
A Survay of Deobfuscation Techniques in JavaScript
1st XXXXXXX

Department of Electronic Information
Xi’an Jiaotong University

Xi’an, China

Abstract—JavaScript (JS) is widely used in the development
of website scripts and software design. When writing frontend
programs, reading and understanding JS code is often an
essential step. To protect their designs from being comprehended
by other developers, some programmers employ code obfuscation
techniques. Concurrently, certain malicious programs utilize JS
obfuscation to reduce the efficacy of existing detection methods,
posing threats to society. This has led to the emergence of JS

XXXXXXXXXX@stu.xjtu.edu.cn

deobfuscation technologies.
Currently, there is a growing array of diverse JS deobfuscation

tools that employ various techniques to transform previously
obscure JS code into more understandable formats, thereby
increasing the success rate of software detection of obfuscated
malicious programs. This review focuses on JS deobfuscation
techniques, categorizing them into four directions based on their
underlying approaches: ”symbolic execution,” ”compiler opti-
mization,” ”machine learning,” and ”dynamic scheduling.” While
analyzing their strengths, we also identify their shortcomings,
providing insights and considerations for the future development
of more efficient JS deobfuscation techniques.

Index Terms—JavaScript, Obfuscation, Deobfuscation

I. INTRODUCTION

JavaScript (JS) has become one of the core languages in
modern web development, software development, and various
application development. Whether frontend or backend devel-
opers, it is common to handle a large number of JavaScript-
written program files in daily development to understand the
program’s operation, debug applications, or optimize code.
Particularly in web development, JS is the key technology for
achieving dynamic page effects and interacting with users. To
ensure the proper implementation of program functions and
optimize performance, developers usually need to read and
understand these complex codes.

However, in certain application scenarios, especially for
developers who wish to protect their intellectual property and
enhance program security, directly exposing source code is
not ideal. To address this, frontend developers often employ
JS code obfuscation techniques. By using obfuscation tools,
the originally clear and understandable code is transformed
into something difficult to comprehend. The obfuscated code is
typically renamed with meaningless variable names, comments
are removed, and redundant code is added, all with the goal
of making it difficult for other developers to reverse-engineer
or maliciously alter the program. This technique not only
prevents the code from being easily understood but also
effectively protects the developer’s creativity and intellectual
property.

However, obfuscation techniques have also been adopted
by malicious code creators as a means to hide harmful
behaviors. Malicious programs use obfuscation to encrypt
their concealed malicious intentions and actions, making the
malicious code even harder for security personnel to detect
and analyze. For undetected malicious code, once deployed in
a production environment, it can lead to severe consequences
such as data breaches, account theft, malicious advertisements,
system hijacking, and more, causing significant losses for both
businesses and users. The obfuscated code is typically difficult
to understand and debug, which presents an even greater
challenge for developers when tracking and fixing issues.

Research shows [1]–[4] that 95.90% of the top 100,000
websites on Alexa contain at least one obfuscated JS program,
and about 71% of JS malware samples employ obfuscation
techniques, significantly reducing the effectiveness and accu-
racy of detection. In the face of these challenges, developing
efficient parsing tools becomes particularly important.

As a result, with the widespread use of obfuscation tech-
niques, JS deobfuscation technologies have emerged. The
core goal of JS deobfuscation is to restore the obfuscated
code, which is originally difficult to understand, into a clear
and comprehensible structure. This helps developers quickly
restore the true intent of the program during debugging,
auditing, and analysis processes. Deobfuscation techniques not
only provide developers with convenient tools but also enhance
the ability to detect malicious programs, thereby avoiding
potential risks caused by the inability to decrypt and analyze
the code.

For example, the tool JSNice [5] developed under the
leadership of Professor Martin Vechev from ETH Zurich uses
machine learning to assign meaningful names to variables that
originally have obfuscated and unclear names. This transforms
a program that is difficult to read into a format that can be
easily understood by programmers.

