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ABSTRACT

Recently, significant progress has been made in protein-ligand docking, especially
in deep learning methods, and some benchmarks were proposed, such as PoseBench
and PLINDER. However, these studies typically focus on the self-docking scenario,
which is less practical in real-world applications. Moreover, some studies involve
heavy frameworks requiring extensive training, posing challenges to convenient and
efficient assessment of docking methods. To fill these gaps, we design PoseX, an
open-source benchmark to evaluate both self-docking and cross-docking, enabling
a practical and comprehensive assessment of algorithmic advances. Specifically,
we curated a novel dataset comprising 718 entries for self-docking and 1,312
entries for cross-docking; secondly, we incorporated 23 docking methods in three
methodological categories, including physics-based methods (e.g., Schrodinger
Glide), Al docking methods (e.g., DiffDock) and Al co-folding methods (e.g.,
AlphaFold3); thirdly, we developed a relaxation method for post-processing to
minimize conformational energy and refine binding poses; fourthly, we established
a public leaderboard to rank submitted models in real-time. We derived some key
insights and conclusions through extensive experiments: (1) Al-based approaches
consistently outperform physics-based methods in overall docking success rate.
(2) Most intra- and intermolecular clashes of Al-based approaches can be greatly
alleviated with relaxation, which means combining AI modeling with physics-
based post-processing could achieve excellent performance. (3) Al co-folding
methods exhibit ligand chirality issues, except for Boltz-1x, which introduced
physics-inspired potentials to fix hallucinations, suggesting that stereochemical
modeling greatly improves the structural plausibility of the predicted protein-
ligand complexes. (4) Specifying binding pockets significantly promotes docking
performance, indicating that pocket information can be leveraged adequately,
particularly for Al co-folding methods, in future modeling efforts.

1 INTRODUCTION

Protein-ligand docking is crucial to drug discovery as it predicts how a ligand interacts with a protein,
helping to identify potential drug candidates and accelerate the development of new therapeutics|Huang
& Zou! (2010); [Huang et al.| (2022); Du et al.| (2022); |[Fu et al.| (2022). By understanding these
interactions, researchers can optimize ligands for better binding affinity, specificity, and efficacy,
ultimately accelerating the development of new therapeutics. Learning from known crystal protein-
ligand complexes through machine learning, especially deep learning (DL) techniques, Al-based
approaches have revolutionized protein-ligand docking and substantial progress has been made
recently (Méndez-Lucio et al 2021} |Stirk et al., [2022; [Lu et al.| 2022} |Corso et al},[2022; |Alcaide
et al.l [2024; [Pei et al.l 2023} |Corso et al., 2024 |[Plainer et al.l [2023; |Lu et al., [2024} [Lai et al., [2024;
Cao et al.,2024). In response to the large number of new approaches, recent work has introduced
several benchmarks, such as PoseBench (Morehead et al., [2025) and PLINDER (Durairaj et al.| [2024)),
with corresponding datasets and metrics focusing on the evaluation of protein-ligand interaction.
Despite the rapid progress, existing studies still encounter several challenges, summarized as follows.

1. Self-docking is an impractical setup. Most existing benchmarks, such as PoseBuster (Butten
schoen et al.||2024)) and PoseBench (Morehead et al.l 2025)), focus on the self-docking scenario,
which is less practical in real-world applications. For instance, pharmaceutical chemists usually
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design new drug molecules and dock them with the targets, of which the conformations are extracted
from existing complex structures that are co-crystallized with other published compounds.

Heavy framework and low accessibility. Some benchmarks (e.g., PLINDER (Durairaj et al.,
2024)) suffer from heavy evaluation frameworks that involve data splitting and training, which
are hard to use. While studies such as PoseBuster that only concentrate on evaluation rather than
together with training are worthy of reference, which are lightweight and user-friendly.

Limited model selection for benchmarking. Existing studies often restrict their comparative
scope to a narrow set of models. For instance, PoseBuster evaluated only 5 Al-based approaches
and 2 physics-based methods, while PLINDER exclusively benchmarked against DiffDock (Corso
et al.| 2022), neglecting other notable algorithms.

Therefore, we propose several solutions to address these issues:

1.

Cross-docking is more realistic. To better evaluate the capacity of various docking methods in
a more practical scenario, we incorporate cross-docking, which involves docking various small
molecules extracted from distinct complexes of the same protein with all the conformations except
the native co-crystalized one.

Construction of new dataset. We curated a new dataset named PoseX that collects newly found
crystal structures of protein-ligand complexes in RCSB PDB, which contains 718 entries for
self-docking and 1,312 entries for cross-docking.

Involving 20+ models. We evaluated 23 docking methods encompassing nearly all relevant models
published in peer-reviewed journals and conferences alongside established commercial docking
software across three different categories, including 5 physics-based methods such as Schrodinger
Glide (Friesner et al.L[2004), 11 AI docking methods such as DiffDock, and 7 Al co-folding methods
such as AlphaFold3 (Abramson et al.| 2024).

In addition, we developed a novel relaxation module (also known as energy minimization), which
serves as a post-processing method to refine Al-generated binding poses to improve structural
plausibility. We also established a public online leaderboard, which enables researchers to benchmark
their models against a standardized dataset, fostering transparency and facilitating easy and fair
comparisons for the broader community. The key differences between the existing docking benchmarks
and ours are summarized in Table[]l

Table 1: Comparison of existing docking benchmark studies.

Benchmarks PoseBuster PoseBench PLINDER  PoseX (Ours)
Code of dataset pipeline X X v v
Relaxation X coarse X well-designed
Self-docking evaluation v v v v
Cross-docking evaluation X X X v
# Open-source docking software 2 1 0 2
# Commercial docking software 0 0 0 3
# Physics-based methods 2 1 0 5
# Al docking methods 5 2 1 11
# Al co-folding methods 0 4 0 7
# Total methods 7 7 1 23
Real-time leaderboard X X X v

2 METHODS

We categorize all the docking approaches into three distinct categories: (1) physics-based methods
utilize physics-based scoring functions and sampling algorithms to estimate protein-ligand interactions,
including Discovery Studio (Pawar & Rohane, [2021), Schrodinger Glide (Friesner et al., [2004),
MOE (Vilar et al.l 2008)), AutoDock Vina (Trott & Olsonl 2010; [Eberhardt et al., 2021, and
GNINA (McNutt et al, [2021); (2) Al docking methods produce ligand binding poses based on
the three-dimensional structure of proteins, including DeepDock (Méndez-Lucio et al., [2021)),
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EquiBind (Stirk et al.}[2022), TankBind (Lu et al., [2022)), DiffDock (Corso et al.| 2022), Uni-Mol
Docking V2 (UMD V2) (Alcaide et al.,|[2024), FABind (Pei et al., [2023)), DiffDock-L (Corso et al.,
2024), DiffDock-Pocket (Plainer et al.l 2023), DynamicBind (Lu et al., |2024), Interformer (Lai
et al., 2024), SurfDock (Cao et al. 2024); (3) Al co-folding methods predict both the ligand’s
binding conformation and the protein’s conformational changes induced by ligand binding, which
account for simultaneous structural adaptations of the protein and ligand, enabling more accurate
modeling of their interactions; we involve 7 Al co-folding methods, including NeuralPLexer (Qiao
et al.), RoseTTAFold-All-Atom (RFAA) (Krishna et al., [2024), AlphaFold3 (Abramson et al.,|2024),
Chai-1 (Discovery et al., [2024)), Boltz-1 (Wohlwend et al.,|[2024), Boltz-1x (Wohlwend et al., 2024),
Protenix (Team et al.| [2025). For comparative analysis, we summarize all the compared methods in
Table 2] and the detailed settings of these methods are shown in Appendix [B]

Table 2: Comparison of various methods.

Pocket Pocket  Avg. Runtime

Method Pub. Year License Required Changed  Per Sample !

