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ABSTRACT

Although studies have demonstrated that Large Language Models (LLMs) can
perform well on Out-of-Distribution (OOD) tasks, their advantage tends to di-
minish as the distribution shift becomes more severe. Consequently, researchers
aim to retrieve distributionally similar and informative demonstrations from the
available source domain to boost the inference capabilities of LLMs. However,
in practical scenarios where the target domain is inaccessible, evaluating the un-
known distribution is challenging, which indirectly impacts the quality of the se-
lected demonstrations. To address this problem, we propose DOPA, a demon-
stration search framework that incorporates an OOD proxy to approximate the
inaccessible target domain and guide the retrieval process. Building on proxy-
based evaluation, DOPA further introduces a Mahalanobis distance-based global
diversity constraint to ensure sufficient diversity among the retrieved demonstra-
tions. Experimental results on multiple LLMs and natural language understanding
tasks demonstrate that DOPA effectively enhances robustness in OOD settings1.

1 INTRODUCTION

Large language models (LLMs) have played an indispensable role in the field of natural language
processing (NLP), achieving remarkable performance across a wide range of tasks Chang et al.
(2024); Song et al. (2025). Among various prompting strategies, in-context learning (ICL) has
emerged as one of the most widely adopted approaches, wherein providing a few-shot demonstra-
tion can effectively guide the model toward improved reasoning and prediction Min et al. (2022).
However, recent studies have revealed that the performance of LLMs can degrade significantly in
out-of-distribution (OOD) scenarios Yuan et al. (2023); Wang et al. (2025), where the demonstra-
tions exhibit substantial distributional differences from the target domain. This has motivated re-
searchers to explore various methods for obtaining more effective demonstrations.

Retrieval Luo et al. (2024) and augmentation Shu et al. (2024) are two commonly used approaches
for obtaining effective samples. The former searches for the most relevant examples within a spe-
cific domain, while the latter rewrites existing samples to reduce their discrepancy with the tar-
get instance. Demonstration retrieval relies on a retriever. Some off-the-shelf metrics, such as
Bm25 Agrawal et al. (2023), sentence encoder-based similarity Liu et al. (2022), model influ-
ence Peng et al. (2024); S. et al. (2024), and misconfidence Xu & Zhang (2024), can support
general-purpose retrieval strategies. While other approaches aim to train a dense retriever to ob-
tain more task-relevant retrieval results Cheng et al. (2023); Li et al. (2023a). Augmentation, on the
other hand, focuses on adapting existing samples to better match the distributional characteristics of
the target instance O’Brien et al. (2024); Madine (2024). However, in real-world applications, inac-
cessible target domain hinders the ability to obtain domain-aligned demonstrations, often resulting
in degraded performance Song et al. (2024a).

To address the aforementioned challenge, we propose a demonstration optimization framework
based on OOD proxy assessment (termed DOPA). This framework quantifies the utility of source-
domain samples in the absence of target-domain access, and leverages the quantification results to

1https://anonymous.4open.science/r/ood code

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

guide demonstration retrieval. At its core, DOPA introduces an OOD proxy as a principled approx-
imation to the unknown target distribution Zhang & Wischik (2022), which is composed of two
components: a source proxy and a target proxy. The source proxy is defined as an instruction-tuned
LLM trained on the source domain to fully adapt to the source distribution, while the target proxy
corresponds to the original, unmodified version of the same LLM. The perplexity ratio between
their predictions on identical input samples is adopted as the OOD score for those samples Nalis-
nick et al. (2019). This OOD score serves to estimate the degree of familiarity of source-domain
samples with the target domain in the absence of target-domain information. It is further inte-
grated with representational similarity to predictable samples for candidate selection. The validity
of the OOD score is theoretically supported through a bounded proxy error analysis. Moreover,
to enhance the diversity of retrieved demonstrations, we incorporate a Mahalanobis distance-based
search strategy into the retrieval process. By relying on the OOD proxy, DOPA is capable of iden-
tifying informative demonstrations solely within the source domain, without requiring any samples
from the target domain. Extensive experiments show that DOPA consistently outperforms baseline
approaches across diverse LLMs and natural language understanding tasks. In addition, we provide
a multi-dimensional analysis that demonstrates the effectiveness of the proxy in selecting samples
that exhibit behavioral similarity to those in the target domain. Our contributions are as follows:

(i) We propose a method that leverages OOD proxies to extract distribution-aligned samples, and
we theoretically demonstrate the soundness of the proxy through a bounded proxy error guarantee.
(ii) We propose a target-agnostic demonstration retrieval framework based on OOD proxies, which
combines proxy results and contextual diversity to enhance the quality of demonstration selection.
(iii) Experimental results on multiple NLP tasks and across various LLMs demonstrate that the
proposed method effectively enhances OOD robustness in ICL.

