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Abstract001

The rapid development of LLMs has brought002
powerful text generation capabilities, leading003
to significant improvements in image caption-004
ing tasks. Addressing the challenges in medi-005
cal domains, such as limited data availability,006
complex recognition requirements, and diffi-007
cult manual annotation, we innovatively ex-008
tend image captioning to CBCT-based den-009
tition defect diagnosis tasks. Unlike tradi-010
tional approaches that use semantic segmen-011
tation or object detection methods to locate012
missing teeth, our method only requires stan-013
dard CBCT images (both with or without miss-014
ing teeth) as input. Through image-text com-015
bined instruction-tuning with our model that016
integrates CLIP and SAM into BLIP2, we can017
successfully extract missing tooth location in-018
formation from CBCT images and provide as-019
sessments in textual form. This greatly en-020
hances the ability to reveal clinical information021
and provides valuable diagnostic assistance to022
doctors. In terms of performance, our method023
outperforms both MSMedCap, which is specif-024
ically designed for medical imaging, and In-025
structBLIP, which is trained on general datasets.026
We have achieved state-of-the-art results in our027
pioneering approach of using image captioning028
for dentition defect diagnosis. The key raw data029
has been uploaded to Research Data Deposit030
(www.researchdata.org.cn), validating the au-031
thenticity of this paper with the RDD number:032
XXXXXX .033

1 Introduction034

In dental restoration therapies, Cone Beam Com-035

puted Tomography (CBCT) has become an in-036

dispensable imaging modality (Huang et al.,037

2022)(Wei et al., 2024). Its primary objective038

lies in precisely determining the three-dimensional039

anatomical locations of missing teeth. Although040

existing AI technologies achieve missing tooth area041

identification through semantic segmentation (Wei042

et al., 2024), traditional computer vision methods043

can only obtain coordinate information and fail to 044

interpret the anatomical correlations and pathologi- 045

cal characteristics required for clinical reports. The 046

integration of natural language processing (NLP) 047

technology, through constructing mapping models 048

between imaging features and clinical semantics, 049

can surmount the limitations of isolated image anal- 050

ysis. This approach provides intelligent decision 051

support for restorative treatments by incorporating 052

spatial topology and biomechanical relationships. 053

In recent years, the rapid development of LLM 054

has brought powerful text generation capabili- 055

ties(Zhao et al., 2023). In this context, the de- 056

velopment of image captioning technology has at- 057

tracted extensive attention from the academic com- 058

munity. Image captioning provides a new technical 059

path for intelligent interpretation of medical im- 060

ages by organically combining computer vision 061

technology and natural language processing tech- 062

nology(Stefanini et al., 2022). Its core goal is to 063

achieve an accurate description of images. In spe- 064

cific applications in the medical field, the input 065

image is usually a radiological image of a patient 066

with corresponding instructions, which can be in 067

the form of a pre-defined set of finite categories or 068

a dynamically generated sequence of words, thus 069

generating a medical report for the clinical prac- 070

tice, revealing a wealth of clinical information, and 071

providing valuable diagnostic assistance to doctors. 072

In clinical report drafting scenarios, radiologists 073

typically synthesize examination requests from 074

clinicians and patients’ medical images to com- 075

pose clinically valuable reports aligned with di- 076

agnostic objectives, thereby supporting diagnostic 077

and therapeutic decision-making. Within this pro- 078

cess, how to effectively utilize multimodal infor- 079

mation (including textual descriptions and imaging 080

features) to generate accurate and clinically mean- 081

ingful diagnostic conclusions remains the central 082

research topic in medical imaging artificial intelli- 083

gence(Pesapane et al., 2023). Although recent ad- 084
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vancements in language models have demonstrated085

