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Abstract

The rapid development of LLMs has brought
powerful text generation capabilities, leading
to significant improvements in image caption-
ing tasks. Addressing the challenges in medi-
cal domains, such as limited data availability,
complex recognition requirements, and diffi-
cult manual annotation, we innovatively ex-
tend image captioning to CBCT-based den-
tition defect diagnosis tasks. Unlike tradi-
tional approaches that use semantic segmen-
tation or object detection methods to locate
missing teeth, our method only requires stan-
dard CBCT images (both with or without miss-
ing teeth) as input. Through image-text com-
bined instruction-tuning with our model that
integrates CLIP and SAM into BLIP2, we can
successfully extract missing tooth location in-
formation from CBCT images and provide as-
sessments in textual form. This greatly en-
hances the ability to reveal clinical information
and provides valuable diagnostic assistance to
doctors. In terms of performance, our method
outperforms both MSMedCap, which is specif-
ically designed for medical imaging, and In-
structBLIP, which is trained on general datasets.
We have achieved state-of-the-art results in our
pioneering approach of using image captioning
for dentition defect diagnosis. The key raw data
has been uploaded to Research Data Deposit
(www.researchdata.org.cn), validating the au-
thenticity of this paper with the RDD number:

1 Introduction

In dental restoration therapies, Cone Beam Com-
puted Tomography (CBCT) has become an in-
dispensable imaging modality (Huang et al.,
2022)(Wei et al., 2024). Its primary objective
lies in precisely determining the three-dimensional
anatomical locations of missing teeth. Although
existing Al technologies achieve missing tooth area
identification through semantic segmentation (Wei
et al., 2024), traditional computer vision methods

can only obtain coordinate information and fail to
interpret the anatomical correlations and pathologi-
cal characteristics required for clinical reports. The
integration of natural language processing (NLP)
technology, through constructing mapping models
between imaging features and clinical semantics,
can surmount the limitations of isolated image anal-
ysis. This approach provides intelligent decision
support for restorative treatments by incorporating
spatial topology and biomechanical relationships.
In recent years, the rapid development of LLM
has brought powerful text generation capabili-
ties(Zhao et al., 2023). In this context, the de-
velopment of image captioning technology has at-
tracted extensive attention from the academic com-
munity. Image captioning provides a new technical
path for intelligent interpretation of medical im-
ages by organically combining computer vision
technology and natural language processing tech-
nology(Stefanini et al., 2022). Its core goal is to
achieve an accurate description of images. In spe-
cific applications in the medical field, the input
image is usually a radiological image of a patient
with corresponding instructions, which can be in
the form of a pre-defined set of finite categories or
a dynamically generated sequence of words, thus
generating a medical report for the clinical prac-
tice, revealing a wealth of clinical information, and
providing valuable diagnostic assistance to doctors.
In clinical report drafting scenarios, radiologists
typically synthesize examination requests from
clinicians and patients’ medical images to com-
pose clinically valuable reports aligned with di-
agnostic objectives, thereby supporting diagnostic
and therapeutic decision-making. Within this pro-
cess, how to effectively utilize multimodal infor-
mation (including textual descriptions and imaging
features) to generate accurate and clinically mean-
ingful diagnostic conclusions remains the central
research topic in medical imaging artificial intelli-
gence(Pesapane et al., 2023). Although recent ad-



vancements in language models have demonstrated
remarkable potential in textual domains, critical
challenges persist in specialized domains such as
complex dental defect cases: On the one hand, it
is difficult for models to identify and localize com-
plex oral anatomical structures accurately(Sloan
etal., 2024). Itis difficult for purely text-supervised
general-purpose models to efficiently capture the
details present in an image due to the inherent am-
biguity of the language and the varying granularity
levels of textual descriptions. This limitation arises
from the difficulty image encoders face in captur-
ing subtle feature differences within localized re-
gions of the image that exhibit fuzzy boundaries,
noise, and poor contrast. The challenge of unsta-
ble generalization capabilities remains to improve
model performance. On the other hand, In real
clinical settings, patients often present with more
complex oral conditions extending beyond simple
single-tooth loss, such as multiple missing teeth
combined with adjacent root pathologies, insuffi-
cient bone volume, or presence of pre-existing den-
tal implants/prosthetic restorations. These complex
factors manifest as structural overlaps and artifacts
in CBCT images. When encountering challenging
scenarios markedly differing from single-tooth loss
contexts — particularly multiple missing teeth with
intricate bone alterations — models may demon-
strate recognition funnel effects. This phenomenon
arises from inadequate differentiation and inter-
pretation of superimposed anatomical features and
their interactions, ultimately compromising accu-
rate localization of missing tooth positions in diag-
nostic assessments.

