
Under review as a conference paper at ICLR 2023

PERSONALIZED DECENTRALIZED BILEVEL OPTIMIZA-
TION OVER STOCHASTIC AND DIRECTED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

While personalization in distributed learning has been extensively studied, existing
approaches employ dedicated algorithms to optimize their specific type of param-
eters (e.g., client clusters or model interpolation weights), making it difficult to
simultaneously optimize different types of parameters to yield better performance.
Moreover, their algorithms require centralized or static undirected communication
networks, which can be vulnerable to center-point failures or deadlocks. This study
proposes optimizing various types of parameters using a single algorithm that runs
on more practical communication environments. First, we propose a gradient-based
bilevel optimization that reduces most personalization approaches to the optimiza-
tion of client-wise hyperparameters. Second, we propose a decentralized algorithm
to estimate gradients with respect to the hyperparameters, which can run even on
stochastic and directed communication networks. Our empirical results demon-
strated that the gradient-based bilevel optimization enabled combining existing
personalization approaches which led to state-of-the-art performance, confirming
it can perform on multiple simulated communication environments including a
stochastic and directed network.

1 INTRODUCTION

In distributed learning, providing personally tuned models to clients, or personalization, has shown to
be effective when the clients’ data are heterogeneously distributed (Tan et al., 2022).

While various approaches have been proposed, they are dedicated to optimizing specific types of
parameters for personalization. A typical example is clustering-based personalization (Sattler et al.,
2020), which employs similarity-based clustering specifically for seeking client clusters. Another
approach called model interpolation (Mansour et al., 2020; Deng et al., 2020) also specializes in
optimizing interpolation weights between local and global models. These dedicated algorithms
prevent developers from combining different personalization methods to achieve better performance.

Another limitation of previous personalization algorithms is that they can run only on centralized or
static undirected networks. Most approaches for federated learning (Smith et al., 2017; Sattler et al.,
2020; Jiang et al., 2019) require centralized settings in which a host server can communicate with
any client. Although a few studies (Lu et al., 2022; Marfoq et al., 2021) consider fully-decentralized
settings, they assume that the communication edge between any clients is static and undirected (i.e.,
synchronized). These commutation networks are known to be vulnerable to practical issues, such as
bottlenecks or central point failures on the host servers (Assran et al., 2019), or failing nodes and
deadlocks on the static undirected networks (Tsianos et al., 2012).

This study proposes optimizing various parameters for personalization using a single algorithm
while allowing more practical communication environments. First, we propose a gradient-based
Personalized Decentralized Bilevel Optimization (PDBO), which reduces many personalization
approaches to the optimization of hyperparameters possessed by each client. Second, we propose
Hyper-gradient Push (HGP) that allows any client to solve PDBO by estimating the gradient with
respect to its hyperparameters (hyper-gradient) via stochastic and directed communications, that are
immune to the practical problems of centralized or static undirected communications (Assran et al.,
2019). We also introduce a variance-reduced HGP to avoid estimation variance, which is particularly
effective when communications are stochastic, providing its theoretical error bound.

1



Under review as a conference paper at ICLR 2023

We empirically demonstrated that the generality of our gradient-based PDBO enabled combining
existing personalization approaches which led to state-of-the-art performance in a distributed classifi-
cation task. We also demonstrated that the gradient-based PDBO succeeded in the personalization on
multiple simulated communication environments including a stochastic and directed network.

Our contributions are summarized as follows:

• We propose a gradient-based PDBO that can solve existing personalization problems and their
combinations as its special cases.

• We propose a decentralized hyper-gradient estimation algorithm called HGP which can run even on
stochastic and directed networks. We also propose a variance-reduced HGP, which is particularly
effective in stochastic communications, and provide its theoretical error bound.

• We empirically validated the advantages of the gradient-based PDBO with HGP; it enabled solving
a combination of different personalization problems which led to state-of-the-art performance, and
it performed on different communication environments including a stochastic directed network.

Notation ⟨A⟩ij denotes the matrix at the i-th row and j-th column block of the matrixA, and ⟨a⟩i
denotes the i-th block vector of the vector a. For a function f : Rd1 7→ Rd2 , we denote its total and
partial derivatives with respect to a vector x ∈ Rd1 by dxf (x) ∈ Rd1×d2 and ∂xf (x) ∈ Rd1×d2 ,
respectively. We denote the product of matrices by

∏m
s=0 Â

(s) = Â(m) · · · Â(0) and
∏−1
s=0 Â

(s) = I .

2 PRELIMINARIES

We formulate distributed learning (Li et al., 2014), communication networks, and stochastic gradient
push (Nedić & Olshevsky, 2016, SGP) as a generalization of gradient-based distributed learning.

Distributed learning Distributed learning with n clients is commonly formulated for all i ∈ [n] as

x∗
i = argmin

xi

1

n

∑
k∈[n]

Eξk [fk (xk,λk; ξk)] , s.t. xi = xj , ∀j ∈ [n] , (1)

where, the i-th client pursues the optimal parameter x∗
i ∈ Rdx , that makes consensus (xi = xj ,∀j ∈

[n]) over all the clients, while minimizing its cost fi : Rdx ×Rdλ 7→ R for the input ξi ∈ X sampled
from its local data distribution. We allow fi to take the hyperparameters λi ∈ Rdλ as its argument.
We further explain the examples of the choice of λi in Sections 3 and 5.

Stochastic and directed communication network In distributed learning, clients solve Eq. (1)
by exchanging messages over a physical communication network. The type of edge connections
categorizes the communication network: static undirected (Lian et al., 2017), which represents syn-
chronization over all clients; stochastic undirected (Lian et al., 2018), which represents asynchronicity
between different client pairs; and stochastic directed (Nedić & Olshevsky, 2016), which represents
push communication where any message passing can be unidirectional.

This study considers distributed learning on stochastic and directed communication networks. Such
a network has several desirable properties: robustness to failing clients and deadlocks (Tsianos
et al., 2012), immunity to central failures, and small communication overhead (Assran et al., 2019).
We model stochastic directed networks by letting communication edges be randomly realized, as
simulated in Assran et al. (2019) and Nedić & Olshevsky (2016). Let δ(t)i�j ∈ {0, 1} be a random

variable where δ
(t)
i�j = 1 denotes that there is a communication channel from the i-th client to

the j-th client at the time step t, and δ
(t)
i�j = 0 otherwise. We set δ(t)i�i = 1 for all i ∈ [n] and

t ∈ N allowing every client to send a message to itself at any time step. Note that the edge model
above can recover the other fully-decentralized settings as its special cases; the symmetric edges
(δ(t)i�j = δ

(t)
j�i,∀i, j ∈ [n] ,∀t ∈ N) recover stochastic undirected networks, and the symmetric constant

edges, which additionally require δ
(t)
i�j = δ

(t)
j�i = δij , recover static and undirected networks.

Stochastic gradient push (SGP) SGP (Nedić & Olshevsky, 2016) is one of the most general
solvers of Eq. (1). This section formulates SGP with further generalization for its variants.

2



Under review as a conference paper at ICLR 2023

The i-th client in SGP updates its weight ωi ∈ R along with biased parameter zi ∈ Rdx to obtain its
debiased parameter xi = zi/ωi. Let yi = [z⊤i ωi]

⊤ ∈ Rdy be a concatenated vector. At the t-th
step, the i-th client samples its minibatch ζ

(t)
i and sending edges δ(t)i = {δ(t)i�1 · · · δ

(t)
i�n}, runs a local

update ψi : Rdy 7→ Rdy and message generator φi : Rdy 7→ Rdy , and updates yi as

y
(t+1)
i =

∑
j∈[n]

pji(δ
(t)
j )φj

(
y
(t)
j ;λj , ζ

(t)
j

)
+ψi

(
y
(t)
i ;λi, ζ

(t)
i

)
, (2)

s.t.
∑
k∈[n] pik(δ

(t)
i ) = 1 and pik(δ

(t)
i ) = δ

(t)
i�kpik(δ

(t)
i ),∀k ∈ [n], (3)

where, pji : {0, 1}n 7→ [0, 1] is a weight function that forms column stochastic matrix P (t) such that
P

(t)
ij = pji(δ

(t)
j ) to ensure the convergence of xi to the consensus. Denoting the learning rate by

αi ∈ R+, the following formulations of φi and ψi recover the two SGP variants:
φi (yi;λi, ζi) =

[
z⊤i − αi

|ζi|
∑
ξ∈ζi ∂xifi

(
zi
ωi
,λi; ξ

)⊤
ωi

]⊤
, ψi (yi;λi, ζi) =

[
0dx 0

]⊤
φi (yi;λi, ζi) =

[
z⊤i ω⊤

i

]
, ψi (xi;λi, ζi) =

[
− αi

|ζi|
∑
ξ∈ζi ∂xifi

(
zi
ωi
,λi; ξ

)⊤
0
]⊤

,

(4a)

(4b)

where Eq. (4a) and Eq. (4b) run local gradient descent with a minibatch before (Assran et al., 2019)
and after (Nedić & Olshevsky, 2016) communication, respectively.

We can recover other popular distributed learning schemes as special cases of SGP. By making
pji(δ

(t)
j ) form a doubly stochastic mixing matrix P (t), Eq. (4a) and Eq. (4b) recover the decentralized

stochastic gradient descent (DSGD) in Bianchi et al. (2013) and Lian et al. (2017), respectively.
We can also recover FedAVG (McMahan et al., 2017) by choosing a fully-connected graph with
averaging over all clients, i.e., δ(t)i�j = 1 and pij(δ

(t)
i ) = 1/n for all i, j ∈ [n] and t ∈ N in Eq. (4a)1.

3 PERSONALIZED DECENTRALIZED BILEVEL OPTIMIZATION (PDBO)

We then propose the formulation of PDBO as a generalization of existing personalization problems.
PDBO played by n clients is formulated as follows:

min
λ1,...,λn

1

n

∑
s∈[n]

Fs (x
∗
s (λ1, . . . ,λn) ,λs) , s.t. x∗

i satisfies Eq. (1), ∀i ∈ [n] , (5)

where the outer-problem (Eq. (5-left)) lets the i-th client find its optimal hyperparameter λi that
minimizes the average of outer-cost Fi : Rdx × Rdλ 7→ R across all clients. Here, we write
x∗
i (λ1, . . . ,λn) to show its dependency to hyperparameters explicitly. The generality of Eq. (5) in

personalization comes from the flexibility in the choice of fi, Fi,xi, and λi. For example, suppose
that fi is the cross-entropy loss of a DNN with a feature extractor and classifier parameterized by xi
and λi, respectively. By letting Fi be a validation loss, we can recover a family of personalized layer
scheme (Arivazhagan et al., 2019; Bui et al., 2019). See Section 5 for further examples.

We then reformulate PDBO by replacing Eq. (1) with the stationary point of an iteration as in
Grazzi et al. (2020). Following the original works of SGP (Nedić & Olshevsky, 2014) and the
push-sum (Bénézit et al., 2010), we introduce additional assumptions:
Assumption 1. For every i ∈ [n], and for all λi ∈ Rdλ and ξi ∈ X , fi (·,λi; ξi) is strongly convex.
Assumption 2. A graph with edge set {(i, j) | Eδi [pij (δi)] > 0, i, j ∈ [n]} is strongly connected.

Let δ = {δ1, . . . , δn}, ζ = {ζ1, . . . , ζn}. For every i ∈ [n], the expectation of iteration Eq. (2)
with Assumptions 1 and 2 admits the following unique stationary point which gives the optimum of
Eq. (1) (Nedić & Olshevsky, 2014; Assran & Rabbat, 2020):

y∗
i = Eδ,ζ

[∑n
j=1pji (δj)φj(y

∗
j ;λj , ζj) +ψi(y

∗
i ;λi, ζi)

]
= [z∗i

⊤ ω∗
i ]

⊤ s.t. x∗
i = z

∗
i /ω

∗
i , (6)

Replacing the inner-problem in Eq. (5) by Eq. (6) reformulates PDBO as
min
λ

F̄ (x∗ (y∗ (λ)) ,λ) , s.t. Eq. (6) is satisfied for all i ∈ [n], (7)

where, λ = [λ⊤
1 · · · λ⊤

n ]
⊤, x∗ = [x∗

1
⊤ · · · x∗

n
⊤]⊤, and y∗ (λ) = [y∗

1
⊤ · · · y∗

n
⊤]⊤ are

concatenated parameters, and F̄ (x,λ) := 1
n

∑
k∈[n] [Fk (xk,λk)] is the average outer-cost.

1This is a mathematical equivalence; FedAVG runs on a centralized network in practice.

3



Under review as a conference paper at ICLR 2023

4 HYPER-GRADIENT ESTIMATION OVER STOCHASTIC AND DIRECTED
COMMUNICATION NETWORKS

To solve PDBO using gradient-based methods, this section introduces an empirical estimate of the
hyper-gradient and its decentralized computation algorithm, which we named HGP.

4.1 EMPIRICAL ESTIMATE VIA APPROXIMATE IMPLICIT DIFFERENTIATION

Below, we derive the estimator of hyper-gradient following the recurrent backpropagation for approx-
imate implicit differentiation (Grazzi et al., 2020; Lorraine et al., 2020). The hyper-gradient with
respect to λ is written as dλF̄ (x∗ (y∗ (λ)) ,λ) under Assumption 3.

Assumption 3. For all i ∈ [n] and ζi,φi (yi;λi, ζi) andψi (yi;λi, ζi) are differentiable with respect
to yi and λi, and Fi (xi,λi) is differentiable with respect to xi and λi.

Estimator of hyper-gradient We introduce Jacobian matricesA (δ, ζ) andB (δ, ζ) whose (j, i)
blocks are the partial derivative of Eq. (2) with respect to yj and λj for j, i ∈ [n], respectively:

⟨A (δ, ζ)⟩ji = pji (δj) ∂yjφj
(
y∗
j ;λj , ζj

)
+ 1ji∂yjψj

(
y∗
j ;λj , ζj

)
∈ Rdy×dy , (8a)

⟨B (δ, ζ)⟩ji = pji (δj) ∂λjφj
(
y∗
j ;λj , ζj

)
+ 1ji∂λjψj

(
y∗
j ;λj , ζj

)
∈ Rdλ×dy , (8b)

where, 1ij denotes the Kronecker delta. We introduce their expectations by Ā := Eδ,ζ [A (δ, ζ)] and
B̄ := Eδ,ζ [B (δ, ζ)] assuming the following:

Assumption 4. The largest singular value of Ā is strictly smaller than one.

Let cy = ∂yF̄ (x∗ (y∗ (λ)) ,λ) and cλ = ∂λF̄ (x∗ (y∗ (λ)) ,λ). Using Assumption 4, Eq. (6), and
empirical estimates (Â(t), B̂(t)) = (A

(
δ(t), ζ(t)

)
,B
(
δ(t), ζ(t)

)
), we obtain the estimator as

dλF̄ (x∗ (y∗ (λ)) ,λ) ≈ B̄
M−1∑
m=0

Āmcy + cλ ≈
M−1∑
m=0

B̂(2m)
m−1∏
s=0

Â(2m+1)cy + cλ =: d̂λF̄ . (9)

where, the first approximation is obtained from Grazzi et al. (2020, (Eq. (4), (5), (19))) and the
second approximation simply replaces the expected Jacobians with their estimates, as in Ghadimi
& Wang (2018, 3.62, 3.66). We estimate Jacobians in the odd- and even-rounds introducing the
following assumption to ensure unbiasedness: B̄

∑M−1
m=0 Ā

m = E[
∑M−1
m=0 B̂

(2m)
∏m−1
s=0 Â

(2m+1)].
We include the complete derivation of the estimator in Appendix A.

Assumption 5. δ(t) and ζ(t) are independent across the time steps t ∈ N.

Recurrent backpropagation We compute Eq. (9) using the fact that a finite number of recurrent
backpropagation around the stationary point approximates the hyper-gradient (Lorraine et al., 2020,
4.2), which avoids the explicit computation of Jacobian matrices, Â(m) and B̂(m). Let u(m) =∏m−1
s=0 Â

(2m+1)cy and v(m) =
∑m−1
m′=0 B̂

(2m′)u(m′) + cλ. By initializing u(0) ← cy and v(0) ←
cλ, and by the following iterations for m = 0, . . . ,M − 1,{

v(m+1) ← B̂(2m)u(m) + v(m),

u(m+1) ← Â(2m+1)u(m),
(10)

we obtain the hyper-gradient estimate as d̂λF̄ ← v(M). Eq. (10) only requires Jacobian-vector
products B̂(2m)u(m) and Â(2m+1)u(m) leading O (ndx + ndλ) and O (ndx) in time, respectively.

Decentralizing backpropagation Decentralized computation of Eq. (10) requires consideration
of the data locality and the communication stochasticity. From the locality of ζ(m)

i , clients need
to communicate because only the i-th client can compute Jacobian-vector products of the i-th row
block of Â(m) and B̂(m) from their definitions Eq. (8). Moreover, we need to design a decentralized
algorithm so that any required communication can be performed on stochastic and directed networks.

4



Under review as a conference paper at ICLR 2023

4.2 HYPER-GRADIENT PUSH (HGP)

We propose HGP which enables any i-th client to update their hyperparameter λi by estimating its
hyper-gradient d̂λi F̄ = ⟨d̂λF̄ ⟩i over stochastic directed networks. HGP runs an unbiased alternative
of Eq. (10) based on our observation that the exact computation of Eq. (10) requires undirected edges.

Exact backpropagation requires undirected edges Suppose the i-th client is responsible for
computing the i-th block of u(m+1) and v(m+1), denoted by u(m+1)

i ∈ Rdx and v(m+1)
i ∈ Rdλ ,

respectively. From Eq. (10), we obtain the following recursive iteration performed by the i-th client: v
(m+1)
i ←

∑n
j=1 δ

(2m)
i�j

〈
B̂(2m)

〉
ij
u
(m)
j + v

(m)
i ,

u
(m+1)
i ←

∑n
j=1 δ

(2m+1)
i�j

〈
Â(2m+1)

〉
ij
u
(m)
j ,

(11)

where, we use the equivalencies ⟨Â(m)⟩ij = δ
(m)
i�j ⟨Â(m)⟩ij and ⟨B̂(m)⟩ij = δ

(m)
i�j ⟨B̂(m)⟩ij , as they

are non-zeros only when δ
(m)
i�j = 1 from Eq. (8) and Eq. (3). To complete Eq. (11), the i-th client

needs to receive u(m)
j from all the j-th client with δ

(m)
i�j = 1, which is possible only when there is

the communication channel from j to i (i.e., δ(m)
j�i = 1). In other words, the exact computation of

Eq. (11) is available only when the communications are undirected (i.e., δ(m)
i�j = δ

(m)
j�i ,∀m ∈ N).

