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ABSTRACT

Although studies have demonstrated that Large Language Models (LLMs) can
perform well on Out-of-Distribution (OOD) tasks, their advantage tends to di-
minish as the distribution shift becomes more severe. Consequently, researchers
aim to retrieve distributionally similar and informative demonstrations from the
available source domain to boost the inference capabilities of LLMs. However,
in practical scenarios where the target domain is inaccessible, evaluating the un-
known distribution is challenging, which indirectly impacts the quality of the se-
lected demonstrations. To address this problem, we propose DOPA, a demon-
stration search framework that incorporates an OOD proxy to approximate the
inaccessible target domain and guide the retrieval process. Building on proxy-
based evaluation, DOPA further introduces a Mahalanobis distance-based global
diversity constraint to ensure sufficient diversity among the retrieved demonstra-
tions. Experimental results on multiple LLMs and natural language understanding
tasks demonstrate that DOPA effectively enhances robustness in OOD setting

1 INTRODUCTION

Large language models (LLMs) have played an indispensable role in the field of natural language
processing (NLP), achieving remarkable performance across a wide range of tasks (Chang et al.
(2024); Song et al.| (2025). Among various prompting strategies, in-context learning (ICL) has
emerged as one of the most widely adopted approaches, wherein providing a few-shot demonstra-
tion can effectively guide the model toward improved reasoning and prediction Min et al.| (2022).
However, recent studies have revealed that the performance of LLMs can degrade significantly in
out-of-distribution (OOD) scenarios [Yuan et al.| (2023); [Wang et al.| (2025)), where the demonstra-
tions exhibit substantial distributional differences from the target domain. This has motivated re-
searchers to explore various methods for obtaining more effective demonstrations.

Retrieval |Luo et al.| (2024) and augmentation |Shu et al.[(2024) are two commonly used approaches
for obtaining effective samples. The former searches for the most relevant examples within a spe-
cific domain, while the latter rewrites existing samples to reduce their discrepancy with the tar-
get instance. Demonstration retrieval relies on a retriever. Some off-the-shelf metrics, such as
Bm25 |Agrawal et al.| (2023)), sentence encoder-based similarity |Liu et al.| (2022), model influ-
ence [Peng et al| (2024)); |S. et al.| (2024)), and misconfidence Xu & Zhang| (2024)), can support
general-purpose retrieval strategies. While other approaches aim to train a dense retriever to ob-
tain more task-relevant retrieval results (Cheng et al.[(2023); |L1 et al.| (2023a). Augmentation, on the
other hand, focuses on adapting existing samples to better match the distributional characteristics of
the target instance|O’Brien et al.[(2024); Madine| (2024). However, in real-world applications, inac-
cessible target domain hinders the ability to obtain domain-aligned demonstrations, often resulting
in degraded performance|Song et al.|(2024q).

To address the aforementioned challenge, we propose a demonstration optimization framework
based on OOD proxy assessment (termed DOPA). This framework quantifies the utility of source-
domain samples in the absence of target-domain access, and leverages the quantification results to
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guide demonstration retrieval. At its core, DOPA introduces an OOD proxy as a principled approx-
imation to the unknown target distribution Zhang & Wischik| (2022), which is composed of two
components: a source proxy and a target proxy. The source proxy is defined as an instruction-tuned
LLM trained on the source domain to fully adapt to the source distribution, while the target proxy
corresponds to the original, unmodified version of the same LLM. The perplexity ratio between
their predictions on identical input samples is adopted as the OOD score for those samples Nalis-
nick et al.|(2019). This OOD score serves to estimate the degree of familiarity of source-domain
samples with the target domain in the absence of target-domain information. It is further inte-
grated with representational similarity to predictable samples for candidate selection. The validity
of the OOD score is theoretically supported through a bounded proxy error analysis. Moreover,
to enhance the diversity of retrieved demonstrations, we incorporate a Mahalanobis distance-based
search strategy into the retrieval process. By relying on the OOD proxy, DOPA is capable of iden-
tifying informative demonstrations solely within the source domain, without requiring any samples
from the target domain. Extensive experiments show that DOPA consistently outperforms baseline
approaches across diverse LLMs and natural language understanding tasks. In addition, we provide
a multi-dimensional analysis that demonstrates the effectiveness of the proxy in selecting samples
that exhibit behavioral similarity to those in the target domain. Our contributions are as follows:

(1) We propose a method that leverages OOD proxies to extract distribution-aligned samples, and
we theoretically demonstrate the soundness of the proxy through a bounded proxy error guarantee.
(ii) We propose a target-agnostic demonstration retrieval framework based on OOD proxies, which
combines proxy results and contextual diversity to enhance the quality of demonstration selection.
(iii) Experimental results on multiple NLP tasks and across various LLMs demonstrate that the
proposed method effectively enhances OOD robustness in ICL.