During dataset establishment for tooth loss pat-
terns, we optimized through three key aspects.
First, we enhanced diversity by including com-
plex cases with multiple missing teeth, residual
roots, restorations, and implants. Second, we main-
tained balanced distribution between intact and
missing teeth to reduce bias. Third, we imple-
mented standardized annotation guidelines with
multi-annotator cross-validation to ensure labeling
quality.

This research proposes an interactive CBCT im-
age interpretation method based on image caption-
ing. DMITIC introduces a CBCT image without
missing teeth as an example image, combined with
text as instruction, enabling the model to correctly
learn through comparison to extract detailed feature
differences between CBCT images with missing
and complete teeth to capture fine-grained infor-

mation. Specifically, our model contains a dual-
encoder architecture: one ViT image encoder pre-
trained using CLIP(Radford et al., 2021a) to ex-
tract overall information, and a segmentation model
(SAM)(Kirillov et al., 2023a) guided encoder to
capture fine-grained details. Both are instruction-
tuned through fusion with example image instruc-
tions. By adopting unique pretraining strategies
and hybrid semantic learning to simultaneously
capture overall information and finer details in den-
tal CBCT images. For the specific semantic seg-
mentation detail features that CLIP lacks, SAM
provides supplementary learning, and the func-
tions of the two encoders are well-complemented
and coordinated. We conducted experiments on
various datasets(Lin et al., 2014) to evaluate our
model, confirming the effectiveness of our pro-
posed method.

To address the imaging description of dental de-
fects in complex situations, this study proposes
an interactive CBCT image interpretation method
based on image captioning - DMITIC. The main
advantages of DMITIC include:

* We designed an image-text combined
instruction-tune mode that enhances feature
learning through comparison in traditional
image captioning tasks, transforming it into
a VQA-like mode to compensate for the
disadvantage of being unable to capture
fine-grained features in image captioning
tasks.

* We innovatively propose a novel task of using
image captioning for dentition defect diagno-
sis in CBCT images, addressing the limited
generalizability of traditional semantic seg-
mentation approaches.

* We improved the dual-encoder architecture of
MSMedCap and incorporated different forms
of instruction at different stages, which can
better retain the prompting and constrain-
ing effects of instruction, capturing position-
granular information such as missing teeth in
dental CBCT.

* Our proposed DMITIC demonstrates signif-
icantly improved performance in missing
tooth position diagnosis on dental CBCT
datasets compared to baseline models includ-
ing BLIP2(Li et al., 2023), InstructBLIP(Dai
et al., 2023), and MSMedCap(Zhang et al.,
2024).



2 Related Work

2.1 Current Status of Medical IMAGE
CAPTION Research

In the field of medical image automatic analysis, di-
agnostic report generation faces unique challenges.
Unlike general image description tasks, medical
data acquisition is strictly regulated, and diagnostic
reports typically consist of structurally complex,
complete paragraphs. Visually prominent healthy
organs in medical images may have low diagnos-
tic relevance, while subtle pathological features
require focused attention. Given the critical nature
of medical diagnosis, report generation demands
extremely high accuracy, as any omission of key in-
formation could lead to serious consequences. Nev-
ertheless, the automatic generation of diagnostic
reports still holds significant practical value, pro-
viding a preliminary reference for clinicians and ef-
fectively improving diagnostic efficiency. Current
research primarily focuses on predicting simple
pathological descriptions, with relatively less atten-
tion paid to modeling temporal change features and
complex concepts. Existing medical image descrip-
tion methods predominantly employ contrastive
learning for cross-modal pre-training. Although
these methods demonstrate good performance in
general image description tasks, their performance
significantly deteriorates in medical scenarios. This
performance gap mainly stems from the difficulty
of general pre-trained models in effectively captur-
ing fine-grained semantic information in medical
images, which is often crucial for accurate diagno-
sis. Additionally, the inherent ambiguity and noise
characteristics of medical images pose significant
challenges for feature extraction. The recently pro-
posed MSMedCap model adopts a dual-encoder
architecture guided by SAM (Segment Anything
Model), achieving simultaneous capture of both
global features and local details in medical images
through an innovative hybrid semantic learning
strategy.