2 RELATED WORK

Demonstration Retrieval. Despite the impressive performance demonstrated by ICL, an increas-
ing number of studies have shown its sensitivity to the choice of demonstrations Song et al. (2024b).
To obtain more effective demonstrations, a natural idea is to search over candidate samples within
a constrained space Luo et al. (2024). Depending on whether the retrieval tool has been trained,
demonstration search can be divided into off-the-shelf retrieval and retrieval based on fine-tuned
models. Term-based similarity has been widely used for demonstration retrieval, with BM25 being
one of the most popular scoring metrics Agrawal et al. (2023); Ye et al. (2023). In addition, sev-
eral sentence embedding models, such as SBERT Wang et al. (2024), RoBERTa Liu et al. (2022),
and SimCSE Gao et al. (2021), have also been widely used to compute inter-sample similarity and
optimize demonstration selection. Moreover, some approaches assess the influence of individual
samples on model predictions to select high-impact examples for demonstrations Peng et al. (2024);
S. et al. (2024). Off-the-shelf retrieval methods may yield suboptimal results, as they do not in-
corporate task-specific information. Therefore, some methods have explored leveraging feedback
signals from LLMs to distinguish between important and unimportant samples, and further optimize
the retriever for specific tasks using objectives such as ranking Li et al. (2023a), contrastive learn-
ing Cheng et al. (2023); Luo et al. (2023), and diversity Ye et al. (2023). But these methods often
rely on feedback from LLMs, which leads to higher computational complexity.

OOD Robustness in ICL. In ICL settings, distribution shifts can lead to significant performance
drops, revealing the models’ sensitivity and lack of robustness to unseen or mismatched do-
mains Yuan et al. (2023); Wang et al. (2025). The presence of a distributional gap may render
demonstration retrieval strategies ineffective, as the retrieved examples may no longer align with
the target task semantics. Therefore, some approaches have further explored the effectiveness of
demonstration augmentation. Some approaches have introduced external knowledge, such as lin-
guistic rules Jiang et al. (2024) or human feedback Bai et al. (2024), to fine-tune LLMs. Never-
theless, some studies have questioned the necessity of fine-tuning, arguing that LLMs may already
possess the inherent capability to handle OOD data effectively Uppaal et al. (2023); Zhang et al.
(2024). As a result, semantic rewriting has been introduced to prompt LLM to revise a given source
sample, aiming to better align it with the target domain O’Brien et al. (2024); Madine (2024).
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OOD Proxy Estimation Multi-granularity Demonstration Retrieval

Figure 1: The model architecture of DOPA based on the sentiment analysis task. First, DOPA
performs task-specific instruction tuning on the source domain to obtain a source proxy based on
any given LLM. Correspondingly, an identical LLM without fine-tuning, which preserves the prior
knowledge of the target domain, is employed as the target-domain proxy. For the same input, the
ratio between the two proxies is employed as an OOD proxy estimation, which is further combined
with similarity and diversity to support multi-granularity demonstration search.

3 METHOD

3.1 TASK DEFINITIONS AND MODEL DESCRIPTION

Our model description begins with some definitions. In the OOD setting, LLMsM are restricted to
using data fromDS to perform ICL, and are expected to make predictions on any sample xt fromDT

as accurately as possible. During the inference process of LLMs, all samples from DT other than
xt are strictly inaccessible, preventing the model from making decisions by referencing samples
from a similar distribution. For ICL, a prompt Pxt is constructed by selecting N × |Y | labeled

examples (x(j), y(j))
N×|Y |
j=1 from DS , which are then concatenated with xt and fed into any M.

Here, |Y | denotes the size of the label space. Then, the LLM produces a prediction ŷt =M(Pxt).
In different task settings, ŷt can take various forms depending on the output space. For classification
tasks, it typically corresponds to a token representing a label category (e.g., positive or negative),
while for generative tasks, it may be a string representing the desired output.

As illustrated in Figure 1, DOPA comprises two main components: OOD proxy estimation and
multi-granularity demonstration retrieval. The proxy estimation module assesses the proximity of
source domain samples to the target domain using an OOD proxy, while the demonstration retrieval
module selects appropriate examples by jointly optimizing semantic similarity and diversity con-
straints. The retrieved demonstrations are then used for ICL.

3.2 OOD PROXY ESTIMATION

The goal of the OOD proxy estimation is to evaluate the utility of source domain samples to select
those that are more aligned with the target domain. But without access to the target domain, it
is difficult to accurately assess the target distribution. Therefore, inspired by prior work on OOD
detection Ren et al. (2019); Zhang & Wischik (2022), we construct an OOD proxy to approximate
the target domain distribution, and compute the OOD score of any sample via the proxy. The OOD
score is then used to guide sample selection from DS .

Proxy Construction. The OOD proxy consists of two components: the source proxy and the target
proxy, which ideally model the source and target distributions, respectively. For the former, an
intuitive approach is to instruction-tune LLMs on the source domain so that the model can better
adapt to the source distribution. In DOPA, the instructions for source proxy are encapsulated in the
same format as in ICL, aiming to prompt LLMs to produce reasonable task-related predictions. As
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for the target domain, since the target domain distribution is unknown, some methods propose a
general approach by replacing the target-domain proxy with a uniform distribution Bishop (1993);
Nalisnick et al. (2019). Such a strong assumption is inherently destined to yield suboptimal results
as shown in Lemma 1. Given that LLMs are pretrained on extensive corpora, it is reasonable to
assume that they implicitly encode a broad spectrum of linguistic and factual knowledge. As such,
LLMs can act as weak proxies for the target distribution, particularly in few-shot settings Zhang
et al. (2024).

