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ABSTRACT

Foundation flow-matching (FM) models promise a universal prior for solving in-
verse problems (IPs), yet today they trail behind domain-specific or even untrained
priors. How can we unlock their potential? We introduce FMPlug, a plug-in
framework that redefines how foundation FMs are used in IPs. FMPlug combines
an instance-guided, time-dependent warm-start strategy with a sharp Gaussianity
regularization, adding problem-specific guidance while preserving the Gaussian
structures. This leads to a significant performance boost across image restoration
and scientific IPs. Our results point to a path for making foundation FM models
practical, reusable priors for IP solving.

1 INTRODUCTION

Inverse problems (IPs) are prevalent in many fields, such as medical imaging, remote sensing, and
computer vision (Aster et al.,2018; [Mohamad-Djafari, |2013). In an IP, the objective is to recover an
unknown object x of interest from the relevant measurement y =~ A(x), where the mapping A(-),
called the forward model, models the measurement process and the approximation sign ~ accounts
for potential modeling errors and measurement noise. Due to insufficient measurement and/or the
approximate relationship in y =~ A(x), in practice  is typically not uniquely recoverable from y
alone, i.e., ill-posedness. So, to obtain reliable and meaningful solutions for IPs, it is important to
incorporate prior knowledge of .

Traditional ideas for solving IPs rely on optimization formulations, often motivated under the Max-
imum A Posteriori (MAP) estimation principle:

ming {(y, A(z)) + Q(x). (1.1)

Here, minimizing the data fitting loss ¢(y,.A(x)) encourages y ~ A(x), and the regularization
term 2(x) encodes prior knowledge of ideal solutions to resolve ambiguities and hence mitigate
potential ill-posedness. The resulting optimization problems are often solved by gradient-based
iterative methods. Advances in deep learning (DL) have revolutionized IP solving. Different
DL-based approaches to IPs operate with variable levels of data-knowledge tradeoffs. For example,
supervised approaches take paired datasets {(y;, x;)},_; .. and directly learn the inverse mapping
y — x, with or without using 4 (Ongie et al., [2020; Monga et al, 2021} [Zhang et al. 2024);
alternatively, data-driven priors learned from object-only datasets {x;},_, , can be integrated
with to form hybrid optimization formulations that effectively combine data-driven priors
on x and knowledge about A, noise, and other aspects (Oliviero-Durmus et al., 2025} [Daras et al.|
2024} [Wang et al., 2024} 2025); strikingly, untrained DL models themselves can serve as effective
plug-in priors for without any extra data (Alkhouri et al., 2025} [Wang et al., 2023} [Li
et al) [2023; [Zhuang et al., [2023a;bj [Li et all [2021). |Ongie et al.| (2020); Monga et al.| (2021);
Alkhouri et al.[(2025); [Scarlett et al.|(2023)); |Daras et al.|(2024); |Oliviero-Durmus et al.| (2025) give
comprehensive reviews of these DL-based ideas.

In this paper, we focus on solving IPs with deep generative priors (DGPs) pretrained on object-
only datasets [Oliviero-Durmus et al.| (2025). Compared to supervised approaches that need to
construct task-specific paired datasets and perform task-specific training, this approach enjoys great
flexibility, as DGPs can be plugged into and reused for different IP problems related to the same
family of objects. Among the different DGPs, we are most interested in those based on the



emerging flow-matching (FM) framework (Lipman et al.,|2024)—which is rapidly replacing dif-
fusion models as the backbone of increasingly more state-of-the-art (SOTA) deep generative models
in various domains (Black Forest Labs et al, |2025; [Patrick Esser et al, [2024; |Agarwal, Niket et al,
2025)) due to its conceptual simplicity and superior performance.

Several recent works have proposed to solve IPs with pretrained FM priors (Daras et al., [2024).
Although promising, most of them are based on domain-specific FM priors, e.g., trained on the
FFHQ dataset for human faces and the LSUN bedrooms dataset for bedroom scenes. This limits
the practicality of these methods, as domain-specific FM models are not always readily available,
e.g., due to data or computing constraints. On the other hand, the emergence of domain-agnostic
foundation FM models, such as Stable Diffusion 3.0 (or newer versions) (Patrick Esser et all 2024])
and Flux.1 (Black Forest Labs et al,[2025) for images, obsoletes domain-specific developments; |Kim
et al.| (2025); [Patel et al.[(2024); Ben-Hamu et al.| (2024)); [Martin et al.| (2025) propose such ideas.
However, the reported performance from these works based on foundation FM priors clearly
lags behind those with domain-specific FM priors, and even behind those with untrained pri-
ors; see This is not entirely surprising, as foundation priors are considerably weaker
than domain-specific priors in terms of constraining the objects.

In this paper, we take the first step to close the performance gap. We focus on IPs where the object
x is an image, as foundation FM models for images are widely available and image-related IPs
find broad applications. To strengthen the foundation FM priors, we consider two practical settings:
(A) simple-distortion setting, in which x and y are close (e.g., image restoration); and (B) few-
shot setting, in which a small number of image instances close to  are provided (e.g., scientific
IPs). For both settings, taking the image instance(s) close to o as a guide, we develop a time-
dependent warm-start strategy and a sharp Gaussian regularization that together lead to convincing
performance gains. In summary, our contributions include: (1) identifying the performance gap
between foundation FM, domain-specific, and untrained priors for solving IPs (Section 2.3); (2)
proposing a time-dependent warm-start strategy and a sharp Gaussian regularization that effectively
strengthen foundation FM priors (Section 3); and (3) confirming the effectiveness of the proposed
prior-strengthening method through systematic experimentation (Section 4).

