
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAVING FOUNDATION FLOW-MATCHING PRIORS FOR INVERSE PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Foundation flow-matching (FM) models promise a universal prior for solving inverse problems (IPs), yet today they trail behind domain-specific or even untrained priors. *How can we unlock their potential?* We introduce FMPlug, a plug-in framework that redefines how foundation FMs are used in IPs. FMPlug combines an instance-guided, time-dependent warm-start strategy with a sharp Gaussianity regularization, adding problem-specific guidance while preserving the Gaussian structures. This leads to a significant performance boost across image restoration and scientific IPs. Our results point to a path for making foundation FM models practical, reusable priors for IP solving.

1 INTRODUCTION

Inverse problems (IPs) are prevalent in many fields, such as medical imaging, remote sensing, and computer vision (Aster et al., 2018; Mohamad-Djafari, 2013). In an IP, the objective is to recover an unknown object \mathbf{x} of interest from the relevant measurement $\mathbf{y} \approx \mathcal{A}(\mathbf{x})$, where the mapping $\mathcal{A}(\cdot)$, called the **forward model**, models the measurement process and the approximation sign \approx accounts for potential modeling errors and measurement noise. Due to insufficient measurement and/or the approximate relationship in $\mathbf{y} \approx \mathcal{A}(\mathbf{x})$, in practice \mathbf{x} is typically not uniquely recoverable from \mathbf{y} alone, i.e., ill-posedness. So, to obtain reliable and meaningful solutions for IPs, it is important to incorporate prior knowledge of \mathbf{x} .

Traditional ideas for solving IPs rely on optimization formulations, often motivated under the Maximum A Posteriori (MAP) estimation principle:

$$\min_{\mathbf{x}} \ell(\mathbf{y}, \mathcal{A}(\mathbf{x})) + \Omega(\mathbf{x}). \quad (1.1)$$

Here, minimizing the data fitting loss $\ell(\mathbf{y}, \mathcal{A}(\mathbf{x}))$ encourages $\mathbf{y} \approx \mathcal{A}(\mathbf{x})$, and the regularization term $\Omega(\mathbf{x})$ encodes prior knowledge of ideal solutions to resolve ambiguities and hence mitigate potential ill-posedness. The resulting optimization problems are often solved by gradient-based iterative methods. **Advances in deep learning (DL) have revolutionized IP solving.** Different DL-based approaches to IPs operate with variable levels of data-knowledge tradeoffs. For example, supervised approaches take paired datasets $\{(\mathbf{y}_i, \mathbf{x}_i)\}_{i=1, \dots, N}$ and directly learn the inverse mapping $\mathbf{y} \mapsto \mathbf{x}$, with or without using \mathcal{A} (Ongie et al., 2020; Monga et al., 2021; Zhang et al., 2024); alternatively, data-driven priors learned from object-only datasets $\{\mathbf{x}_i\}_{i=1, \dots, N}$ can be integrated with Eq. (1.1) to form hybrid optimization formulations that effectively combine data-driven priors on \mathbf{x} and knowledge about \mathcal{A} , noise, and other aspects (Oliviero-Durmus et al., 2025; Daras et al., 2024; Wang et al., 2024; 2025); strikingly, untrained DL models themselves can serve as effective plug-in priors for Eq. (1.1), without any extra data (Alkhouri et al., 2025; Wang et al., 2023; Li et al., 2023; Zhuang et al., 2023a;b; Li et al., 2021). Ongie et al. (2020); Monga et al. (2021); Alkhouri et al. (2025); Scarlett et al. (2023); Daras et al. (2024); Oliviero-Durmus et al. (2025) give comprehensive reviews of these DL-based ideas.

In this paper, we focus on solving IPs with deep generative priors (DGPs) pretrained on object-only datasets Oliviero-Durmus et al. (2025). Compared to supervised approaches that need to construct task-specific paired datasets and perform task-specific training, this approach enjoys great flexibility, as DGPs can be plugged into and reused for different IP problems related to the same family of objects. Among the different DGPs, we are most interested in those based on the

054 **emerging flow-matching (FM) framework (Lipman et al., 2024)**—which is rapidly replacing diffusion
055 models as the backbone of increasingly more state-of-the-art (SOTA) deep generative models
056 in various domains (Black Forest Labs et al., 2025; Patrick Esser et al., 2024; Agarwal, Niket et al.,
057 2025) due to its conceptual simplicity and superior performance.

058 Several recent works have proposed to solve IPs with pretrained FM priors (Daras et al., 2024).
059 Although promising, most of them are based on **domain-specific** FM priors, e.g., trained on the
060 FFHQ dataset for human faces and the LSUN bedrooms dataset for bedroom scenes. This limits
061 the practicality of these methods, as domain-specific FM models are not always readily available,
062 e.g., due to data or computing constraints. On the other hand, the emergence of domain-agnostic
063 **foundation** FM models, such as Stable Diffusion 3.0 (or newer versions) (Patrick Esser et al., 2024)
064 and Flux.1 (Black Forest Labs et al., 2025) for images, obsoletes domain-specific developments; Kim
065 et al. (2025); Patel et al. (2024); Ben-Hamu et al. (2024); Martin et al. (2025) propose such ideas.
066 **However, the reported performance from these works based on foundation FM priors clearly**
067 **lags behind those with domain-specific FM priors, and even behind those with untrained priors;** see
068 Section 2.3. This is not entirely surprising, as foundation priors are considerably weaker
069 than domain-specific priors in terms of constraining the objects.

070 In this paper, we take the first step to close the performance gap. We focus on IPs where the object
071 \mathbf{x} is an image, as foundation FM models for images are widely available and image-related IPs
072 find broad applications. To strengthen the foundation FM priors, we consider two practical settings:
073 (A) **simple-distortion setting**, in which \mathbf{x} and \mathbf{y} are close (e.g., image restoration); and (B) **few-
074 shot setting**, in which a small number of image instances close to \mathbf{x} are provided (e.g., scientific
075 IPs). For both settings, taking the image instance(s) close to \mathbf{x} as a guide, we develop a time-
076 dependent warm-start strategy and a sharp Gaussian regularization that together lead to convincing
077 performance gains. In summary, our contributions include: (1) **identifying** the performance gap
078 between foundation FM, domain-specific, and untrained priors for solving IPs (Section 2.3); (2)
079 **proposing** a time-dependent warm-start strategy and a sharp Gaussian regularization that effectively
080 strengthen foundation FM priors (Section 3); and (3) **confirming** the effectiveness of the proposed
081 prior-strengthening method through systematic experimentation (Section 4).

082 2 TECHNICAL BACKGROUND & RELATED WORK

083 2.1 FLOW MATCHING (FM)

086 Flow Matching (FM) models are an emerging class of deep generative models (Lipman et al., 2024).
087 They learn a continuous flow to transform a prior distribution $p_0(\mathbf{z})$ into a target distribution $p_1(\mathbf{z})$ —
088 in the same spirit of continuous normalizing flow (CNF) (Chen et al., 2018; Grathwohl et al., 2019),
089 where the flow is described by an ordinary differential equation (ODE)

$$090 d\mathbf{z} = \mathbf{v}(\mathbf{z}, t) dt. \quad (2.1)$$

091 Whereas CNF focuses on the density path induced by the flow and performs maximum likelihood
092 estimation as the learning objective, FM tries to learn a parametrized velocity field $\mathbf{v}_\theta(\mathbf{z}, t)$ to match
093 the one associated with the desired flow. To generate new samples after training, one simply samples
094 $\mathbf{z}_0 \sim p_0(\mathbf{z})$ and numerically solves the learned ODE induced by $\mathbf{v}_\theta(\mathbf{z}, t)$ from $t = 0$ to $t = 1$, to
095 produce a sample $\mathbf{z}_1 \sim p_1(\mathbf{z})$.

096 For tractability, in practice, FM matches the conditional velocity field instead of the unconditional
097 one discussed above: for each training point \mathbf{x} , a simple conditional probability path $p_t(\mathbf{z}_t | \mathbf{x})$, e.g.,
098 induced by a linear flow $\mathbf{z}_t = t\mathbf{x} + (1 - t)\mathbf{z}_0$, is defined. The model $\mathbf{v}_\theta(\mathbf{z}_t, t)$ is then trained to
099 learn the known vector field of these conditional flows, i.e., $\mathbf{u}(\mathbf{z}_t, t | \mathbf{x})$:

$$100 \min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{z}_0, t} \|\mathbf{v}_\theta(\mathbf{z}_t, t) - \mathbf{u}(\mathbf{z}_t, t | \mathbf{x})\|^2. \quad (2.2)$$

102 Diffusion models (DMs) based on probability flow ODEs can also be interpreted as FMs, although
103 (1) they match the score functions $\nabla_{\mathbf{z}} \log p_t(\mathbf{z})$ induced by the chosen probability path, not the
104 velocity field as in FM; and (2) they typically work with affine flows for convenience, instead of the
105 simple linear flows often taken in FM practice (Lipman et al., 2024; Song et al., 2021). So, FM can
106 be viewed as a general deep generative framework that covers DMs besides other possibilities.