Sample Screening based on OOD Score. Given the aforementioned proxies, DOPA further as-
sumes that if a sample exhibits divergent behavior under these two proxies, it may suggest an inher-
ent bias or a stronger alignment toward one specific domain. This facilitates domain discrimination
in the absence of any auxiliary target domain samples. In the previous research, the likelihood ratio
is one of the most commonly used detection criteria for the divergent behavior Ren et al. (2019);
Zhang & Wischik (2022):

S(x) =
Ptarget(x)

Psource(x)
≈

P proxy
target (x)

P proxy
source(x)︸ ︷︷ ︸

OOD proxy

, (1)

where Psource(x) and Ptarget(x) represent the behavior of models with the source and target domain
distributions when given the same input sample x, respectively. Under distributional uncertainty, the
OOD proxy is used as their approximation. To support the validity of OOD proxy estimation, we
further establish a theoretical guarantee on the boundedness of proxy error under mild assumptions.
Theorem 1 (Proxy Error Bound). Let Ptarget and Psource be the true probability distributions of the
target and source domain, let P proxy

target and P proxy
source be the corresponding proxy distributions. Suppose

there exist constants εt ≥ 0, εs ≥ 0, mt > 0, and ms > 0 such that the following hold:

• The Kullback-Leibler divergences are bounded: DKL(Ptarget ∥ P proxy
target) ≤ εt, DKL(Psource ∥

P proxy
source) ≤ εs. The proxy distributions have pointwise lower bounds: Ptarget(x), P

proxy
target(x) ≥

mt, Psource(x), P
proxy
source(x) ≥ ms.

Then, for all x, the error in the log-likelihood ratio satisfies:∣∣∣∣log Ptarget(x)

Psource(x)
− log

P proxy
target(x)

P proxy
source(x)

∣∣∣∣ ≤ εt
mt

+
εs
ms

.

Lemma 1 (Error Bound with Uniform Proxy). Building upon Theorem 1, if a uniform distribution
is used as the proxy for the target domain, it is easier to result in a looser upper bound on the error.

Due to space limitations, the proof of the above theorem is provided in Appendix B. Such a uniform
bound certifies that the proxy-based score deviates from the true likelihood ratio by at most a known
quantity, thereby providing theoretical assurance for reliable estimation. In the case of autoregressive
LLMs, perplexity Wuhrmann et al. (2025) is commonly employed to quantify the model’s familiarity
with a given text x: PPL(x) = exp

(
− 1

m

∑m
i=1 logP (wi|w<i)

)
, where m is the total number of

tokens in x, and P (wi|w<i) is the conditional probability of the language model predicting the i-th
token. Therefore, to conform to the log form as stated in Theorem 1, we adopt the log-perplexity
difference as a more numerically stable alternative:

S(x) = logPPLproxy
target(x)− logPPLproxy

source(x). (2)

Ideally, if the value of S(x) is relatively low, it exhibits higher perplexity under the source-domain
proxy and lower perplexity under the target-domain proxy, which further indicates that the sample
is more aligned with the target domain and should therefore be prioritized for constructing demon-
strations. By performing a single pass over DS , we can obtain a potential subset D̂S that is closer to
the target domain distribution by selecting the k samples with the lowest OOD scores.

3.3 DEMONSTRATION RETRIEVAL

Although the OOD scores help identify source domain samples that are more likely to align with the
target domain, the resulting coarse-grained subset still requires further refinement to construct ef-
fective demonstrations. Existing studies have provided strong support for the demonstration search

4
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Algorithm 1 Demonstration Retrieval Process of DOPA

Input: Proxy-filtered set D̂S , test sample xt.
Parameter: Demonstration quantity N × |Y |, initialized candidate set C.
Output: Final demonstration set Ddemo with size N .

1: Init Ddemo by Eq.3, sort D̂S in ascending order according to sim(hxi
, ht), counter← 0.

2: while |Ddemo| < N × |Y | do
3: x̂← D̂S [C + counter].
4: if DivDdemo

≤ Div{x̂}∪Ddemo
then

5: Ddemo ← {x̂} ∪ Ddemo.
6: end if
7: counter←counter + 1.
8: end while
9: return Ddemo

process Liu et al. (2022); Agrawal et al. (2023), a general approach is to adopt an off-the-shelf
text representation model to encode candidate texts into vectors and rank the most relevant demon-
strations based on their cosine similarity with the test sample. But one limitation of proxy-based
OOD scoring lies in its reliance on language model perplexity, which primarily captures token-level
fluency and distributional similarity. As a result, it may implicitly favor shorter texts or those con-
forming to high-frequency linguistic patterns Holtzman et al. (2020), leading to reduced diversity in
the selected sample pool and potentially impairing the quality of the retrieved demonstrations. To
address this issue, we further introduce a global diversity constraint to improve the overall quality
of the retrieved demonstrations. Specifically, for each sample representation hxi corresponding to
the proxy-filtered set D̂S , we initialize a candidate sample set Ddemo based on the similarity of the
representations to ht:

Ddemo = argmax
C
{sim(hxi

, ht)}|D̂S |
i=1 , (3)

where C is the number of samples in the initialized candidates2. Subsequently, the mean pairwise
Mahalanobis distance Li et al. (2023b) among samples in Ddemo is used to quantify the diversity:

Div =
2

|Ddemo|(|Ddemo| − 1)

∑
i<j

√
D⊤

ijΣ
−1Dij , (4)

where Dij = hxi − hxj , Σ is the empirical covariance matrix computed over all samples. The
Mahalanobis distance is adopted because it accounts for the correlations between samples while
measuring diversity, which helps impose constraints on similarity-based retrieval results. If a new
sample x̂ ∈ {D̂S − Ddemo} does not lead to a decrease in overall diversity i.e. DivDdemo