2 TECHNICAL BACKGROUND & RELATED WORK

2.1 FLOW MATCHING (FM)

Flow Matching (FM) models are an emerging class of deep generative models (Lipman et al.,[2024).
They learn a continuous flow to transform a prior distribution p(z) into a target distribution p; (z)—
in the same spirit of continuous normalizing flow (CNF) (Chen et al., |2018} |Grathwohl et al.,|2019),
where the flow is described by an ordinary differential equation (ODE)

dz = v(z,t) dt. 2.1)

Whereas CNF focuses on the density path induced by the flow and performs maximum likelihood
estimation as the learning objective, FM tries to learn a parametrized velocity field vg(z, t) to match
the one associated with the desired flow. To generate new samples after training, one simply samples
zo ~ po(z) and numerically solves the learned ODE induced by vg(z,t) from¢t = 0to ¢t = 1, to
produce a sample z1 ~ p1(2).

For tractability, in practice, FM matches the conditional velocity field instead of the unconditional
one discussed above: for each training point x, a simple conditional probability path p;(z;|x), e.g.,
induced by a linear flow z; = tx + (1 — t)zo, is defined. The model vg(z;,t) is then trained to
learn the known vector field of these conditional flows, i.e., u(z¢, t|x):

g (24, t) — u(zy, ta)|? . 2.2)
Diffusion models (DMs) based on probability flow ODEs can also be interpreted as FMs, although
(1) they match the score functions V, log p;(z) induced by the chosen probability path, not the
velocity field as in FM; and (2) they typically work with affine flows for convenience, instead of the

simple linear flows often taken in FM practice (Lipman et al., [2024} |Song et al., [2021). So, FM can
be viewed as a general deep generative framework that covers DMs besides other possibilities.

ming Eg -,

2.2  PRETRAINED FM PRIORS FOR IPS



Recent methods that use pre-
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Martin et al.} 2025; Erbachetal.  pigure 1: Visual illustration of the difference between the inter-

2025).  Despite the simplicity eaying approach and the plug-in approach to IPs with pretrained
and empirical effectiveness on  pp priors

simple IPs, these methods might

not converge or return an x that respects the pretrained FM prior (i.e., manifold feasibility) or sat-
isfies the measurement constraint y ~ A(x) (i.e., measurement feasibility); and (2) the plug-in
approach views the generation process as a function Gg that maps any source sample to a target
sample, and plugs the prior into to obtain a unified formulation (Ben-Hamu et al.} [2024):

z* €argmin, L(z) ={(y, Ao Gy(z)) + Qo Gg(z), (2.3)

where o denotes functional composition. The estimated object is Gg(z*). Here, the generator Gy is
fixed and the output Gg(z) naturally satisfies the manifold feasibility. In addition, global optimiza-
tion of £(z) forces small £(y,.A o Gg(2)), and hence y =~ A o Gg(z), i.e., leading to measurement
feasibility. We note that there is a similar classification of recent work using pretrained diffusion
priors to solve IPs; see Wang et al.[(2024;|[2025)); Daras et al.| (2024); |Oliviero-Durmus et al.| (2025)).
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2.3 FOUNDATION FM PRIORS FOR IPs

PSNRT SSIM{ LPIPS| CLIPIQAT Table 1: Comparison between founda-
tion FM, domain-specific FM, and un-

DIP 27.5854 0.7179 0.3898  0.2396 . . . X
trained priors for Gaussian deblurring
D-Flow (DS) 28.1389 0.7628 0.2783  0.5871 the on AFHQ-Cat dataset (resolution:
D-Flow (FD) 25.0120 0.7084 0.5335  0.3607 9256 x 256). DS: domain-specific FM;
D-Flow (FD-S)  25.1453 0.6829 0.5213  0.3228 FD: foundation FM; FD-S: strengthened
FlowDPS (DS)  22.1191 0.5603 0.3850  0.5417 foundation FM; DIP: deep image prior.
FlowDPS (FD)  22.1404 05930 05412  0.2906 Bold: best, & underline: second best,

for each metric/column. The foundation

FlowDPS (FD-S) 22.0538 0.5920 0.5408 0.2913 . . .
ow ( ) model is Stable Diffusion V3 here.

2.3.1 FOUNDATION FM PRIORS < DOMAIN-SPECIFIC OR EVEN UNTRAINED ONES

The availability of large-scale training sets has recently fueled intensive development of foundation
generative models in several domains, most of them based on FM models and variants, e.g., Stable
Diffusion V3 (and newer) (Patrick Esser et al, 2024} and FLUX.1 (Black Forest Labs et al,[2025) for
images, OpenAl Sora (OpenAll [2024) and Google Veo (DeepMind, 2025)) for videos, and Nvidia
Cosmos world model (Agarwal, Niket et al, 2025). So, recent IP methods based on pretrained FM
priors have started to shift from domain-specific priors to these foundation priors.

Although these foundation FM models are powerful enough to generate diverse objects, when used
as object priors for IPs, they only constrain the object to be physically meaningful (e.g., the object
being a natural image)—foundation models are powerful as they are not specific. In compari-
son, domain-specific priors provide much more semantic and perhaps structural information about
the object (e.g., the object being a facial or brain MRI image). So, foundation priors alone are
considerably weaker than domain-specific priors for IPs. In fact, untrained priors, such as deep
image prior (DIP) and implicit neural representation, may be powerful enough to promote physically
meaningful solutions for IPs (Alkhouri et al.| [2025 |Wang et al., [2023} L1 et al., | 2023;|Zhuang et al.,
2023agb} |Sitzmann et al.l [2020).