Physics-based methods

Discovery Studio late 1990s Commercial v X 14.4 min
Schrodinger Glide 2004 Commercial v X 7.2 min
MOE 2008 Commercial v X 50 sec
AutoDock Vina 2010, 2021 Apache-2.0 4 X 18 sec
GNINA 2021 Apache-2.0 v X 12 sec
Al docking methods
DeepDock 2021 MIT 4 X 2.7 min
EquiBind 2022 MIT X X 1.4 sec
TankBind 2022 MIT X X 7.8 sec
DiffDock 2022 MIT X X 1.2 min
UMD V2 2024 MIT v X 24 sec
FABind 2023 MIT X X 8.8 sec
DiffDock-L 2024 MIT X X 1.5 min
DiffDock-Pocket 2024 MIT v v 1.7min
DynamicBind 2024 MIT X v 2.4 min
Interformer 2024 Apache-2.0 v X 0.6 min
SurfDock 2024 MIT v X 10.8 sec
Al co-folding methods
NeuralPLexer 2024 BSD X v 1.5 min
RFAA 2023 BSD X v 9 min
AlphaFold3 2024 CC-BY-NC-SA 4.0 X v 16.5 min
Chai-1 2024 Apache-2.0 X v 3 min
Boltz-1 2024 MIT X 4 3 min
Boltz-1x 2025 MIT X v 3 min
Protenix 2025 Apache-2.0 X v 3.6 min

! The running environment and parameters of each method are shown in Appendix @

Relaxation as Post-processing Relaxation in molecular docking, also known as energy minimization,
is a post-processing method used to refine and optimize docked protein-ligand complexes (Guedes
et al.| 2014; |Amaro et al.| 2008)). It involves energy minimization and sometimes short molecular
dynamics simulations to resolve steric clashes, improve atomic interactions, and ensure the system
reaches a stable, low-energy conformation. This step enhances the physical realism and the accuracy
of the docking results, making the predicted binding poses more reliable for further analysis or
experimental validation. In this paper, we introduce a novel relaxation module, the novelty of
which is summarized as: (1) Implemented an automated relaxation process for complexes based on
OpenMM (Eastman et al., 2017). (2) Established a comprehensive automatic data processing pipeline
for proteins and small molecules, including fixing missing chains, capping the N- and C-terminals,
adding formal charges to proteins and small molecules, and applying restraints to backbone atoms (CA,
C, N, O). (3) Supports small molecule force field parameters from GAFF and OpenFF (Consortium,
2024). (4) Supports partial charge calculation methods for small molecules, including Gasteiger and
MMFF94. (5) Effectively alleviates unreasonable predicted conformations, improving the pass rate of
PB-Valid. The technical details of the relaxation process are provided in Appendix
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3 DATASET

3.1 SELF-DOCKING VERSUS CROSS-DOCKING

Self-docking. Self-docking involves docking a ligand back into its native co-crystallized conforma-
tion (Kawatkar et al.,|2009). This is typically used to check if the docking software can accurately
reproduce the known binding pose, helping validate the method. Most existing benchmarks only
consider the self-docking setup.

Cross-docking. Cross-docking refers to dock molecules extracted from distinct complexes of the
same protein with all conformations except the native co-crystalized one. This approach is considered
a more versatile evaluation, as it takes into account the fact that the receptor protein may undergo
conformational changes and might not be fully optimized for docking with the ligand. The difference
between self-docking and cross-docking is illustrated in Figure|[T]

protein X

)

complex X-/.: protein X bind with ligand

self-docking cross-docking
——ee —

complex X- : protein X bind with ligand

Figure 1: Self-docking vs. Cross-docking.

3.2 ASTEX

The Astex Diverse set (Hartshorn et al.,[2007), published in 2007, is a set of hand-picked, relevant,
diverse, and high-quality protein—ligand complexes from the RCSB PDB. It comprises 85 unique
and significant protein-ligand complexes. These complexes have been appropriately formatted for
docking purposes and will be made freely accessible to the entire research community via the website
(http://www.ccdc.cam.ac.uk). The Astex Diverse set only supports self-docking evaluation.

3.3 PoseX: Our CURATED DATASET

In this paper, we curated a high-quality protein-ligand complex structure dataset designed to evaluate
molecular docking methods named PoseX. It consists of carefully selected crystal structures from the
RCSB Protein Data Bank (RCSB PDB) (Rose et al.,[2016) with two subsets for evaluating self-docking
and cross-docking tasks. The dataset only includes complex structures published from 2022 January
Ist to 2025 January Ist, ensuring that there is no overlap with the training data of all Al-based
approaches that are being evaluated (as shown in Table[S3). The construction steps of the two subsets
PoseX Self-Docking (PoseX-SD) and PoseX Cross-Docking (PoseX-CD) are shown in Tableand
Table[S__Z} Ultimately, there are 718 entries for PoseX-SD and 1,312 entries for PoseX-CD, comprising
109 protein targets (a total of 371 structures) and 362 small molecules. The distribution of the number
of conformation structures per target is shown in Figure and the distribution of pocket similarity
is shown in Figure [STb]

4 EXPERIMENTS

4.1 EvALUATION METRICS

Performance evaluation of protein-ligand docking involves metrics that assess both the quality of
the predicted binding pose and the chemical validity as well as the structural plausibility, which are
described in detail as follows.
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RMSD. In accordance with most benchmarking studies, we evaluate the quality of the binding poses
with Root Mean Square Deviation (RMSD), which measures the distance between the predicted and
the ground-truth complex structures. Lower RMSD scores indicate better binding poses.

PB-Valid. The physicochemical validity and structural plausibility of the generated binding poses
are measured with the PoseBuster test suite (i.e., PB-Valid). This suite evaluates whether predicted
ligand poses are consistent with known chemical and structural constraints. See Appendix [D|for more
details.

Success rate. The docking success rate is defined as the percentage of the top-1 ranked predictions
satisfying either of the following criteria: (1) RMSD < 2A, or (2) RMSD < 2A & PB-Valid. For
PoseX-CD, we report the averaged success rate at the target level in view of the uneven distribution of
docking sizes per target (as shown in Figure [STa). Higher success rates indicate better performance.

4.2 REesuLTs

4.2.1 OVERALL PERFORMANCE ANALYSIS

Figure 2] Figure[S§|and Table [S4] present a comprehensive evaluation of various docking approaches
on three benchmarks — PoseX-SD, PoseX-CD and Astex — under RMSD < 2A and PB-Valid criteria.
From these results, we highlight several main observations and provide a more detailed analysis of
these results.

1. Al-based approaches lead in success rate. The latest Al-based approaches, both Al docking meth-
ods (e.g., SurfDock) and Al co-folding methods (e.g., AlphaFold3) have consistently outperformed
physics-based methods in overall docking pose and validity.

2. Relaxation mitigates clashing significantly. The intra- and intermolecular clashes of Al-based
approaches can be greatly alleviated with relaxation, which means that the force field-based energy
minimization step is very crucial to achieve excellent performance in real-world applications,
particularly for AI modeling.

3. Chirality warrants further improvement. Most of the Al co-folding methods exhibit ligand
chirality issues, such as AlphaFold3 and Chai-1, except for Boltz-1x, which introduces an inference
time steering technique employing physics-inspired potential to fix hallucinations and enhance
structural plausibility.

4. Pocket information is crucial to docking. Explicit modeling of binding pocket substantially
improves docking performance, as seen by the consistent performance gains of DiffDock-Pocket
over its counterpart DiffDock across both self-docking and cross-docking, indicating that pocket
information can be leveraged adequately, especially for Al co-folding methods, in future modeling
efforts.

Astex Benchmark. The Astex benchmark represents an idealized docking scenario with high-quality
co-crystal structures. Since most Al-based approaches use the training dataset derived from PDBBind
v2020, which includes 16,379 protein-ligand complexes, we analyzed and found that 43 of the 85
complexes in the Astex Diverse Set are included in this training set. In this setting, Al docking methods
outperform all other categories overall. UMD V2 and SurfDock achieve the highest docking success
rates (94.1%) when integrated with our structural relaxation protocol, surpassing physics-based
methods, such as Glide and Discovery Studio, by over 25%. DiffDock-Pocket, Interformer, and
DiffDock-L also perform strongly, achieving success rates above 83.8%. While Al co-folding methods
such as AlphaFold3, Protenix, and Chai-1 deliver competitive results (over 80% success), they are
marginally outperformed by docking-specialized architectures. Physics-based methods like AutoDock
Vina and MOE plateau around 56.4%—67.1%, even with induced-fit docking (e.g., Glide IFD). These
results illustrate the substantial performance gains offered by Al modeling tailored specifically for
pose prediction.

PoseX-SD Benchmark. For PoseX-SD evaluation, SurfDock (78.0%) achieves the overall state-of-
the-art performance, and UMD V2 takes the second place. DiffDock-Pocket shows clear advantages
over its pocket-agnostic counterpart, with a success rate of 52.6%. Among Al co-folding methods,
AlphaFold3 and Protenix perform well (60.5% and 56.3%, respectively), demonstrating their capacity
to model close-range binding interactions. In contrast, earlier Al docking methods such as EquiBind
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and TankBind perform poorly (below 20%), meanwhile, they exhibit significant issues with structural
plausibility. Physics-based methods such as Glide and Discovery Studio remain clustered in the
40-65% range. Most Al-based approaches benefit from the relaxation method we developed, and

their intra- and intermolecular validity are significantly improved.
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Figure 2: Performance on PoseX-SD and PoseX-CD. Mean values of three independent runs are
reported here for each method, and detailed results with standard deviation are reported in Table@
Striped bars represent the proportion of predictions with RMSD < 2A, with numerical values indicated
using bar labels. Solid bars indicate predictions that additionally satisfy PoseBuster validation criteria
(PB-valid). Results with and without relaxation are distinguished by different colors.