107 2.2 PRETRAINED FM PRIORS FOR IPs

Recent methods that use pre-trained FM priors for solving IPs can be classified into two families, as illustrated in Fig. 1: **(1) The interleaving approach** interleaves the ODE generation steps (i.e., numerical integration steps) with gradient steps toward feasibility (i.e., moving \mathbf{x} around to satisfy $\mathbf{y} \approx \mathcal{A}(\mathbf{x})$) (Pokle et al., 2023; Kim et al., 2025; Patel et al., 2024; Martin et al., 2025; Erbach et al., 2025). Despite the simplicity and empirical effectiveness on simple IPs, these methods might not converge or return an \mathbf{x} that respects the pre-trained FM prior (i.e., **manifold feasibility**) or satisfies the measurement constraint $\mathbf{y} \approx \mathcal{A}(\mathbf{x})$ (i.e., **measurement feasibility**); and **(2) the plug-in approach** views the generation process as a function \mathcal{G}_θ that maps any source sample to a target sample, and plugs the prior into Eq. (1.1) to obtain a unified formulation (Ben-Hamu et al., 2024):

$$\mathbf{z}^* \in \arg \min_{\mathbf{z}} \mathcal{L}(\mathbf{z}) \doteq \ell(\mathbf{y}, \mathcal{A} \circ \mathcal{G}_\theta(\mathbf{z})) + \Omega \circ \mathcal{G}_\theta(\mathbf{z}), \quad (2.3)$$

where \circ denotes functional composition. The estimated object is $\mathcal{G}_\theta(\mathbf{z}^*)$. Here, the generator \mathcal{G}_θ is fixed and the output $\mathcal{G}_\theta(\mathbf{z})$ naturally satisfies the manifold feasibility. In addition, global optimization of $\mathcal{L}(\mathbf{z})$ forces small $\ell(\mathbf{y}, \mathcal{A} \circ \mathcal{G}_\theta(\mathbf{z}))$, and hence $\mathbf{y} \approx \mathcal{A} \circ \mathcal{G}_\theta(\mathbf{z})$, i.e., leading to measurement feasibility. We note that there is a similar classification of recent work using pre-trained diffusion priors to solve IPs; see Wang et al. (2024; 2025); Daras et al. (2024); Oliviero-Durmus et al. (2025).

2.3 FOUNDATION FM PRIORS FOR IPs

	PSNR↑	SSIM↑	LPIPS↓	CLIPQA↑
DIP	<u>27.5854</u>	<u>0.7179</u>	0.3898	0.2396
D-Flow (DS)	28.1389	0.7628	0.2783	0.5871
D-Flow (FD)	25.0120	0.7084	0.5335	0.3607
D-Flow (FD-S)	25.1453	0.6829	0.5213	0.3228
FlowDPS (DS)	22.1191	0.5603	<u>0.3850</u>	<u>0.5417</u>
FlowDPS (FD)	22.1404	0.5930	0.5412	0.2906
FlowDPS (FD-S)	22.0538	0.5920	0.5408	0.2913

2.3.1 FOUNDATION FM PRIORS \ll DOMAIN-SPECIFIC OR EVEN UNTRAINED ONES

The availability of large-scale training sets has recently fueled intensive development of foundation generative models in several domains, most of them based on FM models and variants, e.g., Stable Diffusion V3 (and newer) (Patrick Esser et al, 2024) and FLUX.1 (Black Forest Labs et al, 2025) for images, OpenAI Sora (OpenAI, 2024) and Google Veo (DeepMind, 2025) for videos, and Nvidia Cosmos world model (Agarwal, Niket et al, 2025). So, recent IP methods based on pre-trained FM priors have started to shift from domain-specific priors to these foundation priors.

Although these foundation FM models are powerful enough to generate diverse objects, when used as object priors for IPs, they only constrain the object to be physically meaningful (e.g., the object being a natural image)—**foundation models are powerful as they are not specific**. In comparison, domain-specific priors provide much more semantic and perhaps structural information about the object (e.g., the object being a facial or brain MRI image). So, **foundation priors alone are considerably weaker than domain-specific priors for IPs**. In fact, untrained priors, such as deep image prior (DIP) and implicit neural representation, may be powerful enough to promote physically meaningful solutions for IPs (Alkhouri et al., 2025; Wang et al., 2023; Li et al., 2023; Zhuang et al., 2023a;b; Sitzmann et al., 2020).

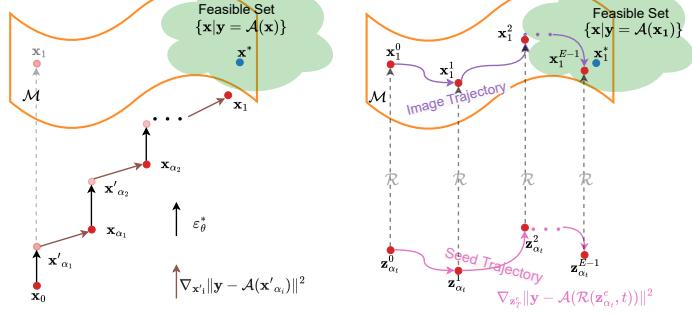


Figure 1: Visual illustration of the difference between the interleaving approach and the plug-in approach to IPs with pretrained FM priors

Table 1: Comparison between foundation FM, domain-specific FM, and untrained priors for Gaussian deblurring the on AFHQ-Cat dataset (resolution: 256×256). DS: domain-specific FM; FD: foundation FM; FD-S: strengthened foundation FM; DIP: deep image prior. **Bold**: best, & underline: second best, for each metric/column. The foundation model is Stable Diffusion V3 here.

162 A quick comparison summarized in Table 1 confirms
 163 our intuition: **recent IP methods with foundation**
 164 **FM priors perform much worse than domain-**
 165 **specific FM, and even untrained, priors** on Gaussian
 166 deblurring. Here, Flow-DPS (Kim et al., 2025)
 167 and D-Flow (Ben-Hamu et al., 2024) are repre-
 168 sentative interleaving and plug-in IP methods, re-
 169 spectively. For both of them, foundation priors
 170 (FlowDPS (FD) & D-Flow (FD)) lag behind domain-
 171 specific (FlowDPS (DS) & D-Flow (DS)) priors by
 172 considerable margins in at least two of the four met-
 173 rics we report. Moreover, Eq. (1.1) integrated with
 174 the untrained DIP is the second best method by
 175 three of the four metrics, just after D-Flow (DS).
 176 Similarly, results on Gaussian deblurring with vary-
 177 ing kernel sizes presented in Fig. 2 show unequiv-
 178 ocally that domain-specific and untrained priors are
 179 stronger than foundation priors, uniformly across different difficulty levels of Gaussian deblurring.

2.3.2 CURRENT IDEAS TO STRENGTHEN FOUNDATION FM PRIORS DO NOT QUITE WORK

180 While none of the previous works **explicitly** acknowledges and discusses the serious performance
 181 issue of foundation FM priors, some have **implicitly** tried to strengthen the priors. As a plug-in
 182 method, Ben-Hamu et al. (2024) assumes that x and y are close—e.g., valid for typical image
 183 restoration tasks, and initializes the optimization variable z of Eq. (2.3) with
 184

$$z_0 = \sqrt{\alpha}y_0 + \sqrt{1-\alpha}z \quad \text{with } z \sim \mathcal{N}(0, I), \quad (2.4)$$

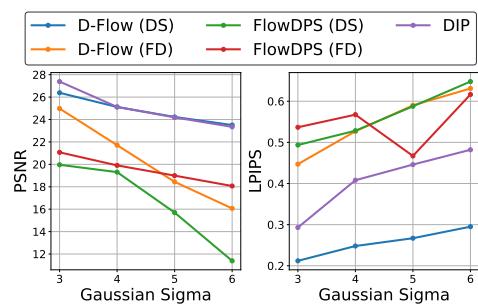
185 where y_0 is the backward solution of the governing ODE, i.e., $y_0 = y + \int_1^0 v_\theta(y_t, t)dt$, or **in-**
 186 **version seed** in other words, **to accelerate the convergence of numerical methods for solving**
 187 **Eq. (2.3)**. Moreover, they promote the Gaussianity of the seed z_0 by recognizing that $\|z_0\|_2^2$ follows
 188 a χ^2 distribution and thus regularizes its negative log-likelihood. Alternatively, as a representative
 189 interleaving method, Kim et al. (2025) also assumes the closeness of x and y , and takes an automati-
 190 cally generated text description for y as text conditions for the FM prior, as all recent foundation FM
 191 models allow text-prompted generation. However, **our quick empirical evaluation suggests that**
 192 **these prior-strengthening techniques are almost useless**: there is little change in performance
 193 moving from FlowDPS (FD) & D-Flow (FD) to FlowDPS (FD-S) & D-Flow (FD-S) in Table 1.

3 METHOD

194 The goal of this paper is to close the performance gap between foundation FM priors and domain-
 195 specific FM & untrained ones as identified in Section 2.3.1 by addressing the deficiency of current
 196 prior-strengthening ideas revealed in Section 2.3.2. We focus on IPs where the object x is an image
 197 for our methodology development and validation due to the wide availability of foundation FM
 198 models for images, although the proposed method is totally generic and can be easily applied to IPs
 199 involving other data modalities as long as relevant foundation FM models are available.