A quick comparison summarized in[Table Tlconfirms  (—— 5 FowDs)  —— FlowdPs 05) —— D”,‘

our intuition: recent IP methods with foundation D-Flow (FD) ~ —— FlowDPS (FD)

FM priors perform much worse than domain- 2

specific FM, and even untrained, priors on Gaus- zj \ 06 %

sian deblurring. Here, Flow-DPS (Kim et al., 2025) » os

and D-Flow (Ben-Hamu et al. [2024)) are repre- %20 \\\ ‘§ /

sentative interleaving and plug-in IP methods, re- 04

spectively. For both of them, foundation priors ij 03

(FlowDPS (FD) §D-Flow (FD) ) lag behind domain- 12 W /

specific (FlowDPS (DS) &D-Flow (DS)) priors by 3 i 5 & 3 a5 6
Gaussian Sigma Gaussian Sigma

considerable margins in at least two of the four met-

rics we report. Moreover, [Eq. (T.T)|integrated with Figure 2: Comparison between foundation
the untrained DIP is the second best method by gy domain-specific FM, and untrained pri-

three of the four metrics, just after D-Flow (DS). ors for Gaussian deblurring with varying ker-
Similarly, results on Gaussian deblurring with vary- 1 <70 (Gaussian sigma) and hence diffi-

ing kernel sizes presentfzd in [Fig. 7| ghow upequiv- culty level. Notations the same as in
ocally that domain-specific and untrained priors are

stronger than foundation priors, uniformly across different difficulty levels of Gaussian deblurring.

2.3.2 CURRENT IDEAS TO STRENGTH FOUNDATION FM PRIORS DO NOT QUITE WORK

While none of the previous works explicitly acknowledges and discusses the serious performance
issue of foundation FM priors, some have implicitly tried to strengthen the priors. As a plug-in
method, Ben-Hamu et al.| (2024) assumes that = and y are close—e.g., valid for typical image
restoration tasks, and initializes the optimization variable z of[Eq. (2.3)| with

zo = Voay, + V1 —az withz ~N(0,I), 2.4)

where vy, is the backward solution of the governing ODE, ie., y, = ¥y + flo vg(y,, t)dt, or in-
version seed in other words, to accelerate the convergence of numerical methods for solving
Moreover, they promote the Gaussianity of the seed z( by recognizing that ||z ||§ follows
a x~ distribution and thus regularizes its negative log-likelihood. Alternatively, as a representative
interleaving method, [Kim et al.|(2025) also assumes the closeness of x and y, and takes an automati-
cally generated text description for y as text conditions for the FM prior, as all recent foundation FM
models allow text-prompted generation. However, our quick empirical evaluation suggests that
these prior-strengthening techniques are almost useless: there is little change in performance
moving from F1lowDPS (FD) §D-Flow (FD) to FlowDPS (FD-S) &D-Flow (FD-S) in

3 METHOD

The goal of this paper is to close the performance gap between foundation FM priors and domain-
specific FM & untrained ones as identified in [Section 2.3.1| by addressing the deficiency of current
prior-strengthening ideas revealed in We focus on IPs where the object x is an image
for our methodology development and validation due to the wide availability of foundation FM
models for images, although the proposed method is totally generic and can be easily applied to IPs
involving other data modalities as long as relevant foundation FM models are available.

Between the two approaches to solving IPs with pretrained FM ~ Table 2: Image regression on 1000
priors (Section 2.2), we follow the plug-in approach as for- random images from the DIV2K
mulated in due to its superior performance in prac- dataset; details in[Appendix A.2]
tice (see, e.g.,[Table T|and[Section 4)). For this approach, a po- Metric | D-Flow FMPlug
tential concern is whether Gy is surjective, i.e., whether every PSNR | 36.187 37.924
reasonable @ can be represented as Gg(z) for some z. While LPIPS | 0.181 0.093
theoretical results of this nature seem lacking and modeling
high-dimensional distributions for such theoretical analysis also seem tricky, empirically, the desired
surjectivity seems to hold approximately based on our image regression test reported in

To strengthen the foundation FM priors, we consider two practical settings: (A) simple-distortion
setting, in which x and y are close, e.g., for image restoration. This is the setting considered in
previous prior-strengthening works (Ben-Hamu et al. 2024} |[Kim et al. 2025); and (B) few-shot



setting, in which a small number of image instances close to x are provided but  and y might
not be close. This is particularly relevant for IPs arising from scientific imaging, where the image
domain is typically very narrow and is known ahead of time with a few samples (Huang et al., 2022}
Shen et al., 2019} Masto et al., 2025)). For both settings, taking the image instance(s) close to « as
a guide, we develop a time-dependent warm-start strategy and a sharp Gaussian regularization that
together lead to convincing performance gains. Below, we first assume the simple-distortion setting
and describe the warm-start strategy and the Gaussian regularization in|Section 3.1|and|Section 3.2
respectively; we then discuss how to extend the ideas to deal with the few-shot setting in|Section 3.3

Gaussianity in the source and intermediate distributions of FM models and especially the following
celebrated concentration-of-measure (CoM) result for Gaussian vectors are crucial for our method.
Theorem 3.1 (Concentration of measure in Gaussian vectors (Vershynin, 2018)). For a d-
dimensional z ~ N'(0,I), P[|||z|, — Vd| > t] < 2¢="" for a universal constant ¢ > 0.

This implies that for a standard Gaussian vector 2 € R, |/z||, lies sharply in the range [(1 —
£)Vd, (1 + €)V/d] with £ € o(1) with overwhelmingly high probability. In other words, z lies in an
ultra-thin shell around S%—1 (0, \/&) (a sphere in R4 centered at 0 and with a radius \/3).

3.1 AN INSTANCE-GUIDED & TIME-DEPENDENT WARM-START STRATEGY

Why is the warm-start strategy in D-Flow problematic? In the standard FM setting, the source
distribution z¢ ~ N(0, I'), whereas the initialized z, in[Eq. (2.4)|has a distribution N'(y/ay, (1 —
a)I). One might not worry about this distribution mismatch, as both are supported on the entire
ambient space in theory. But finite-sample training in practice causes a significant gap: due to CoM
of Gaussian vectors , virtually all training samples drawn from N (0, I') come from an

ultra-thin shell S around S?~1(0, v/d), so the generation function Gg is effectively trained on inputs
from the domain S, not the entire ambient space: the behavior of Gy on S¢, the complement of S,
is largely undetermined. Now, samples from N (y/ay,, (1 — a)I) concentrate around another ultra-

thin shell around S~ (/ay,, /(1 — a)d), which has only a negligibly small intersection with S
and lies mostly in S¢. So, the initialization in[Eq. (2.4)|lies in S¢ with a very high probability. Given
that the behavior of Gg on S¢ can be wild, this initialization strategy is problematic.