remarkable potential in textual domains, critical086

challenges persist in specialized domains such as087

complex dental defect cases: On the one hand, it088

is difficult for models to identify and localize com-089

plex oral anatomical structures accurately(Sloan090

et al., 2024). It is difficult for purely text-supervised091

general-purpose models to efficiently capture the092

details present in an image due to the inherent am-093

biguity of the language and the varying granularity094

levels of textual descriptions. This limitation arises095

from the difficulty image encoders face in captur-096

ing subtle feature differences within localized re-097

gions of the image that exhibit fuzzy boundaries,098

noise, and poor contrast. The challenge of unsta-099

ble generalization capabilities remains to improve100

model performance. On the other hand, In real101

clinical settings, patients often present with more102

complex oral conditions extending beyond simple103

single-tooth loss, such as multiple missing teeth104

combined with adjacent root pathologies, insuffi-105

cient bone volume, or presence of pre-existing den-106

tal implants/prosthetic restorations. These complex107

factors manifest as structural overlaps and artifacts108

in CBCT images. When encountering challenging109

scenarios markedly differing from single-tooth loss110

contexts – particularly multiple missing teeth with111

intricate bone alterations – models may demon-112

strate recognition funnel effects. This phenomenon113

arises from inadequate differentiation and inter-114

pretation of superimposed anatomical features and115

their interactions, ultimately compromising accu-116

rate localization of missing tooth positions in diag-117

nostic assessments.118

During dataset establishment for tooth loss pat-119

terns, we optimized through three key aspects.120

First, we enhanced diversity by including com-121

plex cases with multiple missing teeth, residual122

roots, restorations, and implants. Second, we main-123

tained balanced distribution between intact and124

missing teeth to reduce bias. Third, we imple-125

mented standardized annotation guidelines with126

multi-annotator cross-validation to ensure labeling127

quality.128

This research proposes an interactive CBCT im-129

age interpretation method based on image caption-130

ing. DMITIC introduces a CBCT image without131

missing teeth as an example image, combined with132

text as instruction, enabling the model to correctly133

learn through comparison to extract detailed feature134

differences between CBCT images with missing135

and complete teeth to capture fine-grained infor-136

mation. Specifically, our model contains a dual- 137

encoder architecture: one ViT image encoder pre- 138

trained using CLIP(Radford et al., 2021a) to ex- 139

tract overall information, and a segmentation model 140

(SAM)(Kirillov et al., 2023a) guided encoder to 141

capture fine-grained details. Both are instruction- 142

tuned through fusion with example image instruc- 143

tions. By adopting unique pretraining strategies 144

and hybrid semantic learning to simultaneously 145

capture overall information and finer details in den- 146

tal CBCT images. For the specific semantic seg- 147

mentation detail features that CLIP lacks, SAM 148

provides supplementary learning, and the func- 149

tions of the two encoders are well-complemented 150

and coordinated. We conducted experiments on 151

various datasets(Lin et al., 2014) to evaluate our 152

model, confirming the effectiveness of our pro- 153

posed method. 154

To address the imaging description of dental de- 155

fects in complex situations, this study proposes 156

an interactive CBCT image interpretation method 157

based on image captioning - DMITIC. The main 158

advantages of DMITIC include: 159

• We designed an image-text combined 160

instruction-tune mode that enhances feature 161

learning through comparison in traditional 162

image captioning tasks, transforming it into 163

a VQA-like mode to compensate for the 164

disadvantage of being unable to capture 165

fine-grained features in image captioning 166

tasks. 167

• We innovatively propose a novel task of using 168

image captioning for dentition defect diagno- 169

sis in CBCT images, addressing the limited 170

generalizability of traditional semantic seg- 171

mentation approaches. 172

• We improved the dual-encoder architecture of 173

MSMedCap and incorporated different forms 174

of instruction at different stages, which can 175

better retain the prompting and constrain- 176

ing effects of instruction, capturing position- 177

granular information such as missing teeth in 178

dental CBCT. 179

• Our proposed DMITIC demonstrates signif- 180

icantly improved performance in missing 181

tooth position diagnosis on dental CBCT 182

datasets compared to baseline models includ- 183

ing BLIP2(Li et al., 2023), InstructBLIP(Dai 184

et al., 2023), and MSMedCap(Zhang et al., 185

2024). 186
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2 Related Work187