2.2 Related Work on Multimodal Learning

Multimodal learning(Ramachandram and Taylor,
2017) aims to exploit the complementary informa-
tion between different modal data (e.g., image, text,
audio, etc.) to enhance the model’s ability to un-
derstand and model multimodal tasks. BLIP (Li
et al., 2022b) proposed a self-supervised visual-
verbal contrast learning paradigm to achieve bet-
ter graphic-text matching and cross-modal migra-

tion capabilities by minimizing the contrast loss
between image and text and aligning cross-modal
features in a shared semantic space. On this ba-
sis, BLIP-2 (Li et al., 2023) is an efficient and
versatile visual-linguistic pre-training strategy that
significantly reduces the computational cost by
utilizing pre-trained frozen image encoders and
Large Language Models (LLMs). BLIP-2 employs
a lightweight Querying Transformer (Q-Former)
to bridge the modal gap through a two-stage pre-
training to bridge the modal gap. The first stage
leads to visual-verbal representation learning from
a frozen image encoder, and the second stage
leads to visual-to-verbal generative learning from a
frozen language model, thus achieving zero-sample
image-to-text generative capability. Despite hav-
ing far fewer parameters than existing methods,
BLIP-2 achieves state-of-the-art performance on
several visual-linguistic tasks, e.g., outperforming
Flamingo80B by 8.7% on zero-sample VQAv2
while reducing the parameter count by a factor of
54.

2.3 Baseline Methods

Zhang et al. (Zhang et al., 2024) proposed a novel
medical image caption generation model, MSMed-
Cap, which adopts a dual-encoder architecture
and a hybrid semantic learning strategy to cap-
ture the overall information and fine-grained de-
tails of medical images. MSMedCap consists of
two image encoders: a ViT(Dosovitskiy, 2020) en-
coder based on CLIP pre-training for extracting
the overall features and a SAM-based encoder for
extracting the fine-grained features. MSMedCap
contains two image encoders: a ViT encoder based
on CLIP pre-training to extract overall features
and a SAM-based encoder to extract fine-grained
features. Given an input image, the two encoders
encode it into different image embedding vectors.
Next, a dual Query Transformer (Q-Former) is used
to cross-attentionally align the output features of
the two encoders to obtain the aligned features. Fi-
nally, the aligned features are spliced with textual
cue embeddings and fed into a pre-trained language
model to generate medical image descriptions.

3 Method

In this section, we first describe the model archi-
tecture, followed by the pre-training strategy and
how to help the model better extract fine-grained
features of CT image locations through image-text
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Figure 1: The DMITIC architecture is divided into two instructions: Instruction 1 is multimodal, where standard
example images are processed through CLIP to extract image features, which are then transformed into text
embeddings and combined with prompts. Instruction 2 is purely text-based.

combined instructions, thereby using Large Lan-
guage Models (LLM) to generate medical image
captions.

3.1 Model Architecture

As shown in Figure 1, similar to MSMedCap, we
adopt dual encoders consisting of CLIP(Radford
et al., 2021b) and SAM(Kirillov et al., 2023b) for
feature extraction, where the example image only
goes through one CLIP encoder for feature extrac-
tion. This is because the example image serves
the same purpose as the SAM encoder - helping
the model better extract detailed feature informa-
tion when searching for missing tooth information,
thus achieving effects that other pre-trained models
cannot capture. Next, visual features are extracted
from the frozen image encoders through dual Query
Transformers (Q-Former)(Li et al., 2023).

The Q-Former output consists of K encoded vi-
sual vectors, one for each query embedding, which
are then linearly projected and input to the frozen
LLM. Like MSMedCap, before instruction tuning,
Q-Former is pre-trained with image caption data in
two phases. The first phase pre-trains Q-Former us-
ing frozen image encoders for visual-language rep-
resentation learning. The second phase adapts Q-
Former’s output as soft visual prompts for text gen-
eration using the frozen LLM. After pre-training,
we fine-tune Q-Former through instruction tuning,
where phase one uses instructionl, which com-
bines non-missing tooth CBCT example images
with prompts and instructions as input. The sec-
ond phase uses text instructions alone, where LLM
receives visual encoding from Q-Former and task
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Figure 2: The Q-Former architecture, instruction 1 par-
ticipates in the model’s stage 1 training phase, ensuring
information extraction without affecting stage 2’s text
generation.

instructions as input to generate missing tooth di-
agnoses.