Our time-dependent warm-up strategy A typical flow of FM models takes the form
zy = ayx + Bz where z ~ N (0, 1), 3.1

where o, and S; are known functions of t. Now, when x and y are close, * = y + € for some small
e. So, we can write the flow as

zi =o(y +€)+ Bz where z ~ N(0,1) (3.2)

for an unknown €. When o is sufficiently small—i.e., we are sufficiently close to ¢ = 0 in the flow,
o€ can be negligibly small, leading to the approximate flow

zy &~y + Bz where z ~ N(0,1). (3.3)

In practice, we do not know how small a; should be, so we leave it learnable, leading to

| minz repo. (y: Ao Golawy + Brz.1)) | (3:4)

Here we overload the notation of Gg as Gg : R% x [0,1] — R?—the second input is the current ¢ on
the path (the notation in assumes ¢t = 0). In other words, due to the closeness of x and v,
we do not need to start from scratch, i.e., from a random sample drawn from the source distribution;
instead, we plug y into an appropriate, learnable time point of the flow to create a shortcut.

Our formulation in can be easily generalized to latent FM models that are commonly used
in practice—we just need to replace A o Gg with A o D o Gy for the decoder D in use. Moreover, it
is not only grounded in theory and effective in practice (see[Section 4), but also speeds up learning
as t > 0 implies shorter flows, although improving speed is not our current focus.



Additional mean-variance calibration Due to approximation errors in matching the ideal flow
during FM training, as well as when approximating using the distribution of
z; could be slightly off the ideal distribution. To rectify this, we perform a scalar mean-variance
calibration in our implementation: we first draw 4000 unconditional samples from the foundation
FM model and estimate the scalar mean and variance of all coordinates for each time step on the FM
model’s time grid; we then fit the data using a lightweight neural network, which predicts mean and
variance as a continuous function of ¢ € [0, 1], to be compatible with our continuous optimization

in|Eq. (3.4)l Our mean-variance calibration follows
Ze = \02(Z)[0%(20) - (20 — p(ze)) + 1(Ze), (3.5)

where 1(Z;) and 02(Z;) are the scalar mean and variance predicted by the neural network, and
u(z¢) and 0%(2;) are scalar mean and variance for z; across all coordinates.

3.2 A SHARP GAUSSIANITY REGULARIZATION

Why is the Gaussian regularization ~330475 &('U) Cus
in D-Flow pr02blemati§? If zg ~ 330500] ) E['S]“:_d - /
N(0>I)s ||z0||2 ~ X (d) and the _330525 x2(d) samples /
negative log-likelihood is h(zo) = 3 \
2 2 —330550
—(d/2—1)log ||zo|l; +||zoll5/2+C =
for some constant C' independent of —330575
z(. Ben-Hamu et al.|(2024) promotes ~330600
the Gaussianity of z( by regularizing ~330625

h(zo)- While h(zo) is minimized at 60000 62000 64000 66000 68000 70000 72000

— 2 —
any zo satisfies |zoll, = Vd—2, u_“%O“Z'd_GSS?'G )
away from this value the function Figure 3: Plot of the function h(z() (after a change of vari-

changes painfully slowly; see[Fig. 3} able u = Hz0||§). An ideal regularization function should
For example, the function value only blow up sharply away from the narrow concentration region

changes < 0.031% relative to the in orange to promote Gaussianity effectively.
minimum in the [62000, 70000] range, much larger than the orange-highlighted CoM region. This
is problematic, as ||zq||, should concentrate sharply around d and thus only functions that blow up

quickly away from the ||z ||, = V/d level can effectively promote the Gaussianity of zy.

Our sharp Gaussian regularization via an explicit constraint For[Eq. (3.4)] we hope to promote
the Gaussianity of z. To enforce the sharp concentration of z, we introduce the shell constraint

(1—e)Vd < |zll, < (1+¢e)Vd,
as implied by To ensure feasibility, in each iteration step to optimize [Eq. (3.4)] we

simply need to add the closed-form projection
(L+e)vd-z/llzll, if|lz], > (1+e)Vd
2= (- z/|zl, if]zl,<(1-e)Vd. 3.7)

z otherwise

withane < 1 3.6)

Using a spherical constraint ||z||, = v/d or regularization to promote Gaussianity is not new in the

FM and diffusion literature; see, e.g., |[Yang et al.| (2024). However, enforcing Hz||2 = +/d is a bit
rigid as the actual length lies in a small range. Our shell constraint leaves reasonable slackness while
still sharply encoding the Gaussianity. We typically set € = 0.025 in our implementation.

3.3 EXTENSION INTO THE FEW-SHOT SETTING

We assume a small set of instances {1 },_; . all of which are close to the true «. To adapt the
time-dependent warm-start strategy in to this setting, we consider linear combinations
of x;.’s to take the place of y for warm-start, i.e., starting with at(z,i{:l wrxk) + Biz, resulting in

min, yeo1)wear LY, Ao Golar(Xj wpey) + Biz,t)) (3.8)




to replace where the simplex constraint A = {w € R¥ : w > 0,wT1 = 1} fixes the
scale of w, as the multiplicative relationship of o, and w causes scale ambiguity. In actual imple-
mentation, we eliminate this constraint by a simple reparametrization w = softmax(v) and treat v
as a group of optimization variable. Since the proposed modification in warm-start does not affect
z, our sharp Gaussian regularization in can be directly integrated.