PoseX-CD Benchmark. For PoseX-CD evaluation, SurfDock (77.0%) and UMD V2 (69.2%) are
still the top performers in all three categories of docking methods, as well as AlphaFold3, which
achieves competitive performance (68.6%) against UMD V2. We observed that Al docking methods
have developed rapidly in recent years, of which the latest models (such as SurfDock, UMD V2,
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Interformer, and DiffDock-Pocket) demonstrably surpass the earlier models (such as EquiBind,
TankBind, and DeepDock). For Al co-folding methods, AlphaFold3 defeats other models (such as
Chai-1, Boltz-1, Boltz-1x and Proteinx) by a narrow margin (1.6% - 7.5%). Notably, physics-based
methods struggle significantly in this scenario. For example, in the PoseX-SD task, only 3 A/
docking methods outperform the leading physics-based method, GNINA, in terms of the percentage
of RMSD < 2A with relaxation. However, in the PoseX-CD task, 9 Al-based approaches (including
4 Al docking methods and 5 Al co-folding methods) surpass GNINA (54.1%). This underscores
a significant advantage of Al-based approaches over physics-based methods in the cross-docking
scenario. Figure and Figure depict an illustrative example of the superior performance of
Al-based methods. Relaxation yields consistent improvements across most approaches, emphasizing
its role in resolving steric or geometric inconsistencies.

4.2.2 POCKET SIMILARITY BASED GENERALIZABILITY ANALYSIS

To further understand the generalization capacity of various docking approaches, we analyze the
relationship between pocket similarity and ligand RMSD across different scenarios. In view of the
cut-off time of the training data for each method (as shown in Table [S3)), the pocket similarity is
calculated as the maximum TM-score compared to pockets extracted from crystal structures released
before 2022 on RCSB PDB, where the pocket is defined as the residues within 10.0A of the ligand.
Figure [S2]and Figure[S3] present per-sample scatter plots of pocket similarity versus docking RMSD
for self-docking and cross-docking, respectively. Each plot reports Pearson’s correlation coeflicient
to quantify the strength and direction of the relationship. Figure [3] complements these results by
summarizing the average ligand RMSD separately for test cases with similar and dissimilar pockets.
Figure |[S4] and Figure [S5|illustrate the relationship between the ligand RMSD and the decreasing
binding pocket similarity of Al-based approaches.

Self-Docking Observations. In the self-docking scenario, most Al-based approaches exhibit a
moderate negative correlation between pocket similarity and ligand RMSD, indicating that the leakage
of pocket information is associated with improved ligand pose accuracy. For example, Protenix and
Chai-1 show stronger correlations (r = —0.390 and » = —0.389, respectively), while other models
such as AlphaFold3 (r = —0.313) and Boltz-1 (r = —0.276) exhibit similar trends. DiffDock and
DiffDock-L display similar correlations (r = —0.283 and » = —0.278, respectively), suggesting that
docking-specific models also benefit from the pocket leakage.

In contrast, physics-based methods show weaker or near-zero correlations. Glide (r = 0.010),
AutoDock Vina (r = —0.009), and Discovery Studio (r = —0.001) exhibit negligible correlations,
suggesting consistent docking performance across varying pocket similarities.

Notably, SurfDock (r = —0.091) and UMD V2 (r = —0.134), which achieve top performance overall,
show only weak correlation between pocket similarity and ligand RMSD. These findings suggest that
their success likely stems from robust pose prediction mechanisms that have less sensitivity for pocket
information leakage. These results highlight the importance of robust pose prediction in achieving
high docking performance, even when pocket similarity is limited, in the self-docking scenario.

Cross-Docking Observations. The cross-docking setting reveals an overall stronger correlation
between pocket similarity and ligand RMSD, particularly for Al co-folding methods and Al docking
methods. Chai-1 (r = —0.526), Boltz-1 (r = —0.521), and Protenix (r = —0.553) exhibit strong
negative correlations, suggesting that successful docking in cross-docking is highly contingent upon
correctly modeling the target pocket’s conformation. DiffDock and its variants continue to reflect
this trend (e.g., DiffDock » = —0.505; DiffDock-L r = —0.498), further confirming the influence of
pocket leakage under receptor shift scenarios.

Models such as DynamicBind (r = —0.576) and DiffDock-Pocket (r = —0.425) also show a strong
correlation between pocket similarity and ligand RMSD, reinforcing that flexible or dynamic Al
docking methods also have constrained generalization. In contrast, physics-based methods such as
Glide (r = 0.015) and Discovery Studio (r = 0.053) again exhibit negligible correlation.

Even high-performing models like SurfDock (r = —0.376) and UMD V2 (r = —0.280) show
stronger correlations in this setting than in self-docking, indicating that pocket modeling becomes
more critical in the presence of conformational variance. This further highlights the need for improved
pocket-conditioned pose generation in cross-docking scenarios.
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Figure 3: Cross-docking performance difference on “similar” and “dissimilar” binding pockets.

Performance Stratified by Pocket Similarity. Figure [3further stratifies the average ligand RMSD
for each method, where the evaluation set is split into two groups, a similar group (96 protein targets,
Pocket Similarity > 0.70) and a dissimilar group (13 protein targets, Pocket Similarity < 0.70).
Across all the Al-based approaches, both Al docking methods and Al co-folding methods, docking
into similar pockets consistently achieve lower RMSD. However, the degradation of different models
in dissimilar pockets evaluation varies significantly. Physics-based methods such as Glide, MOE,
and Discovery Studio consistently demonstrate a very small gap between similar and dissimilar
evaluations, which shows excellent generalizability that outperforms most of the Al-based approaches
in the dissimilar pocket scenario. Earlier Al docking methods (e.g., TankBind) and most A co-folding
methods (e.g., Chai-1, Protenix, AlphaFold3) suffer steep performance drops—TankBind degrades
from 4.79A to 7.31A, Chai-1 degrades from 2.36A to 5.72A, and Protenix degrades from 2.53A
to 6.30A—highlighting their overreliance on pocket leakage and lack of adaptability. The latest Al
docking methods, particularly SurfDock (1.56A to 2.39A) and UMD V2 (2.08A to 3.04A), demonstrate
much smaller gaps and showcase robust generalization.

Overall Implications. These analyses collectively suggest that pocket similarity is a key determinant
of successful docking, particularly for the cross-docking scenario. Al co-folding method and Al
docking methods reveal a stronger dependence on pocket information, while physics-based methods
show little sensitivity. Notably, even the state-of-the-art models such as SurfDock and UMD V2
exhibit varying levels of dependence on pocket fidelity, indicating that future improvements in docking
may arise from synergistically enhancing both pocket modeling and pose prediction.

4.2.3 ImPACT OF RELAXATION FROM A PHYSICALLY-BASED VALIDATION PERSPECTIVE

We systematically evaluated the docking performance of various methods using the PoseBuster test
suite, comprising 20 physicochemical validation metrics that assess stereochemistry and intra- and
intermolecular validity. Figures [S6|and [S7|illustrate the failure rates of the PB-Valid metric before
and after relaxation in self-docking and cross-docking settings, respectively.

Without Relaxation. In the absence of relaxation, most Al docking methods generate ligand poses
that violate physicochemical constraints. Notably, models such as EquiBind, FABind, and DeepDock
exhibit a high failure rate in intermolecular validity, especially in the minimum distance-to-protein
metric, with only approximately 10% of the predictions passing the test. Even SurfDock, which
achieves the lowest RMSD, fails in nearly half of its predictions for this metric. Among the A/l
docking methods, UMD V2 demonstrates the best performance on PB-Valid, but still exhibits chirality
prediction errors. Among Al co-folding methods, NeuralPLexer and RFAA perform poorly in
intermolecular validity. AlphaFold3 and similar models show relatively stable performance, but are
not immune to chirality errors. In comparison, the recently introduced Boltz-1x model effectively
addresses these issues, achieving the highest PB-Valid pass rate among all Al methods. Physics-based
methods consistently perform well in structural plausibility, achieving high pass rates.

With Relaxation. Most Al-based approaches benefit significantly from our relaxation protocol, which
effectively mitigates intra- and intermolecular clashes. SurfDock emerges as the top-performing
method on the benchmark with post-relaxation. However, relaxation does not resolve chirality
errors and UMD V2 shows no performance improvement in this process. Our relaxation module
(Appendix [C)) refines atomic positions and resolves steric clashes (e.g., Figure[STT]), but it does not
correct chirality errors, which involve incorrect stereochemical configurations at tetrahedral centers,
requiring specific bond reconfigurations beyond energy minimization. For UMD V2, Figures
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and[S7)show that a significant portion of PB-Valid failures stem from tetrahedral chirality errors. As
relaxation cannot address these stereochemical issues, the PB-Valid scores show no improvement.
Similarly, Al co-folding methods, including AlphaFold3, Chai-1, Boltz-1, and Protenix, exhibit limited
improvement due to persistent chirality errors. For Al co-folding methods, tetrahedral chirality failures
arise because these models rely on learned patterns from training data, which may not fully capture
the precise stereochemical constraints required for correct chiral center configurations. For instance,
(Childs et al., 2025) highlight that AlphaFold3 struggles with stereochemical accuracy for D-peptides
due to its training data bias toward L-amino acid structures. This limitation extends to other Al
co-folding methods in our study, except for Boltz-1x, which ensures stereochemical correctness by
introducing physics-inspired potentials to fix hallucinations. Figure [S9)illustrates two representative
cases of chirality errors in docking predictions.