Unbiased estimation via directed edges To relax the undirected communication constraint to
stochastic directed communication, we propose HGP as a simple yet effective alternative of Eq. (11).

We first assumes that the i-th client knows the receiving frequency δ̄j�i = Eδ[δj�i] and expected
sending weight p̄ij = Eδ[pij (δi)] for all j ∈ [n]. In practice, we can estimate them through T rounds
of SGP communication. We also adopt the following assumptions:

Assumption 6. If δ̄j�i > 0, then δ̄i�j > 0 and vice versa.

Assumption 7. The realization of δ(m)
i�j are independent over different j and i for all m ∈ N.

The key idea of HGP is to replace the sending edges δ(m)
i�j in Eq. (11) with the debiased receiving edges

δ
(m)
j�i /δ̄j�i. By initializing u(0)

i ← ⟨cy⟩i = 1
n∂yiFi (x

∗
i ,λi) and v(0)i ← ⟨cλ⟩i = 1

n∂λiFi (x
∗
i ,λi),

we obtain the estimate as d̂λi F̄ ← v
(M)
i after the following iterations for m = 0, . . . ,M − 1,

v
(m+1)
i ←

∑n
j=1

δ
(2m)
j�i

δ̄j�i

〈
B̃(2m)

〉
ij
u
(m)
j + v

(m)
i ,

u
(m+1)
i ←

∑n
j=1

δ
(2m+1)
j�i

δ̄j�i

〈
Ã(2m+1)

〉
ij
u
(m)
j ,

(12)

where, ⟨Ã(m)⟩ij and ⟨B̃(m)⟩ij are defined by replacing pij(δ
(m)
i ) in Eq. (8a) and Eq. (8b) with p̄ij ,

respectively. The iterations above are always computable even on stochastic directed networks because
the i-th client needs to receive u(m)

j from the clients with δ
(m)
j�i = 1, which is always possible. We also

note that Assumption 6 ensures that ⟨Ã(m)⟩ij and ⟨B̃(m)⟩ij are unbiased: Eδ,ζ [δ
(m)
j�i /δ̄j�i⟨Ã(m)⟩ij ] =

Eδ[δ
(m)
j�i /δ̄j�i]Eδ,ζ [⟨Â(m)⟩ij ] = ⟨Ā⟩ij and the same for B̂(m).

HGP enjoys the same complexity as SGP in both communication and computation. HGP exchanges
only u(·)

i having O (dy) in communication. In practical cases where dλ ≪ dy , the Jacobian-vector
products ⟨B̃(·)⟩iju(·)

j and ⟨Ã(·)⟩iju(·)
j are computed in O (dy) time.

Variance reduction We now introduce the variance-reduced version of HGP, which we call VR-
HGP. The naive HGP above suffers from large variance because of δ(m)

j�i /δ̄j�i, which can take a value
far larger than one when δ̄j�i is small. The multiplication of such values induces a high variance.

5



Under review as a conference paper at ICLR 2023

The idea of VR-HGP is to combine HGP with its following variant, where w(0)
i ← ⟨cy⟩i,

v
(m+1)
i =

∑n
j=1

δ
(2m)
j�i

δ̄j�i

〈
B̃(2m)

〉
ij
w

(m)
j ,

w
(m+1)
i =

∑n
j=1

δ
(2m+1)
j�i

δ̄j�i

〈
Ã(2m+1)

〉
ij
w

(m)
j + ⟨cy⟩i .

(13)

Here, w(m) corresponds to the estimator of
∑m−1
m′=0A

m′
cy . Note that the weighted average of two

different estimators results in an estimator with a smaller variance. By averaging Eq. (12) and Eq. (13)
with weights α, β ∈ (0, 1), we obtain VR-HGP as the following iterations for m = 0, . . . ,M − 1:
v
(m+1)
i ← α

(
v
(m)
i +

∑
j

δ
(2m)
j�i

δ̄j�i

〈
B̃(2m)

〉
ij
u
(m)
j

)
+ (1− α)

(∑
j

δ
(2m)
j�i

δ̄j�i

〈
B̃(2m)

〉
ij
w

(m)
j

)
,

u
(m+1)
i ←

∑
j

δ
(2m+1)
j�i

δ̄j�i

〈
Ã(2m+1)

〉
ij
u
(m)
j ,

w
(m+1)
i ← β

(∑
j

δ
(2m+1)
j�i

δ̄j�i

〈
Ã(2m+1)

〉
ij
w

(m)
j + ⟨cy⟩i

)
+ (1− β)

(
w

(m)
i + u

(m+1)
i

)
,

with v(0)i ← 0dλ , u(0)
i ← ⟨cy⟩i, and w(0)

i ← ⟨cy⟩i having the estimate as d̂λi F̄ ← v
(M)
i + ⟨cλ⟩i.

The following theorem provides the estimation error of the hyper-gradient using VR-HGP.
Assumption 8. ∃ηA ∈ (0, 1), ηB ∈ (0,∞) such that ∀yi,λi, ζi and ∀i,

max
{
∥∂yiψi∥2, ∥∂yiφi∥2

}
≤ ηA

2κ
, max {∥∂λiψi∥2, ∥∂λiφi∥2} ≤

ηB
2κ

, (14)

where κ =
∑
i,j

p̄ji
δ̄i�j

and ∥·∥2 denotes spectral norm.

Theorem 1 (Estimation Error of VR-HGP). Suppose that Assumptions 1–8 hold true and |ζ(2m)
i | =

|ζ(2m+1)
i | = b for any i and m. Then, for α, β ∈ (0, 1), with probability at least 1− ϵ, we have

∥∥∥d̂λi F̄ − dλF̄ (x∗,λ)
∥∥∥ ≤ µα,βτ

√√√√√
∑

i,j

p̄2ji
δ̄2i�j

+
4n

b

 log
n(dy + dλ)

ϵ
+ e−O(M),

where, ∥·∥ denotes ℓ2 norm, e−O(M) denotes the exponentially diminishing term over M , and

µα,β =

√
8
1− α

1 + α

(
1 +

1 + α(1− β + βηA)

1− α(1− β + βηA)

β2η2A
1− (1− β + βηA)2

)
, τ =

ηB∥cy∥
κ(1− ηA)

.

One can see that the coefficient µα,β dominates the magnitude of the estimation error. Setting
α, β ∈ (0, 1) that minimizes µα,β can attain a small error.2 The proof is provided in Appendix C.

5 RELATED WORK

Personalization in federated learning We compare our work to standard personalization methods
by recovering them as special cases of PDBO and pointing their applicable communication networks.

Mansour et al. (2020) and Deng et al. (2020) propose model interpolation that provides personalized
models as the optimal interpolation between local models and the global model, which is recovered
by letting the inner-problem train the global model and the outer-problem optimize the interpolation
weight. Federated multi-task learning (MTL) (Marfoq et al., 2021) obtains personalized models
by allowing clients to tune the ensemble weights of the global base-predictors. In Section 6, we
demonstrated that PDBO can recover the federated MTL by letting the inner-problem optimize the
base-predictors and the outer-problem learn ensemble weights. We see the clustering personaliza-
tion (Sattler et al., 2020) as a sub-problem of federated MTL from the empirical results (Marfoq et al.,

2Although setting α = 1 makes µα,β = 0, the remaining error is no longer e−O(M) in that case. This
observation implies that α slightly smaller than 1 is preferred. A similar analysis also shows that β slightly
larger than 0 is preferred. Our empirical results show that (α, β) = (0.9, 0.1) performs well (Appendix C.6).

6



Under review as a conference paper at ICLR 2023

2021, J.4) that demonstrated the personalized ensemble weights recover the client clusters. Data
augmentation (Duan et al., 2019; Zhao et al., 2018) mitigates data heterogeneity by over- or under-
sampling to train a generalized global model. This can be recovered by optimizing pseudo-sampling
rates as hyperparameters. Furthermore, the generality of PDBO allows us to optimize different types
of parameters simultaneously, which current personalization algorithms cannot handle.

For communication networks, most personalization schemes require a centralized network (Sattler
et al., 2020; Jiang et al., 2019), which is vulnerable to a central point of failure (Assran et al.,
2019). A few fully-decentralized algorithms (Marfoq et al., 2021; Lu et al., 2022) assume static
undirected networks which are vulnerable to failing clients and deadlocks (Tsianos et al., 2012).
While Vanhaesebrouck et al. (2017) and Zantedeschi et al. (2020) consider stochastic undirected
settings, their applicability are limited to linear models or a linear combination of pre-trained models.
Gradient-based PDBO can learn more complex models and run on stochastic directed networks,
which are immune to practical problems in centralized and static undirected networks.

Distributed bilevel optimization Distributed bilevel optimizations proposed in concurrent works
differ from PDBO in formulations. We categorize them into consensus distributed bilevel optimization
(CDBO) (Chen et al., 2022; Tarzanagh et al., 2022; Gao et al., 2022; Yang et al., 2022) and CDBO
with the local inner-problem (CDBO-Local) (Li et al., 2022; Liu et al., 2022; Lu et al., 2022).

CDBO requires clients to make a consensus both on the outer- and inner-problem. Chen et al. (2022);
Tarzanagh et al. (2022); Gao et al. (2022); Yang et al. (2022) applied CDBO to hyperparameter
optimization, such as L2 regularization rates. While PDBO and CDBO are different tasks, both
require hyper-gradient estimation over communications, which we discuss in the next paragraph.
CDBO-Local (Lu et al., 2022) requires consensus in the outer-problem as in CDBO, whereas its
inner-problem is a local optimization. Clients in CDBO-Local thus cannot benefit from others in the
inner-loop for better generalization. In our PDBO, both outer- and inner-problems are optimized
using global information; the inner-parameters are trained for consensus, and the outer-parameters
are optimized to improve the total performance across all clients.

We highlight that our gradient-based PDBO recovers CDBO by running SGP using the estimated
hyper-gradient for the outer-problem, and recovers CDBO-Local by using SGP for the outer-problem
and designing pij to form the self-loop topology in the inner SGP.

Hyper-gradient estimation over communication Networks We compare our HGP with the other
hyper-gradient estimation methods performed over communication networks.

Yang et al. (2022) proposes a hyper-gradient estimation algorithm in fully-decentralized settings.
However, they assume static and undirected networks, and their algorithm is complex both in
computation and communication as they involve computations and communications of full Jacobians
and Hessians. Tarzanagh et al. (2022) considers the hyper-gradient estimation in centralized settings,
which is typical in federated learning. While their approach is advantageous in complexity because
clients only compute Jacobian-vector products and exchange O (dx) vectors, its applicability is tied
to the centralized host-clients setting. Other CDBO methods (Chen et al., 2022; Gao et al., 2022)
estimate different types of hyper-gradient. See Appendix E for further details.

Our HGP enjoys reasonable complexity in computation and communication, as stated in Section 4.2,
and covers a wide range of communication networks, including stochastic and directed networks.

Hyper-gradient estimation for single agent The hyper-gradient estimation approaches are cate-
gorized into iterative differentiation (ITD), and approximate implicit differentiation with recurrent
backpropagation (AID-RB) and conjugated gradient (AID-CG) (Grazzi et al., 2020). We found that
applying ITD or AID-CG to the hyper-gradient estimation on stochastic and directed communication
networks is infeasible for the following reasons.

Applying the ITD variants, backward and forward mode (Franceschi et al., 2017), have limitations
in communication; the backward mode requires static and undirected network, the forward mode
requires all-to-all communication at the end of iteration and exchanging large O (dy × dλ) sized
matrices. A detailed discussion is provided in Appendix H. To apply AID-CG (Pedregosa, 2016),
we need to solve minq∈Rdy

1
2∥(I − Ā)q − cy∥2. However, in our setting where I − Ā can be

7



Under review as a conference paper at ICLR 2023

asymmetric, AID-CG is slower than AID-RB (Grazzi et al., 2020). AID-RB only requires the network
to be undirected and our HGP relaxes this limitation by simple and effective modification.

6 EXPERIMENTS

To demonstrate the generality in personalization and applicability to practical communication envi-
ronments, we introduced three different personalization approaches as special cases of gradient-based
PDBO and benchmarked them with baselines on four different communication networks.

6.1 SETTINGS

We followed the settings of EMNIST classification played by n = 100 clients in Marfoq et al. (2021)
unless otherwise mentioned. The detailed experimental settings are described in Appendix D.

Communication networks We simulated four communication networks: fully-connected (FC),
static undirected (FixU), stochastic undirected (StoU), and stochastic directed (StoD).

FC allows clients to communicate with all the others at any time step, i.e. δ(t)i�j = 1 for all i, j ∈ [n]
and t ∈ N. FixU is static undirected network simulated by a binomial Erdős-Rényi graph (Erdős
& Rényi, 1959) with parameter p = 0.4 adding the self-loop edges. Following the setting in
Marfoq et al. (2021), we generated a doubly stochastic mixing matrix using the fast-mixing Markov
chain (Boyd et al., 2003) rule. StoU simulates stochastic undirected network by letting undirected
edge δ

(t)
j�i = δ

(t)
i�j independently realize at each step with the probability δ̄j�i ∈ [0, 1]. In StoD, every

direction of edges δ(t)j�i is independently sampled at probability δ̄j�i, simulating a stochastic directed
network. For all i, j ∈ [n], δ̄j�i was sampled from the uniform distribution with [0.4, 0.8].

Proposed approaches We introduce and evaluated three different personalization methods as
special cases of PDBO, that are, PDBO-DA, PDBO-MTL, and PDBO-MTL&DA.

PDBO-DA optimizes the pseudo-sampling rates to recover the data-augmentation-based personaliza-
tion (Duan et al., 2019; Zhao et al., 2018). PDBO-DA optimizes λi ∈ RC to obtain the label-wise
weight vector CSoftmax (λi) ∈ [0, C]

C . In the inner-problem, the losses of the instances labeled
as c ∈ [C] are multiplied by the c-th element of the weight vector. PDBO-MTL is obtained by
formulating FedEM (Marfoq et al., 2021) as PDBO. PDBO-MTL lets each client train an ensemble
classifier that outputs weighted average predictions across K = 3 of CNNs. PDBO-MTL trains
the CNN parameters as the inner-problem and optimizes the hyperparameters λi ∈ RK to obtain
the ensemble weight vector Softmax (λi) ∈ [0, 1]

K . PDBO-MTL&DA combines PDBO-DA and
PDBO-MTL by optimizing λi ∈ RC+K to obtain both the label weight and ensemble weight vectors.

Baseline approaches We compared our approaches with baselines on each communication setting.
For FC and FixU settings, we compared several personalization approaches: a personalized model
trained only on the local dataset (Local), FedAvg with local tuning (FedAvg+) (Jiang et al., 2019),
Clustered-FL (Sattler et al., 2020), pFedMe (T Dinh et al., 2020), and centralized and decentralized
versions of FedEM (Marfoq et al., 2021). We also trained the global models using SGP (Nedić &
Olshevsky, 2016; Assran et al., 2019) and FedProx (Li et al., 2020). As SGP recovers FedAvg and
DSGD on FC and FixU, respectively, we treat them as equivalent approaches. Among all approaches
including ours, model architecture follows the setting in Marfoq et al. (2021).

Training procedure We allowed every client to generate its local dataset which has its unique label
distribution, following Marfoq et al. (2021), and split it into train, validation, and test datasets.

All baselines and PDBO inner-optimizations ran the distributed learning following Marfoq et al. (2021)
on FC and FixU, and ran SGP of Eq. (4b) on StoU and StoD using the train dataset. In PDBO,
any i-th client estimates δ̄j�i, p̄ij for all j ∈ [n] through communications in the inner-optimization,
and approximates y∗

i by y(T )
i obtained from the T steps of inner-optimization. Theorem 11 in

Appendix C.7 proves this approximation of y∗
i is reasonable when ∥y(T )

i − y∗
i ∥ is sufficiently small.

8



Under review as a conference paper at ICLR 2023

Table 1: Test accuracy of personalized models on EMNIST (average clients / 10% percentile).

Method Communication network

FC FixU StoU StoD

Global SGP(FedAvg/DSGD) 82.2 / 73.8 82.3 / 74.1 79.7 / 71.6 79.7 / 72.5
FedProx 69.6 / 58.2 n/a n/a n/a

Personalized

Local 74.7 / 63.9 74.7 / 63.9 73.7 / 63.8 73.7 / 63.8
FedAvg+ 83.0 / 75.1 n/a n/a n/a
Clustered-FL 82.3 / 73.8 n/a n/a n/a
pFedMe 76.2 / 65.7 n/a n/a n/a
FedEM 83.9 / 75.9 83.8 / 75.9 n/a n/a
PDBO-DA 82.9 / 74.8 83.0 / 75.5 80.9 / 73.2 80.8 / 72.9
PDBO-MTL 83.9 / 76.5 83.9 / 76.5 81.6 / 73.8 81.6 / 75.0
PDBO-MTL&DA 83.9 / 76.2 84.0 / 77.3 83.0 / 76.3 82.2 / 74.5

PDBO outer-optimizations ran 20 outer-steps tracing the average validation accuracy, and we reported
the average test accuracy at an outer-step that showed the best validation accuracy. Outer-steps were
performed by Adam (Kingma & Ba, 2015) from the zeros initial hyperparameters 0dλ . To estimate
the hyper-gradient for each outer-step, clients ran M = 200 HGP iterations with Eq. (4b) using the
average cross-entropy on the train dataset as Fi. We adopted HGP for FC and FixU, and VR-HGP
with (α, β) = (0.9, 0.1) for StoU and StoD. We also made a practical modification in HGP to
sample Ã(m) and B̃(m) together at the single m-th round, which leads to the same length of the
Neumann series with the half sampling costs of the original HGP, while they are no longer unbiased.