3.2 Dual Image Encoder

We use two ViT encoders trained based on CLIP
and SAM, namely forrp and fsaps, to encode
image features. Image x is input to both encoders,
producing two different sets of image embedding
vectors:

vorrp € RV*C vgay € RS (1)

verrp = forrp(x) ()



vsam = fsam(x) (3)

where N and () represent the number of feature
vectors, C and S represent the dimension of each
feature vector.

Dual Query Transformer (Q-Former): Fea-
tures output from the dual encoders are processed
through cross-attention through their respective Q-
Formers (gcorrp and gsapr) to produce aligned
features:

tcrip = gcrip(qoLip, verLip) 4)

Usam = gsam(gsAm, VSAM) 5)

where gorrp, gsan € RM*P are two sets of
learnable query vectors in Q-Former. Note that
Q-Formers’ output layers use linear projection lay-
ers.

3.3 Hybrid Semantic Pre-training

Models pre-trained using different methods pro-
duce different granularity and semantic information
when extracting features from images. By lever-
aging the advantages of various pre-training meth-
ods, we adopted a training strategy that combines
general image information with medical domain-
specific image information, as shown in Figure 3.

In this phase, we trained Q-Former separately
for CLIP and SAM. First, we froze the image en-
coders and input the diagnostic CBCT images into
both CLIP and SAM encoders, while inputting the
non-pathological CBCT examples only to the CLIP
encoder for feature extraction. We then input both
trainable Soft Queries and embedded image cap-
tions into Q-Former, connecting encoder-extracted
image features to Q-Former through Cross Atten-
tion. Inspired by BLIP2, we optimized Q-Former
for three objectives using corresponding masks in
Self Attention to meet different requirements.

Our Q-Former optimization encompasses three
key objectives. First, Image-Text Matching (ITM)
focuses on classifying the relevance between im-
age and text input pairs. Second, Image-based Text
Generation (ITG) enables the generation of descrip-
tive text based on image inputs. Finally, Image-
Text Contrastive Learning (ITC) optimizes feature
representation by minimizing distances between
matching image-text pairs while maximizing dis-
tances for unrelated pairs.

Since extracting missing tooth location features
requires combining general semantic information
and fine-grained image details, our model training

process involves achieving hybrid semantic repre-
sentation learning of CLIP and SAM. Given that
CLIP excels at capturing more general semantic in-
formation, we aim to preserve this capability in our
model. Therefore, we encode both input images
through CLIP. In contrast, the SAM image encoder
has been pre-trained on segmentation tasks, mak-
ing it better at capturing fine-grained image details
than CLIP. To capture medical image details like
pixel-level semantics, we use a combination of gen-
eral and medical datasets to train SAM’s Q-Former.
We demonstrate in subsequent experiments that
this training strategy is more effective than other
methods in maximizing feature diversity.

3.4 Caption Generation Using Frozen LLM

Vicuna-7B (Chiang et al., 2023) is used for generat-
ing medical captions. Vicuna is a decoder-only
Transformer fine-tuned from LLaMA (Touvron
et al., 2023). During visual-language instruction
tuning, we initialize the model from the BLIP-2
checkpoint pre-trained using only COCO (Lin et al.,
2014), and only fine-tune Q-Former’s parameters
while keeping image encoders and LLM frozen.
Having completed hybrid semantic pre-training and
through image-text instructions with example im-
ages, the model has already developed the ability
to distinguish between the presence and absence
of missing teeth, identify missing tooth locations,
and effectively align with text. In this phase, we
fine-tune the entire model on our collected DM-
Tooth dataset using frozen LLM to generate med-
ical image captions. We use Vicuna-7B as our
LLM. Initially, we freeze all parameters of both im-
age encoders and LLM, focusing only on training
Q-Formers and linear projection layers. Through
instructions, we help the model focus on features
extracted by CLIP and SAM encoders. Finally,
their respective Q-Formers and linear projection
layers are connected and input to LLM. The model
is trained using LLM loss.