200 Between the two approaches to solving IPs with pretrained FM
 201 priors (Section 2.2), we follow the **plug-in approach** as for-
 202 mulated in Eq. (2.3), due to its superior performance in prac-
 203 tice (see, e.g., Table 1 and Section 4). For this approach, a po-
 204 tential concern is whether \mathcal{G}_θ is surjective, i.e., whether every
 205 reasonable x can be represented as $\mathcal{G}_\theta(z)$ for some z . While
 206 theoretical results of this nature seem lacking and modeling
 207 high-dimensional distributions for such theoretical analysis also seem tricky, empirically, the desired
 208 surjectivity seems to hold approximately based on our image regression test reported in Table 2.

209 To strengthen the foundation FM priors, we consider two practical settings: (A) **simple-distortion**
 210 **setting**, in which x and y are close, e.g., for image restoration. This is the setting considered in
 211 previous prior-strengthening works (Ben-Hamu et al., 2024; Kim et al., 2025); and (B) **few-shot**



212 Figure 2: Comparison between foundation
 213 FM, domain-specific FM, and untrained
 214 priors for Gaussian deblurring with vary-
 215 ing kernel sizes presented in Fig. 2 show unequi-
 216 vocally that domain-specific and untrained priors are
 217 stronger than foundation priors, uniformly across different difficulty levels of Gaussian deblurring.

218 Table 2: Image regression on 1000
 219 random images from the **DIV2K**
 220 dataset; details in Appendix A.2.

Metric	D-Flow	FMPlug
PSNR	36.187	37.924
LPIPS	0.181	0.093

216 **setting**, in which a small number of image instances close to \mathbf{x} are provided but \mathbf{x} and \mathbf{y} might
217 not be close. This is particularly relevant for IPs arising from scientific imaging, where the image
218 domain is typically very narrow and is known ahead of time with a few samples (Huang et al., 2022;
219 Shen et al., 2019; Masto et al., 2025). For both settings, taking the image instance(s) close to \mathbf{x} as
220 a guide, we develop a time-dependent warm-start strategy and a sharp Gaussian regularization that
221 together lead to convincing performance gains. Below, we first assume the simple-distortion setting
222 and describe the warm-start strategy and the Gaussian regularization in Section 3.1 and Section 3.2,
223 respectively; we then discuss how to extend the ideas to deal with the few-shot setting in Section 3.3.

224 Gaussianity in the source and intermediate distributions of FM models and especially the following
225 celebrated concentration-of-measure (CoM) result for Gaussian vectors are crucial for our method.

226 **Theorem 3.1** (Concentration of measure in Gaussian vectors (Vershynin, 2018)). *For a d -
227 dimensional $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $\mathbb{P}[\|\mathbf{z}\|_2 - \sqrt{d} \geq t] \leq 2e^{-ct^2}$ for a universal constant $c > 0$.*

228 This implies that for a standard Gaussian vector $\mathbf{z} \in \mathbb{R}^d$, $\|\mathbf{z}\|_2$ lies sharply in the range $[(1 - \varepsilon)\sqrt{d}, (1 + \varepsilon)\sqrt{d}]$ with $\varepsilon = o(1)$ with overwhelmingly high probability. In other words, \mathbf{z} lies in an
229 ultra-thin shell around $\mathbb{S}^{d-1}(\mathbf{0}, \sqrt{d})$ (a sphere in \mathbb{R}^d centered at $\mathbf{0}$ and with a radius \sqrt{d}).

233 3.1 AN INSTANCE-GUIDED & TIME-DEPENDENT WARM-START STRATEGY

234 **Why is the warm-start strategy in D-Flow problematic?** In the standard FM setting, the source
235 distribution $\mathbf{z}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, whereas the initialized \mathbf{z}_0 in Eq. (2.4) has a distribution $\mathcal{N}(\sqrt{\alpha}\mathbf{y}_0, (1 - \alpha)\mathbf{I})$. One might not worry about this distribution mismatch, as both are supported on the entire
236 ambient space in theory. But finite-sample training in practice causes a significant gap: due to CoM
237 of Gaussian vectors (Theorem 3.1), virtually all training samples drawn from $\mathcal{N}(\mathbf{0}, \mathbf{I})$ come from an
238 ultra-thin shell \mathcal{S} around $\mathbb{S}^{d-1}(\mathbf{0}, \sqrt{d})$, so the generation function \mathcal{G}_θ is effectively trained on inputs
239 from the domain \mathcal{S} , not the entire ambient space: the behavior of \mathcal{G}_θ on \mathcal{S}^c , the complement of \mathcal{S} ,
240 is largely undetermined. Now, samples from $\mathcal{N}(\sqrt{\alpha}\mathbf{y}_0, (1 - \alpha)\mathbf{I})$ concentrate around another ultra-
241 thin shell around $\mathbb{S}^{d-1}(\sqrt{\alpha}\mathbf{y}_0, \sqrt{(1 - \alpha)d})$, which has only a negligibly small intersection with \mathcal{S}
242 and lies mostly in \mathcal{S}^c . So, the initialization in Eq. (2.4) lies in \mathcal{S}^c with a very high probability. Given
243 that the behavior of \mathcal{G}_θ on \mathcal{S}^c can be wild, this initialization strategy is problematic.

244 **Our time-dependent warm-up strategy** A typical flow of FM models takes the form

$$245 \quad \mathbf{z}_t = \alpha_t \mathbf{x} + \beta_t \mathbf{z} \quad \text{where } \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (3.1)$$

246 where α_t and β_t are known functions of t . Now, when \mathbf{x} and \mathbf{y} are close, $\mathbf{x} = \mathbf{y} + \varepsilon$ for some small
247 ε . So, we can write the flow as

$$248 \quad \mathbf{z}_t = \alpha_t(\mathbf{y} + \varepsilon) + \beta_t \mathbf{z} \quad \text{where } \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad (3.2)$$

249 for an unknown ε . When α_t is sufficiently small—i.e., we are sufficiently close to $t = 0$ in the flow,
250 $\alpha_t \varepsilon$ can be negligibly small, leading to the approximate flow

$$251 \quad \mathbf{z}_t \approx \alpha_t \mathbf{y} + \beta_t \mathbf{z} \quad \text{where } \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (3.3)$$

252 In practice, we do not know how small α_t should be, so we leave it learnable, leading to

$$253 \quad \min_{\mathbf{z}, t \in [0, 1]} \ell(\mathbf{y}, \mathcal{A} \circ \mathcal{G}_\theta(\alpha_t \mathbf{y} + \beta_t \mathbf{z}, t)). \quad (3.4)$$

254 Here we overload the notation of \mathcal{G}_θ as $\mathcal{G}_\theta : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$ —the second input is the current t on
255 the path (the notation in Eq. (2.3) assumes $t = 0$). In other words, due to the closeness of \mathbf{x} and \mathbf{y} ,
256 we do not need to start from scratch, i.e., from a random sample drawn from the source distribution;
257 instead, we plug \mathbf{y} into an appropriate, learnable time point of the flow to create a shortcut.

258 Our formulation in Eq. (3.4) can be easily generalized to latent FM models that are commonly used
259 in practice—we just need to replace $\mathcal{A} \circ \mathcal{G}_\theta$ with $\mathcal{A} \circ \mathcal{D} \circ \mathcal{G}_\theta$ for the decoder \mathcal{D} in use. Moreover, it
260 is not only grounded in theory and effective in practice (see Section 4), but also speeds up learning
261 as $t > 0$ implies shorter flows, although improving speed is not our current focus.

270 **Additional mean-variance calibration** Due to approximation errors in matching the ideal flow
 271 during FM training, as well as when approximating Eq. (3.2) using Eq. (3.3), the distribution of
 272 z_t could be slightly off the ideal distribution. To rectify this, we perform a scalar mean-variance
 273 calibration in our implementation: we first draw 4000 unconditional samples from the foundation
 274 FM model and estimate the scalar mean and variance of all coordinates for each time step on the FM
 275 model’s time grid; we then fit the data using a lightweight neural network, which predicts mean and
 276 variance as a continuous function of $t \in [0, 1]$, to be compatible with our continuous optimization
 277 in Eq. (3.4). Our mean-variance calibration follows

$$\hat{z}_t = \sqrt{\sigma^2(Z_t)/\sigma^2(z_t)} \cdot (z_t - \mu(z_t)) + \mu(Z_t), \quad (3.5)$$

280 where $\mu(Z_t)$ and $\sigma^2(Z_t)$ are the scalar mean and variance predicted by the neural network, and
 281 $\mu(z_t)$ and $\sigma^2(z_t)$ are scalar mean and variance for z_t across all coordinates.

283 3.2 A SHARP GAUSSIANITY REGULARIZATION

284 **Why is the Gaussian regularization
 285 in D-Flow problematic?** If $z_0 \sim$
 286 $\mathcal{N}(\mathbf{0}, \mathbf{I})$, $\|z_0\|_2^2 \sim \chi^2(d)$ and the
 287 negative log-likelihood is $h(z_0) =$
 288 $-(d/2 - 1) \log \|z_0\|_2^2 + \|z_0\|_2^2/2 + C$
 289 for some constant C independent of
 290 z_0 . Ben-Hamu et al. (2024) promotes
 291 the Gaussianity of z_0 by regularizing
 292 $h(z_0)$. While $h(z_0)$ is minimized at
 293 any z_0 satisfies $\|z_0\|_2 = \sqrt{d - 2}$,
 294 away from this value the function
 295 changes painfully slowly; see Fig. 3.
 296 For example, the function value only
 297 changes $\leq 0.031\%$ relative to the
 298 minimum in the $[62000, 70000]$ range,
 299 much larger than the orange-highlighted CoM region.
 300 This is problematic, as $\|z_0\|_2$ should concentrate sharply around d and thus only functions that blow up
 301 quickly away from the $\|z_0\|_2 = \sqrt{d}$ level can effectively promote the Gaussianity of z_0 .