2 RELATED WORK

Demonstration Retrieval. Despite the impressive performance demonstrated by ICL, an increas-
ing number of studies have shown its sensitivity to the choice of demonstrations|Song et al.|(2024b).
To obtain more effective demonstrations, a natural idea is to search over candidate samples within
a constrained space [Luo et al.| (2024). Depending on whether the retrieval tool has been trained,
demonstration search can be divided into off-the-shelf retrieval and retrieval based on fine-tuned
models. Term-based similarity has been widely used for demonstration retrieval, with BM25 being
one of the most popular scoring metrics |Agrawal et al.| (2023); [Ye et al.| (2023). In addition, sev-
eral sentence embedding models, such as SBERT |Wang et al.| (2024), RoBERTa [Liu et al.| (2022),
and SimCSE |Gao et al.|(2021), have also been widely used to compute inter-sample similarity and
optimize demonstration selection. Moreover, some approaches assess the influence of individual
samples on model predictions to select high-impact examples for demonstrations Peng et al.| (2024);
S. et al| (2024). Off-the-shelf retrieval methods may yield suboptimal results, as they do not in-
corporate task-specific information. Therefore, some methods have explored leveraging feedback
signals from LLMs to distinguish between important and unimportant samples, and further optimize
the retriever for specific tasks using objectives such as ranking [Li et al.| (2023al), contrastive learn-
ing (Cheng et al.| (2023); [Luo et al.| (2023), and diversity |Ye et al.| (2023). But these methods often
rely on feedback from LLMs, which leads to higher computational complexity.

OOD Robustness in ICL. In ICL settings, distribution shifts can lead to significant performance
drops, revealing the models’ sensitivity and lack of robustness to unseen or mismatched do-
mains [Yuan et al.| (2023)); Wang et al.| (2025). The presence of a distributional gap may render
demonstration retrieval strategies ineffective, as the retrieved examples may no longer align with
the target task semantics. Therefore, some approaches have further explored the effectiveness of
demonstration augmentation. Some approaches have introduced external knowledge, such as lin-
guistic rules [Jiang et al.| (2024) or human feedback Bai et al| (2024), to fine-tune LLMs. Never-
theless, some studies have questioned the necessity of fine-tuning, arguing that LLMs may already
possess the inherent capability to handle OOD data effectively [Uppaal et al.| (2023); |[Zhang et al.
(2024). As a result, semantic rewriting has been introduced to prompt LLM to revise a given source
sample, aiming to better align it with the target domain|O’Brien et al.|(2024); Madine| (2024).
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Figure 1: The model architecture of DOPA based on the sentiment analysis task. First, DOPA
performs task-specific instruction tuning on the source domain to obtain a source proxy based on
any given LLM. Correspondingly, an identical LLM without fine-tuning, which preserves the prior
knowledge of the target domain, is employed as the target-domain proxy. For the same input, the
ratio between the two proxies is employed as an OOD proxy estimation, which is further combined
with similarity and diversity to support multi-granularity demonstration search.

3 METHOD

3.1 TASK DEFINITIONS AND MODEL DESCRIPTION

Our model description begins with some definitions. In the OOD setting, LLMs M are restricted to
using data from Dg to perform ICL, and are expected to make predictions on any sample x; from Dy
as accurately as possible. During the inference process of LLMs, all samples from Dy other than
x,; are strictly inaccessible, preventing the model from making decisions by referencing samples
from a similar distribution. For ICL, a prompt Pz, is constructed by selecting N x |Y| labeled

examples (z(), yU ));V:Xl‘yl from Dg, which are then concatenated with x; and fed into any M.
Here, |Y'| denotes the size of the label space. Then, the LLM produces a prediction §: = M (Pxy).
In different task settings, ¢; can take various forms depending on the output space. For classification
tasks, it typically corresponds to a token representing a label category (e.g., positive or negative),
while for generative tasks, it may be a string representing the desired output.

As illustrated in Figure [l DOPA comprises two main components: OOD proxy estimation and
multi-granularity demonstration retrieval. The proxy estimation module assesses the proximity of
source domain samples to the target domain using an OOD proxy, while the demonstration retrieval
module selects appropriate examples by jointly optimizing semantic similarity and diversity con-
straints. The retrieved demonstrations are then used for ICL.

3.2 OOD PROXY ESTIMATION

The goal of the OOD proxy estimation is to evaluate the utility of source domain samples to select
those that are more aligned with the target domain. But without access to the target domain, it
is difficult to accurately assess the target distribution. Therefore, inspired by prior work on OOD
detection Ren et al.| (2019); Zhang & Wischik! (2022), we construct an OOD proxy to approximate
the target domain distribution, and compute the OOD score of any sample via the proxy. The OOD
score is then used to guide sample selection from Dg.