2.1 Current Status of Medical IMAGE188

CAPTION Research189

In the field of medical image automatic analysis, di-190

agnostic report generation faces unique challenges.191

Unlike general image description tasks, medical192

data acquisition is strictly regulated, and diagnostic193

reports typically consist of structurally complex,194

complete paragraphs. Visually prominent healthy195

organs in medical images may have low diagnos-196

tic relevance, while subtle pathological features197

require focused attention. Given the critical nature198

of medical diagnosis, report generation demands199

extremely high accuracy, as any omission of key in-200

formation could lead to serious consequences. Nev-201

ertheless, the automatic generation of diagnostic202

reports still holds significant practical value, pro-203

viding a preliminary reference for clinicians and ef-204

fectively improving diagnostic efficiency. Current205

research primarily focuses on predicting simple206

pathological descriptions, with relatively less atten-207

tion paid to modeling temporal change features and208

complex concepts. Existing medical image descrip-209

tion methods predominantly employ contrastive210

learning for cross-modal pre-training. Although211

these methods demonstrate good performance in212

general image description tasks, their performance213

significantly deteriorates in medical scenarios. This214

performance gap mainly stems from the difficulty215

of general pre-trained models in effectively captur-216

ing fine-grained semantic information in medical217

images, which is often crucial for accurate diagno-218

sis. Additionally, the inherent ambiguity and noise219

characteristics of medical images pose significant220

challenges for feature extraction. The recently pro-221

posed MSMedCap model adopts a dual-encoder222

architecture guided by SAM (Segment Anything223

Model), achieving simultaneous capture of both224

global features and local details in medical images225

through an innovative hybrid semantic learning226

strategy.227

2.2 Related Work on Multimodal Learning228

Multimodal learning(Ramachandram and Taylor,229

2017) aims to exploit the complementary informa-230

tion between different modal data (e.g., image, text,231

audio, etc.) to enhance the model’s ability to un-232

derstand and model multimodal tasks. BLIP (Li233

et al., 2022b) proposed a self-supervised visual-234

verbal contrast learning paradigm to achieve bet-235

ter graphic-text matching and cross-modal migra-236

tion capabilities by minimizing the contrast loss 237

between image and text and aligning cross-modal 238

features in a shared semantic space. On this ba- 239

sis, BLIP-2 (Li et al., 2023) is an efficient and 240

versatile visual-linguistic pre-training strategy that 241

significantly reduces the computational cost by 242

utilizing pre-trained frozen image encoders and 243

Large Language Models (LLMs). BLIP-2 employs 244

a lightweight Querying Transformer (Q-Former) 245

to bridge the modal gap through a two-stage pre- 246

training to bridge the modal gap. The first stage 247

leads to visual-verbal representation learning from 248

a frozen image encoder, and the second stage 249

leads to visual-to-verbal generative learning from a 250

frozen language model, thus achieving zero-sample 251

image-to-text generative capability. Despite hav- 252

ing far fewer parameters than existing methods, 253

BLIP-2 achieves state-of-the-art performance on 254

several visual-linguistic tasks, e.g., outperforming 255

Flamingo80B by 8.7% on zero-sample VQAv2 256

while reducing the parameter count by a factor of 257

54. 258

2.3 Baseline Methods 259

Zhang et al. (Zhang et al., 2024) proposed a novel 260

medical image caption generation model, MSMed- 261

Cap, which adopts a dual-encoder architecture 262

and a hybrid semantic learning strategy to cap- 263

ture the overall information and fine-grained de- 264

tails of medical images. MSMedCap consists of 265

two image encoders: a ViT(Dosovitskiy, 2020) en- 266

coder based on CLIP pre-training for extracting 267

the overall features and a SAM-based encoder for 268

extracting the fine-grained features. MSMedCap 269

contains two image encoders: a ViT encoder based 270

on CLIP pre-training to extract overall features 271

and a SAM-based encoder to extract fine-grained 272

features. Given an input image, the two encoders 273

encode it into different image embedding vectors. 274

Next, a dual Query Transformer (Q-Former) is used 275

to cross-attentionally align the output features of 276

the two encoders to obtain the aligned features. Fi- 277

nally, the aligned features are spliced with textual 278

cue embeddings and fed into a pre-trained language 279

model to generate medical image descriptions. 280

3 Method 281

In this section, we first describe the model archi- 282

tecture, followed by the pre-training strategy and 283

how to help the model better extract fine-grained 284

features of CT image locations through image-text 285
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Figure 1: The DMITIC architecture is divided into two instructions: Instruction 1 is multimodal, where standard
example images are processed through CLIP to extract image features, which are then transformed into text
embeddings and combined with prompts. Instruction 2 is purely text-based.