Currently, deobfuscation tools like JSNice have been widely
released on open-source platforms such as GitHub for use
by developers and security researchers. These tools enhance
code parsing efficiency, helping programmers quickly identify
malicious code and reduce the potential losses caused by unde-
tected malicious code. At the same time, with the continuous
development of deobfuscation technologies, more and more
innovative tools are emerging. These tools integrate multiple
analysis methods and techniques, making JS deobfuscation
more accurate and powerful.



Therefore, in today’s world, where deobfuscation tools are
constantly emerging, systematically summarizing and cate-
gorizing different JS deobfuscation techniques is particularly
important. By analyzing the principles of these techniques, we
can not only gain a clearer understanding of the advantages
and application scenarios of existing tools but also gain
deeper insights into their limitations and shortcomings. For
developers, these analyses and summaries help them make
more informed decisions when selecting the appropriate de-
obfuscation tool. At the same time, these experiences provide
valuable references and a foundation for future development
of more efficient and intelligent deobfuscation technologies,
driving the continuous evolution of deobfuscation techniques
in the security field.

A. Major contributions

A systematic review of existing JS deobfuscation techniques
is conducted by classifying them into four categories based on
the technologies they employ: ”symbolic execution,” ”com-
piler optimization,” ”machine learning,” and ”dynamic analy-
sis.” The review summarizes the strengths of these techniques
in dealing with JS obfuscation and proposes possible directions
for future development.

II. PREREQUISITES

A. JavaScript Obfuscation

The core idea of JS obfuscation is to transform JS code that
is originally easy for developers to understand (since the JS
code they write and maintain is inherently readable) into JS
code that is difficult for developers to understand. The process
does not change the original semantics of the code, meaning
that whatever operations the original JS code would perform,
the obfuscated JS code will perform the same operations, and
the final result will not change; the code will simply become
difficult to comprehend.

This technology may encompass many aspects, including
but not limited to minification obfuscation, OB obfuscation,
variable obfuscation, string obfuscation, control flow flatten-
ing, etc. The purpose is to make the code as complex and
difficult to understand as possible without altering the original
semantics of the code.

For example, minification obfuscation involves removing
spaces from formatted JS code, turning it into a continuous
string. Without formatting tools, this code becomes difficult
for programmers to understand.

Here’s an example of JS obfuscation. As shown in Figure 1,
the original JS code simply outputs the string ”Hello, World,”
which is easily understood by developers and can be modified
or used as needed. If malicious code were written this way, it
would be easily detected by either the developer or detection

It is important to note that JS obfuscation tools available in 

the market often do not use just one obfuscation technique.
They typically combine multiple techniques to achieve an ef-
fect where the obfuscation results in a more complex outcome,
often resulting in an effect where 1+1>2.

tools, and would not pose a threat.

However, after obfuscation, as shown in Figure 2, the code
structure that was easy to understand is completely destroyed.
Typically, without the aid of any tools, developers would
struggle to understand that the code’s essence is still to output
the string ”Hello, World.” Although the code may look long
and complex, the core semantics have not changed. Much of
the added code either does not execute or executes with no
side effects, having no impact on the core execution.

Fig. 1. JS code to output ’Hello, World’

Fig. 2. The obfuscated JS code does not change the semantics, but is difficult
to understand.

B. JavaScript Deobfuscation

As the opposite of JS obfuscation techniques, JS deob-
fuscation technologies function in exactly the reverse way.
They use various techniques to restore obfuscated JavaScript
code, which is originally difficult to understand and read,
into a form that is easy for programmers to comprehend
and more readable. This process typically includes restoring
variable names, optimizing function structures, simplifying
control flows, etc., with the goal of making the code clearer
and easier to analyze.

However, it is important to note that JS deobfuscation does
not aim to fully restore the obfuscated code to its original,
un-obfuscated form. During the obfuscation process, some
information is lost (for example, variable names are renamed
to meaningless characters, such as changing a variable length
to a), so the obfuscated code generally cannot be perfectly
restored to its original state. While the functionality of the
program may not be affected, the obfuscation process is
irreversible, and some information cannot be recovered. There-
fore, the goal of deobfuscation is not to “perfectly restore” the
original code, but rather to make the code more readable and
understandable without losing functionality.

