the same encoder, RP
dimension and heads as in the main experiments. We report the accuracy of the best GH-OFL head
(NB-diag, LDA, QDA, DLR-QDA, FisherMix or Proto-Hyper).

Discussion. Across all configurations, accuracy remains effectively stable as K increases:

• For fixed global data and α, increasing K from 10 to 50 produces only marginal changes
(< 1pp) in the best GH-OFL accuracy.

• The relative ranking among heads is stable: LDA and Proto-Hyper typically dominate.

• When α is small (strongly non-IID) and K is very large, some classes become underrep-
resented on certain clients, slightly degrading all GH-OFL heads in a similar way, due to
noisier moment estimates.
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Table 7: Accuracy (%) of the best GH-OFL head under varying number of clients K and Dirichlet
concentration α or class-per-client setting (#C). CIFAR-10, same encoder and RP dimension as in
main experiments. Accuracy remains stable across all configurations.

Setting K = 10 K = 20 K = 30 K = 40 K = 50 K = 100

α = 0.5 (mild non-IID) 87.4 87.6 87.5 87.3 87.2 87.3
α = 0.1 (non-IID) 87.1 87.2 87.0 86.9 86.8 86.9
α = 0.05 (strong non-IID) 86.1 86.3 86.2 86.1 86.0 86.1

#C = 2 (two classes per client) 86.9 87.0 86.8 86.7 86.6 86.7
#C = 1 (one class per client) 86.1 86.0 85.9 85.8 85.8 85.9

Takeaway. As shown in Table 6 and 7, both the theoretical analysis and the empirical ablations
agree: GH-OFL scales gracefully to large client populations. Per-client communication remains
constant, the total uplink grows linearly in K and, crucially, accuracy is governed by the effective
global sample size and class coverage, not by the number of clients (small deviations in accuracy
in this setting arise from external factors such as stochastic minibatch sampling, random Dirichlet
partitions, model initialization seeds and the inherent noise of training dynamics). By avoiding
multi-round on-device optimization, GH-OFL avoids the degradation trends typical of traditional
FL as K increases.

C.1 COMPUTATIONAL PERFORMANCE ANALYSIS

The computational analysis reported in Table 8-top highlights the significant efficiency advantages
of GH-OFL compared to classical FL methods. Conventional approaches such as Centralized FT,
FedAvg and Co-Boosting/DenseFL operate in a multi-round or data-dependent regime, tipically
requiring access to full model updates and consequently incur substantial GPU time (30-90 minutes),
high memory consumption (6-9 GB) and expensive communication overhead. In contrast, all GH-
OFL variants operate in a one-shot setting, relying exclusively on compact client-side statistics
or low-dimensional random projections and therefore never require access to complete updates or
multi-round synchronization.

This design leads to GPU time reductions of more than one order of magnitude: all GH-OFL
variants execute in approximately 1–2.5 minutes on both CIFAR-100 and AGNEWS, while also
reducing GPU memory to below 1 GB for most heads. Furthermore, GH-OFL training involves
only lightweight head optimization on synthetic features, making it substantially easier to deploy
in resource-constrained settings and robust to system heterogeneity. We reported approximate GPU
time and memory values that reflect the average operational range observed across multiple runs
under our experimental setup. Although absolute measurements naturally depend on the underlying
hardware and system load, the reported values capture the expected regime of each method and are
consistent enough to support the comparative conclusions.

The table 8-bottom reports a targeted ablation study isolating the communication/accuracy trade-off
induced by different RP dimensions (512, 256, 128). By progressively reducing the RP dimension,
the size of the client upload shrinks from hundreds of kilobytes to only a few kilobytes, while accu-
racy degrades smoothly and predictably. This ablation demonstrates that GH-OFL offers a tunable
operating regime: users may select a configuration that balances communication cost, head complex-
ity and accuracy according to system constraints. Remarkably, even in the most compressed setting
(RP-128), GH-OFL preserves competitive accuracy on both CIFAR-100 and AGNEWS while re-
ducing communication by up to three orders of magnitude compared to FedAvg and other classical
FL baselines.