6.2 RESULTS AND DISCUSSIONS

Personalization performance Table 1 shows the average test accuracy with weights proportional
to local test dataset sizes. We observed that the ensemble-based approaches, FedEM, PDBO-MTL,
and PDBO-MTL&DA performed the best on FC, and PDBO-MTL&DA outperformed on all fully-
decentralized settings, that are, FixU, StoU, and StoD. Although PDBO-DA improved the average
accuracy from SGP in all communication settings, it was especially effective when combined with
PDBO-MTL. These results indicate that optimizing different parameters simultaneously, which is
newly enabled by our PDBO, is advantageous to the personalization performance.

We also investigated whether the accuracy gain was shared among all clients. Table 1 shows the
accuracy of the bottom 10% percentile of clients. All our approaches improved accuracy at the
10% percentile from global model approaches (SGP and FedProx) in all communication settings,
confirming that the clients fairly benefited from our personalization.

Applicability to stochastic communication networks The communication network limits the
available personalization methods, especially when the network is stochastic. Although FedEM is
one of the few personalization methods feasible in fully-decentralized settings, it requires the doubly
stochastic mixing matrix to be known, which is impractical on stochastic networks (Tsianos et al.,
2012). As PDBO encompasses SGP and HGP can run on stochastic communication networks, our
approaches succeeded in the personalization on StoU and StoD.

Robustness to communication directionality Our HGP and VR-HGP estimate hyper-gradient
solely from the directed communication edges, rather than running the standard recurrent backpropa-
gation which requires undirected edges. The improvement in our approaches on StoD demonstrated
that VR-HGP estimated the hyper-gradient with sufficiently small errors to solve PDBO.

7 CONCLUSION

This study proposed a gradient-based PDBO, which reduces most personalization approaches to the
optimization of hyperparameters possessed by each client. We also proposed HGP that estimates the
hyper-gradient through communications over stochastic and directed communication networks. In
addition, we introduced a variance-reduced HGP that mitigated the estimation variance caused by the
stochasticity of communication edges and provided its theoretical error bound. Our empirical results
demonstrated that our gradient-based PDBO with HGP enabled combining different personalization
approaches which led to state-of-the-art performance, and it performed on different simulated
communication environments including a stochastic and directed network.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We provide the detailed experiment settings of Section 6 in Appendix D including any modification
to the benchmark conducted by Marfoq et al. (2021) and will be releasing their implementations after
the review process. Our theoretical contributions and required assumptions are stated in Section 4.2.
The detailed derivations of our HGP and VR-HGP are provided in Appendix A and Appendix B,
respectively. We also provide detailed proof of the estimation error bound of VR-HGP in Appendix C.
The code for reproducing the results in Section 6 and Appendix G are provided by a separated
supplement.

REFERENCES

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
ated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient push for
distributed deep learning. In International Conference on Machine Learning, 2019.

Mahmoud S Assran and Michael G Rabbat. Asynchronous gradient push. IEEE Transactions on
Automatic Control, 66(1), 2020.

Florence Bénézit, Vincent Blondel, Patrick Thiran, John Tsitsiklis, and Martin Vetterli. Weighted
gossip: Distributed averaging using non-doubly stochastic matrices. In 2010 ieee international
symposium on information theory, pp. 1753–1757. IEEE, 2010.

Pascal Bianchi, Gersende Fort, and Walid Hachem. Performance of a distributed stochastic approxi-
mation algorithm. IEEE Transactions on Information Theory, 59(11):7405–7418, 2013.

Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. SIAM
REVIEW, 46:667–689, 2003.

Duc Bui, Kshitiz Malik, Jack Goetz, Honglei Liu, Seungwhan Moon, Anuj Kumar, and Kang G Shin.
Federated user representation learning. arXiv preprint arXiv:1909.12535, 2019.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Xuxing Chen, Minhui Huang, and Shiqian Ma. Decentralized bilevel optimization. arXiv preprint
arXiv:2206.05670, 2022.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending MNIST
to handwritten letters. In International Joint Conference on Neural Networks, 2017.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang.
Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep
learning applications. In IEEE 37th International Conference on Computer Design, 2019.

Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Hongchang Gao, Bin Gu, and My T Thai. Stochastic bilevel distributed optimization over a network.
arXiv preprint arXiv:2206.15025, 2022.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

10



Under review as a conference paper at ICLR 2023

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complex-
ity of hypergradient computation. In International Conference on Machine Learning, 2020.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Junyi Li, Feihu Huang, and Heng Huang. Local stochastic bilevel optimization with momentum-based
variance reduction. arXiv preprint arXiv:2205.01608, 2022.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the
parameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation,
2014.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopoulos, and V. Sze
(eds.), Proceedings of Machine Learning and Systems, 2020.

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of topic
correlations. In Proceedings of the 23rd international conference on Machine learning, pp.
577–584, 2006.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, 2017.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In International Conference on Machine Learning, 2018.

Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Interact: Achieving low
sample and communication complexities in decentralized bilevel learning over networks. arXiv
preprint arXiv:2207.13283, 2022.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

Songtao Lu, Xiaodong Cui, Mark S Squillante, Brian Kingsbury, and Lior Horesh. Decentral-
ized bilevel optimization for personalized client learning. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2022.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488, 2010.

Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
multi-task learning under a mixture of distributions. In Advances in Neural Information Processing
Systems, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, 2017.

Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control, 60(3):601–615, 2014.

11



Under review as a conference paper at ICLR 2023

Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for strongly convex functions on
time-varying directed graphs. IEEE Transactions on Automatic Control, 61(12):3936–3947, 2016.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
Conference on Machine Learning, pp. 737–746. PMLR, 2016.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neural
networks and learning systems, 32(8):3710–3722, 2020.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
In Advances in Neural Information Processing Systems, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, and Samet Oymak. Fednest:
Federated bilevel, minimax, and compositional optimization. arXiv preprint arXiv:2205.02215,
2022.

Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Consensus-based distributed optimiza-
tion: Practical issues and applications in large-scale machine learning. In 50th Annual Allerton
Conference on Communication, Control, and Computing, 2012.

Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized collaborative learning of
personalized models over networks. In Artificial Intelligence and Statistics, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2019.

Shuoguang Yang, Xuezhou Zhang, and Mengdi Wang. Decentralized gossip-based stochastic bilevel
optimization over communication networks. arXiv preprint arXiv:2206.10870, 2022.

Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. Fully decentralized joint learning of
personalized models and collaboration graphs. In International Conference on Artificial Intelligence
and Statistics, 2020.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12



Under review as a conference paper at ICLR 2023

A ESTIMATION OF HYPER-GRADIENT

Notation For a vector v ∈ Rd, ∥v∥ =
√∑d

i=1 v
2
i is its ℓ2 norm. For a matrix V ∈ Rd1×d2 , ∥V ∥2

is its largest singular value.

A.1 STATIONARITY OF SGP

We consider the generalized version of SGP over n nodes as follows:

y
(t+1)
i =

n∑
j=1

pji(δ
(t)
j )φj

(
y
(t)
j ;λj , ζ

(t)
j

)
+ψi

(
y
(t)
i ;λi, ζ

(t)
i

)
, pji(δ

(t)
j ) = δ

(t)
j�ipji

(
δ
(t)
j�1, . . . , δ

(t)
j�n

)
,

We set δ(t)i�i = 1 for all i and t, i.e., every client can send a message to itself at any time step.

Assumptions 1 and 2 ensures existence of the unique stationary point y∗.

y∗
i = Eδ,ζ

 n∑
j=1

pjiφj
(
y∗
j ;λj , ζj

)
+ψi (y

∗
i ;λi, ζi)


=

n∑
j=1

p̄jiEζ
[
φj
(
y∗
j ;λj , ζj

)]
+ Eζ [ψi (y∗

i ;λi, ζi)] ,

where p̄ji = Eδ [pji].

A.2 HYPER-GRADIENT BY IMPLICIT DIFFERENTIATION

We adopt Assumption 3 so that φ,ψ, and F̄ to be differentiable. The differentiation of y∗
i by λj is

dλjy
∗
i =

n∑
j=1

p̄ji
(
dλjy

∗
i ∂yiEζ

[
φj
(
y∗
j ;λj , ζj

)]
+ ∂λjEζ

[
φj
(
y∗
j ;λj , ζj

)])
+ 1ji

(
dλjy

∗
i ∂yiEζ [ψi (y∗

i ;λi, ζi)] + ∂λiEζ [ψi (y∗
i ;λi, ζi)]

)
.

Let y∗ = [y∗
i ]i and λ = [λi]i be the concatenated parameters and hyperparameters, respectively. We

can write the differentiation in the matrix form by
dλy

∗ = dλy
∗Ā+ B̄,

where

Ā =
[
1jiĀ

ψ
i + p̄jiĀ

φ
j

]
ji
∈ Rndy×ndy ,

Āψ
i = ∂yiEζ [φi(y∗

i ;λi, ζi)] ∈ Rdy×dy , Āφ
j = ∂yjEζ

[
φj(y

∗
j ;λj , ζj)

]
∈ Rdy×dy ,

B̄ =
[
1jiB̄

ψ
i + p̄jiB̄

φ
j

]
ji
∈ Rndλ×ndy ,

B̄ψ
i = ∂λiEζ [φi(y∗

i ;λi, ζi)] ∈ Rdλ×dy , B̄φ
j = ∂λjEζ

[
φj(y

∗
j ;λj , ζj)

]
∈ Rdλ×dy .

Then, we have
dλy

∗ = B̄(I − Ā)−1.

In particular, we have

dλjy
∗
i =

∑
k

⟨B̄⟩jk⟨(I − Ā)−1⟩ki,

where ⟨·⟩jk and ⟨·⟩ki denotes the (j, k)-th and (k, i)-th block of the matrix.

The hyper-gradient of the objective function F (x∗,λ) =
∑
i Fi(x

∗
i ,λi) is then given as

dλjF (y∗,λ) =
∑
i

dλjy
∗
i ∂yiFi(y

∗
i ,λi)︸ ︷︷ ︸

cy
i

+ ∂λjFj(y
∗
j ,λj)︸ ︷︷ ︸

cλ
j

=
∑
i

dλjy
∗
i c

y
i + cλj .

13



Under review as a conference paper at ICLR 2023

A.3 ESTIMATION OF HYPERGRADIENT

In the remainder, we consider ψi and φj of the following forms:

ψi(yi;λi, ζi) =
1

|ζi|
∑
ξ∈ζi

gi(yi;λi, ξ)

φj(yj ;λj , ζj) =
1

|ζj |
∑
ξ∈ζi

hj(yj ;λj , ξ),

for some gi(·;λi, ξ) : Rdy → Rdy and hj(·;λj , ξ) : Rdy → Rdy , which are true for SGP in Eq. (4a)
and Eq. (4b). Assumption 3 ensures that gi and hj are differentiable with respect to both y and λ.

A.3.1 ESTIMATION OF Ā AND B̄

Because the matrices Ā and B̄ are defined as the expectation over the data minibatch ζi, ζj as well
as the realization of communication network δ, we estimate them from the observation as follows.

Â =
[
1jiÂ

ψ
i + p̄jiÂ

φ
j

]
ji
∈ Rndy×ndy ,

Âψ
i =

1

|ζi|
∑
ξ∈ζi

∂yigi(y
∗
i ;λi, ξ) ∈ Rdy×dy , Âφ

j =
1

|ζj |
∑
ξ∈ζj

∂yjhj(y
∗
j ;λj , ξ) ∈ Rdy×dy ,

B̂ =
[
1jiB̂

ψ
i + p̄jiB̂

φ
j

]
ji
∈ Rndλ×ndy ,

B̂ψ
i =

1

|ζi|
∑
ξ∈ζi

∂λihi(y
∗
i ;λi, ξ) ∈ Rdλ×dy , B̂φ

j =
1

|ζj |
∑
ξ∈ζj

∂λjφji(y
∗
j ;λj , ξ) ∈ Rdλ×dy .

A.3.2 APPROXIMATION BY NEUMANN SERIES

With Assumption 4, we have
∥∥Ā∥∥

2
< 1 We can thus approximate (I − Ā)−1 by the truncated

Neumann series up to the M -th term as

(I − Ā)−1 =

∞∑
m=0

Ām ≈
M−1∑
m=0

Ām.

The approximation of the hyper-gradient could be expressed as

dλF (x∗,λ) ≈ B̄
M−1∑
m=0

Āmcyi + cλj .

By replacing Ā and B̄ with the estimators Â and B̂, we have

dλF̄ (x∗,λ) ≈
M−1∑
m=0

B̂(2m)
m−1∏
s=0

Â(2s+1)cy + cλ,

where Â(2s+1) and B̂(2m) denotes the estimators at the 2s+ 1-th and the 2m-th step of the commu-
nication round, respectively. In this estimator, we estimate Ā in the odd-numbered steps and estimate
B̄ in the even-numbered steps of the communication round, respectively.

A.4 HYPER-GRADIENT PUSH (HGP)

We now present our proposed method, hyper-gradient push (HGP), which is a modified version of the
recurrent backpropagation. HGP can run even on stochastic and directed networks while enjoying the
same order of communication efficiency as SGP. In HGP, we adopt Assumptions 6 and 7, and assume
that {δ̄j�i = Eδ [δj�i]}j,i and {p̄ji}j,i are known.

14



Under review as a conference paper at ICLR 2023

The idea of HGP is to use δij
p̄ji
δ̄ij

instead of pji in Â and B̂ as follows.

Â =

[
1jiÂ

ψ
i + δi�j

p̄ji
δ̄i�j

Âφ
j

]
ji

,

B̂ =

[
1jiB̂

ψ
i + δi�j

p̄ji
δ̄i�j

B̂φ
j

]
ji

.

Under Assumption 5 where δ and ζ are independent, these are the unbiased estimators because

Eδ,ζ
[
Â
]
=

1ji Eζi
[
Âψ
i

]
︸ ︷︷ ︸

=Āψ
i

+Eδi�j
[
δi�j

p̄ji
δ̄i�j

]
︸ ︷︷ ︸
δ̄i�j

p̄ji
δ̄i�j

=p̄ji

Eζj
[
Âφ
j

]
︸ ︷︷ ︸

=Āφ
j


ji

=
[
1jiĀ

ψ
i + p̄jiĀ

φ
j

]
ji
= Ā,

Eδ,ζ
[
B̂
]
=

1ji Eζi
[
B̂ψ
i

]
︸ ︷︷ ︸

=B̄i

+Eδi�j
[
δi�j

p̄ji
δ̄i�j

]
︸ ︷︷ ︸
δ̄i�j

p̄ji
δ̄i�j

=p̄ji

Eζj
[
B̂φ
j

]
︸ ︷︷ ︸

=B̄φ
j


ji

=
[
1jiB̄

ψ
i + p̄jiB̄

φ
j

]
ji
= B̄.

Recall that the hyper-gradient can be approximated as

dλjF (x∗,λ) ≈
M−1∑
m=0

∑
k

⟨B̄⟩jk
∑
i

⟨Ām⟩kicyi + cλj . (15)

By replacing the expectation with the above estimators Â and B̂, we have

d̂λjF (x∗,λ) =

M−1∑
m=0

∑
k

〈
B̂(2m)

〉
jk

∑
i

〈
m−1∏
s=0

Â(2s+1)

〉
ki

cyi + cλj . (16)

Let u(m)
k =

∑
i

〈∏m−1
s=0 Â

(2s+1)
〉
ki
cyi . We note that u(m+1)

k can be computed recursively as

u
(m+1)
k =

∑
k′

〈
Â(2m+1)

〉
kk′
u
(m)
k′ .

By using this fact, we can rewrite the estimator as

d̂λjF (x∗,λ) =

M−1∑
m=0

∑
k

〈
B̂(2m)

〉
jk

∑
k′

〈
Â(2m−1)

〉
kk′

∑
i

〈
m−2∏
s=0

Â(2s+1)

〉
k′i

cyi︸ ︷︷ ︸
u

(m−1)

k′

+cλj

=

M−1∑
m=0

∑
k

〈
B̂(2m)

〉
jk

∑
k′

〈
Â(2m−1)

〉
kk′
u
(m−1)
k′︸ ︷︷ ︸

u
(m)
k

+cλj .

We can then derive the proposed algorithm, hyper-gradient push, as follows:

15



Under review as a conference paper at ICLR 2023

Hyper-Gradient Push (HGP)

u
(0)
j ← cyj , v

(0)
j ← cλj v

(m+1)
j ← v

(m)
j +

∑
k

〈
B̂(2m)

〉
jk
u
(m)
k

u
(m+1)
k ←

∑
k′

〈
Â(2m+1)

〉
kk′
u
(m)
k′

for m = 0, 1, 2, . . . ,M − 1

d̂λiF (x∗,λ)← v
(M)
j

In HGP, the estimator could be obtained after the 2M rounds of communication. In each round of the
communication, the clients communicate u(m)

k ∈ Rdy which is O(dy) parameters only, the same as
the standard communication for SGP update.

B VARIANCE REDUCTION

We now introduce the variance-reduced version of HGP. The naive HGP above suffers from the large
variance because of δ(m)

j�i /δ̄j�i; this term can take a value far larger than one when δ̄j�i is small. The
multiplication of such values induces high variance.

Recall that, in HGP, we aim at approximating the estimator

dλjF (x∗,λ) ≈
M−1∑
m=0

∑
k

⟨B̄⟩jk
∑
i

⟨Ām⟩kicyi + cλj .

With v(0)j ← 0,u
(0)
k ← Cy

k , HGP computes the first term of the right-hand-side by iterating

v
(m+1)
j ← v

(m)
j +

∑
k

⟨B̄⟩jku(m)
k ,

u
(m+1)
k ←

∑
k′

⟨Ā⟩kk′u(m)
k′ ,

where u
(m+1)
k is equivalent to

∑
k′⟨Am+1⟩kk′cyk′ . We can also consider another way of computing

the first term. With v(0)j ← 0dλ ,w
(0)
k ← cyk , we can compute

v
(m+1)
j ←

∑
k

⟨B̄⟩jkw(m)
k ,

w
(m+1)
k ←

∑
k′

⟨Ā⟩kk′w(m)
k′ + cyk ,

where w(m+1)
k is equivalent to

∑m+1
m′=0

∑
k′

〈
Ām′〉

kk′
cyk′ =

∑m+1
m′=0 u

(m′)
k = w

(m)
k + u

(m+1)
k .