combined instructions, thereby using Large Lan-286

guage Models (LLM) to generate medical image287

captions.288

3.1 Model Architecture289

As shown in Figure 1, similar to MSMedCap, we290

adopt dual encoders consisting of CLIP(Radford291

et al., 2021b) and SAM(Kirillov et al., 2023b) for292

feature extraction, where the example image only293

goes through one CLIP encoder for feature extrac-294

tion. This is because the example image serves295

the same purpose as the SAM encoder - helping296

the model better extract detailed feature informa-297

tion when searching for missing tooth information,298

thus achieving effects that other pre-trained models299

cannot capture. Next, visual features are extracted300

from the frozen image encoders through dual Query301

Transformers (Q-Former)(Li et al., 2023).302

The Q-Former output consists of K encoded vi-303

sual vectors, one for each query embedding, which304

are then linearly projected and input to the frozen305

LLM. Like MSMedCap, before instruction tuning,306

Q-Former is pre-trained with image caption data in307

two phases. The first phase pre-trains Q-Former us-308

ing frozen image encoders for visual-language rep-309

resentation learning. The second phase adapts Q-310

Former’s output as soft visual prompts for text gen-311

eration using the frozen LLM. After pre-training,312

we fine-tune Q-Former through instruction tuning,313

where phase one uses instruction1, which com-314

bines non-missing tooth CBCT example images315

with prompts and instructions as input. The sec-316

ond phase uses text instructions alone, where LLM317

receives visual encoding from Q-Former and task318

Figure 2: The Q-Former architecture, instruction 1 par-
ticipates in the model’s stage 1 training phase, ensuring
information extraction without affecting stage 2’s text
generation.

instructions as input to generate missing tooth di- 319

agnoses. 320

3.2 Dual Image Encoder 321

We use two ViT encoders trained based on CLIP 322

and SAM, namely fCLIP and fSAM , to encode 323

image features. Image x is input to both encoders, 324

producing two different sets of image embedding 325

vectors: 326

vCLIP ∈ RN×C , vSAM ∈ RQ×S (1) 327
328

vCLIP = fCLIP (x) (2) 329
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vSAM = fSAM (x) (3)330