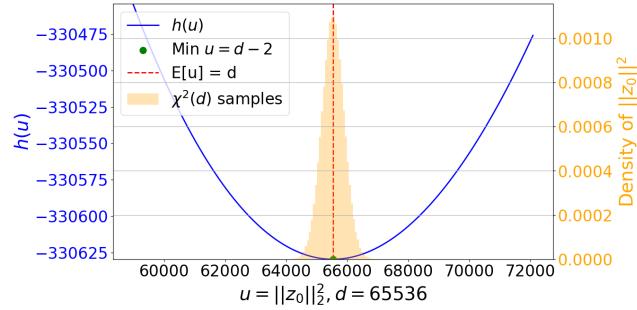


Figure 3: Plot of the function $h(z_0)$ (after a change of variable $u = \|z_0\|_2^2$). An ideal regularization function should blow up sharply away from the narrow concentration region in orange to promote Gaussianity effectively.

302 **Our sharp Gaussian regularization via an explicit constraint** For Eq. (3.4), we hope to promote
 303 the Gaussianity of z . To enforce the sharp concentration of z , we introduce the shell constraint

$$(1 - \varepsilon)\sqrt{d} \leq \|z\|_2 \leq (1 + \varepsilon)\sqrt{d}, \quad \text{with an } \varepsilon \ll 1 \quad (3.6)$$

306 as implied by Theorem 3.1. To ensure feasibility, in each iteration step to optimize Eq. (3.4), we
 307 simply need to add the closed-form projection

$$z' = \begin{cases} (1 + \varepsilon)\sqrt{d} \cdot z / \|z\|_2 & \text{if } \|z\|_2 \geq (1 + \varepsilon)\sqrt{d} \\ (1 - \varepsilon)\sqrt{d} \cdot z / \|z\|_2 & \text{if } \|z\|_2 \leq (1 - \varepsilon)\sqrt{d} \\ z & \text{otherwise} \end{cases} \quad (3.7)$$

312 Using a spherical constraint $\|z\|_2 = \sqrt{d}$ or regularization to promote Gaussianity is not new in the
 313 FM and diffusion literature; see, e.g., Yang et al. (2024). However, enforcing $\|z\|_2 = \sqrt{d}$ is a bit
 314 rigid as the actual length lies in a small range. Our shell constraint leaves reasonable slackness while
 315 still sharply encoding the Gaussianity. We typically set $\varepsilon = 0.025$ in our implementation.

317 3.3 EXTENSION INTO THE FEW-SHOT SETTING

319 We assume a small set of instances $\{\mathbf{x}_k\}_{k=1,\dots,K}$, all of which are close to the true \mathbf{x} . To adapt the
 320 time-dependent warm-start strategy in Section 3.1 to this setting, we consider linear combinations
 321 of \mathbf{x}_k ’s to take the place of \mathbf{y} for warm-start, i.e., starting with $\alpha_t(\sum_{k=1}^K w_k \mathbf{x}_k) + \beta_t \mathbf{z}$, resulting in

$$\min_{\mathbf{z}, t \in [0, 1], \mathbf{w} \in \Delta^K} \ell(\mathbf{y}, \mathcal{A} \circ \mathcal{G}_{\boldsymbol{\theta}}(\alpha_t(\sum_{k=1}^K w_k \mathbf{x}_k) + \beta_t \mathbf{z}, t)) \quad (3.8)$$

324 to replace Eq. (3.4), where the simplex constraint $\Delta^K \doteq \{ \mathbf{w} \in \mathbb{R}^K : \mathbf{w} \geq \mathbf{0}, \mathbf{w}^\top \mathbf{1} = 1 \}$ fixes the
325 scale of \mathbf{w} , as the multiplicative relationship of α_t and \mathbf{w} causes scale ambiguity. In actual imple-
326 mentation, we eliminate this constraint by a simple reparametrization $\mathbf{w} = \text{softmax}(\mathbf{v})$ and treat \mathbf{v}
327 as a group of optimization variable. Since the proposed modification in warm-start does not affect
328 \mathbf{z} , our sharp Gaussian regularization in Section 3.2 can be directly integrated.

4 EXPERIMENT

Table 3: Results on simple-distortion IPs. (**Bold**: best, under: second best, CLIP: CLIPQA)

task	method	AFHQ (512 × 512)				DIV2K (512 × 512)				RealSR (512 × 512)			
		PSNR ↑	SSIM ↑	LPIPS ↓	CLIP ↑	PSNR ↑	SSIM ↑	LPIPS ↓	CLIP ↑	PSNR ↑	SSIM ↑	LPIPS ↓	CLIP ↑
Super Resolution ×4	DIP	29.85	0.78	0.37	0.33	25.75	0.73	0.42	0.40	26.81	0.72	0.44	0.30
	FlowChef-P	29.23	0.79	0.38	<u>0.64</u>	25.08	0.71	0.43	0.60	25.89	0.71	0.43	0.44
	FlowChef	29.25	0.79	0.38	0.65	25.09	0.71	0.43	0.60	25.92	0.71	0.43	0.44
	FlowDPS-P	28.75	0.76	0.37	0.37	24.92	0.69	0.42	0.51	26.11	0.71	0.43	0.34
	FlowDPS	28.60	0.75	0.42	0.35	24.83	0.68	0.45	0.46	26.10	0.70	0.45	0.32
	DFlow	26.37	0.70	0.54	0.31	23.42	0.64	0.52	0.37	23.60	0.62	0.53	0.28
	FMPlug-W	<u>30.13</u>	0.81	0.34	0.18	<u>25.77</u>	0.74	0.38	0.24	26.58	<u>0.73</u>	<u>0.39</u>	0.16
	FMPlug	30.31	0.81	0.33	0.20	25.88	0.74	0.38	0.27	<u>26.66</u>	0.74	0.38	0.17
Random Inpainting 70%	DIP	33.32	0.90	0.21	0.47	28.49	0.86	0.27	0.59	30.88	0.89	0.25	0.47
	FlowChef-P	29.27	0.77	0.41	0.57	24.67	0.67	0.46	0.50	25.81	0.69	0.45	0.35
	FlowChef	29.35	0.77	0.41	<u>0.58</u>	24.76	0.67	0.46	0.50	25.89	0.69	0.45	0.35
	FlowDPS-P	27.63	0.73	0.41	0.43	24.01	0.65	0.47	0.54	25.68	0.69	0.47	0.36
	FlowDPS	27.53	0.72	0.47	0.35	24.04	0.64	0.50	0.47	25.78	0.69	0.48	0.32
	DFlow	28.43	0.76	0.41	<u>0.65</u>	24.71	0.73	0.41	0.67	25.27	0.69	0.42	0.59
	FMPlug-W	<u>32.75</u>	<u>0.88</u>	0.37	0.63	<u>28.82</u>	<u>0.85</u>	0.33	<u>0.68</u>	<u>31.30</u>	0.88	0.28	<u>0.56</u>
	FMPlug	<u>32.81</u>	0.87	0.34	0.66	28.95	0.84	0.32	0.69	31.79	0.89	0.26	0.56
Gaussian Deblur	DIP	29.39	0.77	0.39	<u>0.30</u>	25.23	0.70	<u>0.43</u>	0.38	26.17	0.70	0.46	<u>0.28</u>
	FlowChef-P	23.84	0.63	0.54	0.28	20.41	0.49	0.62	0.23	21.42	0.51	0.63	0.19
	FlowChef	23.87	0.63	0.54	0.28	20.41	0.49	0.62	0.23	21.42	0.51	0.63	0.19
	FlowDPS-P	24.15	0.60	0.49	0.23	20.23	0.46	0.58	0.32	21.21	0.47	0.59	0.22
	FlowDPS	23.69	0.58	0.55	0.15	20.22	0.45	0.61	0.20	21.21	0.47	0.61	0.17
	DFlow	25.90	0.66	0.54	0.34	23.64	0.64	0.52	<u>0.37</u>	23.65	0.60	0.54	0.30
	FMPlug-W	<u>30.38</u>	0.79	0.40	0.22	<u>26.05</u>	<u>0.72</u>	<u>0.43</u>	0.29	<u>27.05</u>	<u>0.72</u>	<u>0.44</u>	0.21
	FMPlug	30.41	0.79	0.39	0.21	26.26	0.73	0.41	0.28	27.22	0.73	0.43	0.19
Motion Deblur	DIP	28.69	0.75	<u>0.38</u>	0.26	24.75	0.68	0.45	0.35	26.17	0.70	0.46	0.28
	FlowChef-P	24.77	0.66	0.50	0.37	21.27	0.54	0.57	0.34	22.50	0.56	0.56	0.26
	FlowChef	24.78	0.66	0.50	0.37	21.28	0.54	0.57	0.34	22.51	0.56	0.56	0.26
	FlowDPS-P	24.81	0.64	0.46	0.28	21.07	0.51	0.54	0.39	22.50	0.55	0.55	0.27
	FlowDPS	24.49	0.62	0.52	0.20	21.05	0.50	0.58	0.26	22.55	0.54	0.56	0.22
	DFlow	27.81	0.73	0.48	0.35	25.21	0.70	0.47	0.42	25.86	0.69	0.47	0.31
	FMPlug-W	<u>30.10</u>	<u>0.79</u>	0.39	0.26	<u>26.83</u>	<u>0.74</u>	<u>0.40</u>	0.36	<u>28.01</u>	<u>0.76</u>	<u>0.40</u>	0.28
	FMPlug	30.43	0.81	0.37	0.28	27.38	0.78	0.36	0.42	28.63	0.79	0.37	0.30

For brevity, we term our method **FMPlug** and benchmark its performance on both simple-distortion and few-shot IPs, in Section 4.1 and Section 4.2, respectively. In Section 4.3, we perform an ablation study to dissect the contributions of the two algorithmic components.