By combining the above two formulas, we can derive the general expression of HGP as

v
(m+1)
j ← α

(
v
(m)
j +

∑
k

⟨B̄⟩jku(m)
k

)
+ (1− α)

∑
k

⟨B̄⟩jkw(m)
k ,

u
(m+1)
k ←

∑
k′

⟨Ā⟩kk′u(m)
k′ ,

w
(m+1)
k ← β

(∑
k′

⟨Ā⟩kk′w(m)
k′ + cyk

)
+ (1− β)

(
w

(m)
k + u

(m+1)
k

)
,

where α, β ∈ [0, 1] are the interpolation weights. By replacing Ā, B̄ by the empirical estimates Â,
B̂, we obtain the general expression of HGP as follows.

16



Under review as a conference paper at ICLR 2023

General HGP for Variance Reduction

v
(0)
j ← 0dλ , u

(0)
j ← cyj , w

(0)
j ← cyj

v
(m+1)
j ← α

(
v
(m)
j +

∑
k

〈
B̂(2m)

〉
jk
u
(m)
k

)
+ (1− α)

∑
k

〈
B̂(2m)

〉
jk
w

(m)
k

u
(m+1)
k ←

∑
k′

〈
Â(2m+1)

〉
kk′
u
(m)
k′

w
(m+1)
k ← β

(∑
k′

〈
Â(2m+1)

〉
kk′
w

(m)
k′ + cyk

)
+ (1− β)

(
w

(m)
k + u

(m+1)
k

)
,

for m = 0, 1, 2, . . . ,M − 1

d̂λiF (x∗,λ)← v
(M)
j + cλj

We note that this general HGP is the weighted average of the two different estimation algorithms,
which results in an estimator with a smaller variance. That is, by choosing α, β ∈ [0, 1] appropriately,
we can obtain an estimate of the hyper-gradient with a smaller variance. From the computational
perspective, this general HGP has properties similar to the original HGP: it can be computed
even on stochastic and directed networks; the estimator could be obtained after the 2M rounds of
communication; and the clients communicate O(dy) parameters in each iteration.

C ESTIMATION ERROR OF HYPER-GRADIENT

In the following, we assume that the derivatives of gi and hj are bounded.
Assumption 9. ∃ηA ∈ (0, 1), ηB ∈ (0,∞) such that ∀ξ and ∀i, j,

max

{
sup

yi,λi,ξ
∥∂yigi(yi,λi, ξ)∥2, sup

yj ,λj ,ξ

∥∥∂yjhj(yj ,λj , ξ)∥∥2
}
≤ ηA

2
∑
i,j

p̄ji
δ̄i�j

,

max

{
sup

yi,λi,ξ
∥∂λigi(yi,λi, ξ)∥2, sup

yj ,λj ,ξ

∥∥∂λjhj(yj ,λj , ξ)∥∥2
}
≤ ηB

2
∑
i,j

p̄ji
δ̄i�j

.

Recall that
∑
i,j

p̄ji
δ̄i�j
≥ n by the properties

∑n
i=1 p̄ji = 1, δ̄i�j ∈ [0, 1]. Assumption 9 implies∥∥Ā∥∥

2
≤
∑
i

sup
yi,λi,ξ

∥∂yigi(yi,λi, ξ)∥2 +
∑
i,j

p̄ji sup
yj ,λj ,ξ

∥∥∂yjhj(yj ,λi, ξ)∥∥2
≤

n+
∑
i,j

p̄ji

 ηA

2
∑
i,j

p̄ji
δ̄i�j

≤ ηA,

∥∥∥Â∥∥∥
2
≤
∑
i

sup
yi,λi,ξ

∥∂yigi(yi,λi, ξ)∥2 +
∑
i,j

p̄ji
δ̄i�j

sup
yj ,λj ,ξ

∥∥∂yjhj(yj ,λi, ξ)∥∥2
≤

n+
∑
i,j

p̄ji
δ̄i�j

 ηA

2
∑
i,j

p̄ji
δ̄i�j

≤ ηA,

∥∥B̄∥∥
2
≤
∑
i

sup
yi,λi,ξ

∥∂λigi(yi,λi, ξ)∥2 +
∑
i,j

p̄ji sup
yj ,λj ,ξ

∥∥∂λjhj(yj ,λi, ξ)∥∥2
≤

n+
∑
i,j

p̄ji

 ηB

2
∑
i,j

p̄ji
δ̄i�j

≤ ηB ,

∥∥∥B̂∥∥∥
2
≤
∑
i

sup
yi,λi,ξ

∥∂λigi(yi,λi, ξ)∥2 +
∑
i,j

p̄ji
δ̄i�j

sup
λj ,λj ,ξ

∥∥∂yjhj(yj ,λi, ξ)∥∥2
≤

n+
∑
i,j

p̄ji
δ̄i�j

 ηB

2
∑
i,j

p̄ji
δ̄i�j

≤ ηB .

17



Under review as a conference paper at ICLR 2023

C.1 PRELIMINARY LEMMAS

In this section, we present a few preliminary lemmas we use in the proof of the theorems.

We recall that we can express the general HGP using the concatenated vectors and matrices as

v(m+1) = α
(
v(m) + B̂(2m)u(m)

)
+ (1− α)B̂(2m)w(m), (17)

u(m+1) = Â(2m+1)u(m), (18)

w(m+1) = β
(
Â(2m+1)w(m) + cy

)
+ (1− β)

(
w(m) + u(m+1)

)
. (19)

with the initial conditions v(0) ← 0, u(0) ← cy , and w(0) ← cy .

The following lemmas show explicit formula of v and w and their decomposition.

Lemma 2 (Explicit Formula of w).

w(M) =

M−1∏
m=0

(
(1− β)I + βÂ(2m+1)

)
cy

+

M∑
i=1

[
M−1∏
m=i

(
(1− β)I + βÂ(2m+1)

)](
βI + (1− β)

[
i−1∏
m=0

Â(2m+1)

])
cy, (20)

where we define
∏
m∈∅(·)m = 1 so that

∏M−1
m=M (·)m = I .

Proof. We prove the claim by induction. We first recall that

u(M) =

M−1∏
m=0

Â(2m+1)cy. (21)

By setting m = 0 in (19), we have

w(1) = β
(
Â(1)w(0) + cy

)
+ (1− β)

(
w(0) + u(1)

)
= β

(
Â(1)cy + cy

)
+ (1− β)

(
cy + Â(1)cy

)
= cy + Â(1)cy.

By setting M = 1 in (20), we also have

w(1) =
(
(1− β)I + βÂ(1)

)
cy +

(
βI + (1− β)Â(1)

)
cy = cy + Â(1)cy,

which confirms that (20) is valid when M = 1.

Now, suppose that the statement is true for some M ≥ 1. Then, by (19),

w(M+1) = β
(
Â(2M+1)w(M) + Cy

)
+ (1− β)

(
w(M) + u(M+1)

)
= βcy + (1− β)

[
M∏
m=0

Â(2m+1)

]
cy +

(
(1− β)I + βÂ(2M+1)

)
w(M)

18



Under review as a conference paper at ICLR 2023

= βcy + (1− β)

[
M∏
m=0

Â(2m+1)

]
cy

+
(
(1− β)I + βÂ(2M+1)

)[M−1∏
m=0

(
(1− β)I + βÂ(2m+1)

)]
cy

+
(
(1− β)I + βÂ(2M+1)

) M∑
i=1

[
M−1∏
m=i

(
(1− β)I + βÂ(2m+1)

)](
βI + (1− β)

[
i−1∏
m=0

Â(2m+1)

])
cy

=

[
M∏
m=0

(
(1− β)I + βÂ(2m+1)

)]
cy

+ 1×

(
βI + (1− β)

[
M∏
m=0

Â(2m+1)

])
cy

+

M∑
i=1

[
M∏
m=i

(
(1− β)I + βÂ(2m+1)

)](
βI + (1− β)

i−1∏
m=0

Â(2m+1)

)
cy

=

[
M∏
m=0

(
(1− β)I + βÂ(2m+1)

)]
cy

+

M+1∑
i=1

[
M∏
m=i

(
(1− β)I + βÂ(2m+1)

)](
βI + (1− β)

i−1∏
m=0

Â(2m+1)

)
cy,

where the last line follows from the fact that
∏M
i=M+1(·)m = I .

Lemma 3 (Decomposition of w).

w(M) −
M∑
i=0

Āicy

=

(
M−1∑
i=0

L̂
(i,M)
1 (Â(2i+1) − Ā)R

(i)
1 + L̂

(i,M)
2 (Â(2i+1) − Ā)Āi

)
cy, (22)

where

L̂
(i,M)
1 = β

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
,

L̂
(i,M)
2 = (1− β)

M∑
j=i+1

M−1∏
m=j

(
(1− β)I + βÂ(2m+1)

)[ j−1∏
m=i+1

Â(2m+1)

]
,

R
(i)
1 =

(
(1− β)I + βĀ

)i
+

i∑
j=1

(
(1− β)I + βĀ

)i−j (
βI + (1− β)Āj

)
.

Proof. We first recall that, as the corollary of Lemma 2,

M∑
i=0

Āicy =
(
(1− β)I + βĀ

)M
cy +

M∑
i=1

(
(1− β)I + βĀ

)M−i (
βI + (1− β)Āi

)
cy.

19



Under review as a conference paper at ICLR 2023

By using Lemma 2, we can expand the difference as

w(M) −
M∑
i=0

Āicy

=

(
M−1∏
m=0

(
(1− β)I + βÂ(2m+1)

)
−
(
(1− β)I + βĀ

)M)
cy

+

M∑
i=1

([
M−1∏
m=i

(
(1− β)I + βÂ(2m+1)

)]
−
(
(1− β)I + βĀ

)M−i
)(

βI + (1− β)Āi
)
cy

+

M∑
i=1

[
M−1∏
m=i

(
(1− β)I + βÂ(2m+1)

)]
(1− β)

(
i−1∏
m=0

Â(2m+1) − Āi

)
cy

=

M−1∑
i=0

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
β
(
Â(2i+1) − Ā

) (
(1− β)I + βĀ

)i
cy

+

M−1∑
j=1

M−1∑
i=j

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
β
(
Â(2i+1) − Ā

) (
(1− β)I + βĀ

)i−j
×
(
βI + (1− β)Āj

)
cy

+

M∑
j=1

M−1∏
m=j

(
(1− β)I + βÂ(2m+1)

) (1− β)

j−1∑
i=0

[
j−1∏

m=i+1

Â(2m+1)

](
Â(2i+1) − Ā

)
Āicy

=

M−1∑
i=0

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
β
(
Â(2i+1) − Ā

) (
(1− β)I + βĀ

)i
cy

+

M−1∑
i=1

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
β
(
Â(2i+1) − Ā

)

×
i∑

j=1

(
(1− β)I + βĀ

)i−j (
βI + (1− β)Āj

)
cy

+

M−1∑
i=0

M∑
j=i+1

M−1∏
m=j

(
(1− β)I + βÂ(2m+1)

) (1− β)

[
j−1∏

m=i+1

Â(2m+1)

](
Â(2i+1) − Ā

)
Āicy

=

M−1∑
i=0

β

[
M−1∏
m=i+1

(
(1− β)I + βÂ(2m+1)

)]
︸ ︷︷ ︸

=L̂
(i,M)
1

(
Â(2i+1) − Ā

)

×

((1− β)I + βĀ
)i

+

i∑
j=1

(
(1− β)I + βĀ

)i−j (
βI + (1− β)Āj

)
︸ ︷︷ ︸

=R
(i)
1

cy

+

M−1∑
i=0

(1− β)

M∑
j=i+1

M−1∏
m=j

(
(1− β)I + βÂ(2m+1)

)[ j−1∏
m=i+1

Â(2m+1)

]
︸ ︷︷ ︸

=L̂
(i,M)
2

(
Â(2i+1) − Ā

)
Āicy.

20



Under review as a conference paper at ICLR 2023

Lemma 4 (Explicit Formula of v).

v(M+1) =

M∑
i=0

αM−i+1B̂(2i)u(i) + (1− α)

M∑
i=0

αM−iB̂(2i)w(i). (23)

Proof. We prove the claim by induction. By setting m = 0 in (17), we have

v(1) = α
(
v(0) + B̂(0)u(0)

)
+ (1− α)B̂(0)w(0)

= αB̂(0)cy + (1− α)B̂(0)cy = B̂(0)cy.

By setting M = 0 in (23), we also have

v(1) = αB̂(0)cy + (1− α)αB̂(0)w(0) = B̂(0)cy,

which confirms that (23) is valid when M = 0.

Now, suppose that the statement is true for some M ≥ 1. Then, by (17),

v(M+1) = α
(
v(M) + B̂(2M)u(M)

)
+ (1− α)B̂(2M)w(M)

= α

(
M−1∑
i=0

αM−iB̂(2i)u(i) + (1− α)

M−1∑
i=0

αM−i−1B̂(2i)w(i)

)
+ αB̂(2M)u(M) + (1− α)B̂(2M)w(M)

=

(
M−1∑
i=0

αM−i+1B̂(2i)u(i) + αB̂(2M)u(M)

)

+ (1− α)

(
M−1∑
i=0

αM−iB̂(2i)w(i) + B̂(2M)w(M+1)

)

=

M∑
i=0

αM−i+1B̂(2i)u(i) + (1− α)

M∑
i=0

αM−iB̂(2i)w(i).

Lemma 5 (Decomposition of v).

v(M+1) − B̄
M∑
i=0

Āicy

=

M∑
i=0

(B̂(2i) − B̄)R
(i,M)
3 cy +

M−1∑
i=0

(
L̂

(i,M)
4 (Â(2i+1) − Ā)Āi + L̂

(i,M)
5 (Â(2i+1) − Ā)R

(i)
1

)
cy,

(24)

where

R
(i,M)
3 = αM−i+1Āi + (1− α)αM−i

i∑
j=0

Āj ,

L̂
(i,M)
4 =

M∑
j=i+1

αM−j+1B̂(2j)

[
j−1∏

m=i+1

Â(2m+1)

]

+ (1− α)(1− β)

M∑
j=i+1

αM−jB̂(2j)

j∑
k=i+1

[
j−1∏
m=k

(
(1− β)I + βÂ(2m+1)

)][ k−1∏
m=i+1

Â(2m+1)

]
,

L̂
(i,M)
5 = (1− α)β

M∑
j=i+1

αM−jB̂(2j)

[
j−1∏

m=i+1

(
(1− β)I + βÂ(2m+1)

)]
.

21



Under review as a conference paper at ICLR 2023

Proof. We first recall that, as the corollary of Lemma 4,

B̄

M∑
i=0

Āicy =

M∑
i=0

αM−i+1B̄Āicy + (1− α)

M∑
i=0

αM−iB̄

i∑
j=0

Ājcy.

By using Lemma 4 and Lemma 2, we can expand the difference as

v(M+1) − B̄
M∑
i=0

Āicy

=

M∑
i=0

αM−i+1

(
B̂(2i)

[
i−1∏
m=0

Â(2m+1)

]
− B̄Āi

)
cy + (1− α)

M∑
i=0

αM−i

B̂(2i)w(i) − B̄
i∑

j=0

Ājcy


=

M∑
i=0

αM−i+1
(
B̂(2i) − B̄

)
Āicy +

M∑
j=1

αM−j+1B̂(2j)

j−1∑
i=0

[
j−1∏

m=i+1

Â(2m+1)

](
Â(2i+1) − Ā

)
Āicy

+ (1− α)

M∑
i=0

αM−i
(
B̂(2i) − B̄

) i∑
j=0

Ājcy + (1− α)

M∑
i=1

αM−iB̂(2i)

w(i) −
i∑

j=0

Ājcy

 .

By substituting (22), we have

v(M+1) − B̄
M∑
i=0

Āicy

=

M∑
i=0

αM−i+1
(
B̂(2i) − B̄

)
Āicy +

M∑
j=1

αM−j+1B̂(2j)

j−1∑
i=0

[
j−1∏

m=i+1

Â(2m+1)

](
Â(2i+1) − Ā

)
Āicy

+ (1− α)

M∑
i=0

αM−i
(
B̂(2i) − B̄

) i∑
j=0

Ājcy

+ (1− α)

M∑
j=1

αM−jB̂(2j)

(
j−1∑
i=0

L̂
(i,j)
1 (Â(2i+1) − Ā)R

(i)
1 + L̂

(i,j)
2 (Â(2i+1) − Ā)Āi

)
cy

=

M∑
i=0

(
B̂(2i) − B̄

)αM−i+1Āi + (1− α)αM−i
i∑

j=0

Āj


︸ ︷︷ ︸

=R
(i,M)
3

cy

+

M−1∑
i=0

 M∑
j=i+1

αM−j+1B̂(2j)

[
j−1∏

m=i+1

Â(2m+1)

]
+ (1− α)

M∑
j=i+1

αM−jB̂(2j)L̂
(i,j)
2


︸ ︷︷ ︸

=L̂
(i,M)
4

(
Â(2i+1) − Ā

)
Āicy

+

M−1∑
i=0

(1− α)

M∑
j=i+1

αM−jB̂(2j)L̂
(i,j)
1︸ ︷︷ ︸

=L̂
(i,M)
5

(Â(2i+1) − Ā)R
(i)
1 c

y.

By substituting L(i,j)
2 , L(i,j)

1 , we obtain the claim.

To bound the estimation error of hyper-gradient, we need to bound each term of (24). The following
lemma gives the bounds for each coefficient matrices in (24).

22



Under review as a conference paper at ICLR 2023

Lemma 6. Under Assumption 9, we have

∥∥∥R(i,M)
3

∥∥∥
2
≤ 1− α

1− ηA
αM−i +

1

1− ηA
αM−i+1ηiA −

1

1− ηA
αM−iηi+1

A , (25)∥∥∥L̂(i,M)
4

∥∥∥
2
≤ ηBαβ

α− (1− β + βηA)
αM−i

− ηB
1− ηA

ηM−i
A − ηB

1− ηA

1− α

α− (1− β + βηA)
(1− β + βηA)

M−i+1, (26)∥∥∥L̂(i,M)
5

∥∥∥
2
≤ ηB

(1− α)β

α− (1− β + βηA)

(
αM−i − (1− β + βηA)

M−i) , (27)∥∥∥R(i)
1

∥∥∥
2
≤

1− ηi+1
A

1− ηA
. (28)

Proof. Recall that Assumption 9 ensures
∥∥Ā∥∥

2
≤ ηA,

∥∥∥Â∥∥∥
2
≤ ηA,

∥∥B̄∥∥
2
≤ ηB ,

∥∥∥B̂∥∥∥
2
≤ ηB .