≤
Div{x̂}∪Ddemo

, it is retained. This process continues until the number of samples meets the required
threshold for constructing demonstrations. The final selected demonstration set is used for ICL. The
above procedure is summarized in Algorithm 1. After obtaining sufficient samples, we construct
demonstrations in a fixed label order to prevent bias introduced by orders, and use them for ICL.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conduct experiments on the OOD-specific benchmark BOSS Yuan et al. (2023), which includes
three classification tasks, Sentiment Analysis (SA), Toxicity Detection (TD), and Natural Language
Inference (NLI) as well as one generation task, Named Entity Recognition (NER). All instruction
templates follow the format provided in the original BOSS paper. In addition, we compare our
proposed method DOPA with various baseline approaches to comprehensively demonstrate its ad-
vantages. These baselines include: Random Peng et al. (2024), KNN Liu et al. (2022), DrICL Luo
et al. (2023), Rewrite Madine (2024), and InfICL S. et al. (2024), where Rewrite refers to the
data augmentation-based method, while the others are demonstration retrieval-based methods. All

2We specify the value of C in the detailed experimental settings.
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LLMs Methods
SA TD NLI

dynasent semeval sst avg implicit adv toxigen avg wanli anli cnli avg

GPT2-xl

Random 36.33 49.28 47.70 44.44 50.47 50.20 50.60 50.42 34.23 32.23 39.22 35.23
KNN 35.89 45.92 51.17 44.33 47.67 47.50 48.50 47.89 33.57 33.50 45.05 37.37

DrICL 37.00 47.66 52.76 45.81 49.70 51.38 48.23 49.77 32.03 33.33 47.20 37.52
Rewrite 36.00 45.84 50.61 44.15 46.90 45.72 49.37 47.33 34.00 32.77 45.38 37.38
InfICL 36.61 49.26 46.95 44.27 49.90 50.33 50.17 50.13 33.80 32.40 24.25 30.15
DOPA* 38.23 48.44 59.61 48.76 51.67 53.29 50.50 51.82 34.93 33.43 45.77 38.04

LLaMA3.2-3B

Random 53.81 47.86 66.26 55.98 57.70 55.20 65.70 59.53 37.70 35.50 42.75 38.65
KNN 52.63 45.76 65.42 54.60 56.63 53.29 51.03 53.65 37.20 34.67 44.24 38.70

DrICL 56.05 46.08 67.10 56.41 57.83 56.18 64.80 59.61 36.50 33.87 42.95 37.77
Rewrite 53.92 45.06 64.29 54.43 51.57 57.04 62.70 57.10 36.43 35.60 42.75 38.26
InfICL 53.35 46.80 64.39 54.84 56.33 55.20 65.57 59.03 36.23 36.00 40.65 37.63
DOPA* 55.71 53.28 68.88 59.29 57.87 56.45 65.30 59.87 38.40 35.87 43.19 39.15

Gemma2-2B

Random 56.47 47.06 66.45 56.66 55.57 56.51 63.93 58.67 33.37 33.00 42.66 36.34
KNN 55.29 47.28 66.26 56.28 53.20 47.89 63.87 54.99 33.50 32.93 41.61 36.01

DrICL 57.67 47.20 67.10 57.32 55.43 56.45 61.17 57.68 33.73 33.57 45.43 37.58
Rewrite 57.91 47.12 67.01 57.35 48.57 51.84 61.84 54.08 33.70 33.33 45.29 37.44
InfICL 58.07 45.38 64.57 56.01 55.63 57.50 59.90 57.68 33.27 32.93 45.29 37.16
DOPA* 57.24 47.70 68.13 57.69 56.53 58.09 65.73 60.12 33.37 33.07 46.10 37.51

Qwen3-1.7B

Random 62.82 60.90 69.17 64.29 54.97 52.89 67.20 58.35 41.30 35.17 39.12 38.53
KNN 60.75 58.32 70.67 63.25 56.10 50.13 65.73 57.32 41.77 35.20 37.83 38.27

DrICL 61.54 60.16 70.38 64.03 54.07 55.86 66.37 58.76 42.77 35.33 37.49 38.53
Rewrite 60.38 54.72 70.29 61.80 51.33 57.50 61.97 56.93 39.47 36.63 38.79 38.30
InfICL 62.10 61.12 69.92 64.38 55.30 56.83 65.23 59.12 40.80 35.57 40.03 38.80
DOPA* 63.35 59.64 71.79 64.93 55.47 56.45 65.73 59.22 42.37 36.47 40.94 39.93

GPT4o-mini
KNN 67.67 60.50 78.17 68.78 57.63 57.13 82.00 65.58 37.67 39.67 26.83 34.72

InfICL 63.83 54.17 80.67 66.22 59.38 62.88 84.15 68.79 38.38 38.00 32.83 36.39
DOPA* 67.83 62.00 81.17 70.33 59.50 65.25 83.25 69.33 38.67 40.83 32.67 37.39

GPT3.5-turbo
KNN 67.17 60.00 78.83 68.67 58.38 60.50 82.23 67.04 38.00 40.00 30.83 36.28

InfICL 66.00 55.83 80.17 67.33 60.00 64.13 84.50 69.54 37.67 39.50 32.50 36.56
DOPA* 68.00 61.17 80.50 69.89 58.50 66.13 82.63 69.08 38.17 39.33 32.00 36.50

Table 1: The performance (accuracy %) on classification tasks, * indicates that the results based on
the LLM among all the datasets are statistically significant under the Wilcoxon Signed-Rank Test
(p ≤ 0.05). The calculation process of significance is presented in Appendix C.3.