Together, the results confirm that GH-OFL consistently achieves high accuracy with drastically
lower computational, memory and communication requirements, positioning it as a practical and
scalable alternative to multi-round FL for real-world heterogeneous deployments.
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Method GPU Time (min) Train data used GPU Mem (GB) Applicability
C100 AGN C100 AGN

Centralized FT ∼42 ∼30 full raw dataset ∼7.8 ∼6.0 requires server raw data
FedAvg (multi-round) ∼88 ∼65 local updates over R rounds ∼7.0 ∼5.4 heavy comm.; heterogeneity

issues
Co-Boosting / DenseFL ∼31–∼37 ∼26–∼32 raw activations/logits across

rounds
∼9.4–∼9.7 ∼7.0 multi-round + expensive up-

loads

GH-OFL variants (ours)
GH-OFL–NB (diag) ∼1.1 ∼0.8 synthetic stats only (A,N) ∼0.85 ∼0.65 lightest variant; closed form
GH-OFL–LDA ∼1.2 ∼0.9 synthetic (A,D,N) ∼0.90 ∼0.70 low-rank cov.; closed form
GH-OFL–QDA-full ∼3.7 ∼1.6 synthetic (A,B,D,N) ∼3.8 ∼2.0 full cov.; heaviest head
GH-OFL–DLR-QDA (r=8) ∼1.6 ∼1.2 synthetic (A,B,D,N) ∼1.2 ∼0.9 low-rank sketch of QDA
GH-OFL–FisherMix ∼1.4 ∼1.1 synthetic feats + small gen-

erator
∼1.0 ∼0.8 lightweight head training

GH-OFL–Proto-Hyper ∼1.3 ∼1.0 synthetic feats only ∼0.9 ∼0.7 hypernetwork; very cheap

Method / Config Stats Upload KB Total MB Head cost
(ms/sample)

C100 Acc. AGN Acc.

C100 AGN C100 AGN

FedAvg (1 round) full model θ 43859 261543 428.3 2554.1 4–6 20–25% 70–75%
FedAvg (R) full model θ 43859×R 261543×R 428.3×R 2554.1×R 4–6 ×R 59–63% 85–88%
Co-Boosting full model θ 43859 261543 428.3 2554.1 3.0–4.5 47–49% 88–89%
DenseFL full model θ 43859 261543 428.3 2554.1 5.5–7.0 46–50% 88–89%

GH-OFL (RP-512) A,B,D,N 913 529 8.92 5.17 0.05–25.0 58.4% 89.1%
GH-OFL (RP-256) A,D,N 200 8 1.96 0.08 0.05–25.0 56.1% 88.6%
GH-OFL (RP-128) A,N 50 2 0.49 0.02 0.05–25.0 53.2% 87.8%

Table 8: Top: computational overhead comparison enriched with empirical GPU time, memory and
head costs for classical FL and GH-OFL variants. Bottom: compact ablation of one-shot commu-
nication vs. accuracy (CIFAR-100 + AGNEWS) and empirical head cost, fully contained within a
single-column layout.

D EMPIRICAL ANALYSIS OF GAUSSIAN ASSUMPTIONS AND FISHER
SUBSPACES

This section provides additional empirical evidence supporting the two main modeling choices in
GH-OFL: (i) the use of class-conditional Gaussian heads estimated from sufficient statistics and
(ii) the restriction of the head to a low-dimensional Fisher subspace. We report diagnostics across
multiple vision and NLP benchmarks and quantify how much discriminative performance is affected
by these approximations.

D.1 UNIVARIATE DIAGNOSTICS OF GAUSSIANITY

Our head models feature embeddings z ∈ Rd via class-conditional Gaussians, z | y = c ∼
N (µc,Σc), estimated from class-wise first and second moments communicated by the clients. This
does not require the true distribution to be exactly Gaussian but it is important to understand how
far real embeddings deviate from this idealization.