Summary. Integrating relaxation with Al docking methods yields the state-of-the-art performance.
Concurrently, advancements in Al for biology are driving progress in docking methodologies. Boltz-1x
incorporates physical mechanisms to produce docking results that satisfy physical constraints without
relying on relaxation. These findings highlight the critical role of combining physically informed
generation with refinement procedures in docking pipelines, particularly when applied to drug design
scenarios requiring atomic-level accuracy.

5 CONCLUSION

This paper proposed PoseX, a comprehensive benchmark for protein-ligand docking. Specifically,
we curated a new dataset with newly released protein-ligand complex crystal structures focusing
on both self-docking and cross-docking, and incorporated 23 docking methods across three main
research lines (physics-based methods, Al docking methods, and Al co-folding methods) to make an
exhaustive comparison. We also designed a novel relaxation module to refine the Al-generated binding
pose through energy minimization. Furthermore, we developed an online leaderboard that fosters
transparency and facilitates easy and fair comparisons for protein-ligand docking. By conducting
thorough empirical studies, we drew several key conclusions: (1) Both Al docking methods and Al
co-folding methods have outperformed physics-based methods in overall docking success rate. (2)
Most structural plausibility (except chirality) of Al-based approaches can be enhanced with relaxation,
which means combining Al modeling with physics-based post-processing may achieve excellent
performance. (3) Almost all the AI co-folding methods are plagued by ligand chirality, except for
Boltz-1x, which introduced a new inference time steering technique to fix hallucinations, pointing
out the direction of incorporation of advantages of Al and physics. (4) Pocket information can be
leveraged adequately, especially for Al co-folding methods, to further promote the performance in
real-world applications.

6 LmvrtaTioN AND FUTURE WORK

Here, we briefly summarize the limitations of this work and present some directions for future
research.

1. Evaluation on downstream tasks with binding affinities. While we focus on pose prediction and
structural plausibility, binding affinity prediction remains an underexplored but complementary
objective. Joint evaluation of structure and affinity on downstream tasks such as drug-target
interaction and enzyme-substrate interaction would enable a more holistic assessment of docking
algorithms and also remain an exciting direction for future research.

2. Benchmarking on multi-ligand systems. So far, most existing benchmarks focus on the evaluation
of single-ligand docking, while multi-ligand docking is also practical in real-world applications
such as enzyme engineering, where enzymes usually catalyze substrates together with co-factors.
Thus, it is worth being assessed exhaustively in the future.

3. Taking protein dynamics into account. To date, existing studies always evaluate docking with
rigid protein conformations, while integrating protein dynamics will better reflect the kinetic
nature of biomolecular interactions in vivo. Future benchmarks could incorporate conformational
ensembles of receptor structures to evaluate various models in a comprehensive way.
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REPRODUCIBILITY STATEMENT

The code used in this paper can be found in https://anonymous.4open.science/r/PoseX_ICLR2026-+
6E6E/. The construction process of PoseX-SD and PoseX-CD, as well as the experiments carried out
in this work, could be reproduced by following the instructions in README. The corresponding
parameters of all the methods are shown in Appendix [B]
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A DATASET CONSTRUCTION AND STATISTICAL ANALYSIS
A.1 DaTASET CONSTRUCTION PROCESS

Table S1: Construction process of PoseX Self-Docking (PoseX-SD).

. # proteins # ligands
Selection Step (uniqu% PDB IDs) (unique CCD IDs)
PDB entries released from January 1st, 2022 to January Ist, 2025 13207 6877
feature a refinement resolution of 2 A or better and include at least one
protein and one ligand
Remove unknown ligands (e.g., UNX, UNL) 13202 6875
Remove proteins with a sequence length greater than 2000 11771 6442
Ligands weighing from 100 Da to 900 Da 9768 6196
Ligands with at least 3 heavy atoms 9706 6163
Ligands containing only H, C, O, N, P, S, F, CI atoms 9030 5741
Ligands that are not covalently bound to protein 8383 5185
Structures with no unknown atoms (e.g., element X) 8349 5166
Ligand real space R-factor is at most 0.2 7521 4476
Ligand real space correlation coefficient is at least 0.95 5734 3426
Ligand model completeness is 100% 5645 3358
Ligand starting conformation could be generated with ETKDGv3 5638 3351
All ligand SDF files can be loaded with RDKit and pass its sanitization 5634 3345
PDB ligand report does not list stereochemical errors 5600 3317
PDB ligand report does not list any atomic clashes 3971 2541
Select single protein-ligand conformation ! 3971 2541
Intermolecular distance between the ligand(s) and the protein is at least 3945 2527
02A
Intermolecular distance between ligand(s) and other small organic 3889 2477
molecules is at least 0.2 A
Intermolecular distance between ligand(s) and ion metals in complex is 3889 2477
at least 0.2 A
Remove ligands which are within 5.0 A of any protein symmetry mate 2451 1598
Get a set with unique pdbs and unique ccds by Hopcroft—Karp matching 1587 1587
algorithm
Select representative PDB entries by clustering protein sequences 718 718

! The first conformation is chosen when multiple conformations are available in the PDB entry.
2 Clustering with MMseqs2 is done with a sequence identity threshold of 0% and a minimum coverage of 100%.

13



Under review as a conference paper at ICLR 2026

Table S2: Construction process of PoseX Cross-Docking (PoseX-CD).

. # proteins # ligands
Selection Step (unique PDB IDs)  (unique CCD TDs)
PDB entries released from January 1Ist, 2022 to January 1st, 2025 13207 6877
feature a refinement resolution of 2 A or better and include at least one
protein and one ligand
Remove unknown ligands (e.g., UNX, UNL) 13202 6875
Remove proteins with a sequence length greater than 2000 11771 6442
Ligands weighing from 100 Da to 900 Da 9768 6196
Ligands with at least 3 heavy atoms 9706 6163
Ligands containing only H, C, O, N, P, S, F, CI atoms 9030 5741
Ligands that are not covalently bound to protein 8383 5185
Structures with no unknown atoms (e.g., element X) 8349 5166
Ligand real space R-factor is at most 0.2 7521 4476
Ligand real space correlation coefficient is at least 0.95 5734 3426
Ligand model completeness is 100% 5645 3358
Ligand starting conformation could be generated with ETKDGv3 5638 3351
All ligand SDF files can be loaded with RDKit and pass its sanitization 5634 3345
PDB ligand report does not list stereochemical errors 5600 3317
PDB ligand report does not list any atomic clashes 3971 2541
Select single protein-ligand conformation ! 3971 2541
Intermolecular distance between the ligand(s) and the protein is at least 3945 2527
02 A
Intermolecular distance between the ligand(s) and the other ligands is 2232 1536
at least 5.0 A
Remove ligands which are within 5.0 A of any protein symmetry mate 1240 908
Cluster proteins that have at least 90% sequence identity > 890 708
Structuges can be successfully aligned to the reference structure in each 371 362
cluster ”

! The first conformation is chosen when multiple conformations are available in the PDB entry.

2 Clustering with MMseqs?2 is done with a sequence identity threshold of 90% and a minimum coverage of 80%.

3 Each candidate protein is structurally aligned to the reference protein via the superposition of C,, atom of amino
acid residues using PyMOL. A candidate PDB entry is removed if the RMSD of the protein alignment is greater
than 2.0 A and a candidate ligand is removed if it is 4.0 A away from the reference ligand.

A.2  StaTtisTicAL CHARACTERISTICS
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Figure S1: (a) The distribution of structures per target shows that every protein adopts at least two
distinct conformations, and about half of the targets are represented by just two. (b) The distribution
of pocket similarities.
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B DockING METHODS AND EVALUATION SETTINGS

This section presents the docking methods employed in our evaluation and illustrates the corresponding
setups.

B.1 Puysics-BASED METHODS

Physics-based methods employ physical forces and geometric complementarity to model molecular
interactions, predicting ligand binding to the target protein. Usually, the atomic coordinates of the
protein’s binding site remain fixed, while the ligand undergoes flexible conformational changes. This
schema reduces the computational complexity of docking simulations by neglecting the dynamic
flexibility of the protein structure. However, although computationally efficient, this method may
fail to fully account for the inherent flexibility of proteins, as biological systems often exhibit
protein conformational changes upon ligand binding. We include 5 physics-based methods in this
paper, including Discovery Studio (Pawar & Rohanel 2021)), Schrédinger Glide (Friesner et al.)
2004), MOE (Vilar et al., [2008)), AutoDock Vina (Trott & Olson, 2010; Eberhardt et al., [2021)) and
GNINA (McNutt et al., [2021]).