4 Experimental Setup
4.1 Datasets

Our experiments utilize the publicly available
COCO dataset (Lin et al., 2014) and a private
dataset (Diagnosis of Missing Teeth dataset, DM-
Tooth).

e Public Dataset: We use COCO for pre-
training. While we employ the train2014
version, we do not use it for testing since it



contains no dental CBCT images and is not
aligned with our specific task.

* DMTooth Dataset: This research strictly ad-
heres to the Declaration of Helsinki and was
approved by the Ethics Committee. The
dataset comprises CBCT images and clinical
data from patients with dental defects between
July 2019 and October 2023. Inclusion crite-
ria were: (1) confirmed diagnosis of dental
defects; (2) age > 18 years; (3) exclusion of
CBCT images with severe distortion due to
orthodontic treatment or metallic restorations.

Imaging data was acquired using two devices:
NewTom (QR srl, Verona, Italy) and Care-
stream Health CS 9300 (Carestream Health
Inc, Rochester, NY, USA). Cone Beam Com-
puted Tomography Reconstructed Panoramic
(CRP) images were reconstructed using CS
3D Image 3.4.3 software, with the mandibu-
lar dental arch curve as the reference. Each
CBCT image was accompanied by a standard
radiological diagnosis report from oral radi-
ologists, from which descriptions of missing
tooth locations were extracted. The key raw
data has been uploaded to Research Data De-
posit (www.researchdata.org.cn), validating
the authenticity of this paper with the RDD
number:

4.2 Data Preprocessing and Dataset
Construction

DMTooth consists of 400 samples splitin a 7:1:2
ratio for training, validation, and testing. GPT4o
was used to process standard radiological reports,
transforming missing tooth location descriptions
into different image-text pairs. Each image cor-
responds to 1-2 texts with identical meaning but
varied expressions to enhance training set diversity.
The final training set contains 567 image-text pairs.

4.3 Evaluation Metrics

We employ BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004), CIDEr (Vedantam et al., 2015),
BERTSCORE (Zhang et al., 2020) as evaluation
metrics. In this task, we also need to evaluate the ac-
curacy of missing tooth position detection. There-
fore, under the specified answer format, we used
accuracy and F1 scores to assess the precision of
position detection. For ease of comparison, we

scaled the scores for each metric, as shown in Ta-
ble 2.

Higher metric scores indicate better quality of
generated results.Our best model, termed DMITIC,
is compared with state-of-the-art models MSMed-
Cap, BLIP-2, and InstructBLIP, along with vari-
ations using different instructions.We conduct 3
training iterations on COCO dataset. For DMTooth,
we perform 10 iterations for both hybrid semantic
pre-training and captioning phases. Different ex-
ample images were compared to select the most
suitable one.

4.4 Training and Hyperparameters

Implementation, training, and evaluation were con-
ducted using the LAVIS library (Li et al., 2022a).
All models underwent instruction tuning for up
to 60K steps with validation every 3K steps. For
each model, the best checkpoint was selected for
evaluation across all datasets. We use batch sizes
of 128 for COCO pre-training and 8 for DM-
Tooth, considering dataset sizes. Training em-
ploys AdamW optimizer (Loshchilov, 2017) with
51 = 0.9, Ba = 0.999, and weight decay of 0.05.
Learning rate undergoes linear warmup from 108
to 1072 in the first 5,000 steps, followed by cosine
decay to 0. All models were trained on 4 Nvidia
A40 GPUs, completing in 1.5 days.

5 Results and Discussion

5.1 Model evaluation result

We evaluated the DMITIC model on the DMTooth
dataset. We compared DMITIC with previous state-
of-the-art models including MSMedCap, BLIP-2,
and InstructBLIP. As shown in Table 1, to ensure
fair evaluation, we also fine-tuned these three mod-
els on DMTooth, and the results demonstrate that
we achieved state-of-the-art performance on the
DMTooth dataset. Considering the significantly
low evaluation scores for other models, our pro-
posed task introduces a novel challenge. Except for
MSMedCap, which has been trained on medical-
related datasets, the other models lack prior knowl-
edge related to CBCT data and struggle to accu-
rately identify missing tooth positions. This lack of
domain-specific training makes it difficult for mod-
els like BLIP-2 and InstructBLIP to generate the
required responses, even after additional training.