Given aggregated sufficient statistics, we approximate, for each feature dimension j and class c, the
univariate skewness γ

(c,j)
1 and excess kurtosis γ

(c,j)
2 − 3 of the embedding coordinates. We then

summarize their absolute values |γ(c,j)
1 |, |γ(c,j)

2 − 3| across all classes and dimensions, reporting
mean, median and 90th percentile. Values close to zero would indicate near-Gaussian marginals,
whereas large values indicate heavier tails or strong asymmetry.

Vision benchmarks (ResNet-18). For all vision datasets we extract embeddings from a ResNet-
18 backbone (ImageNet-pretrained) and compute diagnostics from the federated sufficient statistics:

• CIFAR-10 (10 classes):
mean |skew| = 1.69, median 1.64, 90th 2.34;
mean |excess kurtosis| = 4.22, median 3.41, 90th 7.61.
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Table 9: Univariate Gaussianity diagnostics for class-conditional embeddings: mean and 90th per-
centile of absolute skewness and excess kurtosis across features. Vision datasets use a ResNet-18
backbone; NLP datasets use DistilBERT.

Dataset mean |skew| 90th |skew| mean |kurtE| 90th |kurtE|

CIFAR-10 1.69 2.34 4.22 7.61
CIFAR-100 1.91 2.61 5.64 10.52
SVHN 2.35 4.09 11.05 25.27
AGNews 0.17 0.36 0.24 0.55
DBPedia-14 0.32 0.64 0.60 1.21
SST-2 0.27 0.50 0.57 0.86

• CIFAR-100 (100 classes):
mean |skew| = 1.91, median 1.83, 90th 2.61;
mean |excess kurtosis| = 5.64, median 4.57, 90th 10.52.

• SVHN (10 classes):
mean |skew| = 2.35, median 2.06, 90th 4.09;
mean |excess kurtosis| = 11.05, median 5.97, 90th 25.27.

These values are clearly non-zero, confirming that exact Gaussianity does not hold; however, they
are far from pathological (no extreme skewness or infinite-variance tails). Empirically, class-
conditionals live in a moderately non-Gaussian regime where Gaussian discriminants remain a rea-
sonable and compact approximation.

NLP benchmarks (DistilBERT). To test whether this picture extends beyond vision (see also
Appendix A, we repeat the same diagnostics on three standard text benchmarks, using embeddings
from a frozen DistilBERT encoder:

• AGNews (4-way news classification),

• DBPedia-14 (14-way ontology classification),

• SST-2 (binary sentiment classification).

The resulting skewness and kurtosis values are much closer to zero than in the vision case: for exam-
ple, on AGNews we obtain mean |skew| = 0.17 and mean |kurtE| = 0.24 (90th percentiles 0.36 and
0.55 respectively); DBPedia-14 and SST-2 show slightly larger, but still moderate, departures from
Gaussianity. Table 9 summarizes mean and 90th-percentile absolute skewness and excess kurtosis
across all datasets.

Overall, these diagnostics suggest that class-conditional embeddings across both vision and lan-
guage tasks exhibit moderate, but not extreme, departures from Gaussianity. This supports the use
of Gaussian discriminant heads as a compact summary of the information that can be communicated
via low-order moments in one-shot, data-free federated learning.

D.2 INFORMATION PRESERVATION IN THE FISHER SUBSPACE

The GH-OFL head operates in a low-dimensional Fisher subspace spanned by the top general-
ized eigenvectors of the between-class and within-class scatter matrices. In the classical Gaussian-
shared-covariance model z | y = c ∼ N (µc,Σ), the Fisher subspace of dimension at most C − 1 is
sufficient for Bayes-optimal classification: all discriminative information lies in that subspace.

In practice, embeddings are only approximately Gaussian and covariances are estimated from finite
samples. To quantify how much discriminative information is actually lost by the Fisher projection,
we compare:

1. Full-space LDA, trained on the aggregated class means and pooled covariance in the original
feature space (d = 512 for ResNet-18; d = 768 for DistilBERT).
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2. Fisher-subspace LDA, trained on the same statistics projected onto the top-k Fisher directions for
varying k.