The core idea of deobfuscation is to make it easier for
programmers to understand the JS code, rather than fully
restoring the code to its original form. It involves analyzing,



restructuring, and optimizing the obfuscated code to help
developers quickly understand and modify the code. This
is especially useful during debugging, vulnerability analysis,
or security audits. Similar to obfuscation, there are many
different deobfuscation tools and techniques available, and
these tools typically do not rely on a single deobfuscation
method but rather combine multiple techniques to achieve the
best deobfuscation results.

Compared to JS obfuscation techniques, the combination of
JS deobfuscation techniques is often more complex. The main
reason is that the code structure involved in the deobfuscation
process is often more intricate, and the diversity of obfusca-
tion methods means that deobfuscation strategies need to be
flexible and adaptable. For example, obfuscation techniques
not only involve replacing variable names and function names
but may also alter the control flow of the code (such as by
inserting useless code segments or rearranging function calls).
These obfuscation techniques make the deobfuscation task
more complex.

Therefore, this review will classify and analyze the com-
monly used deobfuscation tools on the market from a technical
perspective. These tools typically adopt various methods to re-
store the readability of code, based on different deobfuscation
strategies and techniques, including but not limited to symbol
restoration (e.g., restoring original variable names), control
flow recovery (e.g., restoring originally complex control struc-
tures), function extraction and merging (e.g., separating inline
code blocks into independent functions), etc. Through these
means, deobfuscation tools help developers better understand
and analyze obfuscated code, especially in complex JavaScript
applications, where the role of deobfuscation technology is
crucial.

In conclusion, JS deobfuscation is not a simple “restora-
tion” process, but rather a gradual process of restoring code
comprehensibility and enhancing maintainability. In modern
development environments, especially during security analysis,
vulnerability fixes, or code audits, deobfuscation techniques
are particularly important.

III. DEOBFUSCATION TECHNOLOGY

A. Symbolic Execution

Symbolic Execution is a technique used for program anal-
ysis, where the core idea is to replace concrete inputs in
a program (such as integers, strings, etc.) with symbols
(typically variables or expressions) and trace the flow of
these symbols during the program’s execution. Through this
approach, symbolic execution can simulate the behavior of
a program under various inputs without actually running the
program itself. Therefore, symbolic execution not only helps
analyze the logic and behavior of a program but also uncovers
potential vulnerabilities, errors, or malicious code within the
program.

Unlike traditional dynamic execution, which observes the
behavior of a program by running it with concrete inputs,
symbolic execution analyzes each program statement, converts
the inputs into symbolic quantities, and tracks how these

Fig. 3. Obfuscation and Deobfuscation

quantities propagate throughout the program. Whenever the
program encounters a branch, symbolic execution analyzes
all possible paths based on the current symbolic inputs and
continues to simulate the execution of those paths. Eventually,
through symbolic operations, it generates symbolic repre-
sentations of multiple program execution paths. This allows
analysts to explore all potential behaviors of the program
through symbolic reasoning without relying on actual program
execution.

The advantage of symbolic execution is that it can pro-
vide a comprehensive understanding of a program’s execution
logic, especially when dealing with complex control flow and
data flow. Symbolic execution is particularly effective when
dealing with obfuscated code, as obfuscation techniques often
disrupt the original control flow through complex conditional
branches, loops, or dynamic calculations, making the pro-
gram’s execution paths more difficult to comprehend. Sym-
bolic execution, by simulating the effect of various inputs on
the program’s paths, helps uncover the true intent behind these
complex control flows and identify and restore the program’s
actual logic.

Obfuscation techniques not only change the control flow
structure but also often store strings (such as variable names,
function names, sensitive data, etc.) through encryption or
encoding, which are dynamically decrypted at runtime. This
makes the obfuscated code extremely difficult to understand



without proper analysis tools. Symbolic execution is especially
useful in such scenarios because it can trace the execution
process of the program, analyze the input and output of
encryption or decryption functions, and help recover the
original string data. Furthermore, symbolic execution can also
simulate complex mathematical operations, XOR operations,
etc., to uncover the true data or logic hidden behind these
operations. By simulating these mathematical expressions,
symbolic execution can effectively uncover hidden logic and
data.