4.1 SIMPLE-DISTORTION IPs

Datasets, tasks, and evaluation metrics We use 3 diverse datasets: DIV2K (Agustsson & Timofte, 2017), RealSR (Cai et al., 2019) and AFHQ (Choi et al., 2020), 100 random images each, taken from their dataset. We set the image resolution to 512 × 512 by resizing and cropping the original. We consider **four linear IPs**: i) 4× super-resolution from 128 × 128 to 512 × 512; ii) 70% random-mask inpainting; iii) Gaussian deblurring with a kernel size of 61 and standard deviation of 3.0; iv) Motion deblurring with a kernel size of 61 and intensity of 0.5. We add Gaussian noise $\sigma = 0.03$ to all measurements. For metrics, we use PSNR for pixel-level difference, SSIM and DISTS for structure and texture similarity, LPIPS for perceptual difference, and CLIPQA & MUSIQ for no-reference quality metric.

378 **Competing methods** We compare our FMPlug (-W: warm-up only, Number of Function Evaluations (NFE) = 3) with deep image prior (DIP) (Ulyanov et al., 2020) (an untrained image prior) + Eq. (2.3), D-Flow (NFE = 6) (Ben-Hamu et al., 2024) (a SOTA plug-in method), FlowDPS (NFE = 28) (Kim et al., 2025) (a SOTA interleaving method) and FlowChef (NFE = 28) (Patel et al., 2024) (another SOTA interleaving method). For a fair comparison, we use Stable Diffusion V3 (Patrick Esser et al, 2024) as the backbone for all methods that require foundation priors. We also compare with OT-ODE (Pokle et al., 2023), PnP-Flow (Martin et al., 2025) based on a domain-specific FM model, FHQ-Cat from (Martin et al., 2025). For methods that integrate text prompts, including FlowDPS and FlowChef, we compare two variants with the prompts on and off, respectively; we use postfix -P to indicate the prompt-enabled variants. We use the pretrained degradation-aware prompt extractor of Wu et al. (2024) to generate label-style text prompts. We set the CFG scale to 2.0 when text prompts are on. Details of the hyperparameter can be found in Appendix A.1.

391 Table 3 summarizes the quantitative results; details and visualizations can be found in Appendix A.4. 392 We can observe that: (1) Our FMPlug is the overall winner by all metrics but CLIPQA and MUSIQ, 393 the no-reference metrics, beating the untrained DIP—a strong baseline. FlowChef and FlowDPS, 394 with and without text prompt, lag behind even the untrained DIP by large margins and generate 395 visually blurry and oversmooth images as shown in Fig. 4, highlighting the general struggle of 396 interleaving methods to ensure simultaneous measurement and manifold feasibility; (2) For plug-in 397 methods, our FMPlug improves upon D-Flow—our main competitor, by considerable margins based 398 on all metrics but CLIPQA, showing the solid advantage of our warm-start strategy and Gaussian 399 regularization over theirs; and (3) FMPlug further improves PSNR and SSIM slightly over FMPlug- 400 W, with the largest improvement seen in CLIPQA, showing stronger visual quality. This confirms 401 the benefits brought about by the sharp Gaussianity regularization in Eq. (3.7).

416 Figure 4: Visual comparison of results in Gaussian deblurring.

417 **Table 4: Gaussian Deblur and Super Resolution** $4\times$ on AFHQ-Cat 256×256 with additive Gaussian 418 noise ($\sigma = 0.03$). FD: Foundation; DS: Domain-specific; **Bold**: best, under: second best

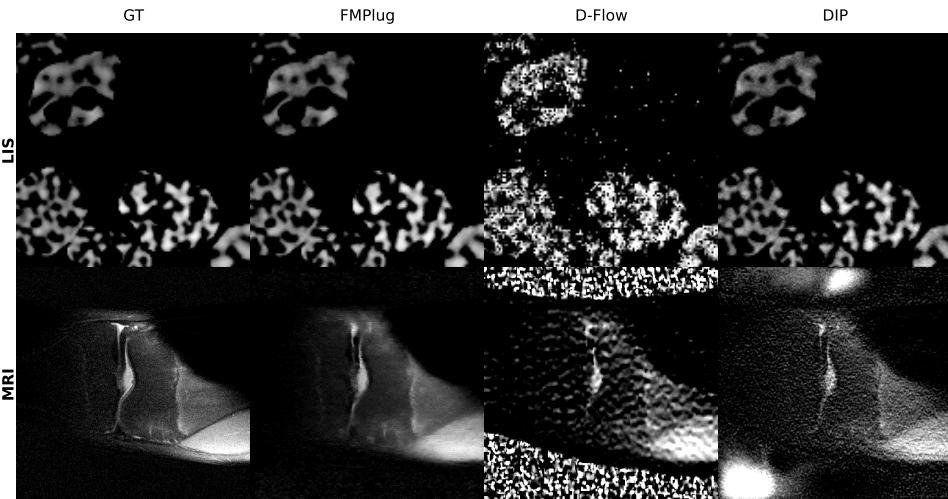
	Super Resolution $4\times$						Gaussian Blur					
	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	DIST \downarrow	CLIPQA \uparrow	MUSIQ \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	DIST \downarrow	CLIPQA \uparrow	MUSIQ \uparrow
DIP	0.36	28.17	0.76	<u>0.21</u>	0.25	28.12	0.36	27.92	0.75	0.23	0.26	23.94
OT-ODE (DS)	0.19	26.43	0.74	0.90	0.59	64.63	0.19	27.67	0.75	0.89	<u>0.62</u>	63.82
PnP-Flow (DS)	<u>0.24</u>	27.45	0.80	0.82	0.52	51.95	0.31	28.70	0.79	0.77	0.66	40.26
FlowDPS (DS)	<u>0.24</u>	28.56	0.79	0.14	0.57	55.63	0.38	22.27	0.56	0.20	0.52	52.42
FlowDPS (FD)	0.37	24.45	0.74	0.27	0.63	27.96	0.55	22.11	0.59	0.38	0.28	15.10
D-Flow (DS)	0.27	25.81	0.69	0.82	0.52	<u>57.74</u>	<u>0.20</u>	28.41	0.77	0.87	0.61	59.29
D-Flow (FD)	0.53	24.64	0.67	0.31	0.31	45.27	0.56	24.42	0.62	<u>0.21</u>	0.30	49.12
FMPlug(FD)	0.33	28.85	0.80	0.22	0.31	28.77	0.35	29.00	0.79	0.23	0.24	30.58

430 To benchmark our progress in bridging the performance gap between foundation and domain- 431 specific priors, we expand Table 1 to include more competing methods and our method into Table 4.

432 On both Gaussian deblurring and super-resolution, by most of the metrics, our FMPlug gets closer
 433 or even comparable to the performance of SOTA methods with domain-specific priors.
 434

435 **4.2 FEW-SHOT SCIENTIFIC IPs**
 436

437 We consider two scientific IPs from InverseBench (Zheng et al., 2025) and take their data as nec-
 438 essary: **(1) linear inverse scattering (LIS)**, an IP in optical microscopy, where the objective is to
 439 recover the unknown permittivity contrast $z \in \mathbb{R}^n$ from measurements of the scattered light field
 440 $y_{sc} \in \mathbb{C}^m$. We use 100 samples for evaluation and 10 samples as few-shot instances; **(2) Com-**
 441 **pressed sensing MRI**, an important technique to accelerate MRI scanning through subsampling.
 442 We use 94 samples from the test set for evaluation and 6 samples from the validation set as instances
 443 of a few shots. More details on the forward models can be found in Appendix A.3 and Zheng et al.
 444 (2025). For D-Flow, we choose the best result between random initialization and warm-start with
 445 the least-loss few-shot instance, trying to make a fair comparison with them.
 446



462 Figure 5: Qualitative comparison of results on knee MRI and LIS. GT: groundtruth
 463

464 From Table 5, it is evident that in both scientific IPs,
 465 our proposed few-shot FMPlug beats both DIP and
 466 D-Flow by large margins in PSNR and SSIM. We
 467 put Red-Diff, the best SOTA method with domain-
 468 specific priors as evaluated in Zheng et al. (2025),
 469 as a reference (performance quoted from their paper
 470 also), highlighting the gaps to be bridged next. Qual-
 471 itatively, from Fig. 5, our method faithfully recovers
 472 the main object structures, while D-Flow and DIP
 473 show severe artifacts.
 474