B.1.1 ScHRODINGER GLIDE

Schrodinger Glide is a leading provider of biomolecular simulation software, and Glide is one
of its flagship products, focusing on precise molecular docking simulations (Friesner et al., [2004;
Bhachoo & Beuming|, 2017). Glide adopts a unique hierarchical docking approach, starting with
coarse screening and then performing fine optimization on high-scoring results to improve prediction
accuracy.

Software Version: Schrodinger Suite 2022-1, Build 141
Docking Workflow
1. Use PrepWizard to preprocess the protein files by adding hydrogens and optimizing with
the OPLS3 force field at pH 7.4.

2. Use LigPrep to preprocess small molecules, preserving the chirality of the input ligand. Use
Epik to predict the pKa and protonation states of small molecules at pH 7.0. Optimize the
small-molecule conformations using the S-OPLS force field, and output one small-molecule
conformation as the input for docking.

3. Define the INNERBOX dimensions as 10 x 10 x 10 A, and the OUTERBOX dimensions as:
SiZCI Tmax — Lmin + 20
Sizey = | Ymax — Ymin + 20
Size, Zmax — Zmin + 20

The force field is set to OPLS3, and all other parameters are set by default. Generate a grid
file.

4. Perform molecular docking using Glide SP (Standard Precision), and output one small
molecule pose as the docking result.

Runtime Environment: Run on an Intel 19-10920X CPU using 16 cores.

B.1.2 Discovery StTubpio

Discovery Studio (Pawar & Rohane} [2021)), developed by Dassault Systemes BIOVIA, is a com-
prehensive life sciences research platform that covers molecular modeling, virtual screening, and
more. For protein-ligand binding, Discovery Studio performs conformational sampling around a
given binding site and ranks potential poses using physics-based scoring functions like CDOCKER
(which combines grid-based molecular dynamics and CHARMM force fields).

Software Version: v2021.1.0.20298.
Docking Workflow:
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1. Use the Proteins Preparation components in Discovery Studio to process the protein files.
The protein was protonated at pH 7.4 with a solvent ionic strength of 0.145 M. Minimization
was performed using the CHARMm force field to optimize the protein structure, and all
other parameters are set by default.

2. Use the Ligands Preparation components in Discovery Studio to process the ligand files.
Enumerate ionization states for each ligand within a pH range of 6.5-8.5. Enumerate
automeric forms for each ligand with a maximum of 10 tautomers per ligand. Fix the bad
valencies by adjusting formal charges, and all other parameters are set by default.

3. Dock the prepared proteins and the corresponding prepared ligands using the CDOCKER
components in Discovery Studio. The docking site was centered at:

T Tmax+Zmin
‘ t:

Y — Ymax TYmin
.| =

Ze Zmaxg‘zmiu
- 2

Define the binding sphere radius as:

R = max{(Tmax — Tmin)> Umax — Ymin) — (Zmax — Zmin)} + 20

The docking simulations were performed using the CHARMm force field. Assign the
partial charges to the ligands via the Momany-Rone method, and all other parameters are
set by default. 10 top docking poses output each docking run, and the best-scored pose was
selected as the final docking result.

Runtime Environment: Run on an Intel Ultra 5 125H CPU using 14 cores.

B.1.3 MoLEcULAR OPERATING ENVIRONMENT (MOE)

Molecular Operating Environment (MOE) (Vilar et al.| 2008)), developed by the Canadian company
Chemical Computing Group, is a commercial drug discovery software platform that combines
visualization, modeling, simulations, and methodology development into a single, unified package.

Software Version: MOE 2024.06.
Docking Workflow

. An SVL script automates the docking pipeline.

. The StructurePreparation function is employed to preprocess protein structures.

. The binding site is defined by reference ligands.

. The Triangle Matcher algorithm is utilized to generate initial ligand poses.

. The scoring function is configured as London dG, with a maximum of 30 poses generated.

AN L AW =

. Poses are refined using a fixed receptor, optimizing only the ligand’s position and conforma-
tion, with the re-scoring function configured as GBVI/WSA dG and a maximum of 5 poses
retained.

Runtime Environment: Run on an AMD EPYC 9554 CPU.

B.1.4 AutoDock ViNa

AutoDock Vina (Eberhardt et al.| [2021) is one of the fastest and most widely used open-source
molecule docking programs. It combines global search (to identify potential binding modes) with
local optimization (to refine these modes).

Software Versions
¢ AutoDock-Vina: 1.2.6
e MGLTools: 1.5.7

* Reduce: 4.14.230914
* OpenBabel: 3.1.0
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* Meeko: 0.6.1
Docking Workflow

1. Use Reduce to add polar hydrogens to the protein structure.

2. Use OpenBabel to add non-polar hydrogens and normalize atom names, exporting the
protein in a format recognizable by MGLTools.

3. Use the receptor_prepared4.py script from MGLTools to convert the hydrogen-added protein
PDB file into a PDBQT file.

. Use OpenBabel to add hydrogens to the ligand molecule at pH 7.4.

[T B SN

. Use the mk_prepare_ligand.py script from Meeko to convert the hydrogen-added ligand
SDF file into a PDBQT file.

6. Define the docking box center and size as follows:

x Tmax+Zmin
(&3
Ye — ymax-?f-ymin
Ze Zmax 3’2111in
2

Sizem Tmax — Lmin T 20
Sizey = | Ymax — Ymin + 20
Size, Zmax — Zmin + 20

7. Perform molecular docking using the prepared protein and ligand PDBQT files.

8. Use vina_split to split the output file, extract the best-scored pose for each ligand, and
convert the resulting PDBQT file into an SDF file using Meeko for the final output.

Runtime Environment: Run on an AMD EPYC 9554 CPU, with no specified core limit and up to
256 cores available.

B.1.5 GNINA

GNINA (McNautt et al., 20215 2025) is a relatively new project that introduces DL techniques into the
field of molecular docking, particularly leveraging convolutional neural networks (CNNs) as scoring
functions to improve docking scoring. It is an open-source software.

Docker Image: https://hub.docker.com/layers/gnina/gnina/latest/images

Running Parameters: The command used is:
gnina -r rec.pdb -1 lig.sdf -autobox_ref.sdf -o out.sdf,

where 1ig.sdf is PDB_CCD_ligand_start_conf.sdf and ref.sdf is
PDB_CCD_1ligand.sdf.

Runtime Environment: Run on Nvidia A6000 GPU.

B.2 Al DockiNG METHODS

Al docking methods utilize SMILES strings of ligands and three-dimensional structures of protein
targets as input to predict energetically favorable ligand conformations bound to target proteins.
These methods systematically explore the conformational space of small molecules to identify
low-energy configurations that optimize the binding affinity to proteins. By sampling diverse
ligand conformations, Al docking methods enhance the optimization of spatial arrangements to
maximize interactions with protein active sites, including hydrogen bonds, hydrophobic interactions,
and electrostatic complementarity. We involve 11 Al docking methods in this paper, including
DeepDock (Méndez-Lucio et al.,|2021)), EquiBind (Stark et al., 2022)), TankBind (Lu et al., [2022),
DiftfDock (Corso et al.,[2022), UMD V2 (Alcaide et al.| 2024), FABind (Pei et al.| [2023)), DiffDock-
L (Corso et al.| 2024), DiffDock-Pocket (Plainer et alJ, [2023)), DynamicBind (Lu et al., [2024]),
Interformer (Lai et al.,[2024)) and SurfDock (Cao et al., [2024).
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B.2.1 DgeeprDock

DeepDock (Méndez-Lucio et al.,2021) is a geometric DL model that learns a statistical potential
based on the distance likelihood.

GitHub Repository: https://github.com/OptiMal-PSE-Lab/DeepDock
GitHub Commit Hash: able45044c5e0a69105b48d09ea984c6aSebc26¢
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Intel(R) Xeon(R) CPU E5-2620 v4.

B.2.2 EquiBIND

EquiBind (Stirk et al.,2022) is an SE(3)-equivariant geometric DL model designed for direct-shot
prediction of both i) the receptor binding site (blind docking) and ii) the ligand’s bound pose and
orientation.

GitHub Repository: https://github.com/HannesStark/EquiBind
GitHub Commit Hash: 41bd00fd6801b95d2cf6c4d300cd76ae5e6dab5e
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A6000 GPU.

B.2.3 TaNkBIND

TankBind (Lu et al.| [2022) incorporates trigonometric constraints as a robust inductive bias into
the model, and explicitly examines all potential binding sites for each protein by dividing the entire
protein into functional blocks. establishes an efficient diffusion process within this space.

GitHub Repository: https://github.com/luwei0917/TankBind
GitHub Commit Hash: ff85f511db11d7a3e648d2e01cd6fdb4f9823483

Running Parameters: Use the structure of the entire protein as input for prediction, rather than
chains within 10A of the ligand in the default setting.