LLMs Methods
NER

LLMs Methods
NER

wnut ener avg wnut ener avg

GPT2-xl
Random 22.85 32.83 27.84

Qwen3-1.7B
Random 25.92 28.71 27.32

KNN 51.03 54.47 52.75 KNN 38.74 50.62 44.68
DrICL 19.65 23.29 21.47 DrICL 39.59 45.33 42.46
DOPA 51.32 56.82 54.07 DOPA 41.25 49.62 45.44

LLaMA3.2-3B
Random 29.54 41.13 35.34

GPT4o-mini
Random 42.98 25.20 34.09

KNN 33.50 40.97 37.23 KNN 44.13 24.02 34.08
DrICL 28.87 32.08 30.47 DrICL 46.72 25.50 36.11
DOPA 37.19 41.40 39.29 DOPA 51.49 38.19 44.84

Gemma2-2B
Random 20.70 22.88 21.79

GPT3.5-turbo
Random 44.84 28.97 36.90

KNN 29.64 37.70 33.67 KNN 46.65 25.11 35.88
DrICL 24.30 27.12 25.71 DrICL 45.30 28.23 36.77
DOPA 29.67 37.37 33.52 DOPA 50.00 35.29 42.65

Table 2: The performance on NER tasks.

the methods are implemented in different LLMs to verify the adaptability of the proposed meth-
ods, including GPT2-xl3, Qwen3-1.7B4, Gemma2-2B5, and LLaMA3.2-3B6. In addition, to
investigate the performance of the proposed method on closed-source models, we also conduct ex-
periments on GPT4o-mini and GPT3.5-turbo, and compare them with KNN, InfICL, and
Rewrite. Additional experimental settings can be found in the Appendix C.

4.2 EXPERIMENTAL RESULTS

We present the comparison results of DOPA with the aforementioned baseline methods on different
LLMs in Table 1 and Table 2. We do not compare InfICL and Rewrite on the NER task because, for
token-level tasks, the influence of individual samples is difficult to quantify, and sentence rewriting

3https://huggingface.co/openai-community/gpt2-xl
4https://huggingface.co/Qwen/Qwen3-1.7B
5https://huggingface.co/google/gemma-2b
6https://huggingface.co/meta-llama/Llama-3.2-3B
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Variants
LLaMA3.2-3B Qwen3-1.7B

SA TD NLI NER avg SA TD NLI NER avg
DOPA−mah 56.59 58.67 38.66 37.13 47.76↓1.64 64.33 58.54 38.92 44.26 51.51↓0.87
DOPA−sim 56.15 57.62 37.24 36.24 46.81↓2.59 61.64 58.00 39.58 37.50 49.18↓3.20
DOPA−pro 55.81 59.36 38.41 37.21 47.70↓1.70 61.89 58.31 39.21 44.60 51.00↓1.38
DOPAuni 57.46 59.67 38.52 34.57 47.56↓1.84 63.57 58.14 38.87 42.17 50.69↓1.69

DOPA 59.29 59.87 39.15 39.29 49.40 64.93 59.22 39.92 45.44 52.38

Table 3: Ablation study results on LLaMA3.2-3B and Qwen3-1.7B.

may change the original entities. As an alternative, we compare with KNN and DrICL, which are
not affected by the type of task.

For classification tasks in Table 1, DOPA shows noticeable performance disadvantages only in a few
cases, underscoring its effectiveness in handling distribution-shifted scenarios. Moreover, Wilcoxon
Signed-Rank Tests conducted across the 9 evaluation tasks indicate that DOPA significantly outper-
forms all baseline methods. In contrast, some of the latest baselines fail to consistently outperform
random selection in OOD settings. For example, under LLaMA3.2-3B, the Random method fre-
quently ranks second or third best, highlighting the persistent challenges of distribution shift. In
such cases, relying solely on semantic retrieval (e.g., KNN) results in unstable performance. DrICL,
which leverages LLM feedback to distinguish positive and negative samples and trains a dense
retriever, generally outperforms KNN on average. Furthermore, the Rewrite approach proves less
effective, as the strict unavailability of target domain samples limits the quality of rewritten prompts.
Lastly, the influence-based retrieval method InfICL achieves comparable performance than DOPA in
a few cases (e.g., Qwen3-1.7B and GPT3.5-turbo on TD), but remains unstable—performing
worst on NLI with GPT2-xl and LLaMA3.2-3B, and on SA with Gemma2-2B.

For generative NER tasks in Table 2, we observe that DOPA yields greater performance improve-
ments, which can be attributed to the higher difficulty of NER tasks compared to classification
tasks, making them more susceptible to the distribution of demonstration samples. Besides, we find
that KNN-based retrieval benefits lightweight LLMs that can be locally deployed, as these mod-
els rely more on external examples to guide their predictions. However, for larger models like
GPT4o-mini and GPT3.5-turbo, KNN has a negative effect. This may be attributed to their
stronger reasoning abilities and greater sensitivity to distribution shifts, making them more prone to
being misled by semantically retrieved but distributionally mismatched examples. Building on the
observed performance gains, we conduct the following analytical experiments to further investigate
the underlying mechanisms of DOPA.