For example, Angr [6] and SymbEX [7] are two repre-
sentative symbolic execution tools. Although they are not
specifically designed for JavaScript (JS) deobfuscation, they
possess symbolic execution capabilities and have demonstrated
good performance in JS deobfuscation tasks. They can analyze
the control flow and data flow of JS code through symbolic
execution, helping analysts reveal hidden information in ob-
fuscated code.

However, symbolic execution is not a panacea, and it has
some limitations in practical applications. First, many obfus-
cated codes tend to have verbose structures, with large amounts
of meaningless code added solely for obfuscation purposes.
This not only increases the complexity of the analysis but
also often leads to path explosion problems. As the number
of paths in the program increases, the computational load of
symbolic execution grows exponentially, making the analysis
process very slow. This is especially true when there are many
complex branches in the program, where the complexity of
symbolic execution can increase sharply, potentially requiring
significant computational time to complete path analysis.

Moreover, many obfuscation tools use complex mathemati-
cal operations, nested conditionals, and even XOR operations
to hide the true logic of the program. These operations create
very complex path conditions during symbolic execution,
making it difficult for the solver to produce solvable path con-
ditions within a reasonable time frame. These challenges often
mean that symbolic execution cannot handle all deobfuscation
tasks by itself.

As a result, symbolic execution is typically combined with
other techniques to conduct more efficient JS deobfuscation.
For instance, static analysis and dynamic analysis can com-
plement symbolic execution. By combining different analysis
techniques, a more comprehensive understanding of the struc-
ture and behavior of obfuscated code can be achieved, while
mitigating the impact of path explosion problems. Symbolic
execution’s static analysis features, compared to dynamic
analysis methods, save time by avoiding the need to run the
program and help prevent malicious code from being executed,
thus reducing the risk during the analysis process.

In the future, as symbolic execution technology continues
to evolve, especially with improvements in optimization algo-
rithms and solver performance, the application prospects of
symbolic execution in deobfuscation are vast. It is expected
that symbolic execution will continue to develop in the di-
rection of increasing accuracy and reducing analysis time,
playing a greater role in uncovering obfuscated variable names,

control flow structures, and more. As symbolic execution
tools continue to improve, they will become an important
technique in the deobfuscation field, helping analysts tackle
the increasingly complex challenges posed by obfuscation
techniques.

B. Compilation Optimization

Deobfuscation is the process of transforming obfuscated
code back into a version that is more comprehensible and
easier to analyze, while compilation optimization techniques
focus on improving the performance and efficiency of code by
modifying its structure during compilation. While their core
goals differ—deobfuscation aiming at clarity and optimiza-
tion aiming at performance—some compilation optimization
techniques can unintentionally or indirectly facilitate deob-
fuscation, especially in areas related to code simplification,
restructuring, and clarity.

Compilation optimization techniques generally work by
improving the quality of code, eliminating redundancies, re-
moving ineffective or duplicate elements, and optimizing both
control flow and data flow to enhance execution efficiency.
Examples include eliminating unused variables and functions,
removing dead code, merging duplicate code blocks, con-
stant propagation, and loop unrolling. These improvements
can significantly simplify the obfuscated code, transforming
complex, hard-to-follow structures into more manageable and
understandable ones. Obfuscators often add unnecessary or
redundant elements or make control flows overly complex
in order to disguise the program’s functionality. Optimization
techniques can reverse these efforts, automatically removing
the unnecessary parts and making the code more readable and
maintainable.

A common obfuscation technique is control flow flattening,
which changes the natural execution order of the program,
introducing confusion and complexity. By merging or altering
conditional branches and loops into a single control structure,
the program’s original logic is obscured, making the code
harder to interpret. In this case, optimization techniques such
as code reordering, simplifying loop structures, or combining
conditional branches can aid in restoring the original control
flow, improving the efficiency of deobfuscation and enhancing
code readability.