Runtime Environment: Run on an AMD EPYC 9554 CPU.

B.2.4 DirrDock

DiffDock (Corso et al.,[2022) is a diffusion-based generative model defined on the non-Euclidean
manifold of ligand poses. It maps this manifold to the product space of the degrees of freedom
(translational, rotational, and torsional) relevant to docking and establishes an efficient diffusion
process within this space.

GitHub Repository: https://github.com/gcorso/DiffDock
GitHub Commit Hash: bc6b5151457ea5304ee69779d92de0fded599a2¢
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.2.5 DirrDock-L

DiffDock-L (Corso et al., [2024)) is a variant of DiffDock that scales up data and model size by
integrating synthetic data strategies.

GitHub Repository: https://github.com/gcorso/DiffDock
GitHub Commit Hash: b4704d94de74d8cb2acbe7ec84ad234c09e78009
Running Parameters: samples_per_complex is changed from the default value of 10 to 40.

Runtime Environment: Run on Nvidia A800 GPU.
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B.2.6 DirrDock-Pocker

DiffDock-Pocket (Plainer et al., 2023) is a variant of DiffDock with additional binding pocket
specification.

GitHub Repository: https://github.com/plainerman/DiffDock-Pocket
GitHub Commit Hash: 3902bdd4d42ee5254d372a694d0052992¢92ad93
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A6000 GPU.

B.2.7 DynNnamicBIND

DynamicBind (Lu et al., 2024)) utilizes equivariant geometric diffusion networks to generate a smooth
energy landscape, facilitating efficient transitions between various equilibrium states. DynamicBind
accurately identifies ligand-specific conformations from unbound protein structures, eliminating the
need for holo-structures or extensive sampling.

GitHub Repository: https://github.com/luwei0917/DynamicBind
GitHub Commit Hash: abdcd83f313cd20d50c3917e04615e989a8f63e5
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.2.8 FABIND

FABind (Pei et al} 2023) is an end-to-end model that integrates pocket prediction and docking to
achieve precise and efficient protein-ligand binding predictions. It involves a ligand-informed pocket
prediction module, which is also utilized to enhance the accuracy of docking pose estimation.

GitHub Repository: https://github.com/QizhiPei/FABind
GitHub Commit Hash: bc6b5151457ea5304ee69779d92de0fded599a2¢
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.2.9 Uni-MoL DockiIng V2

UMD V2 (Alcaide et al., 2024) represents Uni-Mol Docking v2. It combines the pretrained molecular
and pocket models to learn the distance matrix, and then uses a coordinate model to predict the final
coordinates of the molecule.

GitHub Repository: https://github.com/deepmodeling/Uni-Mol/tree/main/
unimol_docking_v2

GitHub Commit Hash: c0365df6535b90197246399417a9b21250268352

Running Parameters: Default parameters are used in prediction. About one-fifth of the molecules in
the model output will encounter RDKit’s sanitization check errors. This issue is resolved by reading
in the correct molecular topology and then assigning the coordinates predicted by Uni-Mol Docking
v2 to the molecules with the new topology

Runtime Environment: Run on Nvidia A6000 GPU.

B.2.10 INTERFORMER

Interformer (Lai et al} [2024), a unified model based on the Graph-Transformer architecture, is
specifically designed to capture non-covalent interactions using an interaction-aware mixture density
network. Furthermore, it implements a negative sampling strategy to effectively adjust the interaction
distribution, enhancing affinity prediction accuracy.

19


https://github.com/plainerman/DiffDock-Pocket
https://github.com/luwei0917/DynamicBind
https://github.com/QizhiPei/FABind
https://github.com/deepmodeling/Uni-Mol/tree/main/unimol_docking_v2
https://github.com/deepmodeling/Uni-Mol/tree/main/unimol_docking_v2

Under review as a conference paper at ICLR 2026

GitHub Repository: https://github.com/tencent—ailab/Interformer
GitHub Commit Hash: 8cced9b8a5d8c887787a8c8731d9f087563d4c7e

Running Parameters: Use PDB_CCD_ligand. sdf to obtain the pocket, perform UFF optimiza-
tion on PDB_CCD_ligand_start_conf.sdf and replace it in the uff folder, and use the
-uff_as_ligand option during prediction.

Runtime Environment: Run on Nvidia A6000 GPU.

B.2.11 SurrDock

SurfDock (Cao et al.,[2024) combines protein sequences, three-dimensional structural graphs, and
surface-level features within an equivariant architecture. It leverages a generative diffusion model
on a non-Euclidean manifold to optimize molecular translations, rotations, and torsions, producing
accurate and reliable binding poses.

GitHub Repository: https://github.com/CAODH/SurfDock
GitHub Commit Hash: 2f0422f6ddcfdfefc3fa61ef12a1d6406a589bce
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A6000 GPU.

B.3 Al Co-FOLDING METHODS

Al co-folding methods represent a significant advance in computational biology by simultaneously
predicting the conformation of both the protein and its associated ligand, which sets them apart from
physics-based methods and Al docking methods. In contrast to physics-based methods, which typically
assume a fixed protein structure and focus on optimizing ligand placement, or Al docking methods
that may still rely on predefined protein conformations, Al co-folding methods adopt a more holistic
strategy—taking only the protein’s amino acid sequence and ligand’s SMILES strings as input.
These methods aim to capture the dynamic interaction between proteins and ligands by predicting
their structures in tandem, enabling a more accurate representation of how these molecules interact in
biological systems. In this paper, we involve 7 Al co-folding methods, including NeuralPLexer (Q1iao
et al.), RoseTTAFold-All-Atom (RFAA) (Krishna et al.| 2024), AlphaFold3 (Abramson et al., 2024),
Chai-1 (Discovery et al.l [2024), Boltz-1 (Wohlwend et al.||[2024), Boltz-1x (Wohlwend et al.| 2024)
and Protenix (Team et al.| 2025). It should be noted that in our evaluation of Al co-folding methods,
we did not consider post-translational modifications and used unmodified protein sequences as input.

B.3.1 NEURALPLEXER

NeuralPLexer (Qiao et al.) is a physics-inspired flow-based generative model for biomolecular
complex structure prediction based on sequences only. NeuralPLexer combines a protein language
model to learn sequence information and graph encoding to represent 3D molecular structure and
bioactivity information.

GitHub Repository:https://github.com/zrgiao/NeuralPLexer
GitHub Commit Hash: 2¢52b10d3094e836661dfecfa3be76f47dcdea7e
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A6000 GPU.

B.3.2 RoseTTAFoLD-ALL-ATOM

RoseTTAFold-All-Atom (RFAA) (Krishna et al., [2024) is a generalized foundation model for
all-atom biomolecular structure prediction and design, including protein, nucleic acid, and other small
molecules. RoseTTAFold-All-Atom is a 3-track based architecture incorporating equivariant neural
networks for all atomic structure prediction. Meanwhile, it integrates with RFDiffusion for molecular
design.
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GitHub Repository: https://github.com/baker—laboratory/
RoseTTAFold-All-Atom

GitHub Commit Hash: 6¢8514053acf76da0f9edde2aa51b40abif68fal
Running Parameters: Default parameters are used in evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.3.3 AvrpHAFOLD3

AlphaFold3 (Abramson et al.} 2024)), developed by DeepMind, represents the latest advancement
in protein structure prediction technology. Building on the successes of its predecessor AlphaFold
2 (Jumper et al., [2021))), AlphaFold3 adopts a diffusion model instead of a structure module in
AlphaFold2, not only improving the accuracy of protein folding but also supporting the structure
prediction of complexes (e.g., protein-RNA, protein-ligand), which enables its usage in protein-ligand
docking.

Software Version: 3.0.0

Running Parameters: Except for the number of seeds being set to 1, the rest of the predictions are
made using the default parameters. We finally select the top 1 result for evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.3.4 Cuar-1

Chai-1 (Boitreaud et al.|, 2024])) is a multimodal molecular foundation model that can also predict
structures with a single sequence. By leveraging the decoder-only Transformer framework, which
is widely used in Large Language Models (LLM) like GPT, Chai-1 encodes sequential information
without database search. Moreover, Chai-1 accepts various chemical or biological constraint features
as input to predict more accurate molecular structures.

Software Version: 0.5.2

Running Parameters: Use the online MSA server to obtain MSA information, keep the rest as
default settings, and select the top 1 result for evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.3.5 Borrz-1

Boltz-1 (Wohlwend et al., [2024) aims at reproducing AlphaFold3 and releasing all the codes (model
architecture, training, inference), which achieves competitive performance. Additionally, Boltz-1
introduces several architectural innovations, including a novel reverse diffusion process and a revamped
confidence model, enhancing its predictive accuracy and robustness.

Software Version: 0.4.0

Running Parameters: Use the MSA online server to obtain MSA information, set diffusion samples
to 5, and select the top 1 result for evaluation.

Runtime Environment: Run on Nvidia A800 GPU.