Models Blew METEOR ROUGEL CIDEr BERT score
(x10%)  (x10%) (x10%)  (x10%) (x10%)
BLIP2 0.9 2.1 2.1 0.1 8.6
InstructBLIP 7.2 3.9 4.6 0.2 50.1
MSMedCap 34 10.3 11.0 0.7 65.8
DMITIC-OT 63.6 17.1 28.1 18.9 86.6
DMITIC-SA 38.7 13.9 20.6 15.6 85.9
DMITIC-NS 75.4 25.2 44.5 40.0 90.8
DMITIC-NC 5.1 34 4.7 0.2 55.6
DMITIC 80.2 353 523 39.8 93.2

Table 1: Comparison with Benchmarks Across Different Evaluation Metrics.

5.2 Ablation Study on Instruction Tuning

To validate the effectiveness of our image-text com-
bined instruction approach and dual-encoder ar-
chitecture, we conducted comparative experiments
with several variants. The model naming conven-
tions are shown in Table 1:

DMITIC-OT: using text instruction only

DMITIC-SA: using dual-encoder architecture
only

DMITIC-NS: using CLIP encoder only

DMITIC-NC: using SAM encoder only

The final results reveal a significant performance
drop when only SAM is used or when multimodal
instructions are absent. SAM is fundamentally de-
signed for segmentation tasks, and without the fea-
ture support from CLIP, it cannot perform effec-
tively. This observation underscores our decision
to use CLIP for feature extraction on the example
images.

5.3 Qualitative Assessment

We qualitatively compared DMITIC with con-
current multimodal models (gpt-40-2024-08-
06(Brown, 2020), Llama-3.1-405B(Dubey et al.,
2024), Gemini-1.5-Pro(Team et al., 2023)). For
dental CBCT missing tooth diagnosis, these models
cannot directly determine missing tooth locations
from images alone. While they can generally pro-
vide location-based diagnoses following prompts,
they often fail to identify correct positions. When
provided with example images following our ap-
proach, GPT-40 could generate responses in the
correct format, but only achieved partial accuracy
in 1 out of 5 test cases.

[Input Image]|

[Model Response]

DMITIC Lower left teeth 6 and 7 are absent.

MSMedCap the missing tooth is in the front of the
person's mouth

GPT4o0 In the provided panoramic X-ray image,

it appears that a tooth is missing on the
lower left side of the jaw, likely in the
molar region. Additionally, a dental
implant is visible in this area, likely
placed to restore the missing tooth.

Figure 3: Answer templates from different LLMs were
examined. DMITIC was able to provide concise and
accurate responses for missing tooth positions. Note:
CBCT panoramic images are shown from the doctor’s
perspective, but results are output from the patient’s per-
spective, so the bottom right of the image corresponds
to the patient’s lower left.

Although all models can generate task-relevant
responses, their text outputs tend to be overly com-
plex with poor readability and cannot critically
accurately identify missing tooth locations. Im-
portantly, we argue that lengthy responses are not
always desirable. Our DMITIC model typically
provides more precise answers focusing on key
location information, thanks to our image-text com-
bined instruction tuning approach.



5.4 Accuracy Testing

For the task of missing tooth detection, accurate po-
sition determination is crucial. Simply generating
image captions may lead to issues similar to concur-
rent multimodal models. For example, if a missing
tooth is at position 6 but is identified as position
7, although the generated text can correctly iden-
tify the presence of a missing tooth and follows the
positional judgment format, the position given is in-
correct, making it an invalid generation. Therefore,
we restricted the format of generated text through
prompts and extracted only the missing tooth posi-
tion information as labels to create new outputs for
evaluation. We set "no missing tooth" as 0, and con-
verted other positions to FDI tooth notation, then
compared Accuracy and F1 scores. In our test set,
there are 80 CBCT images, of which 53 contain
missing teeth, totaling 95 missing teeth. The re-
maining 27 images without missing teeth are each
counted as a single instance, as we aim to assess the
model’s detection capability. This brings the total
count for evaluation to 122. The resulting accuracy
and F1 scores are shown in Table 2. As observed,
our accuracy surpasses that of other methods; how-
ever, the overall performance is still suboptimal,
indicating room for further improvement.

Models Accuracy F1 scores
BLIP2 * *
InstructBLIP * *
MSMedCap * *
DMITIC-OT 0.178 0.054
DMITIC-SA 0.111 0.022
DMITIC-NS 0.356 0.187
DMITIC-NC * *
DMITIC 0.667 0.635

Table 2: Accuracy and F1 scores. * indicates that the
model does not provide any valid answers regarding
accurate positions.