475 **4.3 ABLATION STUDY**
 476

477 Table 6 shows the performance of FMPlug, and
 478 of two variants: FMPlug-Plain (without warm-
 479 start and regularization) and FMPlug-W (with
 480 warm-start only). Although both ingredients
 481 are necessary for the final performance, most of
 482 the performance gain comes from the proposed
 483 warm-up strategy. The sharp Gaussianity regu-
 484 larization further refines the results.
 485

Table 5: **(Scientific IPs)** Performance on LIS and MRI. **(Bold)**: best among non-DS priors;
Background: with DS model

	LIS		MRI (4×)	
	PSNR↑	SSIM↑	PSNR↑	SSIM↑
DIP	28.72	0.96	18.35	0.39
D-Flow	17.15	0.66	8.94	0.15
FMPlug	31.83	0.97	22.94	0.48
Red-diff	36.55	0.98	28.71	0.62

Table 6: Ablation study on **Gaussian Deblur** on DIV2K with additive Gaussian noise ($\sigma = 0.03$).
(Bold): best, under: second best. **-W**: with warm-start only

	PSNR↑	SSIM↑	LPIPS↓	DIST↓
FMPlug-Plain	25.1602	0.6732	0.4846	0.1719
FMPlug-W	<u>26.0547</u>	<u>0.7193</u>	<u>0.4315</u>	<u>0.1620</u>
FMPlug	26.2563	0.7339	0.4120	0.1565

486 REFERENCES

487

488 Agarwal, Niket et al. Cosmos world foundation model platform for physical ai. *arXiv:2501.03575*,
489 2025.

490 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
491 Dataset and study. In *CVPR Workshops*, July 2017.

492

493 Ismail Alkhouri, Evan Bell, Avraijit Ghosh, Shijun Liang, Rongrong Wang, and Saiprasad Rav-
494 ishankar. Understanding untrained deep models for inverse problems: Algorithms and theory.
495 *arXiv:2502.18612*, 2025.

496 Richard C Aster, Brian Borchers, and Clifford H Thurber. *Parameter estimation and inverse prob-*
497 *lems*. Elsevier, 2018.

498

499 Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
500 Differentiating through flows for controlled generation. *arXiv:2402.14017*, 2024.

501

502 Black Forest Labs et al. Flux.1 kontext: Flow matching for in-context image generation and editing
503 in latent space. *arXiv:2506.15742*, 2025.

504

505 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image
506 super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE International
507 Conference on Computer Vision*, 2019.

508

509 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differ-
510 ential equations. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018. URL
<https://arxiv.org/abs/1806.07366>.

511

512 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
513 for multiple domains. In *CVPR*, 2020.

514

515 Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milan-
516 far, Alexandros G. Dimakis, and Mauricio Delbracio. A survey on diffusion models for inverse
517 problems. *arXiv:2410.00083*, 2024.

518

519 DeepMind. Veo: a text-to-video generation system. Tech report, Google Deep-
520 Mind, 2025. URL <https://storage.googleapis.com/deepmind-media/veo/Veo-3-Tech-Report.pdf>. Veo 3 technical report.

521

522 Julius Erbach, Dominik Narnhofer, Andreas Dombos, Bernt Schiele, Jan Eric Lenssen, and Konrad
523 Schindler. Solving inverse problems with flair. 2025. URL <https://arxiv.org/abs/2506.02680>.

524

525 Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
526 FFJORD: Free-form continuous dynamics for scalable reversible generative models. In *Inter-
527 national Conference on Learning Representations (ICLR)*, 2019. URL <https://arxiv.org/abs/1810.01367>.

528

529 Luzhe Huang, Xilin Yang, Tairan Liu, and Aydogan Ozcan. Few-shot transfer learning for holo-
530 graphic image reconstruction using a recurrent neural network. *APL Photonics*, 7(7), July 2022.
531 ISSN 2378-0967. doi: 10.1063/5.0090582. URL <http://dx.doi.org/10.1063/5.0090582>.

533

534 Jeongsol Kim, Bryan Sangwoo Kim, and Jong Chul Ye. Flowdps: Flow-driven posterior sampling
535 for inverse problems. *arXiv:2503.08136*, 2025.

536

537 Taihui Li, Zhong Zhuang, Hengyue Liang, Le Peng, Hengkang Wang, and Ju Sun. Self-validation:
538 Early stopping for single-instance deep generative priors. *arXiv:2110.12271*, 2021.

539

Taihui Li, Hengkang Wang, Zhong Zhuang, and Ju Sun. Deep Random Projector: Accelerated Deep
Image Prior. In *CVPR*, 2023.

540 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ
541 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code.
542 *arXiv:2412.06264*, 2024.

543 Ségolène Martin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl. Pnp-flow: Plug-and-play
544 image restoration with flow matching. *arXiv:2410.02423*, 2025.

545 Matteo Masto, Vincent Favre-Nicolin, Steven Leake, Clement Atlan, Marie-Ingrid Richard, To-
546 bias Schülli, and Ewen Bellec. Phase retrieval of highly strained bragg coherent diffraction
547 patterns using supervised convolutional neural network, 2025. URL <https://arxiv.org/abs/2507.06644>.

548 Ali Mohamad-Djafari. *Inverse problems in vision and 3D tomography*. John Wiley & Sons, 2013.

549 Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
550 learning for signal and image processing. *IEEE Signal Process. Mag.*, 38(2):18–44, 2021.

551 Alain Oliviero-Durmus, Yazid Janati, Eric Moulines, Marcelo Pereyra, and Sebastian Reich. Gener-
552 ative modelling meets bayesian inference: a new paradigm for inverse problems. *Philosophical
553 Transactions A*, 383(2299), 2025.

554 Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis, and
555 Rebecca Willett. Deep Learning Techniques for Inverse Problems in Imaging. *IEEE J. Sel. Areas
556 Inf. Theory*, 1(1):39–56, 2020. doi: 10.1109/JSAC.2020.2991563.

557 OpenAI. Video generation models as world simulators. 2024. Accessed: [Current Date, e.g., July
558 28, 2025].

559 Maitreya Patel, Song Wen, Dimitris N Metaxas, and Yezhou Yang. Steering rectified flow models
560 in the vector field for controlled image generation. *arXiv:2412.00100*, 2024.

561 Patrick Esser et al. Scaling rectified flow transformers for high-resolution image synthesis.
562 *arXiv:2403.03206*, 2024.

563 Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image
564 inverses via flows. *arXiv:2310.04432*, 2023.

565 Jonathan Scarlett, Reinhard Heckel, Miguel RD Rodrigues, Paul Hand, and Yonina C Eldar. The-
566 oretical perspectives on deep learning methods in inverse problems. *IEEE journal on selected
567 areas in information theory*, 3(3):433–453, 2023.

568 Liyue Shen, Wei Zhao, and Lei Xing. Patient-specific reconstruction of volumetric computed tomog-
569 raphy images from a single projection view via deep learning. *Nature biomedical engineering*, 3
570 (11):880–888, 2019. doi: 10.1038/s41551-019-0466-4.

571 Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
572 zstein. Implicit neural representations with periodic activation functions. In *Advances in Neural
573 Information Processing Systems (NeurIPS)*, volume 33, pp. 7462–7473, 2020.

574 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
575 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
576 national Conference on Learning Representations (ICLR)*, 2021. URL <https://arxiv.org/abs/2011.13456>.

577 Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. *IJCV*, 128(7):
578 1867–1888, March 2020. ISSN 1573-1405. doi: 10.1007/s11263-020-01303-4.

579 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
580 volume 47. Cambridge university press, 2018.

581 Hengkang Wang, Taihui Li, Zhong Zhuang, Tiancong Chen, Hengyue Liang, and Ju Sun. Early
582 Stopping for Deep Image Prior. *TMLR*, 2023. ISSN 2835-8856.

583 Hengkang Wang, Xu Zhang, Taihui Li, Yuxiang Wan, Tiancong Chen, and Ju Sun. Dmplug: A
584 plug-in method for solving inverse problems with diffusion models. *ArXiv:2405.16749*, 2024.

594 Hengkang Wang, Yang Liu, Huidong Liu, Chien-Chih Wang, Yanhui Guo, Hongdong Li, Bryan
 595 Wang, and Ju Sun. Temporal-consistent video restoration with pre-trained diffusion models.
 596 *arXiv:2503.14863*, 2025.

597 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr:
 598 Towards semantics-aware real-world image super-resolution, 2024.

600 Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
 601 spherical gaussian constraint for conditional diffusion. *arXiv:2402.03201*, 2024.

602 Wenjie Zhang, Yuxiang Wan, Zhong Zhuang, and Ju Sun. What is wrong with end-to-end learning
 603 for phase retrieval? *arXiv:2403.15448*, 2024.

605 Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy T. Feng, Caifeng
 606 Zou, Yu Sun, Nikola Kovachki, Zachary E. Ross, Katherine L. Bouman, and Yisong Yue. In-
 607 versebench: Benchmarking plug-and-play diffusion priors for inverse problems in physical sci-
 608 ences, 2025. URL <https://arxiv.org/abs/2503.11043>.