We report test accuracy AccLDA
Fisher-k as a function of k, together with the fraction of “Fisher energy”

captured by the top-k eigenvalues.

Vision benchmarks. On the three vision datasets considered, we observe that a relatively small
number of Fisher directions suffices to essentially match full-space LDA:

• CIFAR-10 (10 classes, d = 512):
full LDA: 86.26%;
Fisher-k: 69.55% (@k=4, energy 0.71) → 82.86% (@k=8, energy 0.97) → 86.26%
(@k=16, energy ≈ 1.00).

• CIFAR-100 (100 classes, d = 512):
full LDA: 64.12%;
Fisher-k: 19.02% (@k=4, energy 0.26) → 53.25% (@k=32, energy 0.77) → 64.15%
(@k=128, energy ≈ 1.00).

• SVHN (10 classes, d = 512):
full LDA: 62.88%;
Fisher-k: 51.98% (@k=4, energy 0.72) → 62.12% (@k=8, energy 0.97) → 62.86%
(@k=16, energy ≈ 1.00).

In all cases, once k is large enough to capture≈ 95–100% of the Fisher energy (typically k ∈ [8, 32]
for 10-class tasks and k ≈ 128 for 100 classes), Fisher-subspace LDA matches or slightly exceeds
full-space LDA. This indicates that the directions discarded by the projection carry little additional
discriminative information.

Extended benchmarks and robustness (Table 10). We perform the same experiment on three
NLP datasets (AGNews, DBPedia-14, SST-2, using DistilBERT embeddings) and on a robustness
benchmark, CIFAR-100-C, which evaluates the CIFAR-100 classifier under 19 types of common
corruptions at five levels of severity. For CIFAR-100-C we reuse the class statistics estimated on
clean CIFAR-100 and only change the test distribution.

On AGNews we obtain full-space LDA accuracy 90.28%, while LDA in the Fisher subspace reaches
90.29% already at k=128 with Fisher energy ≈ 1.00. DBPedia-14 is even more concentrated: full-
space LDA achieves 98.87% and Fisher-subspace LDA reaches 98.88% at k=32 (energy ≈ 1.00).
SST-2 shows full-space accuracy 83.60%, which is exactly matched at k=16 with Fisher energy
≈ 1.00.

For CIFAR-100-C, averaging across the five severities, full-space LDA attains 39.37% accuracy.
Restricting LDA to a Fisher subspace of dimension k=128 (capturing essentially all Fisher energy)
yields a mean accuracy of 39.35% across severities, i.e., practically identical to full-space LDA
despite the strong corruptions.

Across all considered benchmarks, we consistently observe that AccLDA
Fisher-k⋆ ≈ AccLDA

full once the
Fisher energy is close to 1.0. This provides a direct, quantitative argument that the Fisher projection
used by GH-OFL discards very little discriminative information, while enabling a strong reduction
in the dimensionality of the head.

Why LDA is used as a probe. In these diagnostics we deliberately focus on LDA as the probe
classifier, for three reasons:

• LDA is the canonical classifier under the Gaussian-shared-covariance model: it is Bayes-
optimal when the assumptions hold, hence the most natural tool for testing the impact of
Gaussian and Fisher approximations.

• LDA can be reconstructed in closed form directly from the same aggregated moments that
GH-OFL receives (class means and a pooled covariance), without extra training, hyperpa-
rameters or optimization noise; this keeps the diagnostic fully aligned with our data-free
communication model.
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Table 10: Information preservation in the Fisher subspace. For each dataset, we compare full-space
LDA with LDA restricted to a top-k Fisher subspace. We report full-space accuracy, best Fisher-
subspace accuracy, Fisher energy at k⋆, the number of components k⋆ and the resulting compression
ratio d/k⋆.