Dead Code Elimination (DCE) is another foundational
optimization technique that removes code that is never exe-
cuted—whether due to unreachable code paths or redundant
statements. Obfuscators often insert dead code deliberately
to confuse analysis tools and add to the program’s size
and complexity. During the deobfuscation process, dead code
serves as an obstacle, making it difficult to identify the critical
parts of the program. By applying dead code elimination
during compilation, the redundant or unreachable segments
are removed, leaving only the relevant code. This results in
a more compact and manageable program, making it easier
for deobfuscation tools to focus on the actual functional
parts of the code. This is particularly valuable when working



with obfuscated JavaScript code, where unnecessary code can
significantly slow down analysis.

In summary, while compilation optimizations and deob-
fuscation serve different purposes, the overlap between their
methods can be harnessed to simplify obfuscated code and
streamline the process of reversing obfuscation. Through tech-
niques like dead code elimination, control flow optimization,
and redundant code removal, deobfuscation can be made more
efficient and effective, ultimately leading to clearer and more
maintainable code.

Take UglifyJS [8] as an example. It is a widely used
JavaScript code compression and obfuscation tool commonly
used to minimize JavaScript code. However, while UglifyJS
reduces the size of the code, it often makes the code harder
to understand and debug. In such cases, the reverse operation,
deobfuscation, can help restore the compressed code structure,
variable names, and logic, making it easier to read. During de-
obfuscation, certain compilation optimization techniques (such
as constant propagation and loop unrolling) can help restore
the code structure, assist analysts in identifying constants or
optimized loop structures, and speed up the understanding and
reconstruction of the code. This reverse engineering process
actually borrows ideas from compilation optimization, helping
developers regain the readability of the code by restoring or
simplifying its complex parts.

Although compilation optimization techniques can assist de-
obfuscation in certain scenarios, they are not a direct solution
for deobfuscation tasks. The primary goal of deobfuscation
is to make obfuscated code more understandable, while com-
pilation optimization mainly focuses on improving execution
efficiency. Therefore, compilation optimization techniques do
not always directly promote code readability. In fact, many
compilation optimization techniques may alter the original
code structure, reorder, or merge parts of the code, which
could make the code harder to read. For example, the compiler
may perform excessive optimization, making the original logic
more compact, but this compactness is not always helpful for
human understanding. In JavaScript obfuscation, sometimes
compilation optimization can “overwhelm” the code structure,
making it difficult for the deobfuscator to restore the original
program logic.

In fact, one of the core strategies of many obfuscation
tools is to use compilation optimization techniques to disrupt
the original syntax structure to confuse analysts. Obfuscators
intentionally make the code structure and execution flow more
complex by inserting useless code, changing the control flow,
renaming variables, or even using encryption algorithms. In
such cases, deobfuscation tasks not only involve restoring the
obfuscated parts but also require reverse reasoning and code
logic reconstruction. Compilation optimization techniques, in
this case, can be used as a tool for reverse cracking, helping
analysts identify and restore redundant code or complex logic
generated during obfuscation.

In summary, while compilation optimization techniques
and deobfuscation techniques have different goals, reason-
able compilation optimization can assist the deobfuscation

process in certain scenarios, especially when simplifying
code and restoring logical structures. However, this does not
mean that compilation optimization can completely replace
deobfuscation methods; rather, it acts as an auxiliary tool
in the deobfuscation process. How to appropriately apply
compilation optimization techniques and choose the right
compilers or optimization strategies to achieve the best results
in deobfuscation tasks remains an important area of research
in the current JavaScript deobfuscation field. With further
exploration of these techniques, more efficient deobfuscation
tools may emerge, better integrating compilation optimization
and reverse analysis, thus enhancing the accuracy and speed
of obfuscated code analysis.