Proxy Construction. The OOD proxy consists of two components: the source proxy and the target
proxy, which ideally model the source and target distributions, respectively. For the former, an
intuitive approach is to instruction-tune LLMs on the source domain so that the model can better
adapt to the source distribution. In DOPA, the instructions for source proxy are encapsulated in the
same format as in ICL, aiming to prompt LLMs to produce reasonable task-related predictions. As
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for the target domain, since the target domain distribution is unknown, some methods propose a
general approach by replacing the target-domain proxy with a uniform distribution [Bishop| (1993);
Nalisnick et al.| (2019). Such a strong assumption is inherently destined to yield suboptimal results
as shown in Lemma [I] Given that LLMs are pretrained on extensive corpora, it is reasonable to
assume that they implicitly encode a broad spectrum of linguistic and factual knowledge. As such,
LLMs can act as weak proxies for the target distribution, particularly in few-shot settings [Zhang
et al.| (2024).

Sample Screening based on OOD Score. Given the aforementioned proxies, DOPA further as-
sumes that if a sample exhibits divergent behavior under these two proxies, it may suggest an inher-
ent bias or a stronger alignment toward one specific domain. This facilitates domain discrimination
in the absence of any auxiliary target domain samples. In the previous research, the likelihood ratio
is one of the most commonly used detection criteria for the divergent behavior |[Ren et al.| (2019);

Zhang & Wischik] (2022):
S( ) — Ptarget(z) ~ Ptg;(g)él)/(aj) (1)
Psource ({,C) Pslz)rt(x)r?é(l‘) '
——
OOD proxy

where Psoyrce () and Pigrget () represent the behavior of models with the source and target domain
distributions when given the same input sample x, respectively. Under distributional uncertainty, the
OOD proxy is used as their approximation. To support the validity of OOD proxy estimation, we
further establish a theoretical guarantee on the boundedness of proxy error under mild assumptions.

Theorem 1 (Proxy Error Bound). Let Piarget and Psource be the true probability distributions of the

target and source domain, let P17 and PRI, be the corresponding proxy distributions. Suppose

there exist constants €y > 0, €5 > 0, my > 0, and mg > 0 such that the following hold:

s The Kullback-Leibler divergences are bounded: Dxi,(Prarget || Pt‘;rgé}t') < &4, DKL (Psource ||

PProxy) < .. The proxy distributions have pointwise lower bounds: Piarget (), Phrver () >

source target
mg, Psource(x) PRy (aj) Z mg.

? source

Then, for all x, the error in the log-likelihood ratio satisfies:

IOg Ptarget (:17) - 10g Ptlzlrrcggt’ (I) i i
Psource(x) P\\Iz)rl?;(csé (l‘) - me ms ’

Lemma 1 (Error Bound with Uniform Proxy). Building upon Theorem E} if a uniform distribution
is used as the proxy for the target domain, it is easier to result in a looser upper bound on the error.

Due to space limitations, the proof of the above theorem is provided in Appendix[B] Such a uniform
bound certifies that the proxy-based score deviates from the true likelihood ratio by at most a known
quantity, thereby providing theoretical assurance for reliable estimation. In the case of autoregressive
LLMs, perplexity Wuhrmann et al.|(2025) is commonly employed to quantify the model’s familiarity
with a given text x: PPL(z) = exp(— & Y7 | logP(w;|w<;)), where m is the total number of
tokens in x, and P(w;|w<;) is the conditional probability of the language model predicting the i-th
token. Therefore, to conform to the log form as stated in Theorem |1} we adopt the log-perplexity
difference as a more numerically stable alternative:

S(z) =logPPLY Y, (2) — logP PLETO™Y (). )

target source

Ideally, if the value of S(z) is relatively low, it exhibits higher perplexity under the source-domain
proxy and lower perplexity under the target-domain proxy, which further indicates that the sample
is more aligned with the target domain and should therefore be prioritized for constructing demon-
strations. By performing a single pass over Dg, we can obtain a potential subset Dy that is closer to
the target domain distribution by selecting the k& samples with the lowest OOD scores.

3.3 DEMONSTRATION RETRIEVAL

Although the OOD scores help identify source domain samples that are more likely to align with the
target domain, the resulting coarse-grained subset still requires further refinement to construct ef-
fective demonstrations. Existing studies have provided strong support for the demonstration search
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Algorithm 1 Demonstration Retrieval Process of DOPA

Input: Proxy-filtered set Dy, test sample z;.
Parameter: Demonstration quantity N x |Y'|, initialized candidate set C.
Output: Final demonstration set D e,,, With size V.

1: Init Dgepno by Eq sort 255 in ascending order according to sim(hy,, h:), counter<— 0.
2: while |Dgemo| < N x Y] do

3: &+ Dg[C + counter].

4: if DiUDdemo < Div{i}UDdemo then
S Dyemo {i'} U Dgemo-

6: endif

7:  counter<—counter + 1.