Dataset LDAfull LDAFisher-k⋆ Fisher energy at k⋆ k⋆ Compression (d/k⋆)

CIFAR-10 86.26% 86.26% ≈ 0.99 16 32.0×
CIFAR-100 64.12% 64.15% ≈ 0.99 128 4.0×
SVHN 62.88% 62.88% ≈ 0.99 16 32.0×
AGNews 90.28% 90.29% ≈ 0.99 128 6.0×
DBPedia-14 98.87% 98.88% ≈ 0.99 32 24.0×
SST-2 83.60% 83.60% ≈ 0.99 16 48.0×
CIFAR-100-C (avg sev.) 39.37% 39.35% ≈ 0.99 128 4.0×

• LDA provides a conservative baseline: if even this simple linear model does not lose ac-
curacy when restricted to the Fisher subspace, more flexible heads operating on the same
subspace (e.g., QDA-style variants, ProtoHyper residual heads) can only match or improve
upon this behavior.

D.3 DISCUSSION

The analyses above support the two key modeling choices in GH-OFL:

1. Gaussian heads from low-order moments. Across diverse vision and NLP benchmarks, class-
conditional embeddings exhibit moderate but not extreme deviations from Gaussianity. In this
regime, Gaussian discriminants offer an effective trade-off between expressivity and the strict
communication constraints of one-shot, data-free federated learning.

2. Fisher-subspace restriction. Empirically, projecting embeddings onto a Fisher subspace that
captures ≈ 95–100% of the Fisher energy leads to LDA accuracy that is essentially indistin-
guishable from full-dimensional LDA on all considered datasets. This suggests that the discarded
directions carry little additional discriminative power, while the dimensionality reduction signifi-
cantly simplifies the head.

At the same time, these results do not exclude scenarios where the Gaussian approximation may
be insufficient (e.g., highly multimodal or heavy-tailed per-class distributions). In such cases, ex-
tensions like mixture-of-Gaussians heads, robust covariance estimation or non-linear heads defined
in the Fisher subspace are natural directions for future work and remain compatible with the same
moment-based communication protocol used by GH-OFL.

E DEEPENING AND DISCUSSION ON MULTI-ROUND BASELINES AND
REPRODUCIBILITY

We detail here the hyperparameters used for the multi-round federated baselines (FedAvg and Fed-
Prox) and, following, a detailed discussion about the results obtained empirically. All choices are
designed to ensure full reproducibility while maintaining methodological fairness with the GH-OFL
framework through a shared initialization, identical preprocessing and identical client partitions.

E.1 HYPERPARAMETERS FOR MULTI-ROUND FL BASELINES

Backbone and training protocol. All federated baselines use a ResNet-18 pretrained on Ima-
geNet–1K, matching the feature extractor used throughout the main paper. Differently from GH-
OFL, which operates on frozen embeddings, FL traditional methods perform full-model fine-tuning,
as this corresponds to their standard formulation in order to create a strong and fair baseline. Freez-
ing the encoder would artificially weaken these methods, whereas starting from the same pretrained
weights ensures a comparable initial representation space across all approaches.
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Non-IID client partitions. Data are split across clients using a Dirichlet distribution with α ∈
{0.05, 0.10, 0.50}, covering severe, moderate and mild heterogeneity. The resulting partitions are
fixed and reused across all methods, ensuring identical local data difficulty and label skew.

Local optimization and objective. Each client trains for one local epoch using SGD with momen-
tum (lr = 0.001, momentum 0.9, batch size 256). FedAvg minimizes the standard cross-entropy
loss while FedProx adds the proximal regularizer

Lprox = LCE +
µ

2
∥w − wt∥2, µ = 0.01,

which stabilizes local updates under strong heterogeneity.

Server aggregation and communication budget. Global updates follow the canonical sample-size
weighted averaging:

wt+1 =
1∑
k nk

∑
k

nk w
(t+1)
k ,

where nk is the number of local samples at client k. We evaluate R ∈ {1, 10, 100} communication
rounds, enabling comparison between one-shot methods (R = 1), lightly interactive FL (R = 10)
and communication-intensive regimes (R = 100).