4 EXPERIMENT
Table 3: Results on simple-distortion IPs. (Bold: best, under: second best, CLIP: CLIPIQA)

AFHQ (512 x 512) DIV2K (512 x 512) RealSR (512 x 512)

task |method PSNR 1 SSIM 1 LPIPS | CLIP 1| PSNR 1 SSIM 1 LPIPS | CLIP 1| PSNR 1 SSIM 1 LPIPS | CLIP 1
- |DIP 2985 0.78 037 0.33 25775 073 042 040 26.81 072 044 030
>:< FlowChef-P| 2923 079 038 0.64 25.08 0.71 043  0.60 2589 071 043 044
.2 |FlowChef 2925 079 038  0.65 25.09 071 043  0.60 2592 071 043 044
% FlowDPS-P| 2875 0.76 037 0.37 2492 0.69 042 051 26.11 071 043 034
é FlowDPS 28.60 0.75 042 035 2483 0.68 045 046 26.10 0.70 045 032
5 |DFlow 2637 0.70 054 031 2342 0.64 052 037 23.60 062 053 0.28
vg; FMPlug-W| 30.13 0.81 0.34 0.18 2577 074 038 024 2658 0.73 039 0.16
FMPlug 3031 081 033 0.20 25.88 074 038 0.27 26.66 0.74 038 0.17
%O DIP 3332 090 021 047 2849 086 027 0.59 30.88 089 025 047
‘:D FlowChef-P| 2927 0.77 041 057 24.67 0.67 046 0.50 2581 0.69 045 035
£ |FlowChef 2935 077 041 058 24776  0.67 046 0.50 2589 0.69 045 035
'g FlowDPS-P| 27.63 0.73 041 043 2401 0.65 047 0.54 25.68 0.69 047 0.36
= |FlowDPS 2753 072 047 035 2404 0.64 050 047 25778 0.69 048 0.32
g DFlow 2843 0.76 041  0.65 2471 073 041 0.67 2527 0.69 042 0.59
g FMPlug-W| 3275 0.88 037 0.63 2882 0.85 033 0.68 3130 0.88 028 0.56
& |FMPlug 32.81 087 034 0.66 2895 084 032 0.69 31,79 089 026 0.56
DIP 2939 077 039 0.30 2523 070 043 0.38 26.17 070 046 0.28
5 |FlowChef-P| 2384 0.63 0.54 0.28 2041 049 062 0.23 2142 051 063 0.19
S |FlowChef 2387 0.63 054 0.28 2041 049 062 0.23 2142 051 0.63 0.19
a FlowDPS-P| 24.15 0.60 049 023 2023 046 058 032 21.21 047 059 0.22
E FlowDPS 23.69 058 055 0.15 2022 045 061 0.20 21.21 047 061 0.17
§ DFlow 2590 0.66 054 0.34 23.64 064 052 037 2365 060 054 030
© FMPlug-W| 3038 0.79 040 0.22 2605 072 043 029 27.05 072 044 021
FMPlug 3041 079 039 0.21 2626 073 041 0.28 2722 073 043 0.19
DIP 28.69 0.75 038 0.26 24775 0.68 045 035 26.17 070 046  0.28
. |FlowChef-P| 2477 0.66 050 0.37 21.27 054 057 034 2250 0.56 0.56 0.26
% FlowChef 2478 0.66 050 0.37 21.28 054 057 034 2251 056 056 0.26
A |FlowDPS-P| 2481 0.64 046 0.28 21.07 051 054 0.39 2250 055 055 027
E FlowDPS 2449 062 052 020 21.05 050 058 0.26 2255 054 056 0.22
ES DFlow 2781 073 048 0.35 2521 070 047 042 2586 0.69 047 031
FMPlug-W| 30.10 0.79 039 026 2683 0.74 040 036 28.01 0.76 040 0.28
FMPlug 3043 081 037 028 2738 078 036 042 2863 079 037 0.30

For brevity, we term our method FMPlug and benchmark its performance on both simple-distortion
and few-shot IPs, in[Section 4.1|and|Section 4.2} respectively. In[Section 4.3| we perform an ablation
study to dissect the contributions of the two algorithmic components.

4.1 SIMPLE-DISTORTION IPS

Datasets, tasks, and evaluation metrics We use 3 diverse datasets: DIV2K (Agustsson & Tim-
ofte, 2017), RealSR (Cai et al., [2019) and AFHQ (Choi et al. 2020), 100 random images each,
taken from their dataset. We set the image resolution to 512 x 512 by resizing and cropping the
original. We consider four linear IPs: i) 4x super-resolution from 128 x 128 to 512 x 512; ii)
70% random-mask inpainting; iii) Gaussian deblurring with a kernel size of 61 and standard devi-
ation of 3.0; iv) Motion deblurring with a kernel size of 61 and intensity of 0.5. We add Gaussian
noise o = (.03 to all measurements. For metrics, we use PSNR for pixel-level difference, SSIM
and DISTS for structure and texture similarity, LPIPS for perceptual difference, and CLIPIQA &
MUSIQ for no-reference quality metric.