8: end while
9: return Dgepno

process [Liu et al| (2022); |Agrawal et al.| (2023)), a general approach is to adopt an off-the-shelf
text representation model to encode candidate texts into vectors and rank the most relevant demon-
strations based on their cosine similarity with the test sample. But one limitation of proxy-based
OOD scoring lies in its reliance on language model perplexity, which primarily captures token-level
fluency and distributional similarity. As a result, it may implicitly favor shorter texts or those con-
forming to high-frequency linguistic patterns Holtzman et al.|(2020), leading to reduced diversity in
the selected sample pool and potentially impairing the quality of the retrieved demonstrations. To
address this issue, we further introduce a global diversity constraint to improve the overall quality
of the retrieved demonstrations. Specifically, for each sample representation h;, corresponding to

the proxy-filtered set Dyg, we initialize a candidate sample set Dgepmo based on the similarity of the
representations to hy:
. D
Diemo = aryg mgx{szm(hz“ht)}i»:fl, (3)
where C' is the number of samples in the initialized Candidate Subsequently, the mean pairwise
Mahalanobis distance |Li et al.[(2023b)) among samples in Dge,y, is used to quantify the diversity:

2
Div ) g DiTjZ_lDij, 4
i<j

B |Ddemo|(|Ddemo| -1

where D;; = hy, — hy;, X is the empirical covariance matrix computed over all samples. The
Mahalanobis distance is adopted because it accounts for the correlations between samples while
measuring diversity, which helps impose constraints on similarity-based retrieval results. If a new

sample # € {Dg — Dgemo} does not lead to a decrease in overall diversity i.e. Divp,,, = <
Diviz10pg.,..» it is retained. This process continues until the number of samples meets the required
threshold for constructing demonstrations. The final selected demonstration set is used for ICL. The
above procedure is summarized in Algorithm [I] After obtaining sufficient samples, we construct

demonstrations in a fixed label order to prevent bias introduced by orders, and use them for ICL.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We conduct experiments on the OOD-specific benchmark BOSS |Yuan et al.|(2023)), which includes
three classification tasks, Sentiment Analysis (SA), Toxicity Detection (TD), and Natural Language
Inference (NLI) as well as one generation task, Named Entity Recognition (NER). All instruction
templates follow the format provided in the original BOSS paper. In addition, we compare our
proposed method DOPA with various baseline approaches to comprehensively demonstrate its ad-
vantages. These baselines include: Random Peng et al.|(2024), KNN|Liu et al.|(2022), DrICL Luo
et al.| (2023), Rewrite Madine| (2024), and InfICL |S. et al.| (2024), where Rewrite refers to the
data augmentation-based method, while the others are demonstration retrieval-based methods. All

2We specify the value of C in the detailed experimental settings.
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ods, including GPT2-

periments on GPT4o-mini and GPT3.5-turbo, and compare them with KNN, InfICL, and

Rewrite. Additional experimental settings can be found in the Appendix [C]

4.2 EXPERIMENTAL RESULTS

We present the comparison results of DOPA with the aforementioned baseline methods on different

LLMs in Table[I]and Table[2} We do not compare InfICL and Rewrite on the NER task because, for

token-level tasks, the influence of individual samples is difficult to quantify, and sentence rewriting

3https://huggingface.co/openai-community/gpt2-x1

*https://huggingface.co/Qwen/Qwen3-1.7B
Shttps://huggingface.co/google/gemma-2b

Shttps://huggingface.co/meta-llama/Llama-3.2-3B
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LLaMA3.2-3B | Qwen3-1.7B
SA ™D NLI NER avg SA ™D NLI NER avg

DOPA_,,an 5659 58.67 38.66 37.13 47.76,164 64.33 5854 3892 4426 51.51 0387
DOPA_g;,  56.15 57.62 3724 3624 46.81 1259 61.64 58.00 39.58 37.50 49.18, 520
DOPA_,,., 55.81 5936 3841 3721 4770170 61.89 5831 3921 44.60 51.00 33
DOPA,,; 5746 59.67 3852 3457 47.56,18. 63.57 58.14 38.87 42.17 50.69,1 69
DOPA 59.29 59.87 39.15 39.29 49.40 64.93 59.22 39.92 45.44 52.38

Variants

Table 3: Ablation study results on LLaMA3.2-3B and Qwen3-1.7B.

may change the original entities. As an alternative, we compare with KNN and DrICL, which are
not affected by the type of task.

For classification tasks in Table[I] DOPA shows noticeable performance disadvantages only in a few
cases, underscoring its effectiveness in handling distribution-shifted scenarios. Moreover, Wilcoxon
Signed-Rank Tests conducted across the 9 evaluation tasks indicate that DOPA significantly outper-
forms all baseline methods. In contrast, some of the latest baselines fail to consistently outperform
random selection in OOD settings. For example, under LLaMA3 . 2-3B, the Random method fre-
quently ranks second or third best, highlighting the persistent challenges of distribution shift. In
such cases, relying solely on semantic retrieval (e.g., KNN) results in unstable performance. DrICL,
which leverages LLM feedback to distinguish positive and negative samples and trains a dense
retriever, generally outperforms KNN on average. Furthermore, the Rewrite approach proves less
effective, as the strict unavailability of target domain samples limits the quality of rewritten prompts.
Lastly, the influence-based retrieval method InfICL achieves comparable performance than DOPA in
a few cases (e.g., Owen3-1.7B and GPT3.5-turbo on TD), but remains unstable—performing
worst on NLI with GPT2-x1 and LLaMA3.2-3B, and on SA with Gemma2-2B.