4.3 EXPERIMENTAL ANALYSIS

Ablation Study. To further validate the necessity of the key components in DOPA, we compare the
following variants of DOPA to demonstrate the results of the ablation study. DOPA−pro refers to a
setting where no OOD proxy is used during demonstration retrieval, and sample representation sim-
ilarity is solely relied upon for retrieval. DOPA−sim indicates that no semantic similarity constraint
is applied; instead, sample selection is performed directly based on the OOD proxy. DOPA−mah

indicates that the Mahalanobis distance–based diversity constraint is not applied. DOPAuni in-
dicates replacing the LLM-based target domain proxy with a uniform distribution to empirically
validate Lemma 1. We report how the average performance across different tasks varies with differ-
ent variants in Table 3. Overall, all variants lead to performance degradation, with the smallest drop
observed in DOPA−mah, followed by DOPA−pro and DOPAuni, and the largest in DOPA−sim. This
highlights the positive contributions of each key component in DOPA: the OOD proxy is used for
coarse filtering and selecting samples approximating the target domain, semantic similarity align-
ment further refines the retrieval, and the diversity constraint ensures the richness of the demon-
stration samples, where semantic similarity remains the most critical factor for retrieving relevant
samples. Moreover, using a uniform proxy (DOPAuni) leads to the second-largest performance drop,
indicating that the LLM-based proxy is reasonable, which also supports the validity of Lemma 1.
To sum up, incorporating proxy-based filtering and enforcing diversity constraints further enhance
retrieval quality and model performance, underscoring the core contributions of DOPA.

Exploration of k. We conduct an exploration of the value of k ∈ {300, 500, 800, 1000} to inves-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

300 500 800 1000
Samples

58

60

62

64

Ac
cu

ra
cy

 (%
)

SA

Model
LLaMA3.2-3B
Qwen3-1.7B

300 500 800 1000
Samples

58.0

58.5

59.0

59.5

Ac
cu

ra
cy

TD

300 500 800 1000
Samples

38.5

39.0

39.5

40.0

Ac
cu

ra
cy

NLI

300 500 800 1000
Samples

35.0

37.5

40.0

42.5

45.0

Ac
cu

ra
cy

NER

Figure 2: Performance influence of k on LLaMA3.2-3B and Qwen3-1.7B across tasks.
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Figure 3: Performance influence of N on DOPA and KNN based on LLaMA3.2-3B and
Qwen3-1.7B, the shaded areas with corresponding colors indicate the performance differences.

tigate its impact on demonstration selection and model performance in Figure 2. The experimental
results demonstrate that too small a value of k may limit the diversity of examples and reduce the
model’s generalization ability. Conversely, larger values of k increase the number of demonstrations
but may introduce noise by including less relevant or redundant examples, potentially degrading
model performance. Through systematic experiments across multiple tasks and datasets, we iden-
tify k = 800 as an optimal unified choice to balance the number of demonstrations across different
tasks, even though k = 800 is not the optimal value in some cases. Fixing k at a unified value sim-
plifies the demonstration selection process, enhances consistency across tasks, and facilitates more
stable and comparable model performance evaluation.

Exploration of N . We conduct an exploration of the value of N ∈ {1, 2, 3, 4, 5} to investigate its
impact on model performance in Figure 3. In addition, we select KNN as a baseline for comparison
because it is compatible across different model tasks and yields stable results. Note that N corre-
sponds to a total of N × |Y | samples in demonstration. We observe a rising trend in performance as
the number of demonstrations increases, with the model’s performance gradually saturating as more
demonstrations are added Min et al. (2022). Different models and tasks have varying demonstration
requirements for performance saturation. For example, in the SA task, Qwen3-1.7B reaches peak
performance at N = 4, while LLaMA3.2-3B peaks at N = 3. Regardless of the value of N , DOPA
consistently achieves considerable performance improvements over KNN. In our implementation,
for simplicity in the main experiments, we uniformly set N = 3.

Visualization. We verify the effectiveness of the OOD proxy by visualizing the proxy-based se-
lection results. Specifically, we demonstrate the behavioral differences among DS , D̂S , DT by
computing BERT-based energy scores Liu et al. (2020), and estimate their distributions using Ker-
nel Density Estimation (KDE) Wkeglarczyk (2018). The reason we choose to fit the distribution
of energy scores rather than use the commonly adopted t-SNE representation visualization is that
differences in representations do not fully capture the OOD tendencies of samples. The visualiza-
tion results in Figure 4 confirm that the proposed OOD proxy can select samples from the source
domain that are closer to the target domain, as the distribution curve of the proxy in Figure 4a is
more similar to and overlaps more with that of the target. In contrast, the representations distribu-
tion of the proxy-selected samples in Figure 4b is closer to the source domain, indicating that they
still maintain a certain semantic distance from the target domain.

Additionally, to demonstrate the effectiveness of the diversity constraint, we select the first 1000
test samples and compute the Euclidean distances between the retrieved demonstrations and their
corresponding test samples under both with MahDist and w/o MahDist settings. To better observe
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Figure 4: Different visualization results on sst.
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Figure 5: Case study on sst and implicit.

the overall distance characteristics, we also include corresponding fitted curves for visualization in
Figure 4c. The fitted curve for w/o MahDist consistently lies below that of with MahDist, indicating
that the diversity constraint indeed promotes more varied retrieval results. But this diversity is
controlled—the with MahDist curve does not deviate significantly from w/o MahDist, suggesting
that DOPA does not introduce excessive semantic drift.

In summary, the visualization results provide evidence for the effectiveness of DOPA from two per-
spectives: it helps retrieve demonstrations that exhibit similar behavior to target domain samples
while maintaining high diversity, thereby enhancing the performance of ICL. We also observe simi-
lar trends across the remaining datasets. We include additional visualization results in Appendix D.