Competing methods We compare our FMPlug (-W: warm-up only, Number of Function Evalu-
ations (NFE) = 3) with deep image prior (DIP) (Ulyanov et all,[2020) (an untrained image prior)
+[Eq. 23), D-Flow (NFE = 6) (Ben-Hamu et al., 2024) (a SOTA plug-in method), FlowDPS
(NFE = 28) (Kim et al 2025) (a SOTA interleaving method) and FlowChef (NFE = 28)
(another SOTA interleaving method). For a fair comparison, we use Stable Diffu-
sion V3 (Patrick Esser et al|, 2024) as the backbone for all methods that require foundation priors.
We also compare with OT-ODE (Pokle et al}, [2023)), PnP-Flow (Martin et al., [2025) based on a
domain-specific FM model, FHQ-Cat from (Martin et al.| [2025). For methods that integrate text
prompts, including FlowDPS and FlowChef, we compare two variants with the prompts on and
off, respectively; we use postfix -P to indicate the prompt-enabled variants. We use the pretrained
degradation-aware prompt extractor of to generate label-style text prompts. We
set the CFG scale to 2.0 when text prompts are on. Details of the hyperparameter can be found in
Append A

summarizes the quantitative results; details and visualizations can be found in[Appendix A4}
We can observe that: (1) Our FMPlug is the overall winner by all metrics but CLIPIQA and MUSIQ,
the no-reference metrics, beating the untrained DIP—a strong baseline. FlowChef and FlowDPS,
with and without text prompt, lag behind even the untrained DIP by large margins and generate
visually blurry and oversmooth images as shown in highlighting the general struggle of
interleaving methods to ensure simultaneous measurement and manifold feasibility; (2) For plug-in
methods, our FMPIlug improves upon D-Flow—our main competitor, by considerable margins based
on all metrics but CLIPIQA, showing the solid advantage of our warm-start strategy and Gaussian
regularization over theirs; and (3) FMPlug further improves PSNR and SSIM slightly over FMPlug-
W, with the largest improvement seen in CLIPIQA, showing stronger visual quality. This confirms
the benefits brought about by the sharp Gaussianity regularization in[Eq. (3.7)|

Measurement GT FMPlug FMPlug-W D-Flow DIP FlowChef-P FlowDPS-P

Figure 4: Visual comparison of results in Gaussian deblurring.

Table 4: Gaussian Deblur and Super Resolution 4 x on AFHQ-Cat 256 x 256 with additive Gaus-
sian noise (¢ = 0.03). FD: Foundation; DS: Domain-specific; Bold: best, under: second best

Super Resolution 4 x Gaussian Blur
LPIPS) PSNR1 SSIM? DIST| CLIPIQAT MUSIQ? LPIPS, PSNR1 SSIM1 DIST/ CLIPIQAT MUSIQ?
DIP 036 2817 0.76 0.21 0.25 28.12 036 2792 0.75 0.23 0.26 23.94

OT-ODE (DS) 0.19 2643 0.74 0.90 0.59 64.63 0.19 27.67 075 0.89 0.62 63.82
PnP-Flow (DS) 0.24 2745 0.80 0.82 0.52 5195 031 2870 0.79 0.77 0.66 40.26
FlowDPS (DS) 0.24 28.56 0.79 0.14 0.57 55.63 038 2227 056 0.20 0.52 5242
FlowDPS (FD  0.37 24.45 0.74 0.27 0.63 2796 055 2211 059 0.38 0.28 15.10
D-Flow (DS) 027 25.81 0.69 0.82 0.52 57.74 020 2841 0.77 0.87 0.61 59.29
D-Flow (FD)  0.53 24.64 0.67 0.3l 0.31 4527 0.56 2442 0.62 0.21 0.30 49.12
FMPlug(FD) 033 28.85 0.80 0.22 0.31 2877 035 29.00 0.79 0.23 0.24 30.58

To benchmark our progress in bridging the performance gap between foundation and domain-
specific priors, we expand [Table T]to include more competing methods and our method into[Table 4]



On both Gaussian deblurring and super-resolution, by most of the metrics, our FMPlug gets closer
or even comparable to the performance of SOTA methods with domain-specific priors.

4.2 FEW-SHOT SCIENTIFIC IPS

We consider two scientific IPs from InverseBench (Zheng et al.| [2025)) and take their data as nec-
essary: (1) linear inverse scattering (LIS), an IP in optical microscopy, where the objective is to
recover the unknown permittivity contrast z € R™ from measurements of the scattered light field
Yy € C™. We use 100 samples for evaluation and 10 samples as few-shot instances; (2) Com-
pressed sensing MRI, an important technique to accelerate MRI scanning through subsampling.
We use 94 samples from the test set for evaluation and 6 samples from the validation set as instances
of a few shots. More details on the forward models can be found in and [Zheng et al.
(2025). For D-Flow, we choose the best result between random initialization and warm-start with
the least-loss few-shot instance, trying to make a fair comparison with them.

GT FMPlug D-Flow DIP

LIS

MRI

Figure 5: Qualitative comparison of results on knee MRI and LIS. GT: groundtruth

Table 5: (Scientific IPs) Performance on LIS
and MRI. (Bold: best among non-DS priors;
Background: with DS model)

From [Table 3} it is evident that in both scientific IPs,
our proposed few-shot FMPlug beats both DIP and
D-Flow by large margins in PSNR and SSIM. We
put Red-Diff, the best SOTA method with domain-

specific priors as evaluated in [Zheng et al.| (2025)), LIS MRI (4x)
as a reference (performance quoted from their paper PSNRT SSIMf PSNRT SSIMf
also), highlighting the gaps to be bridged next. Qual-  DIP 28.72 0.96 18.35 0.39

itatively, from [Fig: 3] our method faithfully recovers ~ D-Flow —17.15 066 8.94  0.15

. . . ~ FMPlug 31.83 0.97 22.94 0.48
the main objeq structures, while D-Flow and DIP Red-diff 3655 0.98 2871 0.62
show severe artifacts.

4.3 ABLATION STUDY Table 6: Ablation study on Gaussian Deblur on

DIV2K with additive Gaussian noise (o = 0.03).
(Bold: best, under: second best). -W: with warm-
start only

shows the performance of FMPlug, and
of two variants: FMPlug-Plain (without warm-
start and regularization) and FMPlug-W (with
warm-start only). Although both ingredients PSNRT SSIMT LPIPS| DIST]
are necessary for the final performance, most of  FNPlug-Plain 25.1602 0.6732 0.4846 0.1719
the performance gain comes from the proposed FMPlug-W  26.0547 0.7193 0.4315 0.1620
warm-up strategy. The sharp Gaussianity regu- FMPlug 26.2563 0.7339 0.4120 0.1565
larization further refines the results.
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A APPENDIX

A.1 EXPERIMENT DETAILS

In this section, we provide implementation details on all methods compared in the experiment sec-
tion. By default, we use Stable Diffusion V3 Mediunﬂ (Patrick Esser et all, 2024)) as the backbone
model whenever foundation FM models are needed.