For generative NER tasks in Table 2] we observe that DOPA yields greater performance improve-
ments, which can be attributed to the higher difficulty of NER tasks compared to classification
tasks, making them more susceptible to the distribution of demonstration samples. Besides, we find
that KNN-based retrieval benefits lightweight LLMs that can be locally deployed, as these mod-
els rely more on external examples to guide their predictions. However, for larger models like
GPT4o-mini and GPT3.5-turbo, KNN has a negative effect. This may be attributed to their
stronger reasoning abilities and greater sensitivity to distribution shifts, making them more prone to
being misled by semantically retrieved but distributionally mismatched examples. Building on the
observed performance gains, we conduct the following analytical experiments to further investigate
the underlying mechanisms of DOPA.

4.3 EXPERIMENTAL ANALYSIS

Ablation Study. To further validate the necessity of the key components in DOPA, we compare the
following variants of DOPA to demonstrate the results of the ablation study. DOPA _,,,., refers to a
setting where no OOD proxy is used during demonstration retrieval, and sample representation sim-
ilarity is solely relied upon for retrieval. DOPA _¢;,,, indicates that no semantic similarity constraint
is applied; instead, sample selection is performed directly based on the OOD proxy. DOPA_,,.»
indicates that the Mahalanobis distance—based diversity constraint is not applied. DOPA,,,; in-
dicates replacing the LLM-based target domain proxy with a uniform distribution to empirically
validate Lemma|[I] We report how the average performance across different tasks varies with differ-
ent variants in Table[3] Overall, all variants lead to performance degradation, with the smallest drop
observed in DOPA _,,,,,, followed by DOPA _,,,., and DOPA,,,;, and the largest in DOPA _;,,,. This
highlights the positive contributions of each key component in DOPA: the OOD proxy is used for
coarse filtering and selecting samples approximating the target domain, semantic similarity align-
ment further refines the retrieval, and the diversity constraint ensures the richness of the demon-
stration samples, where semantic similarity remains the most critical factor for retrieving relevant
samples. Moreover, using a uniform proxy (DOPA,,,,;) leads to the second-largest performance drop,
indicating that the LLM-based proxy is reasonable, which also supports the validity of Lemma [I]
To sum up, incorporating proxy-based filtering and enforcing diversity constraints further enhance
retrieval quality and model performance, underscoring the core contributions of DOPA.

Exploration of k. We conduct an exploration of the value of k£ € {300,500, 800, 1000} to inves-
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Figure 3: Performance influence of N on DOPA and KNN based on LLaMA3.2-3B and
Qwen3-1. 7B, the shaded areas with corresponding colors indicate the performance differences.

tigate its impact on demonstration selection and model performance in Figure[2] The experimental
results demonstrate that too small a value of k£ may limit the diversity of examples and reduce the
model’s generalization ability. Conversely, larger values of k increase the number of demonstrations
but may introduce noise by including less relevant or redundant examples, potentially degrading
model performance. Through systematic experiments across multiple tasks and datasets, we iden-
tify k¥ = 800 as an optimal unified choice to balance the number of demonstrations across different
tasks, even though k£ = 800 is not the optimal value in some cases. Fixing k at a unified value sim-
plifies the demonstration selection process, enhances consistency across tasks, and facilitates more
stable and comparable model performance evaluation.

Exploration of N. We conduct an exploration of the value of N € {1,2,3,4,5} to investigate its
impact on model performance in Figure[3] In addition, we select KNN as a baseline for comparison
because it is compatible across different model tasks and yields stable results. Note that N corre-
sponds to a total of N x |Y'| samples in demonstration. We observe a rising trend in performance as
the number of demonstrations increases, with the model’s performance gradually saturating as more
demonstrations are added [Min et al.| (2022)). Different models and tasks have varying demonstration
requirements for performance saturation. For example, in the SA task, Qwen3-1. 7B reaches peak
performance at N = 4, while LLaMA3.2~-3B peaks at N = 3. Regardless of the value of N, DOPA
consistently achieves considerable performance improvements over KNN. In our implementation,
for simplicity in the main experiments, we uniformly set N = 3.