609 Zhong Zhuang, Taihui Li, Hengkang Wang, and Ju Sun. Blind Image Deblurring with Unknown
 610 Kernel Size and Substantial Noise. *IJCV*, September 2023a. ISSN 1573-1405. doi: 10.1007/
 611 s11263-023-01883-x.

613 Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, and Ju Sun. Practical phase re-
 614 trieval using double deep image priors. *Electronic Imaging*, 35, January 2023b. ISSN 2470-1173.
 615 doi: 10.2352/EI.2023.35.14.COIMG-153.

617 A APPENDIX

619 A.1 EXPERIMENT DETAILS

621 In this section, we provide implementation details on all methods compared in the experiment sec-
 622 tion. By default, we use Stable Diffusion V3 Medium¹ (Patrick Esser et al, 2024) as the backbone
 623 model whenever foundation FM models are needed.

625 • **FMPlug** We use AdamW as our default optimizer. The number of function evaluations
 626 (NFE) is 3 and we use the Heun2 ODE solver to balance efficiency and accuracy. The
 627 learning rate for z is 0.5, and for t is 0.005.

628 • **D-Flow** We use their default optimizer: LBFGS algorithm with line search. The NFE = 6
 629 with the Heun2 ODE solver. We set the weight of their regularization term $\lambda = 0.01$. We
 630 perform the initialization with the Euler ODE solver with guidance scale 0.2.

631 • **FlowDPS** We set NFE = 28 with FlowMatchEulerDiscreteScheduler. For their data
 632 consistency term, we perform it with 3 steps of gradient descent with step size = 15.0

633 • **FlowChef** we set NFE = 28 with FlowMatchEulerDiscreteScheduler. We use
 634 step size = 50.0 for simple-distortion tasks.

635 • **Deep Image Prior** We use a 5-layer UNet with 256 channels for each layer with Adam
 636 optimizer. We set the learning rate for the network to 0.001.

638 A.2 DETAILS ABOUT THE IMAGE REGRESSION EXPERIMENT IN TABLE 2

639 In the image regression task, we solve

$$642 z^* \in \arg \min_z \mathcal{L}(z) \doteq \ell(\mathbf{y}, \mathcal{G}_\theta(z)) + \Omega \circ \mathcal{G}_\theta(z), \quad (A.1)$$

643 i.e., the forward model \mathcal{A} is the identity map. We use 1000 randomly drawn images from the training
 644 set of DIV2K and adopt all default hyperparameter settings from Appendix A.1. For D-Flow, we stop
 645 optimizing when there is no effective update to z for 5 consecutive epochs. We run FMPlug-W for
 646 a maximum of 1000 epochs and use the output as the regression result.

647 ¹<https://huggingface.co/stabilityai/stable-diffusion-3-medium>

648 A.3 DETAILS OF SCIENTIFIC IPs
649

650 **Linear inverse scattering (LIS)** Inverse scattering is an IP in optical microscopy, where the ob-
651 jective is to recover the unknown permittivity contrast $\mathbf{z} \in \mathbb{R}^n$ from measurements of the scattered
652 light field $\mathbf{y}_{\text{sc}} \in \mathbb{C}^m$. We follow the formulation in Zheng et al. (2025):

653
$$\mathbf{y}_{\text{sc}} = \mathbf{H}(\mathbf{u}_{\text{tot}} \odot \mathbf{z}) + \mathbf{n} \in \mathbb{C}^m \quad \text{where} \quad \mathbf{u}_{\text{tot}} = \mathbf{G}(\mathbf{u}_{\text{in}} \odot \mathbf{z}). \quad (\text{A.2})$$

654

655 Here, $\mathbf{G} \in \mathbb{C}^{n \times n}$ and $\mathbf{H} \in \mathbb{C}^{m \times n}$ denote the discretized Green's functions that characterize the op-
656 tical system response, \mathbf{u}_{in} and \mathbf{u}_{tot} are the incident and total lightfields, \odot represents the elementwise
657 (Hadamard) product, and \mathbf{n} accounts for measurement noise.

658 The resolution of the LIS data is (1, 128, 128). However, Stable Diffusion V3 (SD3) outputs at a
659 resolution (3, 512, 512). So, we downsample the model output in spatial directions to match the
660 spatial dimension of the LIS data. To match the channel dimension, we replicate the single-channel
661 LIS data three times. For evaluation, one of the replicated channels is used as the output.

662 **Compressed sensing MRI (MRI)** Compressed sensing MRI (CS-MRI) is an important technique
663 to accelerate MRI scanning via subsampling. We follow Zheng et al. (2025), and consider the
664 parallel imaging (PI) setup of CS-MRI. The PI CS-MRI can be formulated as an IP in recovering
665 the image $\mathbf{x} \in \mathbb{C}^n$:

666
$$\mathbf{y}_j = \mathcal{P} \mathcal{F} \mathbf{S}_j \mathbf{x} + \mathbf{n}_j \quad \text{for } j = 1, \dots, J \quad (\text{A.3})$$

667

668 where $\mathcal{P} \in \{0, 1\}^{m \times n}$ is the sub-sampling operator and \mathcal{F} is Fourier transform and \mathbf{y}_j , \mathbf{S}_j , and \mathbf{n}_j
669 are the measurements, sensitivity map, and noise of the j -th coil.

670 The resolution of the MRI images is (2, 320, 320). To deal with the dimension discrepancy with the
671 SD3 output, we again perform spatial downsampling to match the spatial dimensions, and fill in the
672 third channel by the average of the two existing channels. For evaluation, we only consider the two
673 original channels.

674 A.4 COMPLETE RESULTS FOR TABLE 3
675

676
677 Table 7: **Inpainting** and **Super Resolution** 4 \times on AFHQ with additive Gaussian noise ($\sigma = 0.03$).
678 (**Bold**: best, under: second best)
679

680

method	Inpainting						Super Resolution 4 \times					
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQA \uparrow	MUSIQ \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQA \uparrow	MUSIQ \uparrow
DIP	33.32	0.90	0.21	0.07	0.47	57.73	29.85	0.78	0.37	0.12	0.33	43.38
FlowChef-P	29.27	0.77	0.41	0.21	0.57	36.48	29.23	0.79	0.38	0.19	<u>0.64</u>	38.77
FlowChef	29.35	0.77	0.41	0.21	0.58	37.02	29.25	0.79	0.38	0.19	0.65	39.01
FlowDPS-P	27.63	0.73	0.41	0.17	0.43	56.70	28.75	0.76	0.37	0.15	0.37	<u>52.74</u>
FlowDPS	27.53	0.72	0.47	0.18	0.35	49.14	28.60	0.75	0.42	0.16	0.35	47.61
DFlow	28.43	0.76	0.41	0.17	<u>0.65</u>	60.45	26.37	0.70	0.54	0.18	0.31	53.13
FMPPlug-W	32.75	<u>0.88</u>	0.37	0.08	0.63	60.87	<u>30.13</u>	0.81	<u>0.34</u>	0.13	0.18	47.43
FMPPlug	<u>32.81</u>	0.87	<u>0.34</u>	0.06	0.66	61.86	30.31	0.81	0.33	0.12	0.20	46.91

689
690 Table 8: **Gaussian Blur** and **Motion Blur** on AFHQ with additive Gaussian noise ($\sigma = 0.03$).
691 (**Bold**: best, under: second best)
692

693

method	Gaussian Blur						Motion Blur					
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQA \uparrow	MUSIQ \uparrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	DISTS \downarrow	CLIPQA \uparrow	MUSIQ \uparrow
DIP	29.39	0.77	0.39	0.14	<u>0.30</u>	36.07	28.69	0.75	<u>0.38</u>	0.16	0.26	34.88
FlowChef-P	23.84	0.63	0.54	0.30	0.28	15.81	24.77	0.66	0.50	0.28	0.37	19.99
FlowChef	23.87	0.63	0.54	0.30	0.28	15.89	24.78	0.66	0.50	0.28	0.37	19.86
FlowDPS-P	24.15	0.60	0.49	0.24	0.23	42.74	24.81	0.64	0.46	0.21	0.28	47.77
FlowDPS	23.69	0.58	0.55	0.27	0.15	30.28	24.49	0.62	0.52	0.24	0.20	36.63
DFlow	25.90	0.66	0.54	0.20	0.34	50.61	27.81	0.73	0.48	0.17	0.35	47.74
FMPPlug-W	<u>30.38</u>	0.79	0.40	0.12	0.22	42.02	<u>30.10</u>	<u>0.79</u>	0.39	<u>0.12</u>	0.26	<u>48.62</u>
FMPPlug	30.41	0.79	0.39	0.12	0.21	43.08	30.43	0.81	0.37	0.11	0.28	52.23