Then, we have

∥∥∥R(i,M)
3

∥∥∥
2
≤ αM−i+1

∥∥Ā∥∥i
2
+ (1− α)αM−i

i∑
j=0

∥∥Ā∥∥j
2

≤ αM−i+1ηiA + (1− α)αM−i
i∑

j=0

ηjA

= αM−i+1ηiA + (1− α)αM−i 1− ηi+1
A

1− ηA

= αM−i+1ηiA +
1− α

1− ηA
αM−i − 1

1− ηA
αM−iηi+1

A +
ηA

1− ηA
αM−i+1ηiA

=
1− α

1− ηA
αM−i +

1

1− ηA
αM−i+1ηiA −

1

1− ηA
αM−iηi+1

A ,

∥∥∥L̂(i,M)
4

∥∥∥
2
≤

M∑
j=i+1

αM−j+1
∥∥∥B̂(2j)

∥∥∥
2

j−1∏
m=i+1

∥∥∥Â(2m+1)
∥∥∥
2

+ (1− α)(1− β)

M∑
j=i+1

αM−j
∥∥∥B̂(2j)

∥∥∥
2

j∑
k=i+1

j−1∏
m=k

∥∥∥(1− β)I + βÂ(2m+1)
∥∥∥
2

k−1∏
m=i+1

∥∥∥Â(2m+1)
∥∥∥
2

≤ ηB

M∑
j=i+1

αM−j+1ηj−i−1
A + ηB(1− α)(1− β)

M∑
j=i+1

αM−j
j∑

k=i+1

(1− β + βηA)
j−kηk−i−1

A

= ηB
α

α− ηA

(
αM−i − ηM−i

A

)
+ ηB

1− α

1− ηA

M∑
j=i+1

αM−j
(
(1− β + βηA)

j−i − ηj−iA

)
= ηB

α

α− ηA

(
αM−i − ηM−i

A

)
+ ηB

1− α

1− ηA

(
(1− β + βηA)

(
αM−i − (1− β + βηA)

M−i)
α− (1− β + βηA)

−
ηA
(
αM−i − ηM−i

A

)
α− ηA

)

= ηB
1

1− ηA

(
αM−i − ηM−i

A

)
+ ηB

1− α

1− ηA

1− β + βηA
α− (1− β + βηA)

(
αM−i − (1− β + βηA)

M−i)
=

ηBαβ

α− (1− β + βηA)
αM−i − ηB

1− ηA
ηM−i
A − ηB

1− ηA

1− α

α− (1− β + βηA)
(1− β + βηA)

M−i+1,

23



Under review as a conference paper at ICLR 2023

∥∥∥L̂(i,M)
5

∥∥∥
2
≤ (1− α)β

M∑
j=i+1

αM−j
∥∥∥B̂(2j)

∥∥∥
2

j−1∏
m=i+1

∥∥∥(1− β)I + βÂ(2m+1)
∥∥∥
2

≤ ηB(1− α)β

M∑
j=i+1

αM−j(1− β + βηA)
j−i−1

= ηB(1− α)β
αM−i − (1− β + βηA)

M−i

α− (1− β + βηA)
,

∥∥∥R(i)
1

∥∥∥
2
≤
∥∥(1− β)I + βĀ

∥∥i
2
+

i∑
j=1

∥∥(1− β)I + βĀ
∥∥i−j
2

(
β + (1− β)

∥∥Ā∥∥j
2

)

≤ (1− β + βηA)
i + β

i∑
j=1

(1− β + βηA)
i−j + (1− β)

i∑
j=1

(1− β + βηA)
i−jηjA

= (1− β + βηA)
i +

1− (1− β + βηA)
i

1− ηA
+ ηA

(1− β + βηA)
i − ηiA

1− ηA

=
1− ηi+1

A

1− ηA
.

C.2 DECOMPOSITION OF Â, B̂

We can decompose the difference Â− Ā and B̂ − B̄ as

Â− Ā =

[
1ji(Â

ψ
i − Ā

ψ
i ) + p̄ji

(
δi�j
δ̄i�j

Âφ
j − Ā

φ
j

)]
ji

=

[(
δi�j
δ̄i�j
− 1

)
p̄jiÂ

φ
j

]
ji

+
[
1ji(Â

ψ
i − Ā

ψ
i ) + p̄ji

(
Âφ
j − Ā

φ
j

)]
ji

=

n∑
i,j=1

eje
⊤
i ⊗

(
δi�j
δ̄i�j
− 1

)
p̄jiÂ

φ
j

+

n∑
i,j=1

eje
⊤
i ⊗

1ji

|ζi|
∑
ξ∈ζi

(
∂yigi(y

∗
i ,λi, ξ)− Ā

ψ
i

)
+

p̄ji
|ζj |

∑
ξ∈ζj

(
∂yjhj(y

∗
j ,λj , ξ)− Ā

φ
j

) ,

B̂ − B̄ =

[
1ji(B̂

ψ
i − B̄

ψ
i ) + p̄ji

(
δi�j
δ̄i�j

B̂φ
j − B̄

φ
j

)]
ji

=

[(
δi�j
δ̄i�j
− 1

)
p̄jiB̂

φ
j

]
ji

+
[
1ji(B̂

ψ
i − B̄

ψ
i ) + p̄ji

(
B̂φ
j − B̄

φ
j

)]
ji

=

n∑
i,j=1

eje
⊤
i ⊗

(
δi�j
δ̄i�j
− 1

)
p̄jiB̂

φ
j

+

n∑
i,j=1

eje
⊤
i ⊗

1ji

|ζi|
∑
ξ∈ζi

(
∂λigi(y

∗
i ,λi, ξ)− B̄

ψ
i

)
+

p̄ji
|ζj |

∑
ξ∈ζj

(
∂λjhj(y

∗
j ,λj , ξ)− B̄

φ
j

) ,

where ei, ej are i-th and j-th canonical basis vectors.

24



Under review as a conference paper at ICLR 2023

By using these expressions, we can rewrite Lemma 5 as

v(M+1) − B̄
M∑
i=0

Āicy

=

M∑
i=0

n∑
s,t=1

X
(i)
B,stc

y +

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)s

Y
(i,ξ)
B,t c

y +

M−1∑
i=0

n∑
s,t=1

X
(i)
A,stc

y +

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

s

Y
(i,ξ)
A,t c

y,

where

X
(i)
B,st =

(
ete

⊤
s ⊗

(
δ
(2i)
s�t

δ̄s�t
− 1

)
p̄tsB̂

φ(2i)
t

)
R

(i,M)
3 ,

Y
(i)
B,t =

n∑
s=1

(
ete

⊤
s ⊗

1

|ζ(2i)t |

(
1ts∂λtgt(y

∗
t ,λt, ξ) + p̄ts∂λtht(y

∗
t ,λt, ξ)− 1tsB̄

ψ
t − p̄tsB̄

φ
t

))
R

(i,M)
3 ,

X
(i)
A,st = L̂

(i,M)
4

(
ete

⊤
s ⊗

(
δ
(2i+1)
s�t

δ̄s�t
− 1

)
p̄tsÂ

φ(2i+1)
t

)
Āi

+ L̂
(i,M)
5

(
ete

⊤
s ⊗

(
δ
(2i+1)
s�t

δ̄s�t
− 1

)
p̄tsÂ

φ(2i+1)
t

)
R

(i)
1 ,

Y
(i)
B,t = L̂

(i,M)
4

n∑
s=1

(
ete

⊤
s ⊗

1

|ζ(2i+1)
t |

(
1ts∂ytgt(y

∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

))
Āi

+ L̂
(i,M)
5

n∑
s=1

(
ete

⊤
s ⊗

1

|ζ(2i+1)
t |

(
1ts∂ytgt(y

∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

))
R

(i)
1 .

Here, we note that L̂
(i,M)
4 and L̂

(i,M)
5 depend only on Â(2i+3), . . . , Â(2M−1) and

B̂(2i+2), . . . , B̂(2M). We therefore have

E
δ
(2i+1)
s�t ,ζ

(2i+1)
t

[
X

(i)
A,st | Â

(2i+3), . . . , Â(2M−1), B̂(2i+2), . . . , B̂(2M)
]
= 0,

E
δ
(2i+1)
s�t ,ζ

(2i+1)
t

[
Y

(i,ξ)
A,t | Â

(2i+3), . . . , Â(2M−1), B̂(2i+2), . . . , B̂(2M)
]
= 0,

(29)

by the independence of δ(2i+1)
s�t and ζ

(2i+1)
t in Assumption 5.

C.3 BOUND FOR α ∈ (0, 1) AND β ∈ (0, 1)

We now derive the error bound of VR-HGP for the case when α, β ∈ (0, 1). The error bound follows
from the next bounds onX(i)

B,st,Y
(i)
B,t,X

(i)
A,st, and Y (i)

A,t.

Lemma 7. Under Assumption 9, when α, β ∈ (0, 1) so that 1− β + βηA ∈ (ηA, 1), we have∥∥∥X(i)
B,st

∥∥∥2
2
≤ η2B

κ2

p̄2ts
δ̄2s�t

(
1− α

1− ηA

)2

α2(M−i) + exp(−O(M)), (30)

∥∥∥X(i)
A,st

∥∥∥2
2
≤ η2B

κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2 + exp(−O(M)),

(31)∥∥∥Y (i,ξ)
B,t

∥∥∥2
2
≤ 4η2B

κ2|ζ(2i)t |2

(
1− α

1− ηA

)2

α2(M−i) + exp(−O(M)), (32)

∥∥∥Y (i,ξ)
A,t

∥∥∥2
2
≤ 4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2 + exp(−O(M)),

(33)

25



Under review as a conference paper at ICLR 2023

where

κ =
∑
s,t

p̄ts
δ̄s�t

. (34)

Proof.

∥∥∥X(i)
B,st

∥∥∥2
2
≤

{
1 +

(
1

δ̄s�t
− 1

)2
}

︸ ︷︷ ︸
≤ 1

δ̄2
s�t

p̄2ts

∥∥∥B̂φ(2i)
t

∥∥∥2
2

∥∥∥R(i,M)
3

∥∥∥2
2

≤ p̄2ts
δ̄2s�t

(ηB
2κ

)2( 1− α

1− ηA
αM−i + exp(−O(M))

)2

=
η2B
κ2

p̄2ts
δ̄2s�t

(
1− α

1− ηA

)2

α2(M−i) + exp(−O(M)),

∥∥∥X(i)
A,st

∥∥∥2
2
≤

{
1 +

(
1

δ̄s�t
− 1

)2
}
p̄2ts

∥∥∥Âφ(2i+1)
t

∥∥∥2
2

(∥∥∥L̂(i,M)
4

∥∥∥
2
ηiA +

∥∥∥L̂(i,M)
5

∥∥∥
2

∥∥∥R(i)
1

∥∥∥
2

)2
≤ p̄2ts

δ̄2s�t

(ηA
2κ

)2( ηB
1− ηA

(1− α)β

α− (1− β + βηA)

(
αM−i − (1− β + βηA)

M−i)+ exp(−O(M))

)2

=
η2B
κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2 + exp(−O(M)),

∥∥∥Y (i,ξ)
B,s

∥∥∥2
2
≤ 1

|ζ(2i)t |2

n∑
s=1

∥∥∥1ts∂λtgt(y∗
t ,λt, ξ) + p̄ts∂λtht(y

∗
t ,λt, ξ)− 1tsB̄

ψ
t − p̄tsB̄

φ
t

∥∥∥2
2

∥∥∥R(i,M)
3

∥∥∥2
2

≤ 1

|ζ(2t)s |2

(ηB
2κ

)2
2 + 2

n∑
s=1

p̄ts︸ ︷︷ ︸
=1


2(

1− α

1− ηA
αM−i + exp(−O(M))

)2

=
4η2B

κ2|ζ(2i)t |2

(
1− α

1− ηA

)2

α2(M−i) + exp(−O(M)),

∥∥∥Y (i,ξ)
A,s

∥∥∥2
2
≤ 1

|ζ(2i+1)
s |2

n∑
s=1

∥∥∥1ts∂ytgt(y∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

∥∥∥2
2

×
(∥∥∥L̂(i,M)

4

∥∥∥
2
ηiA +

∥∥∥L̂(i,M)
5

∥∥∥
2

∥∥∥R(i)
1

∥∥∥
2

)2

≤ 1

|ζ(2i+1)
t |2

(ηA
2κ

)2
2 + 2

n∑
s=1

p̄ts︸ ︷︷ ︸
=1


2

×
(

ηB
1− ηA

(1− α)β

α− (1− β + βηA)

(
αM−i − (1− β + βηA)

M−i)+ exp(−O(M))

)2

=
4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2 + exp(−O(M)).

26



Under review as a conference paper at ICLR 2023

Theorem 8. Suppose Assumptions 1–9 hold true, and |ζ(2i)t | = |ζ(2i+1)
t | = b for any t and i. Then,

with probability at least 1− ϵ, we have∥∥∥v(M+1) + cλ − dλjF (y∗,λ)
∥∥∥

≤ µα,βτ

√√√√( n∑
s,t=1

p̄2ts
δ̄2s�t

+
4n

b

)
log

n(dy + dλ)

ϵ
+ exp(−O(M)),

where

µα,β =

√
8
1− α

1 + α

(
1 +

1 + α(1− β + βηA)

1− α(1− β + βηA)

β2η2A
1− (1− β + βηA)2

)
, τ =

ηB∥cy∥
κ(1− ηA)

.

Proof. We first have

∥∥∥v(M+1) + cλ − dλjF (y∗,λ)
∥∥∥ ≤ ∥∥∥∥∥v(M+1) − B̄

M∑
i=0

Āicy

∥∥∥∥∥+
∥∥∥∥∥B̄

∞∑
i=M+1

Āicy

∥∥∥∥∥.
Here, we can bound the second term by∥∥∥∥∥B̄

∞∑
i=M+1

Āicy

∥∥∥∥∥ ≤ ηB∥cy∥
∞∑

i=M+1

ηiA ≤
ηB∥cy∥
1− ηA

ηM+1
A = exp (−O(M)) .

The conditions (29) ensure that we can bound the first term by using Matrix Azuma’s inequality; with
probability at least 1− ϵ, we have∥∥∥∥∥v(M+1) − B̄

M∑
i=0

Āicy

∥∥∥∥∥ ≤
√
8σ2

n(dy + dλ)

ϵ
,

where

σ2

∥cy∥2
≤

M∑
i=0

n∑
s,t=1

∥∥∥X(i)
B,st

∥∥∥2
2
+

M−1∑
i=0

n∑
s,t=1

∥∥∥X(i)
A,st

∥∥∥2
2

+

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)t

∥∥∥Y (i,ξ)
B,t

∥∥∥2
2
+

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

t

∥∥∥Y (i,ξ)
A,t

∥∥∥2
2

≤
M∑
i=0

n∑
s,t=1

η2B
κ2

p̄2ts
δ̄2s�t

(
1− α

1− ηA

)2

α2(M−i)

+

M−1∑
i=0

n∑
s,t=1

η2B
κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2
+

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)t

4η2B

κ2|ζ(2i)t |2

(
1− α

1− ηA

)2

α2(M−i)

+

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

t

4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2 (
αM−i − (1− β + βηA)

M−i)2
+ exp(−O(M))

27



Under review as a conference paper at ICLR 2023

=
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

](
1− α

1− ηA

)2
1− α2(M+1)

1− α2

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

](
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2

×
(
α2 − α2(M+1)

1− α2
+

(1− β + βηA)
2 − (1− β + βηA)

2(M+1)

1− (1− β + βηA)2
− 2

α(1− β + βηA)− αM+1(1− β + βηA)
M+1

1− α(1− β + βηA)

)
+

η2B
κ2

[
n∑
t=1

4

|ζ(2i)t |

](
1− α

1− ηA

)2
1− α2(M+1)

1− α2

+
η2B
κ2

[
K∑
s=1

4

|ζ(2i+1)
t |

](
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2

×
(
α2 − α2(M+1)

1− α2
+

(1− β + βηA)
2 − (1− β + βηA)

2(M+1)

1− (1− β + βηA)2
− 2

α(1− β + βηA)− αM+1(1− β + βηA)
M+1

1− α(1− β + βηA)

)
+ exp(−O(M))

≤ η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i)t |

](
1− α

1− ηA

)2
1

1− α2

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i+1)
t |

](
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2

×
(

α2

1− α2
+

(1− β + βηA)
2

1− (1− β + βηA)2
− 2

α(1− β + βηA)

1− α(1− β + βηA)

)
+ exp(−O(M))

=
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i)t |

](
1− α

1− ηA

)2
1

1− α2

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i+1)
t |

](
ηA

1− ηA

(1− α)β

α− (1− β + βηA)

)2

× (1 + α(1− β + βηA))(α− (1− β + βηA))
2

(1− α2)(1− (1− β + βηA)2)(1− α(1− β + βηA))

+ exp(−O(M))

=
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i)t |

](
1

1− ηA

)2
1− α

1 + α

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i+1)
t |

](
1

1− ηA

)2
1− α

1 + α

× 1 + α(1− β + βηA)

1− α(1− β + βηA)

β2η2A
1− (1− β + βηA)2

+ exp(−O(M)).

When |ζ(2i)t | = |ζ(2i+1)
t | = b for any t and i, we further have

σ2 ≤ η2B∥cy∥
2

κ2(1− ηA)2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+
4n

b

]

× 1− α

1 + α

(
1 +

1 + α(1− β + βηA)

1− α(1− β + βηA)

β2η2A
1− (1− β + βηA)2

)
+ exp(−O(M)).

28



Under review as a conference paper at ICLR 2023

C.4 BOUND FOR α = 1 AND β = 0

Setting α = 1 and β = 0 recovers naive HGP. Here, we derive the error bound for naive HGP.