* FMPlug We use Adamw as our default optimizer. The number of function evaluations
(NFE) is 3 and we use the Heun2 ODE solver to balance efficiency and accuracy. The
learning rate for z is 0.5, and for ¢ is 0.005.

* D-Flow We use their default optimizer: LBFGS algorithm with line search. The NFE = 6
with the Heun2 ODE solver. We set the weight of their regularization term A = 0.01. We
perform the initialization with the Euler ODE solver with guidance scale 0.2.

* FlowDPS We set NFE = 28 with FlowMatchEulerDiscreteScheduler. For their data
consistency term, we perform it with 3 steps of gradient descent with step size = 15.0

¢ FlowChef we set NFE = 28 with FlowMatchEulerDiscreteScheduler. We use
step size = 50.0 for simple-distortion tasks.

* Deep Image Prior We use a 5-layer UNet with 256 channels for each layer with Adam
optimizer. We set the learning rate for the network to 0.001.

A.2 DETAILS ABOUT THE IMAGE REGRESSION EXPERIMENT IN[TABLE 2]

In the image regression task, we solve
z* €argmin, L(z) ={(y,Ge(2)) + N0 Go(2), (A1)

i.e., the forward model A is the identity map. We use 1000 randomly drawn images from the training

set of DIV2K and adopt all default hyperparameter settings from[Appendix A.T| For D-Flow, we stop
optimizing when there is no effective update to z for 5 consecutive epochs. We run FMPlug-W for

a maximum of 1000 epochs and use the output as the regression result.

'https://huggingface.co/stabilityai/stable-diffusion-3-medium
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A.3 DETAILS OF SCIENTIFIC IPS

Linear inverse scattering (LIS) Inverse scattering is an IP in optical microscopy, where the ob-
jective is to recover the unknown permittivity contrast z € R™ from measurements of the scattered
light field y,. € C™. We follow the formulation in [Zheng et al.|(2025)):

Yo = H(uy ©@ 2) + n € C"  where ur = G(ujy © 2). (A.2)

Here, G € C™"*™ and H € C"*"™ denote the discretized Green’s functions that characterize the op-
tical system response, ui, and u are the incident and total lightfields, ® represents the elementwise
(Hadamard) product, and n accounts for measurement noise.

The resolution of the LIS data is (1,128, 128). However, Stable Diffusion V3 (SD3) outputs at a
resolution (3,512,512). So, we downsample the model output in spatial directions to match the
spatial dimension of the LIS data. To match the channel dimension, we replicate the single-channel
LIS data three times. For evaluation, one of the replicated channels is used as the output.

Compressed sensing MRI (MRI) Compressed sensing MRI (CS-MRI) is an important technique
to accelerate MRI scanning via subsampling. We follow |Zheng et al. (2025), and consider the
parallel imaging (PI) setup of CS-MRI. The PI CS-MRI can be formulated as an IP in recovering
the image € C™:

y; =PFSjx+mn; forj=1,.,J (A.3)
where P € {0,1}™*" is the sub-sampling operator and F is Fourier transform and y;, Sj, and n;
are the measurements, sensitivity map, and noise of the j-th coil.

The resolution of the MRI images is (2, 320, 320). To deal with the dimension discrepancy with the
SD3 output, we again perform spatial downsampling to match the spatial dimensions, and fill in the
third channel by the average of the two existing channels. For evaluation, we noly consider the two
original channels.

A.4 COMPLETE RESULTS FOR [TABLE

Table 7: Inpainting and Super Resolution 4 x on AFHQ with additive Gaussian noise (o = 0.03).
(Bold: best, under: second best)

Inpainting Super Resolution 4 x
method PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1t MUSIQ 1
DIP 3332 090 0.21 0.07 0.47 5773 29.85 0.78 037 0.12 0.33 43.38

FlowChef-P 29.27 0.77 041 021 0.57 3648 2923 079 038  0.19 0.64 38.77
FlowChef 2935 0.77 041 021 0.58 37.02 2925 079 038 0.9 0.65 39.01
FlowDPS-P 27.63 073 041 0.7 0.43 5670 2875 0.76 037  0.I5 0.37 52.74
FlowDPS 2753 072 047 0.8 0.35 49.14 2860 075 042  0.16 0.35 47.61
DFlow 2843 076 041  0.17 0.65 6045 2637 070 054 0.8 0.31 53.13
FMPlug-W 3275 0.88 037 0.8 0.63 60.87 30.13 081 034 0.3 0.18 47.43
FMPlug 3281 087 034  0.06 0.66 61.86 3031 081 033 012 0.20 46.91

Table 8: Gaussian Blur and Motion Blur on AFHQ with additive Gaussian noise (¢ = 0.03).
(Bold: best, under: second best)

Gaussian Blur Motion Blur
method PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1+ MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1+ MUSIQ 1
DIP 29.39 077  0.39 0.14 0.30 36.07 28.69 0.75 0.38 0.16 0.26 34.88
FlowChef-P 23.84 0.63 0.54 0.30 0.28 15.81 2477 0.66 0.50 0.28 0.37 19.99
FlowChef  23.87 0.63 0.54 0.30 0.28 15.89 2478 0.66 0.50 0.28 0.37 19.86
FlowDPS-P 24.15 0.60 0.49 0.24 0.23 4274 2481 0.64 046 0.21 0.28 47.77
FlowDPS 23.69 058 0.55 0.27 0.15 30.28 2449 0.62 0.52 0.24 0.20 36.63
DFlow 2590 0.66 0.54 0.20 0.34 50.61 27.81 0.73 0438 0.17 0.35 47.74