Case Study. The examples in the figure illustrate that both DOPA and DOPA–mah select samples
with stylistic expressions closely aligned with the test inputs, capturing similar tone, sentence struc-
ture, and emotional/toxicity intensity. However, DOPA demonstrates slightly better diversity: in sst,
while both methods retrieve strongly negative, concise opinions, DOPA’s samples vary slightly more
in content and phrasing. In the implicit task, both methods capture politically charged and provoca-
tive language, but DOPA avoids redundancy by selecting stylistically consistent yet semantically
distinct sentences. In contrast, KNN selects samples that, although semantically related, deviate
significantly in style—favoring longer or expository sentences that mismatch the terse nature of the
test examples. Overall, DOPA achieves stronger style alignment with greater diversity, while KNN
struggles to capture the nuanced stylistic cues of the target domain.

5 CONCLUSION

This paper demonstrates the effectiveness of OOD proxies in retrieving samples that closely resem-
ble the target domain in ICL tasks with substantial distributional shifts. Building on this insight, we
propose DOPA, a framework that operates without access to any additional target domain data, mak-
ing it well-suited to real-world deployment constraints. To counteract the OOD proxies’ undesirable
bias toward short texts, DOPA incorporates a diversity constraint. Its effectiveness is validated across
multiple widely used LLMs. In future work, we aim to extend our framework to a broader range of
models and tasks, with a particular focus on developing more robust and effective proxy estimation
methods when the target domain is unknown.
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A THE USE OF LLMS

It should be noted that LLMs are involved in the translation and polishing of this manuscript. Fur-
thermore, LLMs are utilized in the process of code development. However, we confirm that no
instructions favoring LLMs in the review process have been added to the manuscript.

B THEORETICAL ANALYSIS AND PROOF

The following provides a detailed proof of the boundedness of proxy errors.

Proof. We use shorthand notation: let Pt := Ptarget, Ps := Psource, P p
t := P proxy

target , and P p
s :=

P proxy
source.

We aim to bound the log-likelihood ratio error:

∆(x) :=

∣∣∣∣log Pt(x)

Ps(x)
− log

P p
t (x)

P p
s (x)

∣∣∣∣
Applying the triangle inequality:

∆(x) = |[logPt(x)− logP p
t (x)]− [logPs(x)− logP p

s (x)]| ≤
∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣+ ∣∣∣∣log Ps(x)

P p
s (x)

∣∣∣∣
We now upper bound each term. Then, from the definition of KL divergence:

DKL(Pt∥P p
t ) =

∑
x

Pt(x) log
Pt(x)

P p
t (x)

≤ εt

Now, suppose for some x we have Pt(x) ≥ mt and∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ > εt
mt

Then,

Pt(x) ·
∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ > mt ·
εt
mt

= εt

This contradicts the assumption DKL(Pt∥P p
t ) ≤ εt. Therefore, for all x:∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ ≤ εt
mt

Analogously, we obtain: ∣∣∣∣log Ps(x)

P p
s (x)

∣∣∣∣ ≤ εs
ms

Combining the two bounds:
∆(x) ≤ εt

mt
+

εs
ms

,

the proof of the theorem is complete.

The theorem shows that if the KL-divergence between the true distribution and its proxy is suffi-
ciently small, and the probability mass at each point is lower bounded, then the deviation in log-
probability ratios is controllable in expectation. Therefore, a properly constructed proxy distribution
yields bounded error in tasks such as density ratio estimation or scoring, which verifies the effec-
tiveness and reliability of using proxies.

Moreover, some methods propose a general approach by replacing the target-domain proxy with a
uniform distribution. However, this strong assumption may lead to suboptimal solutions. Accord-
ingly, we introduce Lemma 1 to illustrate the limitations of using a uniform distribution.

13
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Proof of Lemma 1. We consider the case where the proxy distribution for the target domain is chosen
as the uniform distribution over the support X :

P p
t (x) =

1

|X |
for all x ∈ X

From Theorem 1, the error in the log-likelihood ratio satisfies:∣∣∣∣log Pt(x)

Ps(x)
− log

P p
t (x)

P p
s (x)

∣∣∣∣ ≤ ∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣+ ∣∣∣∣log Ps(x)

P p
s (x)

∣∣∣∣
We now focus on bounding the first term with the uniform proxy:

At(x) :=

∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ = |log (Pt(x) · |X |)| = |logPt(x) + log |X ||

From the definition of KL divergence between Pt and uniform distribution U :

DKL(Pt∥U) =
∑
x

Pt(x) log
Pt(x)

1/|X |
=

∑
x

Pt(x)[logPt(x) + log |X |] = log |X | −H(Pt)

where H(Pt) := −
∑

x Pt(x) logPt(x) is the Shannon entropy of Pt.

Now suppose that Pt(x) ≥ mt > 0 for all x. Following the same logic as in the proof of Theorem 1,
we know that if: ∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ > DKL(Pt∥U)

mt

Then this point would contribute more than DKL(Pt∥U) to the KL divergence, leading to a contra-
diction. Therefore, for all x:∣∣∣∣log Pt(x)

P p
t (x)

∣∣∣∣ ≤ DKL(Pt∥U)

mt
=

log |X | −H(Pt)

mt

Substituting into the total bound in Theorem 1, we obtain:∣∣∣∣log Pt(x)

Ps(x)
− log

P p
t (x)

P p
s (x)

∣∣∣∣ ≤ log |X | −H(Pt)

mt
+

εs
ms

This upper bound is typically looser than the one obtained when P p
t approximates Pt well (i.e., KL

divergence is small), since log |X | −H(Pt) can be large when Pt is sharply peaked.

C EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

We focus on four core NLP tasks from BOSS Yuan et al. (2023), a benchmark suite specifically
designed to evaluate the robustness of language models under OOD scenarios: Sentiment Analysis
(SA), Toxic Detection (TD), Natural Language Inference (NLI), and Named Entity Recognition
(NER). To balance the number of samples, we randomly select 3,000 training samples per class
from the original in-distribution dataset for SA and NLI, and 5,000 training samples per class for
TD. Accordingly, for testing, we randomly sample up to 1,000 instances per class from the target
domain for SA and NLI, and 1,500 test samples per class for TD. For the NER task, we select 10,000
samples from source dataset that contain only “Location”, “Organization”, or “Person” entities to
unify the label space and select all eligible samples from the target domain for testing. In our
experiments, we do not use the conll dataset because it contains a large number of annotation errors,
which could lead to unreliable and unmeasurable outcomes for model evaluation.
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C.2 BASELINE DETAILS

We provide a detailed introduction of the baseline methods used in this section.

• Random Peng et al. (2024). We randomly select the required number of samples from the source
domain to construct demonstrations. To reduce performance variance caused by randomness, we
repeat this process five times and report the average results for comparison.

• KNN Liu et al. (2022). We use the SimCSE representations of samples as the retrieval basis and
construct demonstrations by selecting the top nearest samples to the test sample in the representa-
tion space.

• DrICL Luo et al. (2023). We first use KNN to select the top 30 candidate samples that are most
similar to the test sample. These candidates are then ranked by quantifying their individual contri-
butions to the LLM’s actual predictions (We use LLaMA3.2-3B in LLMs that can not be deployed
locally). The top 10 are treated as positive examples and the bottom 10 as negative ones to train a
dual-encoder neural retriever, GTR Ni et al. (2022), which is subsequently used for demonstration
retrieval.

• Rewrite Madine (2024). We perform KNN-based demonstration retrieval and rewrite the retrieved
samples according to the style of the test sample, so that the demonstrations better align with the
target domain. In contrast to the original method, we adapt the rewriting strategy under a strict
target-unavailable setting, where only a single test instance is exposed at a time, rather than a set
of target samples.

• InfICL S. et al. (2024). It estimates the influence of each candidate demonstration on the model’s
prediction for a given test input, and to select those demonstrations that have the most benefi-
cial effect. By leveraging gradient-based influence approximations, the method identifies which
demonstrations most positively affect the model’s output distribution without requiring extensive
evaluation over all combinations.

C.3 MORE EXPERIMENTAL SETTINGS

To prevent potential bias caused by an imbalanced number of samples per label in the demonstra-
tions, we retrieve the same number of samples N for each label. Therefore, for classification tasks,
the total number of demonstrations is N×|Y |, where |Y | is the number of labels. However, for gen-
erative tasks that do not involve specific class labels, we directly set the number of demonstrations
to N . For classification tasks, we set the number of demonstrations C in the initial demonstration
set to |Y |, while for generative tasks, we directly set C to 1. For instruction fine-tuning, we use the
source domain data and convert it into training samples following the instruction format of BOSS.
During training, we apply LoRA with a learning rate of 1e-5 for one epoch. For GPT4o-mini and
GPT3.5-turbo, we make the call using the interface provided by xi-ai7.

To compare the performance of DOPA and baselines across multiple datasets, we employ the
Wilcoxon Signed-Rank Test which is widely used for model comparison across multiple bench-
marks Demsar (2006). This non-parametric statistical test is specifically designed for paired samples
and does not assume normality of the underlying distribution. In our setting, the paired observations
correspond to the performance scores of the two models (DOPA and any other baseline) on the same
datasets. If DOPA shows statistically significant improvements (p ≤ 0.05) over all baselines, we
denote it as DOPA*.

D MORE VISUALIZATION RESULTS

We further present KDE distributions of sample representations across various tasks in Figure 6 to
demonstrate the generality of DOPA in selecting appropriate samples. Overall, the samples selected
by the proxy consistently exhibit a distribution that shifts away from the source domain and moves
closer to the target domain. For example, on the implicit hate dataset, the proxy-based distribution
almost completely overlaps with that of the target domain. This demonstrates DOPA’s capability
to effectively identify samples with similar underlying distributions to the target domain. But we
also observe that in a few cases (e.g., anli), the proxy-based distribution fails to effectively deviate

7https://api.xi-ai.cn/
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(a) dynasent (b) semeval (c) adv civil (d) implicit hate

(e) toxigen (f) anli (g) contract nli (h) wanli

Figure 6: Different KDE visualization results on all classification tasks.

from the source domain. This may be attributed to the nature of anli itself, which is a human-crafted
adversarial benchmark, making it challenging for the model to accurately capture its characteristics.
We do not perform the corresponding visualization experiments on the NER dataset because it is not
a sentence-level task, making it difficult to obtain the relevant probability distributions.

Figure 7 illustrates the effect of the diversity constraint across additional datasets. Similar to Fig-
ure 4c, the curve fitted under the with MahDist setting demonstrates greater diversity. Together
with the ablation study, this provides strong evidence for the effectiveness of the diversity constraint
component in DOPA.
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(a) dynasent (b) semeval

(c) adv civil (d) implicit hate

(e) toxigen (f) anli

(g) contract nli (h) wanli

Figure 7: Euclidean distance comparison to target domain samples for retrieval results with and
without the diversity constraint (with MahDist and w/o MahDist) on all tasks.
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