Lemma 9. Under Assumption 9, when α = 1 and β = 0 so that 1− β + βηA = 1, we have∥∥∥X(i)
B,st

∥∥∥2
2
≤ η2B

κ2

p̄2ts
δ̄2s�t

η2iA , (35)

∥∥∥X(i)
A,st

∥∥∥2
2
≤ η2B

κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

)2

η2iA + exp (−O(M)) , (36)∥∥∥Y (i,ξ)
B,t

∥∥∥2
2
≤ 4η2B

κ2|ζ(2i)t |2
η2iA , (37)

∥∥∥Y (i,ξ)
A,t

∥∥∥2
2
≤ 4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

)2

η2iA + exp (−O(M)) . (38)

Proof.∥∥∥X(i)
B,st

∥∥∥2
2
≤

{
1 +

(
1

δ̄s�t
− 1

)2
}
p̄2ts

∥∥∥B̂φ(2i)
t

∥∥∥2
2

∥∥∥R(i,M)
3

∥∥∥2
2

≤ p̄2ts
δ̄2s�t

(ηB
2κ

)2 (
ηiA
)2

=
η2B
κ2

p̄2ts
δ̄2s�t

η2iA ,

∥∥∥X(i)
A,st

∥∥∥2
2
≤

{
1 +

(
1

δ̄s�t
− 2

)2
}
p̄2ts

∥∥∥Âφ(2i+1)
t

∥∥∥2
2

(∥∥∥L̂(i,M)
4

∥∥∥
2
ηiA +

∥∥∥L̂(i,M)
5

∥∥∥
2

∥∥∥R(i)
1

∥∥∥
2

)2
≤ p̄2ts

δ̄2s�t

(ηA
2κ

)2( ηB
1− ηA

(ηiA − ηMA )

)2

=
η2B
κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

)2

η2iA + exp (−O(M)) ,

∥∥∥Y (i,ξ)
B,s

∥∥∥2
2
≤ 1

|ζ(2i)t |2

n∑
s=1

∥∥∥1ts∂λtgt(y∗
t ,λt, ξ) + p̄ts∂λtht(y

∗
t ,λt, ξ)− 1tsB̄

ψ
t − p̄tsB̄

φ
t

∥∥∥2
2

∥∥∥R(i,M)
3

∥∥∥2
2

≤ 1

|ζ(2t)s |2

(ηB
2κ

)2(
2 + 2

n∑
s=1

p̄ts

)2 (
ηiA
)2

=
4η2B

κ2|ζ(2i)t |2
η2iA ,

∥∥∥Y (i,ξ)
A,s

∥∥∥2
2
≤ 1

|ζ(2i+1)
s |2

n∑
s=1

∥∥∥1ts∂ytgt(y∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

∥∥∥2
2

×
(∥∥∥L̂(i,M)

4

∥∥∥
2
ηiA +

∥∥∥L̂(i,M)
5

∥∥∥
2

∥∥∥R(i)
1

∥∥∥
2

)2
≤ 1

|ζ(2i+1)
t |2

(ηA
2κ

)2(
2 + 2

n∑
s=1

p̄ts

)2(
ηB

1− ηA
(ηiA − ηMA )

)2

=
4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

)2

η2iA + exp (−O(M)) .

29



Under review as a conference paper at ICLR 2023

Theorem 10. Suppose Assumptions 1–9 hold true, and |ζ(2i)t | = |ζ(2i+1)
t | = b for any t and i. When

α = 1, β = 0, with probability at least 1− ϵ, we have∥∥∥v(M+1) − dλjF (y∗,λ)
∥∥∥ ≤ µ1,0τ

√√√√( n∑
s,t=1

p̄2ts
δ̄2s�t

+
4n

|ζ|

)
log

n(dy + dλ)

ϵ
+ exp(−O(M)),

where

µ1,0 =

√
8
η2A + (1− ηA)2

1− η2A
, τ =

ηB∥cy∥
κ(1− ηA)

.

Proof. We first have∥∥∥v(M+1) − dλjF (y∗,λ)
∥∥∥ ≤ ∥∥∥∥∥v(M+1) − B̄

M∑
i=0

Āicy

∥∥∥∥∥+
∥∥∥∥∥B̄

∞∑
i=M+1

Āicy

∥∥∥∥∥.
Here, we can bound the second term by∥∥∥∥∥B̄

∞∑
i=M+1

Āicy

∥∥∥∥∥ ≤ ηB∥cy∥
∞∑

i=M+1

ηiA ≤
ηB∥cy∥
1− ηA

ηM+1
A = exp (−O(M)) .

We can bound the first term by using Matrix Azuma’s inequality; with probability at least 1− ϵ, we
have ∥∥∥∥∥v(M+1) − B̄

M∑
i=0

Āicy

∥∥∥∥∥ ≤
√
8σ2

n(dy + dλ)

ϵ
,

where

σ2

∥cy∥2
≤

M∑
i=0

n∑
s,t=1

∥∥∥X(i)
B,st

∥∥∥2
2
+

M−1∑
i=0

n∑
s,t=1

∥∥∥X(i)
A,st

∥∥∥2
2

+

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)t

∥∥∥Y (i,ξ)
B,t

∥∥∥2
2
+

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

t

∥∥∥Y (i,ξ)
A,t

∥∥∥2
2

≤
M∑
i=0

n∑
s,t=1

η2B
κ2

p̄2ts
δ̄2s�t

η2iA +

M−1∑
i=0

n∑
s,t=1

η2B
κ2

p̄2ts
δ̄2s�t

(
ηA

1− ηA

)2

η2iA

+

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)t

4η2B

κ2|ζ(2i)t |2
η2iA +

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

t

4η2B

κ2|ζ(2i+1)
t |2

(
ηA

1− ηA

)2

η2iA + exp(−O(M))

=
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i)t |

]
1− η

2(M+1)
A

1− η2A

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i+1)
t |

](
ηA

1− ηA

)2
1− η2MA
1− η2A

+ exp(−O(M))

=
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i)t |

]
1

1− η2A

+
η2B
κ2

[
n∑

s,t=1

p̄2ts
δ̄2s�t

+

n∑
t=1

4

|ζ(2i+1)
t |

](
ηA

1− ηA

)2
1

1− η2A
+ exp(−O(M)).

When |ζ(2i)t | = |ζ(2i+1)
t | = b for any t and i, we further have

σ2 ≤ η2B∥cy∥
2

κ2(1− η2A)

(
1 +

η2A
(1− ηA)2

)[ n∑
s,t=1

p̄2ts
δ̄2s�t

+
4n

b

]
+ exp(−O(M)).

30



Under review as a conference paper at ICLR 2023

C.5 COMPARISON OF µα,β AND µ0,1

The estimation errors of VR-HGP and naive HGP are dominated by their scaling factors.

µα,β =

√
8
1− α

1 + α

(
1 +

1 + α(1− β + βηA)

1− α(1− β + βηA)

β2η2A
1− (1− β + βηA)2

)
,

µ1,0 =

√
8
η2A + (1− ηA)2

1− η2A
.

Figure 1 shows that µα,β is a few times smaller than µ1,0 for any ηA ∈ (0, 1) if we choose α close to
one and β close to zero. This result indicates that the error of VR-HGP can be a few times smaller
than the one of naive HGP for sufficiently large M where the diminishing term exp (−O(M)) is
negligibly small.

Figure 1: Comparisons of µα,β and µ1,0 for ηA ∈ (0, 1).

C.6 COMPARISON OF α AND β

We empirically evaluated the advantages of VR-HGP in stochastic communications as well as found
that (α, β) = (0.9, 0.1) performed well in practice.

We compared the ℓ2 norm between of the hyper-gradient estimation v(m) at the m-th round of HGP
and the true hyper-gradient dλF̄ (x∗,λ) which computed using the explicit (I − Ā)−1. We made a
synthetic one-dimensional dataset with two classes by randomly selecting two digits from MNIST
and averaging the inputs of each sample. We let n = 3 clients performed 500 iterations of Eq. (4b)
ensuring the convergence of SGP. For all i ∈ [n], we used the binary cross-entropy loss for fi and
Fi computed on local training and validation datasets with 100 samples, respectively. We adopted
StoU communication network presented in Section 6. In order to purely evaluate the effect of edge
stochasticity δ

(m)
j�i /δ̄j�i, which we pointed the source of the high variance in Section 4.2, we excluded

the randomness of minibatches ζ by adopting |ζ(t)i | = 100 for all time steps in SGP and HGP and by
using the true p̄ij and δ̄j�i for all i, j ∈ [n]. We computed dλF̄ (x∗,λ) from the explicit computation
of B̄

(
I − Ā

)−1
cy + cλ using expected values of p̄ij and δ̄j�i for all i, j ∈ [n]. The HGP was

conducted to obtain v(m) after the iterations of SGP using M = 500 and the alternative samplings,
i.e., Ã(2m+1) and B̃(2m) for m = 0, . . . ,M − 1.

Fig. 2 shows VR-HGP with (α, β) = (0.9, 0.1) provided the smallest estimation error and the larger
number of estimation rounds tends to have smaller error. However HGP, which is a special case
of VR-HGP with parameters (α, β) = (1.0, 0.0), failed to attain smaller error than the well-tuned
VR-HGP with (α, β) = (0.9, 0.1). This larger estimation error was also observed in experiments
with different random seeds. We also observed that HGP could not reduce the estimation error after
around m = 5 indicating the larger number of rounds does not always help the better estimation in
HGP on stochastic communication networks.

31



Under review as a conference paper at ICLR 2023

Figure 2: ℓ2 norm between the estimation of VR-HGP v(m) and the true hyper-gradient dλF̄ (x∗,λ)
at the m-th estimation round with different combinations of α and β.

C.7 RELAXATION OF CONVERGENCE TO THE STATIONARY POINT

While VR-HGP relies on the assumption that the unique stationary point y∗ is available, a client
may only have y(T )

i ̸= y∗ in a practical case where the inner-problem is solved by a finite T of SGP
iterations. We show that this assumption can be relaxed by adopting an extra smoothness assumption
below.

Assumption 10. There exist finite positive constants Ly, Lλ such that for any i ∈ [n] and for any
yi,y

′
i,

sup
λi,ξ
∥∂yigi(yi,λi, ξ)− ∂yigi(y

′
i,λi, ξ)∥2 ≤ Ly∥yi − y′

i∥,

sup
λi,ξ
∥∂yihi(yi,λi, ξ)− ∂yihi(y

′
i,λi, ξ)∥2 ≤ Ly∥yi − y′

i∥,

sup
λi,ξ
∥∂λigi(yi,λi, ξ)− ∂λigi(y

′
i,λi, ξ)∥2 ≤ ηBLλ∥yi − y′

i∥,

sup
λi,ξ
∥∂λihi(yi,λi, ξ)− ∂λihi(y

′
i,λi, ξ)∥2 ≤ ηBLλ∥yi − y′

i∥.

Below, we show that the error between y(T )
i and y∗ induces a bias to Theorem 1.

Theorem 11. Let ṽ(M+1) be the estimate of v(M+1) obtained by VR-HGP using y(T ) instead of
y∗. Suppose Assumptions 1–10 hold true, |ζ(2i)t | = |ζ(2i+1)

t | = b for any t and i, and α, β ∈ (0, 1).
Then, with probability at least 1− ϵ, we have∥∥∥ṽ(M+1) + cλ − dλjF (y∗,λ)

∥∥∥
≤ µα,βτ

√√√√( n∑
s,t=1

p̄2ts
δ̄2s�t

+
4n

b

)
log

n(dy + dλ)

ϵ
+

ηB∥cy∥
1− ηA

(Ly + Lλ)G+ exp(−O(M)),

where

G = n

n∑
i=1

∥∥∥y∗
i − y

(T )
i

∥∥∥.
32



Under review as a conference paper at ICLR 2023

Proof. To compute ṽ(M+1) using VR-HGP, Ā and B̄ are estimated by

Ã =
[
1jiÃ

ψ
i + p̄jiÃ

φ
j

]
ji
∈ Rndy×ndy ,

Ãψ
i =

1

|ζi|
∑
ξ∈ζi

∂yigi(y
(T )
i ;λi, ξ) ∈ Rdy×dy , Ãφ

j =
1

|ζj |
∑
ξ∈ζj

∂yjhj(y
(T )
j ;λj , ξ) ∈ Rdy×dy ,

B̃ =
[
1jiB̃

ψ
i + p̄jiB̃

φ
j

]
ji
∈ Rndλ×ndy ,

B̃ψ
i =

1

|ζi|
∑
ξ∈ζi

∂λihi(y
(T )
i ;λi, ξ) ∈ Rdλ×dy , B̃φ

j =
1

|ζj |
∑
ξ∈ζj

∂λjφji(y
(T )
j ;λj , ξ) ∈ Rdλ×dy .

We can decompose the difference Ã− Ā and B̃ − B̄ as

Ã− Ā =
(
Ã− Â

)
+
(
Â− Ā

)
, B̃ − B̄ =

(
B̃ − B̂

)
+
(
B̂ − B̄

)
.

Here, by Assumption 10, we have

∥∥∥Ã− Â∥∥∥
2
≤ Lyn

n∑
i=1

∥∥∥y∗
i − y

(T )
i

∥∥∥ = LyG,
∥∥∥B̃ − B̂∥∥∥

2
≤ ηBLλn

n∑
i=1

∥∥∥y∗
i − y

(T )
i

∥∥∥ = ηBLλG.

By using these expressions, we can derive the expression similar to Lemma 5 as

ṽ(M+1) − B̄
M∑
i=0

Āicy

=

M∑
i=0

n∑
s,t=1

X
(i)
B,stc

y +

M∑
i=0

n∑
t=1

∑
ξ∈ζ(2i)s

Y
(i,ξ)
B,t c

y +

M−1∑
i=0

n∑
s,t=1

X̃
(i)
A,stc

y +

M−1∑
i=0

n∑
t=1

∑
ξ∈ζ(2i+1)

s

Ỹ
(i,ξ)
A,t c

y

+

M∑
i=0

(B̃(2i) − B̂)R
(i,M)
3 cy +

M−1∑
i=0

(
L̃

(i,M)
4 (Ã(2i+1) − Â)Āi + L̃

(i,M)
5 (Ã(2i+1) − Â)R

(i)
1

)
cy︸ ︷︷ ︸

(Bias)

,

where the last line corresponds to the bias induced by the use of y(T ) instead of y∗, and

L̃
(i,M)
4 =

M∑
j=i+1

αM−j+1B̃(2j)

[
j−1∏

m=i+1

Ã(2m+1)

]

+ (1− α)(1− β)

M∑
j=i+1

αM−jB̃(2j)

j∑
k=i+1

[
j−1∏
m=k

(
(1− β)I + βÃ(2m+1)

)][ k−1∏
m=i+1

Ã(2m+1)

]
,

L̃
(i,M)
5 = (1− α)β

M∑
j=i+1

αM−jB̃(2j)

[
j−1∏

m=i+1

(
(1− β)I + βÃ(2m+1)

)]
,

X̃
(i)
A,st = L̃

(i,M)
4

(
ete

⊤
s ⊗

(
δ
(2i+1)
s�t

δ̄s�t
− 1

)
p̄tsÂ

φ(2i+1)
t

)
Āi + L̃

(i,M)
5

(
ete

⊤
s ⊗

(
δ
(2i+1)
s�t

δ̄s�t
− 1

)
p̄tsÂ

φ(2i+1)
t

)
R

(i)
1 ,

Ỹ
(i)
B,t = L̂

(i,M)
4

n∑
s=1

(
ete

⊤
s ⊗

1

|ζ(2i+1)
t |

(
1ts∂ytgt(y

∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

))
Āi

+ L̃
(i,M)
5

n∑
s=1

(
ete

⊤
s ⊗

1

|ζ(2i+1)
t |

(
1ts∂ytgt(y

∗
t ,λt, ξ) + p̄ts∂ytht(y

∗
t ,λt, ξ)− 1tsĀ

ψ
t − p̄tsĀ

φ
t

))
R

(i)
1 .

33



Under review as a conference paper at ICLR 2023

Then, we can bound the bias as

∥(Bias)∥
∥cy∥

≤
M∑
i=0

∥∥∥B̃(2i) − B̂
∥∥∥
2

∥∥∥R(i,M)
3

∥∥∥
2

+

M−1∑
i=0

(∥∥∥L̃(i,M)
4

∥∥∥
2

∥∥∥Ã(2i+1) − Â
∥∥∥
2

∥∥Ā∥∥i
2
+
∥∥∥L̃(i,M)

5

∥∥∥
2

∥∥∥Ã(2i+1) − Â
∥∥∥
2

∥∥∥R(i)
1

∥∥∥
2

)
≤ ηBLλG

1− α

1− ηA

M∑
i=0

αM−i

+ LyG
ηB

1− ηA

(1− α)β

α− (1− β + βηA)

M−1∑
i=0

(
αM−i − (1− β + βηA)

M−i)+ exp (−O(M))

=
ηB

1− ηA
(Ly + Lλ)G+ exp (−O(M)) .

D DETAILED EXPERIMENTAL SETTINGS

The experiments in Section 6 followed the settings of EMNIST (Cohen et al., 2017) classification in
Marfoq et al. (2021), unless otherwise mentioned.

Communication networks We simulated four communication networks on which the clients per-
form the distributed learning: fully-connected (FC), static undirected (FixU), stochastic undirected
(StoU), and stochastic directed (StoD).

FC allows clients to communicate with all the other clients in all the time steps, i.e. δ(t)i�j = 1 for
all i, j ∈ [n] and t ∈ N. FixU uses time-invariant and sparse undirected communication network
simulated by a binomial Erdős-Rényi graph (Erdős & Rényi, 1959) with parameter p = 0.4 adding
the self-loop edges. Following the setting in Marfoq et al. (2021), we generated a doubly stochastic
mixing matrix using the Fast Mixing Markov Chain (Boyd et al., 2003) rule. StoU uses stochastic
and undirected network in which any undirected edge δ

(t)
j�i = δ

(t)
i�j independently realizes at each

step with the probability δ̄j�i ∈ [0, 1]. In StoD each direction of edges δ
(t)
j�i are independently

sampled at probability δ̄j�i, forming stochastic and directed network. StoD forms the asymmetric
expected mixing matrix given by the StoD network is asymmetric representing the communication
bias between the clients; some clients may communicate more infrequently than others due to
bottlenecks in physical network environments or long computation times of local updates due to poor
computational resources. We sampled δ̄j�i from the uniform distribution with [0.4, 0.8] both in StoU
and StoD

Proposed approaches We solved personalization of classification models using three different
formulation: PDBO-MTL, PDBO-DA, and PDBO-MTL&DA.