Visualization. We verify the effectiveness of the OOD proxy by visualizing the proxy-based se-

lection results. Specifically, we demonstrate the behavioral differences among Dg, Dg, Dr by
computing BERT-based energy scores [Liu et al.| (2020), and estimate their distributions using Ker-
nel Density Estimation (KDE) Wkeglarczyk| (2018)). The reason we choose to fit the distribution
of energy scores rather than use the commonly adopted t-SNE representation visualization is that
differences in representations do not fully capture the OOD tendencies of samples. The visualiza-
tion results in Figure ] confirm that the proposed OOD proxy can select samples from the source
domain that are closer to the target domain, as the distribution curve of the proxy in Figure [4al is
more similar to and overlaps more with that of the target. In contrast, the representations distribu-
tion of the proxy-selected samples in Figure {fb]is closer to the source domain, indicating that they
still maintain a certain semantic distance from the target domain.

Additionally, to demonstrate the effectiveness of the diversity constraint, we select the first 1000
test samples and compute the Euclidean distances between the retrieved demonstrations and their
corresponding test samples under both with MahDist and w/o MahDist settings. To better observe
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the overall distance characteristics, we also include corresponding fitted curves for visualization in
Figure[c| The fitted curve for w/o MahDist consistently lies below that of with MahDist, indicating
that the diversity constraint indeed promotes more varied retrieval results. But this diversity is
controlled—the with MahDist curve does not deviate significantly from w/o MahDist, suggesting
that DOPA does not introduce excessive semantic drift.

In summary, the visualization results provide evidence for the effectiveness of DOPA from two per-
spectives: it helps retrieve demonstrations that exhibit similar behavior to target domain samples
while maintaining high diversity, thereby enhancing the performance of ICL. We also observe simi-
lar trends across the remaining datasets. We include additional visualization results in Appendix

Case Study. The examples in the figure illustrate that both DOPA and DOPA _,,,,} select samples
with stylistic expressions closely aligned with the test inputs, capturing similar tone, sentence struc-
ture, and emotional/toxicity intensity. However, DOPA demonstrates slightly better diversity: in sst,
while both methods retrieve strongly negative, concise opinions, DOPA’s samples vary slightly more
in content and phrasing. In the implicit task, both methods capture politically charged and provoca-
tive language, but DOPA avoids redundancy by selecting stylistically consistent yet semantically
distinct sentences. In contrast, KNN selects samples that, although semantically related, deviate
significantly in style—favoring longer or expository sentences that mismatch the terse nature of the
test examples. Overall, DOPA achieves stronger style alignment with greater diversity, while KNN
struggles to capture the nuanced stylistic cues of the target domain.

5 CONCLUSION

This paper demonstrates the effectiveness of OOD proxies in retrieving samples that closely resem-
ble the target domain in ICL tasks with substantial distributional shifts. Building on this insight, we
propose DOPA, a framework that operates without access to any additional target domain data, mak-
ing it well-suited to real-world deployment constraints. To counteract the OOD proxies’ undesirable
bias toward short texts, DOPA incorporates a diversity constraint. Its effectiveness is validated across
multiple widely used LLMs. In future work, we aim to extend our framework to a broader range of
models and tasks, with a particular focus on developing more robust and effective proxy estimation
methods when the target domain is unknown.



Under review as a conference paper at ICLR 2026

REFERENCES

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad. In-
context examples selection for machine translation. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 8857-8873, 2023.

Haoyue Bai, Xuefeng Du, Katie Rainey, Shibin Parameswaran, and Yixuan Li. Out-of-distribution
learning with human feedback. CoRR, abs/2408.07772, 2024.

Christopher M Bishop. Novelty detection and neural network validation. In ICANN’93: Proceedings
of the International Conference on Artificial Neural Networks Amsterdam, The Netherlands 13—
16 September 1993 3, pp. 789-794. Springer, 1993.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
Xing Xie. A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol.,
15(3):39:1-39:45, 2024.

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng Zhan, Jianfeng Liu, Yujing Wang, Hao Sun,
Furu Wei, Weiwei Deng, and Qi Zhang. UPRISE: universal prompt retrieval for improving zero-
shot evaluation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 12318-12337, 2023.

Janez Demsar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res.,
7:1-30, 2006.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021, pp. 6894-6910, 2021.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, 2020.

Shuoran Jiang, Qingcai Chen, Yang Xiang, Youcheng Pan, and Yukang Lin. Linguistic rule in-
duction improves adversarial and OOD robustness in large language models. In Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, pp. 10565-10577, 2024.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and
Xipeng Qiu. Unified demonstration retriever for in-context learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pp. 4644-4668, 2023a.

Yingji Li, Mengnan Du, Xin Wang, and Ying Wang. Prompt tuning pushes farther, contrastive
learning pulls closer: A two-stage approach to mitigate social biases. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pp. 14254-14267, 2023b.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out: The
3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, Dee-
LIO@ACL 2022, Dublin, Ireland and Online, May 27, 2022, pp. 100-114, 2022.