where N and Q represent the number of feature331

vectors, C and S represent the dimension of each332

feature vector.333

Dual Query Transformer (Q-Former): Fea-334

tures output from the dual encoders are processed335

through cross-attention through their respective Q-336

Formers (gCLIP and gSAM ) to produce aligned337

features:338

ṽCLIP = gCLIP (qCLIP , vCLIP ) (4)339

340
ṽSAM = gSAM (qSAM , vSAM ) (5)341

where qCLIP , qSAM ∈ RM×D are two sets of342

learnable query vectors in Q-Former. Note that343

Q-Formers’ output layers use linear projection lay-344

ers.345

3.3 Hybrid Semantic Pre-training346

Models pre-trained using different methods pro-347

duce different granularity and semantic information348

when extracting features from images. By lever-349

aging the advantages of various pre-training meth-350

ods, we adopted a training strategy that combines351

general image information with medical domain-352

specific image information, as shown in Figure 3.353

In this phase, we trained Q-Former separately354

for CLIP and SAM. First, we froze the image en-355

coders and input the diagnostic CBCT images into356

both CLIP and SAM encoders, while inputting the357

non-pathological CBCT examples only to the CLIP358

encoder for feature extraction. We then input both359

trainable Soft Queries and embedded image cap-360

tions into Q-Former, connecting encoder-extracted361

image features to Q-Former through Cross Atten-362

tion. Inspired by BLIP2, we optimized Q-Former363

for three objectives using corresponding masks in364

Self Attention to meet different requirements.365

Our Q-Former optimization encompasses three366

key objectives. First, Image-Text Matching (ITM)367

focuses on classifying the relevance between im-368

age and text input pairs. Second, Image-based Text369

Generation (ITG) enables the generation of descrip-370

tive text based on image inputs. Finally, Image-371

Text Contrastive Learning (ITC) optimizes feature372

representation by minimizing distances between373

matching image-text pairs while maximizing dis-374

tances for unrelated pairs.375

Since extracting missing tooth location features376

requires combining general semantic information377

and fine-grained image details, our model training378

process involves achieving hybrid semantic repre- 379

sentation learning of CLIP and SAM. Given that 380

CLIP excels at capturing more general semantic in- 381

formation, we aim to preserve this capability in our 382

model. Therefore, we encode both input images 383

through CLIP. In contrast, the SAM image encoder 384

has been pre-trained on segmentation tasks, mak- 385

ing it better at capturing fine-grained image details 386

than CLIP. To capture medical image details like 387

pixel-level semantics, we use a combination of gen- 388

eral and medical datasets to train SAM’s Q-Former. 389

We demonstrate in subsequent experiments that 390

this training strategy is more effective than other 391

methods in maximizing feature diversity. 392

3.4 Caption Generation Using Frozen LLM 393

Vicuna-7B (Chiang et al., 2023) is used for generat- 394

ing medical captions. Vicuna is a decoder-only 395

Transformer fine-tuned from LLaMA (Touvron 396

et al., 2023). During visual-language instruction 397

tuning, we initialize the model from the BLIP-2 398

checkpoint pre-trained using only COCO (Lin et al., 399

2014), and only fine-tune Q-Former’s parameters 400

while keeping image encoders and LLM frozen. 401

Having completed hybrid semantic pre-training and 402

through image-text instructions with example im- 403

ages, the model has already developed the ability 404

to distinguish between the presence and absence 405

of missing teeth, identify missing tooth locations, 406

and effectively align with text. In this phase, we 407

fine-tune the entire model on our collected DM- 408

Tooth dataset using frozen LLM to generate med- 409

ical image captions. We use Vicuna-7B as our 410

LLM. Initially, we freeze all parameters of both im- 411

age encoders and LLM, focusing only on training 412

Q-Formers and linear projection layers. Through 413

instructions, we help the model focus on features 414

extracted by CLIP and SAM encoders. Finally, 415

their respective Q-Formers and linear projection 416

layers are connected and input to LLM. The model 417

is trained using LLM loss. 418

4 Experimental Setup 419

4.1 Datasets 420

Our experiments utilize the publicly available 421

COCO dataset (Lin et al., 2014) and a private 422

dataset (Diagnosis of Missing Teeth dataset, DM- 423

Tooth). 424

• Public Dataset: We use COCO for pre- 425

training. While we employ the train2014 426

version, we do not use it for testing since it 427
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contains no dental CBCT images and is not428