For PDBO-DA, we optimize the pseudo sampling rate to recover data augmentation-based personal-
ization (Duan et al., 2019; Zhao et al., 2018). PDBO-DA optimize λCi ∈ RC to learn the label-wise
weight vector CSoftmax (λi) ∈ [0, C]

C . In the inner-problem, the losses of instances labeled as
c ∈ [C] are multiplied by the c-th element of the weight vector.

PDBO-MTL is obtained by applying PDBO to FedEM Marfoq et al. (2021). PDBO-MTL lets each
client train an ensemble classifier that outputs weighted average predictions across K = 3 of CNNs.
We trained CNN parameters as the inner-problem and optimized the hyperparameters λKi ∈ RK to
obtain ensemble weight vector Softmax (λi) ∈ [0, 1]

K .

PDBO-MTL&DA combines PDBO-DA and PDBO-MTL optimizing [λK⊤
i λC⊤

i ]⊤ ∈ RC+K to
obtain both the label-weight and model-weight.

For all i ∈ [n] in the outer-problem, we ran 20 outer-steps of Adam (Kingma & Ba, 2015) iterations
with (β1, β2) = (0.9, 0.999) from the initial hyperparameters 0C , 0K , and 0C+K for PDBO-DA,

34



Under review as a conference paper at ICLR 2023

Table 2: Parameters for the outer-problems in Section 6

Network Method L2 reg. rate Hyper-learning rate

FC and FixU

PDBO-DA 0 0.1

PDBO-MTL 0.01 1.0

PDBO-MTL&DA 0.01 for λK
i 1.0 for λK

i

0.0005 for λC
i 0.1 for λC

i

StoU and StoD

PDBO-DA 0 0.1

PDBO-MTL 0.01 0.1

PDBO-MTL&DA 0.01 for λK
i 0.1 for λK

i

0.0005 for λC
i 0.1 for λC

i

PDBO-MTL, and PDBO-MTL&DA, respectively. For Adam optimizer, we adopted different learning
rate shown in Table 2 (Hyper-learning rate). We adopt HGP for FC and FixU setting, and VR-HGP
with (α, β) = (0.9, 0.1) for StoU and StoD settings. Both HGP and VR-HGP ran M = 200
estimation steps using iteration Eq. (4b) in all the settings. We also made a practical modification
in HGP to sample Ã(m) and B̃(m) together at the single m-th round, which leads the same length
of the Neumann series with the half sampling costs of the original HGP, although they are no more
unbiased. For all the approaches the cases and for all i ∈ [n], we used the average cross-entropy
loss over the local train dataset of the i-th node and L2 regularization loss of λi for Fi with the rates
shown in Table 2 (L2 reg. rate). We reported the mean test accuracy of an intermediate step that had
maximum validation accuracy (i.e., early stopping) which was sampled independently from the train
dataset as described in Appendix D.

Baseline approaches We compared our approaches with baselines for each communication setting.

For FC and FixU settings, we compared with several personalization approaches: a personalized
model trained only on the local dataset (Local), FedAvg with local tuning (FedAvg+) (Jiang et al.,
2019), Clustered-FL (Sattler et al., 2020), pFedMe (T Dinh et al., 2020), and centralized and decen-
tralized version of FedEM adopted in Marfoq et al. (2021). We also trained global models using
SGP (Nedić & Olshevsky, 2016; Assran et al., 2019) and FedProx (Li et al., 2020). From the fact
that SGP recovers FedAvg and DSGD on FC and FixU, respectively, we treat them as equivalent
approaches. All the approaches on FC and FixU followed the training procedure with epoch-wise
communication in Marfoq et al. (2021) while using Eq. (4b) for HGP computation. And any method
ran on StoU and StoD adopted the SGP iteration (Eq. (4b)) with T = 600 steps, batch size
|ζi| = 128, L2 regularization with 0.001 decay. For SGP StoU and StoD, we adopted the learning
rate αi = 0.05 for SGP, Local, and PDBO-DA, αi = 0.25 for PDBO-MTL and PDBO-MTL&DA.
Those learning rates were scheduled to be multiplied by 0.1 at t = 500, 550. As we have no baseline
ensemble model approach (i.e. FedEM) to be compared to our PDBO-MTL and PDBO-MTL&DA
in StoU and StoD, we also examined our performance improvement from the initial hyperparame-
ter. We confirmed PDBO-MTL and PDBO-MTL&DA improved their test accuracy from the initial
hyperparameter both in StoU and StoD, confirming the performance gain of PDBO-MTL and
PDBO-MTL&DA from SGP were not solely due to their differences in architectures and learning
rates.

Dataset and model We adopted the procedure of generating a federated version of EMNIST in
Marfoq et al. (2021) except for train and validation split. In our experiments, we consider 10%of the
EMNIST dataset as in that were partitioned according to Dirichlet allocation of parameter α = 0.4
over n = 100 clients as in Marfoq et al. (2021). We randomly selected 20% of the obtained dataset
to make a validation dataset. We use the validation dataset only for the early stopping in outer-
optimization of PDBO-DA, PDBO-MTL, and PDBO-MTL&DA. We trained the same CNN in
Marfoq et al. (2021) for all the baselines with a single model and PDBO-DA, and for base-predictor
of FedEM, PDBO-MTL, and PDBO-MTL&DA.

35



Under review as a conference paper at ICLR 2023

Table 3: Comparison of the gradient-based PDBO, CDBO, and CDBO-Local.

Study
Bilevel
problem

Communication
network Hyper-gradient

NoO (dx × dλ) andO (dx × dx)

in communication in computation

Ours PDBO Stochastic directed GlobalGrad ✓ ✓
Chen et al. (2022) CDBO Static undirected ClientGrad
Gao et al. (2022) CDBO Static undirected LocalGrad ✓ ✓
Yang et al. (2022) CDBO Static undirected GlobalGrad
Tarzanagh et al. (2022) CDBO Centralized GlobalGrad ✓ ✓
Li et al. (2022) CDBO-Local Centralized LocalGrad ✓ ✓
Liu et al. (2022) CDBO-Local Static undirected LocalGrad ✓ ✓
Lu et al. (2022) CDBO-Local Static undirected LocalGrad ✓ ✓

E GRADIENT-BASED DISTRIBUTED BILEVEL OPTIMIZATION

We compare concurrent studies of distributed bilevel optimization (Chen et al., 2022; Tarzanagh et al.,
2022; Gao et al., 2022; Yang et al., 2022; Li et al., 2022; Liu et al., 2022; Lu et al., 2022) in terms of
problem settings, applicability on communication networks, hyper-gradient value to estimate, and
complexity in communication and computation.

Bilevel problem setting We categorize them into two problems (Bilevel problem in Table 3): the
consensus distributed bilevel optimization (CDBO) (Chen et al., 2022; Tarzanagh et al., 2022; Gao
et al., 2022; Yang et al., 2022) and CDBO with the local inner-problem (CDBO-Local) (Li et al.,
2022; Liu et al., 2022; Lu et al., 2022).

CDBO pursue consensus also in outer-problem, which can be obtained by imposing λi = λj for all
i, j ∈ [n] on PDBO outer-problem (Eq. (5-left)):

min
λi

λi=λj ,∀j

1

n

n∑
i=1

Fi (x
∗
i (λ1, . . . ,λn) ,λi) , s.t. x

∗
i = argmin

xi
xi=xj ,∀j

1

n

n∑
i=1

Eξi [fi (xi,λi; ξi)] , (39)

Chen et al. (2022); Tarzanagh et al. (2022); Gao et al. (2022); Yang et al. (2022) applied CDBO to
hyperparameter (e.g. L2 regularization coefficient) optimization.

While CDBO-Local also requires consensus in the outer-problem as in CDBO, its inner-problem is a
local optimization problem in which optimal parameters are independent of each other client, unlike
PDBO and CDBO:

min
λi

λi=λj ,∀j

1

n

n∑
i=1

Fi (x
∗
i (λi) ,λi) , s.t. x

∗
i = argmin

xi

Eξi [fi (xi,λi; ξi)] , (40)

Lu et al. (2022) demonstrated the ability of CDBO-Local problem to handle personalization tasks.
However, no client in CDBO-Local can benefit from the others in the inner loop for better general-
ization. We note that in our PDBO, both outer and inner problems are optimized from the global
information; the inner-parameter is trained for consensus among the clients and the outer parameter
is optimized to improve the total performance across all the clients.

Communication networks The communication networks can be categorized into stochastic di-
rected, static undirected, and centralized (Communication network in Table 3).

Studies for CDBO (Chen et al., 2022; Gao et al., 2022; Yang et al., 2022) and CDBO-Local (Liu
et al., 2022; Lu et al., 2022) suppose the communication networks are static and undirected. More
specifically, they assume the weighted mixing matrix P (t) to be a double-stochastic matrix at all time
steps t ∈ N for the consensus of DSGD in the outer-problem (Liu et al., 2022; Lu et al., 2022) (i.e.
xi = xj ,∀i, j ∈ [n]), and both in the outer-problem and inner-problem (Chen et al., 2022; Gao et al.,
2022; Yang et al., 2022) (i.e. xi = xj ,λi = λj ,∀i, j ∈ [n]).

Tarzanagh et al. (2022); Liu et al. (2022) addresses the consensus in the outer-problem by adopting
centralized communication settings so that the single global hyperparameter are shared among the
clients at every step.

Our HGP is the only method that runs even on stochastic and directed communication networks.

36



Under review as a conference paper at ICLR 2023

In terms of the consensus, we can relax the assumption of the static undirected communication in
Chen et al. (2022); Gao et al. (2022); Yang et al. (2022); Liu et al. (2022); Lu et al. (2022) to the
stochastic and directed networks by replacing DSGD with SGP for the inner-loop and outer-loop.
However, in terms of the hyper-gradient estimation, we cannot naively replace the communication
networks setting as discussed in Section 4.2.

Hyper-gradient to estimate Both PDBO and CDBO require hyper-gradient estimation as they
involve the interaction of clients in the inner-problem. However, the estimated hyper-gradient varies
among the studies, so we categorize them into GlobalGrad, ClientGrad, and LocalGrad (Hyper-
gradient in Table 3). Our HGP and Yang et al. (2022); Tarzanagh et al. (2022) aim at estimating the
gradient of the average outer-objective across the client with respect to the hyperparameter of the
client (GlobalGrad), i.e. dλi F̄ (x∗ (λ) ,λ) ∈ Rdλ .

Chen et al. (2022) estimate slightly different hyper-gradient, that is, the gradient of client outer-
objective with respect to the hyperparameter of the client (ClientGrad), i.e. dλiFi (x

∗
i (λ) ,λi).

Unlike GlobalGrad, ClientGrad only lets the client know how the perturbation on the client’s
hyperparameter changes its own outer-objective. Thus the gradient step of the client hyperparameter
using ClientGrad is not supposed to improve the performance of the others, which is not the case
with GlobalGrad.

Gao et al. (2022) estimates the LocalGrad which is equivalent to the hyper-gradient estimation of SGD
that estimates dλiFi (x

∗
i (λi) ,λi). LocalGrad differs from ClientGrad because LocalGrad needs no

communication because the optimal inner-parameter x∗
i is only parameterized by its hyperparameter

λi.

Complexity in communication and computation For a fair comparison, we compare the com-
plexity of communication and computation between methods that intend to estimate the same
hyper-gradient. Note that we only focus on the requirement of computation or communication for
the full Jacobian matrix as it is dominant in decentralized hyper-gradient estimation (rightmost two
columns of Table 3).

No approach for LocalGrad involves the full Jacobian computation and communication as they can
naively adopt efficient algorithms such as backward mode. For GlobalGrad, the algorithm proposed by
Yang et al. (2022) is complex both in computation and communication as they involve computations
and communications of full Jacobian matrix (O (dy × dλ)) and Hessian matrix (O (dy × dy)).
Tarzanagh et al. (2022) and our HGP enjoys reasonable complexity because these methods avoid
computation and communication of full Jacobian by using Jacobian-vector products.

F DETAILED ALGORITHMS

We provide an algorithm Alg. 1 which describes a case of PDBO in which outer-problem is solved
by local SGD. We also describe the complete algorithms of SGP (Alg. 2) formulated by Eq. (2),
HGP (Alg. 4) formulated by Eq. (12), VR-HGP (Alg. 5), formulated in Section 4.2 (Variance reduc-
tion), and the exact recurrent backpropagation (Alg. 3) formulated by Eq. (11). All the algorithms
above are expected to run locally at every i-th client, showing how all clients collaboratively solve
the PDBO (Eq. (7)) without any central orchestration.

For a better understanding, we describe below special notes on several lines in the algorithms that
characterize our approach.

Outer-loop in PDBO Let λ(s)
i be a hyperparameter of the i-th client at the s-th outer-step. PDBO

runs multiple outer-steps for s = 0, . . . , S − 1 from a given initial hyperparameter λ(0)
i . Alg. 1

supposes λ(s)
i is updated locally by SGD step (Line 7 in Alg. 1). As the output of HGP can be seen as

an unbiased estimate of stochastic gradient, the convergence property of outer steps is simply given
by the common convergence property of SGD whose noise is characterized by Theorem 1. We can
also use other optimizers such as Adam (Kingma & Ba, 2015) for outer-steps, as we adopted in our
experiments (Section 6).

37



Under review as a conference paper at ICLR 2023

HGP vs. Exact recurrent backpropagation We explain the difference between HGP (Eq. (12))
and exact recurrent backpropagation (Eq. (11)) in algorithmic perspective.

As mentioned in Section 4.2 decentralization of exact recurrent backpropagation is impossible on
directed communication networks. In exact recurrent backpropagation Line 9 and Line 17 in Alg. 3
require a client to receive the intermediate backpropagation vector u(m)

j from clients such that

δ
(m)
i�j = 1, indicating the i-th client needs to receive the message from whom the i-th client sent

messages. This is possible only when the communication network is undirected or synchronized.

In our HGP, Line 9 and Line 17 in Alg. 4 let the i-th client to receive u(m)
j from clients such that

δ
(m)
j�i = 1, thus any client simply receives the information from all the client who is able to send to
i. The estimation bias incurred by this simple modification is corrected according to the expected
sending weight p̄ij = Eδ[pij (δi)] and receiving frequency δ̄j�i = Eδ[δj�i] estimated through inner
SGP iterations (Line 7 and Line 12 in Alg. 2).

Note that both HGP and the exact recurrent backpropagation enjoys cheap time complexity since
the computations related to Jacobians, ∂λiφi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
j and ∂λiψi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
i ,

can be locally computed by Jacobian-vector product.

Algorithm 1: PDBO with SGD ran by the i-th client

Input: y(0)
i ,λ

(0)
i , α, β

1 foreach s = 0, . . . , S − 1 do
// Solve the inner-problem

2 y
(T )
i ,

{(
p̄ij , δ̄j�i

)}
j∈[n]

← Alg. 2
(
y
(0)
i ,λ

(s)
i

)
︸ ︷︷ ︸

SGP
// Hyper-gradient estimation

3 if α = 1 then
4 d̂λi F̄ ← Alg. 4

(
y
(T )
i ,λ

(s)
i ,
{(

p̄ij , δ̄j�i
)}
j∈[n]

)
︸ ︷︷ ︸

HGP
5 else
6 d̂λi F̄ ← Alg. 5

(
y
(T )
i ,λ

(s)
i ,
{(

p̄ij , δ̄j�i
)}
j∈[n]

, α, β
)

︸ ︷︷ ︸
VR-HGP

// Run a local SGD outer-step

7 λ
(s+1)
i ← λ

(s)
i − βid̂λi F̄

8 return λ(S)
i

38



Under review as a conference paper at ICLR 2023

Algorithm 2: SGP ran by the i-th client

Input: y(0)
i ,λi

// Initialize empirical estimates
1 p̄ij ← 0, ∀j ∈ [n]

2 δ̄j�i ← 0, ∀j ∈ [n]
3 foreach t = 0, . . . , T − 1 do

// Sample a minibatch and communication edges

4 Sample ζ
(t)
i and δ

(t)
i = [δ

(t)
i�1 · · · δ

(t)
i�n]

⊤

5 foreach j s.t. δ
(t)
i�j = 1 do

6 Send pij(δ
(t)
i )φi

(
y
(t)
i ;λi, ζ

(t)
i

)
to the j-th node

7 p̄ij += pij(δ
(t)
i )

8 y
(t+1)
i ← 0dy

9 foreach j s.t. δ
(t)
j�i = 1 do

10 Receive pji(δ
(t)
j )φj

(
y
(t)
j ;λj , ζ

(t)
j

)
from the j-th node

11 y
(t+1)
i += pji(δ

(t)
j )φj

(
y
(t)
j ;λj , ζ

(t)
j

)
12 δ̄j�i += 1

13 y
(t+1)
i += ψi

(
y
(t)
i ;λi, ζ

(t)
i

)
// Normalize empirical estimates

14 p̄ij ← 1
T p̄ij , ∀j ∈ [n]

15 δ̄j�i ← 1
T δ̄j�i, ∀j ∈ [n]

16 return y(T )
i ,

{(
p̄ij , δ̄j�i

)}
j∈[n]

Eq. (2)

39



Under review as a conference paper at ICLR 2023

Algorithm 3: (Maybe impossible) Exact recurrent backpropagation ran by the i-th client
Input: y∗

i ,λi
// Compute i-th block of ∂yF̄ (x∗,λ) denoted by ⟨cy⟩i

1 u
(0)
i ← 1

n∂yiFi (x
∗
i ,λi)

// Compute i-th block of ∂λF̄ (x∗,λ) denoted by ⟨cλ⟩i
2 v

(0)
i ← 1

n∂λiFi (x
∗
i ,λi)