B.3.6 Borrz-1x

Boltz-1x (Wohlwend et al., |2024) is an advanced version of the Boltz-1 model. It introduces a novel
inference-time steering technique, which enhances the physical quality of predicted poses by reducing
hallucinations and non-physical predictions. This ensures more reliable and biologically plausible
structures.

Software Version: 1.0.0

Running Parameters: Use the MSA online server to obtain MSA information, set diffusion samples
to 5, and select the top 1 result for evaluation.
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Runtime Environment: Run on Nvidia A800 GPU.

B.3.7 PROTENIX

Protenix (Team et al., [2025)) is a comprehensive and open-source reproduction of AlphaFold3,
developed by ByteDance. It introduces several architectural innovations, including a modular PyTorch
framework that facilitates full training and inference, and optimizations such as custom CUDA kernels
and BF16 training to enhance computational efficiency.

Software Version: 0.4.2

Running Parameters: Use the MSA online server to obtain MSA information, and the seed is set to
101.

Runtime Environment: Run on Nvidia A6000 GPU.
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B.4 TraiNnIiNG DatA Cutorr TIMES

Table S3: Training Data Cutoff Times for Different Methods

Method Training Data Cutoff Time
Traditional physics-based methods
Discovery Studio (]%awar & Rohane, 2021) N/A
Schrodinger Glide (Friesner et al.,[2004) N/A
MOE (Vilar et al., 2008) N/A
AutoDock Vina (Trott & Olson, 2010; Eberhardt et al., [2021) N/A
GNINA (McNutt et al.;|[2021) 2018-12
Al docking methods
DeepDock (Méndez-Lucio et al., 2021) 2018-12
EquiBind (Stark et al.’l 2022) 2018-12
TankBind (Lu et al. 2018-12
DiffDock (Corso et al.}[2022) 2018-12
UMD V2 (Alcaide et al., 2024)) 2018-12
FABind (Pe1 et al. 2018-12
DiffDock-L (Corso et al., 2024 2018-12
DiffDock-Pocket (Plainer et al.| [2023) 2018-12
DynamicBind (Lu et al. 2018-12
Interformer (Lai et al., |20 2018-12
SurfDock (Cao et al.;[2024) 2018-12
Al co-folding methods
NeuralPLexer (Qiao et al. 2018-12
RoseTTAFold-All-Atom (Krishna et al., 2024) 2021-11
AlphaFold3 (Abramson et al.,[2024) 2021-10
Chai-1 (Discovery et al., 2024 2021-02
Boltz-1 (Wohlwend et al.; 2024) 2021-10
Boltz-1x (Wohlwend et al.,[2024) 2021-10
Protenix (Team et al.}[2025 2021-10
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C TecuNicAL DETAILS OF RELAXATION PROCESS

Our relaxation is based on the following software: OpenMM 7.7 (Eastman et al., 2017), PDBFixer
1.8 (Eastman et al., [2012-2025)), RDKit 2023.09 (Contributors, [2006-2024), AmberTools 23, and
OpenFF 2.1.0 (Consortium), |2024). It contains the following essential steps:

* Structure preprocessing and integrity restoration. Use PDBFixer (v1.8) to handle the initial structure
files:
— Parse complete protein sequence information from CIF files, retaining water molecules and
metal ions within a 5 A range of the ligand in Al-predicted models.

— Standardize non-canonical amino acids to canonical forms (e.g., SEP to SER), simultaneously
correcting the protein sequence database.

— Detect structural deficiencies using the findMissingResidues/findMissingAtoms algorithms,
and apply the AddMissingAtoms module to complete atoms (including N-terminal ACE and
C-terminal NME capping).

* Molecular topology construction and validation. To address the lack of bond order information in
PDBFixer:

— Integrate Amber ff14SB force field atom types and topology bond parameters to establish
bond order matching rules.

— Build amolecular graph model with RDKit (v2023.09) and perform SanitizeMol standardization
checks (including charge correction and stereochemistry validation).

— Apply the RDKit AddHs module for protonation, optimizing the spatial arrangement of
hydrogen atoms.
* Force field parameterization. Employ a multi-scale force field combination strategy:

— For protein systems: Generate Amber ff14SB force field parameters using OpenMM 7.7.
— For ligand systems: Perform OpenFF 2.1.0 (Consortium), 2024) parameterization using the
OpenFF 2.1.0 toolkit, including mmff94s charge calculations and XML topology generation.

* Constrained molecular dynamics optimization. Implement energy minimization on the OpenMM
7.7 platform (Eastman et al.,[2017):
— Constraints: Apply additional forces (0.5 * k * ((x — x0)? + (y — v0)? + (2 — 20)?) (Where
k =10, =g, Yo, 2o are original 3D coordinate) to constrain backbone atomic positions in the
protein structure, keeping newly added atoms free.

— Integration parameters: Langevin thermostat (300 K, friction coefficient 1 ps~1), time step
0.004 ps.
— Convergence criteria: Energy gradient convergence threshold < 10 kJ/mol/nm.
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D DEScCRIPTION OF VALIDITY

The validity checks for the structures analyzed in this study were conducted using PoseBuster (Butten{
schoen et al.;,|2024), a tool to ensure the reliability and accuracy of the molecular poses. The validation
process encompasses chemical validity and consistency, intramolecular validity, and intermolecular
validity, each assessed with specific criteria as detailed below. In this study, we define structural
plausibility as stereochemical correctness and intra- and intermolecular validity.

D.1 CuemicAL VALIDITY AND CONSISTENCY

¢ File loads: The input molecule can be successfully loaded into a molecule object by RDK:it.

 Sanitisation: The input molecule passes RDKit’s chemical sanitisation checks, ensuring it
adheres to basic chemical rules.

* Molecular formula: The molecular formula of the input molecule is identical to that of the
true molecule.

* Bonds: The bonds in the input molecule are the same as in the true molecule.

* Tetrahedral chirality: The specified tetrahedral chirality in the input molecule is the same
as in the true molecule.

* Double bond stereochemistry: The specified double bond stereochemistry in the input
molecule is the same as in the true molecule.

D.2 INTRAMOLECULAR VALIDITY

* Bond lengths: The bond lengths in the input molecule are within 0.75 of the lower and 1.25
of the upper bounds determined by distance geometry.

* Bond angles: The angles in the input molecule are within 0.75 of the lower and 1.25 of the
upper bounds determined by distance geometry.

« Planar aromatic rings: All atoms in aromatic rings with 5 or 6 members are within 0.25 A
of the closest shared plane.

¢ Planar double bonds: The two (garbons of aromatic carbon-carbon double bonds and their
ring neighbours are within 0.25 A of the closest shared plane.

* Internal steric clash: The interatomic distance between pairs of non-covalently bound
atoms is above 0.7 of the lower bound determined by distance geometry.

* Energy ratio: The calculated energy of the input molecule is no more than 100 times the
average energy of an ensemble of 50 conformations generated for the input molecule. The
energy is calculated using the UFF in RDKit and the conformations are generated with
ETKDGvV3 followed by force field relaxation using the UFF with up to 200 iterations.

D.3 INTERMOLECULAR VALIDITY

e Minimum protein-ligand distance: The distance between protein-ligand atom pairs is
larger than 0.75 times the sum of the pairs van der Waals radii.

¢ Minimum distance to organic cofactors: The distance between ligand and organic cofactor
atoms is larger than 0.75 times the sum of the pairs van der Waals radii.

* Minimum distance to inorganic cofactors: The distance between ligand and inorganic
cofactor atoms is larger than 0.75 times the sum of the pairs covalent radii.

* Volume overlap with protein: The share of ligand volume that intersects with the protein is
less than 7.5%. The volumes are defined by the van der Waals radii around the heavy atoms
scaled by 0.8.

* Volume overlap with organic cofactors: The share of ligand volume that intersects with
organic cofactors is less than 7.5%. The volumes are defined by the van der Waals radii
around the heavy atoms scaled by 0.8.