aligned with our specific task.429

• DMTooth Dataset: This research strictly ad-430

heres to the Declaration of Helsinki and was431

approved by the Ethics Committee. The432

dataset comprises CBCT images and clinical433

data from patients with dental defects between434

July 2019 and October 2023. Inclusion crite-435

ria were: (1) confirmed diagnosis of dental436

defects; (2) age ≥ 18 years; (3) exclusion of437

CBCT images with severe distortion due to438

orthodontic treatment or metallic restorations.439

Imaging data was acquired using two devices:440

NewTom (QR srl, Verona, Italy) and Care-441

stream Health CS 9300 (Carestream Health442

Inc, Rochester, NY, USA). Cone Beam Com-443

puted Tomography Reconstructed Panoramic444

(CRP) images were reconstructed using CS445

3D Image 3.4.3 software, with the mandibu-446

lar dental arch curve as the reference. Each447

CBCT image was accompanied by a standard448

radiological diagnosis report from oral radi-449

ologists, from which descriptions of missing450

tooth locations were extracted. The key raw451

data has been uploaded to Research Data De-452

posit (www.researchdata.org.cn), validating453

the authenticity of this paper with the RDD454

number: XXXXXX .455

4.2 Data Preprocessing and Dataset456

Construction457

DMTooth consists of 400 samples split in a 7:1:2458

ratio for training, validation, and testing. GPT4o459

was used to process standard radiological reports,460

transforming missing tooth location descriptions461

into different image-text pairs. Each image cor-462

responds to 1-2 texts with identical meaning but463

varied expressions to enhance training set diversity.464

The final training set contains 567 image-text pairs.465

466

4.3 Evaluation Metrics467

We employ BLEU (Papineni et al., 2002), ME-468

TEOR (Banerjee and Lavie, 2005), ROUGE-469

L (Lin, 2004), CIDEr (Vedantam et al., 2015),470

BERTSCORE (Zhang et al., 2020) as evaluation471

metrics. In this task, we also need to evaluate the ac-472

curacy of missing tooth position detection. There-473

fore, under the specified answer format, we used474

accuracy and F1 scores to assess the precision of475

position detection. For ease of comparison, we476

scaled the scores for each metric, as shown in Ta- 477

ble 2. 478

Higher metric scores indicate better quality of 479

generated results.Our best model, termed DMITIC, 480

is compared with state-of-the-art models MSMed- 481

Cap, BLIP-2, and InstructBLIP, along with vari- 482

ations using different instructions.We conduct 3 483

training iterations on COCO dataset. For DMTooth, 484

we perform 10 iterations for both hybrid semantic 485

pre-training and captioning phases. Different ex- 486

ample images were compared to select the most 487

suitable one. 488

4.4 Training and Hyperparameters 489

Implementation, training, and evaluation were con- 490

ducted using the LAVIS library (Li et al., 2022a). 491

All models underwent instruction tuning for up 492

to 60K steps with validation every 3K steps. For 493

each model, the best checkpoint was selected for 494

evaluation across all datasets. We use batch sizes 495

of 128 for COCO pre-training and 8 for DM- 496

Tooth, considering dataset sizes. Training em- 497

ploys AdamW optimizer (Loshchilov, 2017) with 498

β1 = 0.9, β2 = 0.999, and weight decay of 0.05. 499

Learning rate undergoes linear warmup from 10−8 500

to 10−5 in the first 5,000 steps, followed by cosine 501

decay to 0. All models were trained on 4 Nvidia 502

A40 GPUs, completing in 1.5 days. 503

5 Results and Discussion 504

5.1 Model evaluation result 505

We evaluated the DMITIC model on the DMTooth 506

dataset. We compared DMITIC with previous state- 507

of-the-art models including MSMedCap, BLIP-2, 508

and InstructBLIP. As shown in Table 1, to ensure 509

fair evaluation, we also fine-tuned these three mod- 510

els on DMTooth, and the results demonstrate that 511

we achieved state-of-the-art performance on the 512

DMTooth dataset. Considering the significantly 513

low evaluation scores for other models, our pro- 514

posed task introduces a novel challenge. Except for 515

MSMedCap, which has been trained on medical- 516

related datasets, the other models lack prior knowl- 517

edge related to CBCT data and struggle to accu- 518

rately identify missing tooth positions. This lack of 519

domain-specific training makes it difficult for mod- 520

els like BLIP-2 and InstructBLIP to generate the 521

required responses, even after additional training. 522
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Models Bleu METEOR ROUGE L CIDEr BERT score
(×103) (×103) (×102) (×103) (×102)

BLIP2 0.9 2.1 2.1 0.1 8.6
InstructBLIP 7.2 3.9 4.6 0.2 50.1
MSMedCap 3.4 10.3 11.0 0.7 65.8
DMITIC-OT 63.6 17.1 28.1 18.9 86.6
DMITIC-SA 38.7 13.9 20.6 15.6 85.9
DMITIC-NS 75.4 25.2 44.5 40.0 90.8
DMITIC-NC 5.1 3.4 4.7 0.2 55.6
DMITIC 80.2 35.3 52.3 39.8 93.2

Table 1: Comparison with Benchmarks Across Different Evaluation Metrics.

5.2 Ablation Study on Instruction Tuning523

To validate the effectiveness of our image-text com-524

bined instruction approach and dual-encoder ar-525

chitecture, we conducted comparative experiments526

with several variants. The model naming conven-527

tions are shown in Table 1:528

• DMITIC-OT: using text instruction only529

• DMITIC-SA: using dual-encoder architecture530

only531

• DMITIC-NS: using CLIP encoder only532

• DMITIC-NC: using SAM encoder only533

The final results reveal a significant performance534

drop when only SAM is used or when multimodal535

instructions are absent. SAM is fundamentally de-536

signed for segmentation tasks, and without the fea-537

ture support from CLIP, it cannot perform effec-538

tively. This observation underscores our decision539

to use CLIP for feature extraction on the example540

images.541

5.3 Qualitative Assessment542

We qualitatively compared DMITIC with con-543

current multimodal models (gpt-4o-2024-08-544

06(Brown, 2020), Llama-3.1-405B(Dubey et al.,545

2024), Gemini-1.5-Pro(Team et al., 2023)). For546

dental CBCT missing tooth diagnosis, these models547

cannot directly determine missing tooth locations548

from images alone. While they can generally pro-549

vide location-based diagnoses following prompts,550

they often fail to identify correct positions. When551

provided with example images following our ap-552

proach, GPT-4o could generate responses in the553

correct format, but only achieved partial accuracy554

in 1 out of 5 test cases.555

Figure 3: Answer templates from different LLMs were
examined. DMITIC was able to provide concise and
accurate responses for missing tooth positions. Note:
CBCT panoramic images are shown from the doctor’s
perspective, but results are output from the patient’s per-
spective, so the bottom right of the image corresponds
to the patient’s lower left.