3 foreach m = 0, . . . ,M − 1 do
// Sample a minibatch and communication edges

4 Sample ζ
(2m)
i and δ

(2m)
i = [δ

(2m)
i�1 · · · δ

(2m)
i�n ]⊤

5 foreach j s.t. δ
(2m)
i�j = 1 do

6 Send u(m)
i to the j-th node

7 v
(m+1)
i ← 0dλ

8 foreach j s.t. δ
(2m)
i�j = 1 do

9 Receive u(m)
j from the j-th node

10 v
(m+1)
i += pij(δ

(2m)
i )∂λiφi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
j

11 v
(m+1)
i += ∂λiψi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
i + v

(m)
i

12 Sample ζ
(2m+1)
i and δ

(2m+1)
i = [δ

(2m+1)
i�1 · · · δ

(2m+1)
i�n ]⊤

13 foreach j s.t. δ
(2m+1)
i�j = 1 do

14 Send u(m)
i to the j-th node

15 u
(m+1)
i ← 0dy

16 foreach j s.t. δ
(2m+1)
i�j = 1 do

17 Receive u(m)
j from the j-th node

18 u
(m+1)
i += pij(δ

(2m+1)
i )∂yiφi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
j

19 u
(m+1)
i += ∂yiψi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
i

20 return v(m)
i

21

Iteration of
v
(m+1)
i in Eq. (11)

Iteration of
u
(m+1)
i in Eq. (11)

40



Under review as a conference paper at ICLR 2023

Algorithm 4: HGP ran by the i-th client

Input: y∗
i ,λi,

{(
p̄ij , δ̄j�i

)}
j∈[n]

// Compute i-th block of ∂yF̄ (x∗,λ) denoted by ⟨cy⟩i
1 u

(0)
i ← 1

n∂yiFi (x
∗
i ,λi)

// Compute i-th block of ∂λF̄ (x∗,λ) denoted by ⟨cλ⟩i
2 v

(0)
i ← 1

n∂λiFi (x
∗
i ,λi)

3 foreach m = 0, . . . ,M − 1 do
// Sample a minibatch and communication edges

4 Sample ζ
(2m)
i and δ

(2m)
i = [δ

(2m)
i�1 · · · δ

(2m)
i�n ]⊤

5 foreach j s.t. δ
(2m)
i�j = 1 do

6 Send u(m)
i to the j-th node

7 v
(m+1)
i ← 0dλ

8 foreach j s.t. δ
(2m)
j�i = 1 do

9 Receive u(m)
j from the j-th node

10 v
(m+1)
i +=

p̄ij
δ̄j�i

∂λiφi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
j

11 v
(m+1)
i += ∂λiψi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
i + v

(m)
i

12 Sample ζ
(2m+1)
i and δ

(2m+1)
i = [δ

(2m+1)
i�1 · · · δ

(2m+1)
i�n ]⊤

13 foreach j s.t. δ
(2m+1)
i�j = 1 do

14 Send u(m)
i to the j-th node

15 u
(m+1)
i ← 0dy

16 foreach j s.t. δ
(2m+1)
j�i = 1 do

17 Receive u(m)
j from the j-th node

18 u
(m+1)
i +=

p̄ij
δ̄j�i

∂yiφi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
j

19 u
(m+1)
i += ∂yiψi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
i

20 return v(m)
i

21

Iteration of
v
(m+1)
i in Eq. (12)

Iteration of
u
(m+1)
i in Eq. (12)

41



Under review as a conference paper at ICLR 2023

Algorithm 5: VR-HGP ran by the i-th client

Input: y∗
i ,λi,

{(
p̄ij , δ̄j�i

)}
j∈[n]

, α, β

// Compute i-th block of ∂yF̄ (x∗,λ) denoted by ⟨cy⟩i
1 u

(0)
i ← 1

n∂yiFi (x
∗
i ,λi)

// Compute i-th block of ∂λF̄ (x∗,λ) denoted by ⟨cλ⟩i
2 v

(0)
i ← 1

n∂λiFi (x
∗
i ,λi)

3 cyi ← u
(0)
i

4 cλi ← v
(0)
i

5 foreach m = 0, . . . ,M − 1 do
// Sample a minibatch and communication edges

6 Sample ζ
(2m)
i and δ

(2m)
i = [δ

(2m)
i�1 · · · δ

(2m)
i�n ]⊤

7 foreach j s.t. δ
(2m)
i�j = 1 do

8 Send u(m)
i ,w

(m)
i to the j-th node

9 v
(m+1)
i ← 0dλ

10 foreach j s.t. δ
(2m)
j�i = 1 do

11 Receive u(m)
j ,w

(m)
j from the j-th node

12 v
(m+1)
i += α

(
p̄ij
δ̄j�i

∂λiφi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
j

)
+(1− α)

(
p̄ij
δ̄j�i

∂λiφi

(
y∗
i ;λi, ζ

(2m)
i

)
w

(m)
j

)
13 v

(m+1)
i += α

(
∂λiψi

(
y∗
i ;λi, ζ

(2m)
i

)
u
(m)
i + v

(m)
i

)
+(1− α)

(
∂λiψi

(
y∗
i ;λi, ζ

(2m)
i

)
w

(m)
i

)
14 Sample ζ

(2m+1)
i and δ

(2m+1)
i = [δ

(2m+1)
i�1 · · · δ

(2m+1)
i�n ]⊤

15 foreach j s.t. δ
(2m+1)
i�j = 1 do

16 Send u(m)
i ,w

(m)
i to the j-th node

17 u
(m+1)
i ← 0dy

18 w
(m+1)
i ← 0dy

19 foreach j s.t. δ
(2m+1)
j�i = 1 do

20 Receive u(m)
j ,w

(m)
j from the j-th node

21 u
(m+1)
i +=

p̄ij
δ̄j�i

∂yiφi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
j

22 w
(m+1)
i += β

(
p̄ij
δ̄j�i

∂yiφi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
j

)
23 u

(m+1)
i += ∂yiψi

(
y∗
i ;λi, ζ

(2m+1)
i

)
u
(m)
i

24 w
(m+1)
i += β

(
∂yiψi

(
y∗
i ;λi, ζ

(2m+1)
i

)
w

(m)
i + cyi

)
+ (1− β)

(
w

(m)
i + u

(m+1)
i

)
25 return v(m)

i + cλi

42



Under review as a conference paper at ICLR 2023

Table 4: Test accuracy of personalized models on the simulated stochastic directed communication
network (StoD) (average clients / 10% percentile).

Method Dataset

CIFAR10 CIFAR100 Shakespeare EMNIST

Global SGP 75.6 / 69.7 38.8 / 31.4 28.5 / 26.0 79.7 / 72.5
SGP-MTL 73.0 / 64.2 34.4 / 27.7 27.7 / 24.0 80.9 / 73.2

Personalized

Local 62.5 / 41.1 33.1 / 25.1 25.3 / 17.5 73.7 / 63.8
Local-MTL 64.2 / 38.3 35.2 / 28.0 25.5 / 20.0 67.3 / 57.5
PDBO-DA 75.6 / 70.3 42.1 / 37.1 38.2 / 33.7 80.8 / 72.9
PDBO-MTL 73.6 / 65.2 41.4 / 35.1 38.0 / 34.9 81.6 / 75.0
PDBO-MTL&DA 77.2 / 73.0 43.3 / 36.7 37.7 / 33.0 82.2 / 74.5

G ADDITIONAL EXPERIMENTS

We conducted personalization benchmarks on different tasks: image classification (CIFAR10 and
CIFAR100 (Krizhevsky, 2009)), language modeling (Shakespeare (Caldas et al., 2018; McMahan
et al., 2017)), and handwritten character recognition (EMNIST (Cohen et al., 2017)) on a simulated
stochastic directed communication network.

G.1 SETTINGS

We ran our approaches, PDBO-DA, PDBO-MTL, and PDBO-MTL&DA, and Local and SGP for
baselines which are explained in Section 6. We adopted the stochastic directed network StoD for
a simulated communication network with the same setting as in Section 6. For each approach, we
solve different tasks on corresponding datasets: CIFAR10, CIFAR100, Shakespeare, and EMNIST.

Tasks For image classification on CIFAR10, we distributed samples with the same labels across
clients according to a symmetric Dirichlet distribution with parameter 0.4, as in Marfoq et al. (2021);
Wang et al. (2019), to create a federated version. We used 40% of the total data as the train and
validation dataset in a 3:1 ratio and the rest as the test dataset. We also tested image classification
using CIFAR100 exploiting the availability of “coarse” and “fine” labels, using a two-stage Pachinko
allocation method (Li & McCallum, 2006) as in Reddi et al. (2020); Marfoq et al. (2021), to distribute
900, 300, and 1800 sized train, validation, test datasets to each client, respectively. Pachinko allocation
ran with the parameters adopted in Marfoq et al. (2021). For both CIFAR10 and CIFAR100, we
set n = 20 and trained MobileNet-v2 (Sandler et al., 2018), implemented in TorchVision(Marcel &
Rodriguez, 2010), with an additional linear layer.

The Shakespeare dataset was naturally divided by assigning all lines from the same character to the
same client as in Marfoq et al. (2021); McMahan et al. (2017). From 728 characters, we randomly
selected n = 20 characters and assigned each of them to a client. We trained two stacked-LSTM
layers with 256 hidden units followed by a densely-connected layer, to predict the next character
from a sequence of 200 English characters as input. The model embeds 80 characters into a learnable
8-dimensional embedding space. For each client, we used 80% of lines as the train and validation
dataset in a 3:1 ratio and the rest as the test dataset. The lines are split from the beginning in the order
train, validation, and test to simulate the practical time dependence between datasets.

The settings of handwritten character recognition on EMNIST (Cohen et al., 2017) are described in
Section 6 and Appendix D.

Approaches For PDBO-DA, PDBO-MTL, and PDBO-MTL&DA, we adopted the same strategies
and parameters in Section 6. PDBO-DA optimizes weights vector of loss which elements correspond
to labels (characters) of EMNIST, CIFAR10, and CIFAR100 (Shakespeare). PDBO-MTL optimizes
ensemble weights of predictions of 3 models of each task, and PDBO-MTL&DA simultaneously
optimizes the outer-parameters of PDBO-DA and PDBO-MTL. Except for reducing M to 20 rounds
for efficiency, we adopted the same VR-HGP setting in Section 6.

43



Under review as a conference paper at ICLR 2023

For baselines, due to the absence of personalization methods applicable to stochastic directed
communication networks, Local and SGP were adopted. We also trained an ensemble model
with uniform prediction weights for both baselines, Local-MTL and SGP-MTL to fairly compare
the performance difference between the baselines and our approaches. This allows us to exclude
architectural differences from the reasons for performance improvements.

Results and discussions Table 4 shows the average test accuracy with weights proportional to local
test dataset sizes. We observed that our approaches PDBO-DA, PDBO-MTL, and PDBO-MTL&DA
improved accuracy from baselines on all tasks with a few exceptions: PDBO-MTL on CIFAR10 and
PDBO-DA on EMNIST. PDBO-MTL&DA out performed on CIFAR10, CIFAR100, and EMNIST
in average accuracy, confirming the simultaneous optimization of different parameters is effective on
complex tasks. Even on the next character prediction task on time series data, all of our approaches
improved the performance from baselines, indicating our gradient-based PDBO is effective in a variety
of tasks. Note that the performance improvements did not come from the architectural differences in
the models (single model or ensemble model) since PDBO-MTL and PDBO-MTL&DA outperformed
SGP-MTL and Local-MTL. Accuracy at the 10% percentile are also improved from the baselines in
all the tasks and our approaches, which validated that clients fairly benefited from our personalization.

H HYPER-GRADIENT ESTIMATION BY ITERATIVE DIFFERENTIATION

Iterative differentiation is categorized into forward (ITD-Forward) and backward (ITD-
Backward) (Franceschi et al., 2017). ITD-Forward and ITD-Backward are advantageous to AID
as they do not assume convexity on the loss. In this section, we show that ITD-Forward and
ITD-Backward suffer from physical limitations and large complexity in communications.

ITD-Forward and ITD-Backward compute the hyper-gradient by recursively tracing back all inner-
loops, which is performed to obtain the trained parameter, y(T ), without requiring y(T ) to be the
stationary point. To apply ITD-Forward and ITD-Backward to our setting, we suppose y(T ) is
obtained by T iterations of Eq. (2). Considering iterations for t = 0, . . . , T − 1, concatenated
hyper-gradient of ITD-Forward and ITD-Backward can be given as

dITD
λ F̄ (x(T ),λ) :=

T−1∑
t=0

B̂(t)
T−1∏
s=t+1

Â(s)cx + cλ. (41)

ITD-Forward and ITD-Backward are differentiated by how they compute Eq. (41).

Forward mode iterative differentiation (ITD-Forward) LetU (t) :=
∑t−1
t′=0 B̂

(t′)
∏t−1
s=t′+1 Â

(s).
To compute Eq. (41), ITD-Forward updates the matrix U (t) ∈ Rndλ×ndy . After initializing by
U (0) = Ondλ×ndy , the following iterations for t = 0, . . . , T − 1,

U (t+1) = U (t)Â(t) + B̂(t) (42)

provides the hyper-gradient by dITD
λ F̄ (x(T ),λ) = U (K)cx + cλ.

We then consider a decentralized algorithm ran by the i-th client to obtain the i-th block of con-
catenated hyper-gradient dITD

λi
F̄ (x(T ),λ) := ⟨dITD

λ F̄ (x(T ),λ)⟩i ∈ Rdλ . By letting the i-th client

update column block matrices U (t)
ki := ⟨U (t)⟩ki for all k ∈ [n], a decentralized algorithm of

ITD-Forward can be written as follows.

Forward mode iterative differentiation (ITD-Forward)

U
(0)
ki ← Odλ×dy , ∀k ∈ [n]

U
(t+1)
ki =

∑
j∈[n]

δ
(t)
j�iU

(t)
kj

〈
Â(t)

〉
ji
+ δ

(t)
k�i

〈
B̂(t)

〉
ki
, ∀k ∈ [n] (43)

for t = 0, 1, 2, . . . , T − 1

dITD
λi F̄ (x(T ),λ)←

∑
j∈[n]

U
(T )
ij cxj + cλi (44)

44



Under review as a conference paper at ICLR 2023

The i-th node can compute the first term of the right hand of Eq. (43) because Jacobian-matrix
product U (t)

kj ⟨Â(t)⟩ji is always receivable from the j-th client even when edges are directed; when

U
(t)
kj ⟨Â(t)⟩ji ̸= Odλ×dy the communication edge for receiving exists (δ(t)j�i = 1) andU (t)

kj ⟨Â(t)⟩ji =
Odλ×dy otherwise. In the same manner, the second term can be computed receiving ⟨B̂(t)⟩ki from the
k-th node. Note that when we choose to let the i-th client update row block matricesU (t)

ik := ⟨U (t)⟩ik
for all k ∈ [n] required to update U (t)

ik are not guaranteed on stochastic communication networks.

The difficulty of the forward mode is its communication cost. To update U (t)
ki , the any j-th client

needs to send U (t)
kj ⟨Â(t)⟩ji ∈ Rdλ×dy to the i-th client. Because both dλ and dy can be large for

practical models such as deep neural networks, communicating O(dλ× dy) parameters is prohibitive
in general.

The other problem is the last step of computing the sum
∑
j∈[n]U

(T )
ij cxj in Eq. (44). This requires

communicating with all the clients. The i-th client, therefore, needs to wait for several communication
rounds until it can receive the Jacobian-vector product U (T )

ij cxj ∈ Rdλ from all j ∈ [n].

Backward mode iterative differentiation (ITD-Backward) ITD-Backward computes Eq. (41) in
the reverse time sequence of ITD-Forward, i.e., t = T − 1, . . . , 0, resulting in having an iteration
similar to Eq. (10). Let u(t) =

∏T−1
s=t Â

(s)cy and v(t) =
∑T−1
s=t+1 B̂

(s)u(s) + cλ. By initializing
u(T ) ← cy and v(T ) ← cλ, and by the following iterations for t = T − 1, . . . , 0,{

v(t) ← B̂(t+1)u(t+1) + v(t+1),

u(t) ← Â(t+1)u(t+1),

we obtain the hyper-gradient estimate as d̂λF̄ ← v(0).

Mathematically, the decentralized algorithm of ITD-Backward for the i-th client can be written as

Backward mode iterative differentiation (ITD-Backward)

u
(T )
i ← ⟨cy⟩i, v

(T )
i ← ⟨cλ⟩i v

(t)
i ←

∑n
j=1 δ

(t+1)
i�j

〈
B̂(t+1)

〉
ij
u
(t+1)
j + v

(t+1)
i ,

u
(t)
i ←

∑n
j=1 δ

(t+1)
i�j

〈
Â(t+1)

〉
ij
u
(t+1)
j

for t = T − 1, T − 2, . . . , 0

dITD
λi F̄ (x(T ),λ)← v

(0)
i .

In centralized bilevel optimization, iterations of t = T − 1, . . . , 0 are realized by storing the
intermediate parameters and indices of every minibatch during the training (Franceschi et al., 2017) to
recover all iterations after T inner-gradient descent steps. However, when we use SGP iterations for
inner-steps, the stochastic network does not guarantee to reproduce the communication edges which
clients experienced during the training, making the computation of the decentralized ITD-Backward
infeasible.

Moreover, ITD-Backward also requires undirected edges similar to the exact recurrent backpropaga-
tion as pointed out in Section 4.2 (Exact backpropagation requires undirected edges).

We thus conclude that ITD-Backward requires the communication network to be restricted to static
and undirected in order to function.

45


	Introduction
	Preliminaries
	Personalized Decentralized Bilevel Optimization (PDBO)
	Hyper-Gradient Estimation over Stochastic and Directed Communication Networks
	Empirical Estimate via Approximate Implicit Differentiation
	Hyper-Gradient Push (HGP)

	Related work
	Experiments
	Settings
	Results and discussions

	Conclusion
	Estimation of Hyper-Gradient
	Stationarity of SGP
	Hyper-gradient by Implicit Differentiation
	Estimation of Hypergradient
	Estimation of  and 
	Approximation by Neumann Series

	Hyper-Gradient Push (HGP)

	Variance Reduction
	Estimation Error of Hyper-Gradient
	Preliminary Lemmas
	Decomposition of , 
	Bound for (0, 1) and (0, 1)
	Bound for = 1 and = 0
	Comparison of ,  and 0, 1
	Comparison of  and 
	Relaxation of convergence to the stationary point

	Detailed Experimental Settings
	Gradient-based Distributed Bilevel Optimization
	Detailed Algorithms
	Additional Experiments
	Settings

	Hyper-gradient Estimation by Iterative Differentiation