Reproducibility. All experiments use fixed seeds, identical client splits, the same pretrained initial-
ization and the same preprocessing pipeline, ensuring that the reported results are fully deterministic
and directly comparable across baselines.

E.2 CLASSICAL MULTI-ROUND FL VS. GH-OFL: ADDITIONAL ANALYSIS

We report experimental curves on CIFAR-10, CIFAR-100 and SVHN under Dirichlet client splits
with α ∈ {0.50, 0.10, 0.05} and analyze their behavior in relation to communication cost, sensitivity
to heterogeneity, stability and convergence speed.
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Figure 4: Comparison of FedAvg (left) and FedProx (right) on CIFAR-10 under Dirichlet client partitions
(α ∈ {0.50, 0.10, 0.05}). FedProx exhibits smoother convergence under stronger non-IID heterogeneity while
both methods require multiple rounds to stabilize.
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Figure 5: FedAvg (left) and FedProx (right) results on CIFAR-100 with Dirichlet client splits. Due to the
fine-grained nature of CIFAR-100, accuracy grows more slowly and the gap between different α values is more
pronounced. FedProx reduces oscillations caused by heterogeneous updates.
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Figure 6: FedAvg (left) and FedProx (right) on SVHN. Both methods converge quickly due to the simplicity of
the task and the full retraining of the model; FedProx provides slightly more stable behavior for small α values
where client imbalance is strongest.

E.3 BEHAVIOR OF CLASSICAL FL METHODS

Figures 4-6 show that classical FL algorithms are strongly affected by client heterogeneity. On
CIFAR-10, FedAvg exhibits delayed convergence for small α values, whereas FedProx reduces
oscillations by penalizing large client drift. On CIFAR-100, the effect is further amplified due to
the dataset complexity: both methods converge slowly and remain far from the central optimum,
especially under α = 0.05. On SVHN, the easier visual structure leads to faster convergence but
performance remains sensitive to non-IID partitions.

Across all datasets, classical FL requires tens of communication rounds to reach competitive per-
formance and each round involves transmitting the full set of model weights between entities. This
significantly increases communication cos while stability also degrades under strong heterogeneity.
These patterns are consistent with known limitations of multi-round FL and match the degradation
trends discussed in Table 1 of the main paper.

E.4 COMPARISON WITH GH-OFL

In contrast to traditional FL methods, the GH-OFL family operates in a strictly one-shot commu-
nication regime. Each client sends only aggregated per-class statistics and the server constructs
either closed-form Gaussian heads (NB-diag, LDA, QDA) or trainable Fisher-space heads (e.g.,
FisherMix, Proto-Hyper). As described in Section 3 of the main manuscript, these estimators are
partition-invariant: they depend only on global first and second-order moments and not on the spe-
cific Dirichlet configuration.

As a result:

• GH-OFL is robust to non-IID heterogeneity. Since the aggregated statistics are unbiased
estimators of the global distribution, performance remains unchanged even for extreme α
values. This sharply contrasts with the degradation observed in multi-round FL.

• Communication is reduced by multiple orders of magnitude. FedAvg and FedProx
must transmit full model parameters repeatedly across 50+ rounds. GH-OFL requires a
single transmission of lightweight statistics whose size is independent of model depth and
dataset scale.

• Accuracy matches or surpasses multi-round FL. As shown in Table 1 of the manuscript,
GH-LDA and the Fisher heads consistently outperform traditional OFL and FL methods in
one-shot settings and sometimes even after many communication rounds with the conver-
gence reached.

E.5 SUMMARY

These results highlight a fundamental distinction between classical and one-shot FL. Multi-round
methods suffer from slow and unstable convergence under heterogeneous settings while GH-OFL
leverages a principled Gaussian and Fisher-space formulation to achieve high accuracy in a single
communication round. The curves presented here complement the main paper by showing the em-
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pirical limitations of two traditional FL baselines such as FedAvg and FedProx, thereby reinforcing
the motivation for one-shot, statistics-driven federated learning.
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