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution de-
tection. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurlPS 2020, December 6-12, 2020, virtual, 2020.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasupat, Seyed Mehran Kazemi, Chitta Baral, Vaiva

Imbrasaite, and Vincent Y. Zhao. Dr.icl: Demonstration-retrieved in-context learning. CoRR,
abs/2305.14128, 2023.

10



Under review as a conference paper at ICLR 2026

Man Luo, Xin Xu, Yue Liu, Panupong Pasupat, and Mehran Kazemi. In-context learning with
retrieved demonstrations for language models: A survey. CoRR, abs/2401.11624, 2024.

Manas Madine. Bridging distribution gap via semantic rewriting with 1lms to enhance OOD ro-
bustness. In Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics, ACL 2024 - Student Research Workshop, Bangkok, Thailand, August 11-16, 2024, pp.
458-468, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 11048-11064, 2022.

Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Goriir, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? 1In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, et al. Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
9844-9855, 2022.

Kyle O’Brien, Nathan Ng, Isha Puri, Jorge Mendez, Hamid Palangi, Yoon Kim, Marzyeh Ghas-
semi, and Thomas Hartvigsen. Improving black-box robustness with in-context rewriting. CoRR,
abs/2402.08225, 2024.

Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu, Min Zhang, Yuanxin Ouyang, and Dacheng
Tao. Revisiting demonstration selection strategies in in-context learning. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 9090-9101, 2024.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dil-
lon, and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
14680-14691, 2019.

Vinay M. S., Minh-Hao Van, and Xintao Wu. In-context learning demonstration selection via influ-
ence analysis. CoRR, abs/2402.11750, 2024.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,
and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting. In
Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pp- 18970-18980, 2024.

Rui Song, Fausto Giunchiglia, Yingji Li, Mingjie Tian, and Hao Xu. TACIT: A target-agnostic
feature disentanglement framework for cross-domain text classification. In Thirty-Eighth AAAI
Conference on Artificial Intelligence, AAAI 2024, pp. 18999-19007, 2024a.

Rui Song, Yingji Li, Lida Shi, Fausto Giunchiglia, and Hao Xu. Shortcut learning in in-context
learning: A survey. CoRR, abs/2411.02018, 2024b.

Rui Song, Yingji Li, Mingjie Tian, Hanwen Wang, Fausto Giunchiglia, and Hao Xu. Causal keyword
driven reliable text classification with large language model feedback. Inf. Process. Manag., 62
(3):103964, 2025.

Rheeya Uppaal, Junjie Hu, and Yixuan Li. Is fine-tuning needed? pre-trained language models
are near perfect for out-of-domain detection. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pp. 12813-12832, 2023.

11



Under review as a conference paper at ICLR 2026

Liang Wang, Nan Yang, and Furu Wei. Learning to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian’s, Malta, March
17-22, 2024, pp. 1752-1767, 2024.

Qixun Wang, Yifei Wang, Xianghua Ying, and Yisen Wang. Can in-context learning really gen-
eralize to out-of-distribution tasks? In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Stanislaw Wkeglarczyk. Kernel density estimation and its application. In ITM web of conferences,
volume 23, pp. 00037. EDP Sciences, 2018.

Arthur Wuhrmann, Andrei Kucharavy, and Anastasiia Kucherenko. Low-perplexity llm-generated
sequences and where to find them. In ACL 2025 Student Research Workshop, 2025.

Shangqing Xu and Chao Zhang. Misconfidence-based demonstration selection for LLM in-context
learning. CoRR, abs/2401.06301, 2024.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars
for in-context learning. In International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pp. 39818-39833, 2023.

Lifan Yuan, Yangyi Chen, Ganqu Cui, Hongcheng Gao, Fangyuan Zou, Xingyi Cheng, Heng Ji,
Zhiyuan Liu, and Maosong Sun. Revisiting out-of-distribution robustness in NLP: benchmarks,
analysis, and llms evaluations. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

Andi Zhang and Damon Wischik. Falsehoods that ML researchers believe about OOD detection. In
NeurIPS ML Safety Workshop, 2022.

Andi Zhang, Tim Z. Xiao, Weiyang Liu, Robert Bamler, and Damon Wischik. Your finetuned large
language model is already a powerful out-of-distribution detector. CoRR, abs/2404.08679, 2024.

12



Under review as a conference paper at ICLR 2026

A THE USE OF LLMS

It should be noted that LLMs are involved in the translation and polishing of this manuscript. Fur-
thermore, LLMs are utilized in the process of code development. However, we confirm that no
instructions favoring LLMs in the review process have been added to the manuscript.

B THEORETICAL ANALYSIS AND PROOF
The following provides a detailed proof of the boundedness of proxy errors.