702
 703 Table 9: **Inpainting** and **Super Resolution** $4\times$ on DIV2K with additive Gaussian noise ($\sigma = 0.03$).
 704 (**Bold**: best, under: second best)

method	Inpainting						Super Resolution $4\times$					
	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑
DIP	28.49	0.86	0.27	0.09	0.59	55.82	25.75	0.73	0.42	0.15	0.40	37.85
FlowChef-P	24.67	0.67	0.46	0.24	0.50	38.04	25.08	0.71	0.43	0.22	0.60	38.50
FlowChef	24.76	0.67	0.46	0.24	0.50	38.87	25.09	0.71	0.43	0.22	0.60	38.67
FlowDPS-P	24.01	0.65	0.47	0.19	0.54	49.49	24.92	0.69	0.42	0.17	0.51	47.19
FlowDPS	24.04	0.64	0.50	0.19	0.47	46.89	24.83	0.68	0.45	0.17	0.46	44.80
DFlow	24.71	0.73	0.41	0.18	0.67	62.25	23.42	0.64	0.52	0.17	0.37	57.18
FMPPlug-W	<u>28.82</u>	<u>0.85</u>	0.33	<u>0.08</u>	<u>0.68</u>	65.09	<u>25.77</u>	0.74	<u>0.38</u>	0.15	0.24	40.96
FMPPlug	28.95	0.84	<u>0.32</u>	0.07	0.69	<u>64.80</u>	25.88	0.74	<u>0.38</u>	<u>0.15</u>	0.27	40.30

715
 716 Table 10: **Gaussian Blur** and **Motion Blur** on DIV2K with additive Gaussian noise ($\sigma = 0.03$).
 717 (**Bold**: best, under: second best)

method	Gaussian Blur						Motion Blur					
	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑
DIP	25.23	0.70	<u>0.43</u>	0.18	0.38	32.54	24.75	0.68	0.45	0.20	0.35	32.59
FlowChef-P	20.41	0.49	0.62	0.34	0.23	16.68	21.27	0.54	0.57	0.32	0.34	19.76
FlowChef	20.41	0.49	0.62	0.34	0.23	16.68	21.28	0.54	0.57	0.32	0.34	19.82
FlowDPS-P	20.23	0.46	0.58	0.29	0.32	35.90	21.07	0.51	0.54	0.26	0.39	39.56
FlowDPS	20.22	0.45	0.61	0.30	0.20	30.51	21.05	0.50	0.58	0.27	0.26	34.21
DFlow	23.64	0.64	0.52	0.17	<u>0.37</u>	53.03	25.21	0.70	0.47	0.17	0.42	53.78
FMPPlug-W	<u>26.05</u>	0.72	0.43	0.16	0.29	36.66	26.83	0.74	0.40	0.14	0.36	46.95
FMPPlug	26.26	0.73	<u>0.41</u>	0.16	0.28	<u>38.14</u>	27.38	0.78	<u>0.36</u>	<u>0.12</u>	0.42	<u>51.71</u>

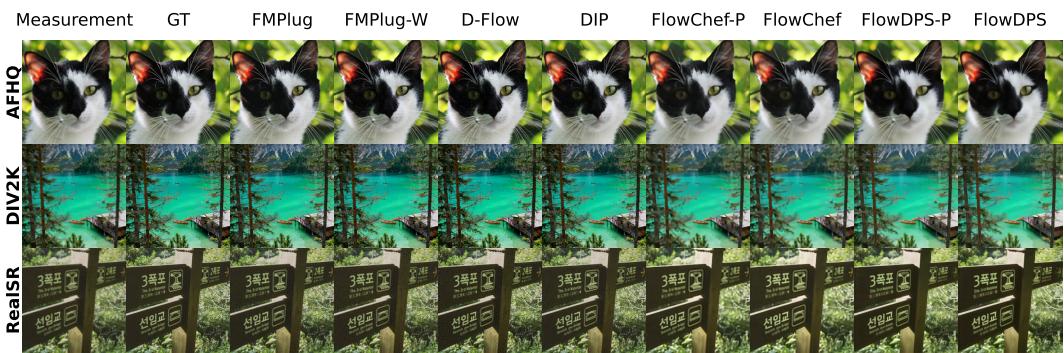
729
 730 Table 11: **Inpainting** and **Super Resolution** $4\times$ on RealSR with additive Gaussian noise ($\sigma = 0.03$).
 731 (**Bold**: best, under: second best)

method	Inpainting						Super Resolution $4\times$					
	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑
DIP	30.88	0.89	0.25	0.09	0.47	54.97	26.81	0.72	0.44	0.17	0.30	38.23
FlowChef-P	25.81	0.69	0.45	0.25	0.35	35.96	25.89	0.71	0.43	0.24	0.44	35.42
FlowChef	25.89	0.69	0.45	0.25	0.35	36.61	25.92	0.71	0.43	0.23	0.44	35.65
FlowDPS-P	25.68	0.69	0.47	0.20	0.36	49.28	26.11	0.71	0.43	0.18	0.34	46.24
FlowDPS	25.78	0.69	0.48	0.19	0.32	46.54	26.10	0.70	0.45	0.18	0.32	44.49
DFlow	25.27	0.69	0.42	0.21	0.59	60.99	23.60	0.62	0.53	0.20	0.28	56.53
FMPPlug-W	<u>31.30</u>	0.88	0.28	<u>0.07</u>	<u>0.56</u>	62.77	26.58	<u>0.73</u>	<u>0.39</u>	0.17	0.16	40.05
FMPPlug	31.79	0.89	<u>0.26</u>	0.06	<u>0.56</u>	<u>62.61</u>	<u>26.66</u>	0.74	<u>0.38</u>	<u>0.17</u>	0.17	39.27

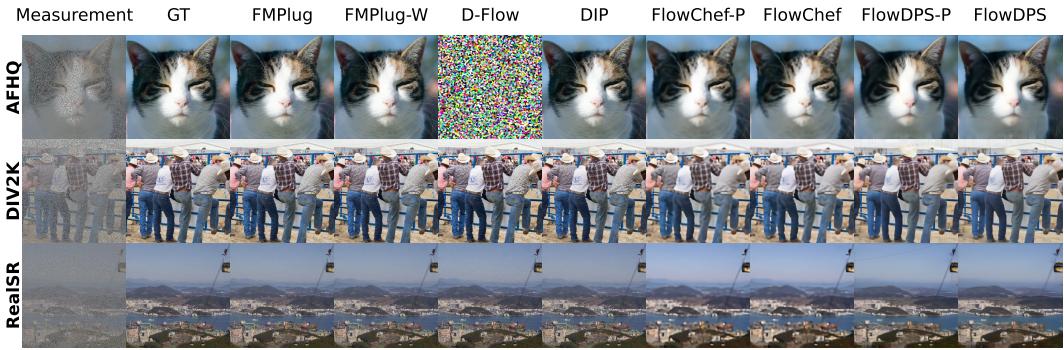
744 Table 12: **Gaussian Blur** and **Motion Blur** on RealSR with additive Gaussian noise ($\sigma = 0.03$).
 745 (**Bold**: best, under: second best)

method	Gaussian Blur						Motion Blur					
	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	CLIPQA ↑	MUSIQ ↑
DIP	26.17	0.70	0.46	0.20	<u>0.28</u>	31.78	26.17	0.70	0.46	0.22	0.28	33.25
FlowChef-P	21.42	0.51	0.63	0.36	0.19	16.65	22.50	0.56	0.56	0.33	0.26	20.77
FlowChef	21.42	0.51	0.63	0.36	0.19	16.68	22.51	0.56	0.56	0.33	0.26	20.88
FlowDPS-P	21.21	0.47	0.59	0.30	0.22	<u>38.23</u>	22.50	0.55	0.55	0.27	0.27	41.01
FlowDPS	21.21	0.47	0.61	0.31	0.17	33.68	22.55	0.54	0.56	0.28	0.22	37.84
DFlow	23.65	0.60	0.54	0.20	0.30	54.62	25.86	0.69	0.47	0.21	0.31	51.57
FMPPlug-W	<u>27.05</u>	<u>0.72</u>	<u>0.44</u>	0.18	0.21	34.47	<u>28.01</u>	<u>0.76</u>	<u>0.40</u>	<u>0.16</u>	0.28	43.86
FMPPlug	27.22	0.73	0.43	0.18	0.19	36.00	28.63	0.79	0.37	0.14	<u>0.30</u>	48.07

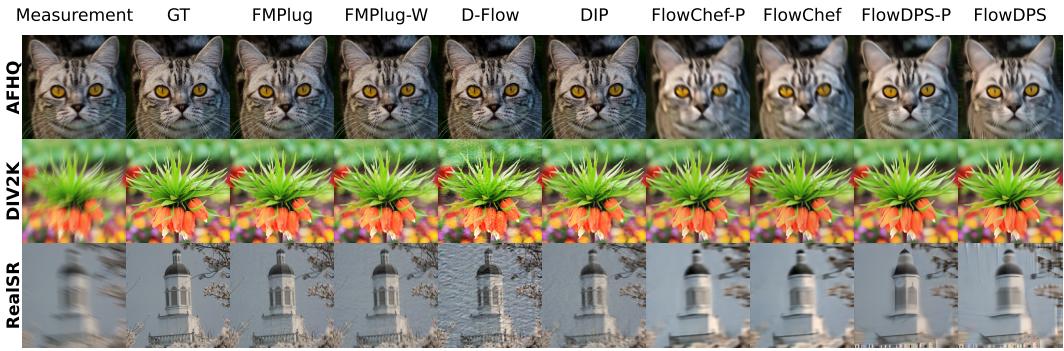
756 A.5 VISUALIZATION
757



770 Figure 6: Qualitative comparison in super resolution 4 \times task.
771



784 Figure 7: Qualitative comparison in Inpainting task.
785



798 Figure 8: Qualitative comparison in motion deblur task.
799
800
801
802
803
804
805
806
807
808
809