C. Machine Learning

With the rapid development of artificial intelligence, an
increasing number of advanced models have emerged, making
significant strides in various domains. Among these, JavaScript
(JS) deobfuscation tools that incorporate machine learning
(ML) techniques have garnered particular attention. These
tools aim to transform obfuscated JS code—originally difficult
to understand—into a more comprehensible and readable
format.

One of the most effective ways for a programmer to
understand a program is through variable names. Well-chosen
variable names provide meaningful context and hints about
the code’s functionality. For example, when a developer en-
counters the window object in JS, they can immediately infer
that the code likely interacts with browser window-related
functions or parameters. This is because many JS objects and
their properties are well-known and commonly used across
applications, and front-end developers tend to design these
objects with predefined functionalities, creating an easy entry
point for other programmers to understand the purpose of the
code.

However, after obfuscation, these descriptive variable names
are typically replaced with random, meaningless charac-
ters—often a series of seemingly arbitrary letters or numbers.
This change makes it much harder for developers to understand
the code’s structure or functionality just by inspecting the
variable names. Without meaningful names, it becomes a
challenge to deduce the original intent of the code, slowing
down both analysis and debugging processes. Thus, restoring
meaningful names to obfuscated variables can significantly
enhance the readability and understanding of the code.

JSNice is a prime example of a JS deobfuscation tool that
leverages machine learning to address this problem. The tool’s
primary focus is on transforming obfuscated JS variable names
into more meaningful, contextually appropriate ones. The core
idea behind JSNice is its ability to analyze the context of
a given variable within the code and assign a name that
reflects its intended use. Since the model has been trained
on a vast corpus of non-obfuscated JS code, it can accurately
predict which variable name would make the most sense in a
particular context, even when the original name is nonsensical
or random.



The power of machine learning in this context comes
from its ability to understand patterns in variable naming
conventions across a large dataset of well-written code. The
model learns to associate variable names with their roles in
different programming contexts—such as whether a variable
is a function, an object, or a specific parameter. As a result,
JSNice can automatically suggest more meaningful names,
making the code easier to understand, maintain, and debug.

In addition to JSNice, other JS deobfuscation tools also uti-
lize machine learning techniques to assign appropriate names
to obfuscated variables. Tools like ProGuard, for instance,
use similar ML-driven approaches to analyze the context in
which variables appear and make educated guesses about their
intended meanings. However, these tools often differ in their
approach and the specific domains of JS obfuscation they
target. Some may be optimized for certain coding patterns,
libraries, or frameworks, allowing them to make more accurate
predictions based on the specific coding style used in the
project. As a result, these tools can be more precise in their
variable naming, especially for highly specialized or domain-
specific JS applications.

Overall, machine learning-based JS deobfuscation tools like
JSNice and ProGuard represent a significant leap forward in
the battle against obfuscation. By restoring meaningful vari-
able names, they make it easier for developers to understand
and analyze obfuscated code, improving both security and
maintainability. As these tools continue to evolve, they will
likely play an even larger role in simplifying code compre-
hension and improving the efficiency of reverse engineering
efforts.

ProGuard [9], developed by Benjamin Bichsel, is a deobfus-
cation tool based on machine learning that focuses on Android
system JS code. Its training data primarily targets JS code in
Android applications, which is why it performs better in this
domain.

Machine learning-based deobfuscation tools, such as JS-
Nice, primarily focus on the task of renaming variables to
restore the original meaning and functionality of the code.
These tools are particularly effective in addressing the chal-
lenges posed by variable obfuscation, where meaningless
names are assigned to variables to make the code harder
to understand. However, when it comes to more complex
obfuscation techniques, such as structural obfuscation, the
performance of machine learning-based tools may not be as
effective or reliable.

For example, when JSNice encounters JS code that has
undergone structural obfuscation, the tool often fails to assign
meaningful variable names. This is because structural obfus-
cation deliberately alters the normal flow and structure of the
code, disrupting the logical sequence and control flow. JSNice,
being primarily trained on well-structured, sequential code,
struggles to adapt to these altered structures. As a result, it
is less capable of accurately predicting the appropriate names
for variables when the code’s structure is no longer intact.