6 Conclusions

Building upon MSMedCap’s demonstrated capabil-
ity in capturing fine-grained features from medical
datasets, we enhanced the SAM framework. We ex-
tended the image captioning task to missing tooth
diagnosis, which requires specific location infor-
mation and fine-grained feature detection. On our
collected DMTooth dataset, we introduced a novel
image-text combined instruction tuning approach
that addresses previous models’ limitations in han-

dling location information, enabling the model to
generate location-specific text descriptions using
detailed positional features. This method outper-
forms baseline models across all metrics, signifi-
cantly improving output quality. Our successful
integration addresses BLIP-2’s limitations in pro-
viding professional and detailed medical diagnoses.

Currently, besides our proposed DMTooth
dataset, other CBCT-related datasets focus on se-
mantic segmentation or object detection of tooth
positions. Leveraging such data for specific diag-
nostic text generation remains challenging. Addi-
tionally, medical dataset limitations prevent zero-
shot learning capabilities. Future work will extend
this approach to other dental conditions, such as
caries and restorations.

Limitations

Although DMITIC demonstrates outstanding per-
formance in describing complex dentition de-
fects, the expansion of its capabilities to multi-
description scenarios holds significant research
value. Clinical cases often involve intricate combi-
nations of multiple oral abnormalities (e.g., tooth
loss combined with retained root fragments, den-
tal implant artifacts, etc.), requiring the model
to generate hierarchical descriptions integrating
spatial topological relationships, pathological fea-
tures, and biomechanical correlations. Future re-
search could explore a dynamic multi-instruction
tuning framework that enables adaptive prioritiza-
tion of diagnostic subtasks based on CBCT feature
saliency, potentially realized through an attention-
based description path selection mechanism - allow-
ing simultaneous disentanglement of overlapping
anatomical features while maintaining contextual
coherence. Additionally, developing temporal mod-
eling capabilities for sequential CBCT scans would
enhance clinical value in progressive defect track-
ing. To achieve these objectives, we plan to extend
the DMTooth dataset with longitudinal multi-defect
cases and develop description completeness eval-
uation metrics for composite pathologies. Such
expansions will effectively bridge the technical gap
between isolated defect descriptions and compre-
hensive diagnostic report generation, laying the
foundation for constructing a multimodal diagnos-
tic and therapeutic decision-making system in oral
healthcare.
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Dental Diagnosis

[Input Image]

[Model Response]

DMITIC upper right tooth 7 is absent

(Not using multimodal instruction)

DMITIC upper left teeth 6 and 7 are absent

(Using multimodal instruction)

Blip2 upper left corner of the mouth
Instructblip the missing tooth is in the front of the person's mouth
MSMedCap The image is a dental x-ray of a person’s face, specifically focusing on the upper jaw and teeth.

The x-ray reveals that there is a missing tooth in the upper jaw, which is indicated by the yellow
arrow pointing to the location of the missing tooth.
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Dental Diagnosis - No sample Image Introduced

[Input Image]

[Model Response]

DMITIC

(Not using multimodal instruction)

gpt-40-2024-08-06

Llama-3.1-405B

Gemini-1.5-Pro

upper right tooth 7 is absent

The panoramic X-ray image you provided shows several missing teeth, along with what appears
to be dental implants. Here’s a general assessment:
1. Missing Teeth:
«It looks like the posterior teeth in the lower jaw, particularly in the molar regions, may be
missing and possibly replaced by implants.
*The upper jaw also shows some gaps that might indicate missing teeth.
2. Dental Implants:
*There are visible dental implants, likely replacing some of the missing teeth.
*The bright, cylindrical structures in the lower jaw are likely dental implants supporting
crowns or bridges.
To provide a precise diagnosis, a dentist or radiologist would need to examine this X-ray care-
fully, along with a clinical examination and history, as specific identification of each missing
tooth location requires detailed analysis.

Based on the X-ray, it appears that the missing teeth are located in the upper front area of the
mouth. The presence of two dental implants in this region suggests that these are the areas where
the teeth are missing.