Although all models can generate task-relevant 556

responses, their text outputs tend to be overly com- 557

plex with poor readability and cannot critically 558

accurately identify missing tooth locations. Im- 559

portantly, we argue that lengthy responses are not 560

always desirable. Our DMITIC model typically 561

provides more precise answers focusing on key 562

location information, thanks to our image-text com- 563

bined instruction tuning approach. 564
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5.4 Accuracy Testing565

For the task of missing tooth detection, accurate po-566

sition determination is crucial. Simply generating567

image captions may lead to issues similar to concur-568

rent multimodal models. For example, if a missing569

tooth is at position 6 but is identified as position570

7, although the generated text can correctly iden-571

tify the presence of a missing tooth and follows the572

positional judgment format, the position given is in-573

correct, making it an invalid generation. Therefore,574

we restricted the format of generated text through575

prompts and extracted only the missing tooth posi-576

tion information as labels to create new outputs for577

evaluation. We set "no missing tooth" as 0, and con-578

verted other positions to FDI tooth notation, then579

compared Accuracy and F1 scores. In our test set,580

there are 80 CBCT images, of which 53 contain581

missing teeth, totaling 95 missing teeth. The re-582

maining 27 images without missing teeth are each583

counted as a single instance, as we aim to assess the584

model’s detection capability. This brings the total585

count for evaluation to 122. The resulting accuracy586

and F1 scores are shown in Table 2. As observed,587

our accuracy surpasses that of other methods; how-588

ever, the overall performance is still suboptimal,589

indicating room for further improvement.

Models Accuracy F1 scores
BLIP2 * *
InstructBLIP * *
MSMedCap * *
DMITIC-OT 0.178 0.054
DMITIC-SA 0.111 0.022
DMITIC-NS 0.356 0.187
DMITIC-NC * *
DMITIC 0.667 0.635

Table 2: Accuracy and F1 scores. * indicates that the
model does not provide any valid answers regarding
accurate positions.

590

6 Conclusions591

Building upon MSMedCap’s demonstrated capabil-592

ity in capturing fine-grained features from medical593

datasets, we enhanced the SAM framework. We ex-594

tended the image captioning task to missing tooth595

diagnosis, which requires specific location infor-596

mation and fine-grained feature detection. On our597

collected DMTooth dataset, we introduced a novel598

image-text combined instruction tuning approach599

that addresses previous models’ limitations in han-600

dling location information, enabling the model to 601

generate location-specific text descriptions using 602

detailed positional features. This method outper- 603

forms baseline models across all metrics, signifi- 604

cantly improving output quality. Our successful 605

integration addresses BLIP-2’s limitations in pro- 606

viding professional and detailed medical diagnoses. 607

Currently, besides our proposed DMTooth 608

dataset, other CBCT-related datasets focus on se- 609

mantic segmentation or object detection of tooth 610

positions. Leveraging such data for specific diag- 611

nostic text generation remains challenging. Addi- 612

tionally, medical dataset limitations prevent zero- 613

shot learning capabilities. Future work will extend 614

this approach to other dental conditions, such as 615

caries and restorations. 616

Limitations 617

Although DMITIC demonstrates outstanding per- 618

formance in describing complex dentition de- 619

fects, the expansion of its capabilities to multi- 620

description scenarios holds significant research 621

value. Clinical cases often involve intricate combi- 622

nations of multiple oral abnormalities (e.g., tooth 623

loss combined with retained root fragments, den- 624

tal implant artifacts, etc.), requiring the model 625

to generate hierarchical descriptions integrating 626

spatial topological relationships, pathological fea- 627

tures, and biomechanical correlations. Future re- 628

search could explore a dynamic multi-instruction 629

tuning framework that enables adaptive prioritiza- 630

tion of diagnostic subtasks based on CBCT feature 631

saliency, potentially realized through an attention- 632

based description path selection mechanism - allow- 633

ing simultaneous disentanglement of overlapping 634

anatomical features while maintaining contextual 635

coherence. Additionally, developing temporal mod- 636

eling capabilities for sequential CBCT scans would 637

enhance clinical value in progressive defect track- 638

ing. To achieve these objectives, we plan to extend 639

the DMTooth dataset with longitudinal multi-defect 640

cases and develop description completeness eval- 641

uation metrics for composite pathologies. Such 642

expansions will effectively bridge the technical gap 643

between isolated defect descriptions and compre- 644

hensive diagnostic report generation, laying the 645

foundation for constructing a multimodal diagnos- 646

tic and therapeutic decision-making system in oral 647

healthcare. 648
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