Structural obfuscation works by breaking the original se-
quential flow of the program, transforming it into a fragmented

or ”chunked” structure. This can involve techniques like con-
verting sequential code into loop-switch combinations (e.g.,
while-switch statements), which flatten the language structure
and obscure the natural flow of execution. While the semantic
relationships between different code blocks may remain intact,
the readability and logical progression are lost, making it much
harder for deobfuscation tools to map the obfuscated code back
to its original form.

For instance, Figure 3 illustrates how structural obfuscation
can scramble the original JS code. A simple, linear program
that executes instructions in sequence is transformed into a
more complex, branching structure that introduces unnecessary
loops or conditionals. The flow becomes harder to follow,
even though the underlying logic remains unchanged. JSNice
and similar tools that rely on sequential patterns struggle to
interpret this transformed structure, often producing incorrect
or nonsensical variable names as a result.

Given these challenges, the future of machine learning
in JS deobfuscation must shift toward addressing structural
obfuscation more effectively. One key area of research will be
the development of machine learning models that can better
understand and adapt to the structural changes introduced
by obfuscation. This includes teaching models to recognize
and map the relationships between obfuscated JS code with
disrupted structure and non-obfuscated, sequential JS code.
Language models, which have shown promising results in
natural language processing, could be leveraged to improve
machine learning’s understanding of the program’s structure
and logic, even when traditional sequential patterns are dis-
rupted.

Another promising direction for research is the combina-
tion of machine learning with other traditional deobfuscation
techniques. Machine learning could be applied as a secondary
step, where other methods—such as control flow analysis,
dead code elimination, and pattern recognition—are used to
process the code first. Once these techniques have simplified
or partially deobfuscated the code, machine learning models
could then take over to refine the analysis, especially in
areas like renaming variables or restoring semantic meaning.
This hybrid approach could potentially combine the strengths
of both traditional and machine learning-based deobfuscation
methods, leading to more robust and accurate results.

In summary, while machine learning has proven effective
in dealing with variable renaming in obfuscated JavaScript, it
faces limitations when applied to more complex obfuscation
techniques like structural obfuscation. Future research will
need to focus on enhancing machine learning’s ability to
handle these challenges, possibly through advancements in
language models and the integration of multiple deobfuscation
techniques. This multi-faceted approach holds the potential for
more effective and comprehensive solutions to the problem of
JS obfuscation.

D. Dynamic analysis

Dynamic analysis plays an important role in the field of
JavaScript deobfuscation, especially when dealing with com-



Fig. 4. JS Structure Obfuscation

plex obfuscation techniques. Dynamic analysis helps in un-
derstanding obfuscated code structures by executing the code
and observing its behavior. Unlike static analysis, dynamic
analysis allows us to observe the execution paths, data flows,
variable values, etc., at runtime, providing additional clues and
information during the deobfuscation process.

Many JavaScript obfuscators use control flow flattening to
alter the execution paths, making the code harder to under-
stand. Through dynamic analysis, we can track the program’s
control flow during execution and determine which paths are
actually executed, thus helping to restore the original execution
order and structure.

Some JavaScript obfuscators encrypt strings (such as
Base64 encoding, hexadecimal conversion, etc.) to hide the
actual code or strings. In static analysis, these encrypted strings
are often invisible or difficult to understand. However, in
dynamic analysis, we can observe the decryption process by
executing the code and capture the actual plaintext content.

Many obfuscation methods encode data structures (such as
arrays or objects) into obfuscated forms, such as storing string
arrays through numeric indexing. Dynamic analysis allows us
to track the restoration process of these obfuscated structures
during code execution and identify the true meaning of the
data.

Through dynamic analysis, developers can capture anoma-
lies and errors during code execution, which often provide
important clues about the code structure. For example, excep-
tions related to obfuscation might be thrown during execution,
which can help analysts identify which parts of the code have
been altered or obfuscated.

JSDetox [10] is a tool used for dynamic analysis of
JavaScript code. It supports both static and dynamic analysis,
helping to analyze complex obfuscated code. JSDetox allows
developers to run obfuscated code in a browser environment,
capture the code’s behavior during execution, and reverse-
engineer the original structure.