This panoramic dental X-ray shows several missing teeth. Specifically:
*Missing lower incisors: Two implants are clearly visible in the position of the lower central
incisors. This indicates the patient's natural lower central incisors were missing and replaced
with implants.
*Missing lower left lateral incisor: The space between the left central incisor implant and the
left canine suggests a missing lower left lateral incisor. It's unclear from this image alone
whether this tooth was extracted or never developed. There's no obvious implant or retained
root present.
*Missing lower right second premolar: There is a distinct gap between the lower right first
premolar and the lower right first molar. This indicates a missing lower right second premolar.
Again, the reason for its absence (extraction, agenesis) isn't discernible from just this image.
It's important to note: A panoramic X-ray provides a good overview, but it's a 2D representation
of a 3D structure. For a definitive diagnosis and treatment planning, other imaging techniques
(like a CBCT scan) and a clinical examination are necessary. This interpretation is based solely
on the provided image.
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[Input Image]

[Model Response]

DMITIC

(Using multimodal instruction)

gpt-40-2024-08-06

Llama-3.1-405B

Gemini-1.5-Pro

Dental Diagnosis - Sample Image Introduced

upper left teeth 6 and 7 are absent

The two images you uploaded show dental panoramic X-rays.

Observations:

Image 1: The dentition appears mostly intact, with no significant missing teeth visible. The alignment seems generally within a
normal range.

Image 2: Several teeth are missing, and dental implants are visible. The implants appear to replace missing teeth on the upper
arch, particularly around the central area and towards the back molar regions.

Diagnosis of Missing Tooth Locations:

In Image 2, missing teeth are evident in the upper arch:

The central area has two dental implants, which replace missing teeth likely around the anterior (front) region.

Additional implants or gaps may be present towards the back molars, indicating missing posterior teeth.

If you need a more detailed analysis or specific annotations on these images, please let me know!

The missing tooth locations are in the upper front area of the mouth. Two dental implants are visible, indicating that the missing
teeth are likely incisors. The implants appear to be positioned in a way that suggests the missing teeth are the upper central
incisors, which are the two front teeth on the top row.

The provided images are panoramic and cross-sectional dental X-rays. They show several missing teeth and dental implants.
Let's break down the analysis:

Reasoning:

1. Panoramic X-ray (First Image): This view provides a broad overview of the entire jaw. We can see several missing teeth and
the presence of dental implants. The implants appear as bright, dense structures integrated into the jawbone. They are typically
topped with abutments, which are not clearly visible in this image, but would support replacement teeth (crowns).

2. Cross-sectional X-ray (Second Image): This view offers a detailed look at a specific section of the jaw. While it shows the
existing teeth clearly, it doesn't directly show the missing teeth or implants because it's a slice through a different plane. It helps
confirm the overall dental health and bone structure.

3. Missing Tooth Locations: Based on the panoramic X-ray, the following teeth appear to be missing:

oMultiple teeth in the anterior maxilla (upper jaw): The exact number is difficult to determine from this image, but there's a
clear gap where multiple teeth should be. The implants in this region suggest that these missing teeth have been or are planned
to be replaced with implant-supported restorations.

oPossibly a tooth in the posterior mandible (lower jaw, left side): There's a slight possibility of a missing tooth on the lower left
side, but the image isn't completely clear. Further investigation with additional X-rays or clinical examination would be neces-
sary to confirm this.

Diagnosis:

The diagnosis is simply missing teeth at the specified locations. The cause of the missing teeth isn't apparent from the X-rays.
Common reasons for missing teeth include:

« Dental decay: Severe cavities can lead to tooth extraction.

« Gum disease (periodontal disease): This can weaken the supporting structures of the teeth, eventually leading to tooth loss.

* Trauma: Injury to the mouth can knock out or damage teeth beyond repair.

« Congenital absence: Some individuals are born missing certain teeth.

Comparison with those without missing teeth:

Individuals without missing teeth have a complete dentition. Missing teeth can lead to various issues, including:

« Difficulty chewing and speaking: Missing teeth can impair proper function.

« Shifting of remaining teeth: Teeth can drift into the gaps left by missing teeth, leading to misalignment.

* Bone loss in the jaw: The stimulation provided by teeth is essential for maintaining bone density. Missing teeth can result in
bone resorption.

« Aesthetic concerns: Gaps in the smile can affect appearance and self-confidence.

Important Note: This analysis is based on the provided images and is for informational purposes only. A definitive diagnosis
and treatment plan can only be provided by a qualified dental professional after a thorough clinical examination.
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