FMPlug-W 3038 0.79 0.40 0.12 0.22 42.02 30.10 0.79 0.39 0.12 0.26 48.62
FMPlug 3041 079  0.39 0.12 0.21 43.08 3043 081 0.37 0.11 0.28 52.23
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Table 9: Inpainting and Super Resolution 4 x on DIV2K with additive Gaussian noise (¢ = 0.03).
(Bold: best, under: second best)

Inpainting Super Resolution 4 x
method PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA T MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA T MUSIQ 1
DIP 2849 0.86 0.27 0.09 0.59 5582 2575 073 042 0.15 0.40 37.85

FlowChef-P 24.67 0.67 0.46 0.24 0.50 38.04 2508 071 043 0.22 0.60 38.50
FlowChef 2476  0.67 0.46 0.24 0.50 38.87 25.09 071 043 0.22 0.60 38.67
FlowDPS-P 24.01 0.65 047 0.19 0.54 4949 2492 0.69 042 0.17 0.51 47.19
FlowDPS  24.04 0.64 0.50 0.19 0.47 46.80 2483 0.68 045 0.17 0.46 44.80
DFlow 2471 073 041 0.18 0.67 6225 2342 064 052 0.17 0.37 57.18
FMPlug-W 2882 0.85 033 0.08 0.68 65.09 2577 0.74 038 0.15 0.24 40.96
FMPlug 2895 084 032 0.07 0.69 64.80 2588 0.74 0.38 0.15 0.27 40.30

Table 10: Gaussian Blur and Motion Blur on DIV2K with additive Gaussian noise (¢ = 0.03).
(Bold: best, under: second best)

Gaussian Blur Motion Blur
method ~ PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1
DIP 2523 0.70 043 0.18 0.38 3254 2475 0.68 045 0.20 0.35 32.59
FlowChef-P 2041 049 0.62 0.34 0.23 16.68 21.27 0.54 057 0.32 0.34 19.76
FlowChef  20.41 049  0.62 0.34 0.23 16.68 21.28 0.54 057 0.32 0.34 19.82

FlowDPS-P 20.23 046  0.58 0.29 0.32 3590 21.07 051 054 0.26 0.39 39.56
FlowDPS 2022 045 0.61 0.30 0.20 30.51  21.05 050 058 0.27 0.26 3421
DFlow 23.64 0.64 052 0.17 0.37 53.03 2521 070 047 0.17 0.42 53.78
FMPlug-W 26.05 0.72 043 0.16 0.29 36.66 2683 0.74 040 0.14 0.36 46.95
FMPlug 26.26 0.73 041 0.16 0.28 38.14 2738 0.78 0.36 0.12 0.42 51.71

Table 11: Inpainting and Super Resolution 4x on RealSR with additive Gaussian noise (o =
0.03). (Bold: best, under: second best)

Inpainting Super Resolution 4 x
method PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1
DIP 30.88 0.89 025  0.09 0.47 5497 2681 072 044 017 0.30 38.23

FlowChef-P 25.81 0.69 045 0.25 0.35 3596 2589 071 043 0.24 0.44 35.42
FlowChef 2589 0.69 045 0.25 0.35 36.61 2592 071 043 0.23 0.44 35.65
FlowDPS-P 25.68 0.69  0.47 0.20 0.36 49.28 26.11 071 043 0.18 0.34 46.24
FlowDPS 2578 0.69  0.48 0.19 0.32 46.54  26.10 0.70 0.45 0.18 0.32 44.49
DFlow 2527 0.69 042 0.21 0.59 60.99 2360 062 053 0.20 0.28 56.53
FMPlug-W 3130 0.88 0.28 0.07 0.56 62.77 2658 0.73  0.39 0.17 0.16 40.05
FMPlug 31.79  0.89  0.26 0.06 0.56 62.61 26.66 0.74 0.38 0.17 0.17 39.27

Table 12: Gaussian Blur and Motion Blur on RealSR with additive Gaussian noise (¢ = 0.03).
(Bold: best, under: second best)

Gaussian Blur Motion Blur
method PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1 MUSIQ 1 PSNR 1 SSIM 1 LPIPS | DISTS | CLIPIQA 1t MUSIQ 1
DIP 26.17 070 046 0.20 0.28 31.78 26.17 0.70 0.46 0.22 0.28 33.25
FlowChef-P 21.42 0.51  0.63 0.36 0.19 16.65 2250 0.56 0.56 0.33 0.26 20.77

FlowChef 2142 051 0.63 0.36 0.19 16.68 2251 056 056 0.33 0.26 20.88
FlowDPS-P 21.21 047 0.59 0.30 0.22 3823 2250 055 0.55 0.27 0.27 41.01
FlowDPS  21.21 047 0.61 0.31 0.17 33.68 2255 054 056 0.28 0.22 37.84
DFlow 23.65 0.60 0.54 0.20 0.30 54.62 2586 0.69 047 0.21 0.31 51.57
FMPlug-W 27.05 0.72 0.44 0.18 0.21 3447 2801 076 040 0.16 0.28 43.86
FMPlug 2722 073 043 0.18 0.19 36.00 28.63 0.79 0.37 0.14 0.30 48.07
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A.5 VISUALIZATION

Measurement GT FMPlug FMPlug-W D-Flow DIP FlowChef-P FlowChef FlowDPS-P FlowDPS

Figure 6: Qualitative comparison in super resolution 4 task.

Measurement GT FMPlug FMPlug-W D-Flow DIP FlowChef-P FlowChef FlowDPS-P FlowDPS

Figure 7: Qualitative comparison in Inpainting task.
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Figure 8: Qualitative comparison in motion deblur task.
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