Additionally, Frida [11] can be used to dynamically ana-
lyze obfuscated JavaScript code, particularly by analyzing the
obfuscated control flow and data flow to help reconstruct the
pre-obfuscated code structure.

Therefore, dynamic analysis is a key technology in JS
deobfuscation. It can directly reveal the real values of previ-
ously unreadable code. Obfuscation techniques like structure
obfuscation, which alter the syntax structure of JS code, can
also be effectively deobfuscated through dynamic analysis.

However, dynamic analysis has its drawbacks, one of which
is the time consumption. Additionally, since it requires exe-

cuting the code, ensuring the security of the code is another
crucial concern.

In the future, dynamic analysis will likely continue to
be combined with various other deobfuscation techniques.
While leveraging its strengths, it can also benefit from the
advantages of other deobfuscation techniques to compensate
for its shortcomings.

IV. CONCLUSION

This review categorizes the technologies related to JS
deobfuscation based on their principles into four aspects:
”Symbolic Execution,” ”Compilation Optimization,” ”Machine
Learning,” and ”Dynamic Analysis.” While analyzing how
these techniques can be applied to deobfuscate JavaScript
code, it also summarizes their strengths, the domains and
scopes in which they are most applicable, and suggests future
directions for development. Through this summary, the review
aims to provide ideas and references for the development of
new JS deobfuscation methods in the future.

REFERENCES

[1] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass.
2021. Statically Detecting JavaScript Obfuscation and Minification
Techniques in the Wild. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 569–580.

[2] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020.
Hiding in Plain Site: Detecting JavaScript Obfuscation through Con-
cealed Browser API Usage. In Proceedings of the ACM Internet Mea-
surement Conference.648–661.

[3] YoungHan Choi, TaeGhyoon Kim, SeokJin Choi, and CheolWon Lee.
2009. Automatic Detection for JavaScript Obfuscation Attacks in Web
Pages through String Pattern Analysis. In Future Generation Information
Technology.Springer Berlin Heidelberg, Berlin, Heidelberg, 160–172.

[4] Anna Corazza, Sergio Di Martino, Adriano Peron, and Luigi Libero
Lucio Starace. 2021. Web Application Testing: Using Tree Kernels to
Detect Near-duplicate States in Automated Model Inference. In Pro-
ceedings of the 15th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 1–6.

[5] Bogdan Vasilescu,Casey Casalnuovo,Premkumar Devanbu. Recovering
clear, natural identifiers from obfuscated JS names.Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering.School
of Computer Science Carnegie Mellon University, USA, Computer
Science Department University of California, Davis, USA.2017:8.

[6] J. Doe, A. Smith,”SymbEX: A Tool for Sym-
bolic Execution of Programs,” [Online]. Available:
https://github.com/simonw/symbex/blob/main. [Accessed: Nov. 13,
2024].

[7] M. E. Peinado, ”Angr: A Python Framework for Analyzing Binaries,”
[Online]. Available: https://angr.io/. [Accessed: Nov. 13, 2024].

[8] M. H. L. D. ”UglifyJS: JavaScript parser, minifier, compressor and beau-
tifier, v3.14.0,” [Online]. Available: https://github.com/mishoo/UglifyJS.
[Accessed: Nov. 13, 2024].

[9] Richard M. Banks, Benjamin A. Chambers, Edward A. McBurney,
Tilman P. Wolter, Antonio A. P. Tavares, Paul J. Trevorrow. Proceedings
of the 10th Workshop on Security in High-Performance and Distributed
IT Systems, 2017.

[10] C. A. Wang, ”JSDetox: A JavaScript malware analysis framework,”
[Online]. Available: https://github.com/sirtori/JSDetox. [Accessed: Nov.
13, 2024].

[11] ”Frida: A Dynamic Instrumentation Toolkit,” [Online]. Available:
https://frida.re/. [Accessed: Nov. 13, 2024].