* Volume overlap with inorganic cofactors: The share of ligand volume that intersects with
inorganic cofactors is less than 7.5%. The volumes are defined by the van der Waals radii
around the heavy atoms scaled by 0.5.
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Figure S2: The performance of most Al-based approaches is significantly influenced by pocket
similarity under self-docking setup. Among them, Protenix (Team et al. [2025)) exhibits the
strongest negative correlation (r = -0.390), whereas SurfDock (Cao et al.} [2024)), an Al-based model,
demonstrates minimal statistical association. In contrast, physics-based methods, such as AutoDock
Vina and Glide, are relatively unaffected by protein similarity.
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Figure S3: The performance of most Al-based approaches is significantly influenced by the pocket
similarity in cross-docking scenario, where similar conclusions as the self-docking scenario can be
derived.
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Figure S4: Performance on the PoseX-SD dataset. Samples are sorted by pocket similarity in
descending order, and the RMSD results are processed with a moving average (window size: 100). It
can be seen that most Al-based approaches degrade as pocket similarity decreases, while physics-based
methods perform relatively stably.
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Figure S6: The proportion of models filtered
(PoseX-SD).
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out based on various filtering criteria in PB-Valid
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Figure S7: The proportion of models filtered out based on various filtering criteria in PB-Valid

(PoseX-CD).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table S4: Peformance on PoseX-SD, PoseX-CD and Astex

PoseX-SD PoseX-CD Astex
Methods RMSD < 24 RMSD < 2A & PB-Valid RMSD < 2A RMSD < 2A & PB-Valid RMSD < 2A RMSD < 2A & PB-Valid
w/o relax. w/ relax. w/o relax. w/ relax. w/o relax. w/ relax. w/o relax. w/ relax. w/o relax. w/ relax. wio relax. w/ relax.
SurfDock 77.07£0.73  78.04+0.52 41.73+0.13  73.67+£0.79 76.00+£0.66 77.04+0.03 37.06+1.78 74.3640.02 91.76+0.69 94.07+0.25 62.16+0.88 89.354+0.37
UMD V2 73.68+0.00 72.42+0.00 60.58:£0.00 59.19£0.00 69.4840.00 69.24+0.00 57.35+0.00 58.25+0.00 94.12+0.00 94.12+0.00 85.88+0.00 84.71:£0.00
Interformer 65.50+£0.66  66.58+£0.79 48.89+£0.99 64.0740.99 58.5540.65 60.19+0.64 42474041 59.85+0.88 79.87+0.65 83.77+0.71 60.26+£0.67 81.09+£0.93
DiffDock-Pocket ~ 52.83+0.69  52.65+0.59 29.39+0.30 50.284+0.63 58.02+0.38 58.53+0.77 34.16+0.43 57.21£1.06 83.60+0.52 84.90+0.67 60.18+0.36 83.56+0.83
DiffDock-L 46.57+1.05 47.1240.87 25.39+0.56 44.80+0.97 53.38+1.48 54.69+0.69 29.39+0.90 53.17+0.73 86.08+1.25 86.26+0.77 73.23+0.71 84.88:+0.84
DiffDock 36.07£0.20 36.814+0.77 16.72+£0.99 35.10+£0.80 45.4241.01 47.15+1.13 18.83+0.88 46.07£1.27 76.664+0.57 76.13+£0.93 60.86+0.93 73.76£1.01
DynamicBind 24.64+0.61  27.00+£0.73  7.98+0.59  25.7740.79 30.3940.92 32.77+0.85 9.5040.72 32.06+1.00 62.30+0.75 66.09+0.78 19.90+£0.65 59.02:£0.89
TankBind 16.62+0.17  19.64+0.20  3.814+0.35  12.76+0.17 20.21+£0.47 25.84+0.67 4.30+0.15  16.34+0.47 56.59+0.31 57.69+0.41 5924024 32.91+0.31
DeepDock 16.39+0.33  19.13+0.56  6.1340.30  15.69+£0.82 17.13+£0.29 20.21+091  4.64+0.38 16.36+1.19 30.54+0.31 34.03+0.72 10.50+0.34 23.63+0.99
FABind 15324023 17.87+0.67  2.28+0.07 12.81£0.11 24.724£0.20 29.38+0.41  4.00£0.02  21.15+0.58 45.83+0.21 44.58+0.53 9.41+0.04  30.52+0.32
EquiBind 3.48+0.00  4.46+0.00 0424000 4.3240.00 5.11£0.00  6.564£0.00  0.40+£0.00  6.564+0.00 10.594+0.00 11.76+£0.00 2.354£0.00  9.414+0.00
AlphaFold3 60.65+0.18  60.31+£0.31  45.28+0.36 51.61+0.43 68.87+0.61 68.79+0.41 53.79+0.81 62.88+0.33 83.47+0.38 82.29+0.36 75.34+0.56 76.47+0.38
Protenix 56.69+0.00 56.274+0.39 44.20+£0.72 47.40+0.33 61.56+0.63 61.09+0.45 47.96+0.98 49.84+0.05 82.40+0.29 81.19+0.42 66.94+0.84 71.73+0.18
Chai-1 56.41+0.59  56.08+£0.33 44.10+0.53  49.5840.00 67.06+£0.68 67.02+0.91 55.12+1.27 60.36+£0.99 82.31+0.63 82.57+0.59 70.80+0.87 74.2140.45
Boltz-1 5422+1.19  53.71£1.02  3570+£0.93 42.76£0.49 65.11£1.16 64.11+0.77 41.784+0.80 51.94+0.52 69.13+1.17 69.52+0.88 52.98+0.86 57.67£0.50
Boltz-1x 53.9940.07 53.71+£0.24 52.6040.17 50.98+0.69 64.82+0.76 64.39+0.60 61.44+0.95 61.1941.01 71.78+0.38 73.02+0.40 70.56+0.52 71.6440.84
Boliz-2! 65.324+0.10  65.44+0.29 51.3240.28 55.54+0.38 73.43+£0.57 72.63+£0.35 61.73+£0.75 64.994+0.18 77.73+£0.31 77.54+0.32 64.71£0.49 67.194+0.27
RFAA 30.25+0.58 31494042  6.94+0.78  26.73+0.73 31.95+£0.82 32.56+£0.69 10.89£1.15 29.70+1.12 37.334+0.69 36.22+0.54  9.75+0.95 32.70+0.91
NeuralPLexer 14.30+£0.52  17.92+0.33  1.58+0.26  15.3740.33 22.474+0.47 25.61+021 1.51£0.56 21.90+£0.06 28.46+0.49 35.25+0.26 0.00£0.00  30.66+0.18
GNINA 64.58+0.69  64.44+0.65 60.49+£0.72 61.79£0.46 53.10+0.80 54.13+1.42 49.93+0.95 53.19+1.35 81.22+0.74 81.36+1.00 81.19+£0.82 80.81:£0.86
Discovery Studio  54.74+0.00  54.8740.00 54.044+0.00 52.65+0.00 44.08+0.00 43.68+0.00 43.28+0.00 42.89+0.00 67.06+0.00 67.06+0.00 65.88+0.00 64.71+0.00
Glide 48.3310.00 47.91+£0.00 47.914+0.00 46.24+£0.00 37.45+£0.00 38.44+0.00 36.99+0.00 38.4440.00 63.53+£0.00 64.71+0.00 63.53+£0.00 63.534+0.00
Glide (IFD) 46.24+0.00 46.52+£0.00 46.10+£0.00 4540+0.00 44.95+0.00 44.80+0.00 44.95+0.00 44.65+0.00 67.06+0.00 67.06+0.00 67.06+0.00 67.06::0.00
AutoDock Vina 40.01+0.48  39.89+0.51 36.924+0.52 38.27+0.33 28.08+0.65 28.67+0.93 27.79+0.72 28.134+0.87 56.27+0.56 56.39+0.70 52.06+0.61 55.1040.58
MOE 40.25+0.00 39.42+£0.00 39.55:+£0.00 37.7440.00 33.2840.00 33.33+0.00 33.274+0.00 33.17+0.00 56.47+0.00 57.65+0.00 56.47+0.00 57.65:£0.00

! We additionally evaluated Boltz-2, a recently released and highly influential model. However, it should be noted that the training dataset for Boltz-2 was constructed using PDB structures available up

to June 1, 2023, which overlaps with our evaluation dataset.
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Figure S8: Performance of docking methods across benchmarks, grouped by whether the method

requires a pocket specification or not.
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Figure S9: Case study of Al co-folding methods in chirality validation. We compared AlphaFold3,
Chai-1, Boltz-1, and Boltz-1x models on the 8OGX_VGO and 8FLV_ZB9 complexes. The figure
illustrates the docking results, with chiral centers marked by red circles, revealing that all co-folding
models except Boltz-1x exhibit chirality errors.
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Figure S10: Analysis of 8V71_YI8 in PoseX-CD. When transferring the ligand from its co-crystal
structure to the protein structure used for docking through structural alignment, steric clashes arise
between the ligand and the protein, underscoring the challenges associated with cross-docking. In this
case, all physics-based methods failed (RMSD > 2A), while the top-performing Al docking method
and Al co-folding method (SurfDock and AlphaFold3, respectively) accurately predicted the pose.
The rightmost column illustrates the conformational variations in residues that overlap with the ligand
across the two protein structures.
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Figure S11: Analysis of docking results for 8V71_YI8. The physics-based methods GNINA and
Glide(IFD) generate ligand conformations that substantially deviate from the ground-truth structure.
In contrast, SurfDock and AlphaFold3 generate docking poses that closely align with the ground-truth
structure. SurfDock’s docking poses exhibit steric clashes, which are resolved through relaxation,
whereas AlphaFold3’s poses are sterically compatible. The rightmost column demonstrates that,
for both SurfDock and AlphaFold3, key residues shift toward their corresponding positions in the
ground-truth structure after relaxation.
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