P — o p ._ pproxy o
Proof. We use shorthand notation: let P; := Piarget, Ps := Psources 5 1= Piypger, and PY =
proxy

source*

We aim to bound the log-likelihood ratio error:

Pi(x) PP(x)

A(z) := |log PZ(x) —log P}(w)

Applying the triangle inequality:

bi(z) Ps(x)
A(z) = |[log P;(z) — log PF(x)] — [log Ps(z) — log PP (z)]] < ’10g PP (2) + |log PP(a)
We now upper bound each term. Then, from the definition of KL divergence:
Py(x)
Dk (P||PP) = Pi(z)l1 <
(PIPE) = 3 P 08 iy <
Now, suppose for some = we have P;(x) > m; and
P,
’10g f,(x) St
P (x) my
Then,
Pt(l‘) E¢
P(z) - [log =271 Lt
() ‘ og PP(r) > my o €t
This contradicts the assumption Dk, (P|| PP) < e;. Therefore, for all z:
P,
log ;(x) < St
P (z) my
Analogously, we obtain:
1 P(z) €s
o =S
& PP(x)| — ms
Combining the two bounds:
Alz) < 5+ =,
™y mg
the proof of the theorem is complete. O

The theorem shows that if the KL-divergence between the true distribution and its proxy is suffi-
ciently small, and the probability mass at each point is lower bounded, then the deviation in log-
probability ratios is controllable in expectation. Therefore, a properly constructed proxy distribution
yields bounded error in tasks such as density ratio estimation or scoring, which verifies the effec-
tiveness and reliability of using proxies.

Moreover, some methods propose a general approach by replacing the target-domain proxy with a
uniform distribution. Howeyver, this strong assumption may lead to suboptimal solutions. Accord-
ingly, we introduce Lemma T to illustrate the limitations of using a uniform distribution.
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Proof of Lemmall] We consider the case where the proxy distribution for the target domain is chosen
as the uniform distribution over the support X:

1
PP(x) = 5] forallz € X

From Theorem I] the error in the log-likelihood ratio satisfies:

PAE) _ 1 B0 < g P2

— log og P ()
Py(x) P (x) Pl (x)

& PP (x)

‘log ‘—&- ’10

We now focus on bounding the first term with the uniform proxy:

Pt (IE)
P (x)

Ay(r) = ]10g | — llog (Py(x) - |¥])] = [log Pi(x) + log ||

From the definition of KL divergence between P, and uniform distribution U:

Dyr(R||U) = Zpt 1/|X| ZPt )log Pi(z) + log |X]] = log [X| — H(F)

where H(P;) := — )" P;(x)log P;(x) is the Shannon entropy of P;.

Now suppose that P;(z) > m; > 0 for all z. Following the same logic as in the proof of Theorem
we know that if:
Py(x)

P (x)

Then this point would contribute more than Dk, (P;[|U) to the KL divergence, leading to a contra-
diction. Therefore, for all z:

Dxr(P||U)
my

’10g

Pt(I)

Dxpr(P||U)  log|X| — H(F,)
1 < =
% PP (x)

my my

Substituting into the total bound in Theorem [T} we obtain:

P() | PIw)| _losl¥-H(P) <.
Py(x) PP(x) me My

<

‘log

This upper bound is typically looser than the one obtained when PP approximates P; well (i.e., KL
divergence is small), since log |X'| — H(P;) can be large when P is sharply peaked.

O

C EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

We focus on four core NLP tasks from BOSS |[Yuan et al| (2023), a benchmark suite specifically
designed to evaluate the robustness of language models under OOD scenarios: Sentiment Analysis
(SA), Toxic Detection (TD), Natural Language Inference (NLI), and Named Entity Recognition
(NER). To balance the number of samples, we randomly select 3,000 training samples per class
from the original in-distribution dataset for SA and NLI, and 5,000 training samples per class for
TD. Accordingly, for testing, we randomly sample up to 1,000 instances per class from the target
domain for SA and NLI, and 1,500 test samples per class for TD. For the NER task, we select 10,000
samples from source dataset that contain only “Location”, “Organization”, or “Person” entities to
unify the label space and select all eligible samples from the target domain for testing. In our
experiments, we do not use the conll dataset because it contains a large number of annotation errors,
which could lead to unreliable and unmeasurable outcomes for model evaluation.
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C.2 BASELINE DETAILS
We provide a detailed introduction of the baseline methods used in this section.

* Random |Peng et al.| (2024). We randomly select the required number of samples from the source
domain to construct demonstrations. To reduce performance variance caused by randomness, we
repeat this process five times and report the average results for comparison.

* KNN |Liu et al.| (2022). We use the SimCSE representations of samples as the retrieval basis and
construct demonstrations by selecting the top nearest samples to the test sample in the representa-
tion space.

* DrICL |Luo et al.| (2023). We first use KNN to select the top 30 candidate samples that are most
similar to the test sample. These candidates are then ranked by quantifying their individual contri-
butions to the LLM’s actual predictions (We use LLaMA3.2-3B in LLMs that can not be deployed
locally). The top 10 are treated as positive examples and the bottom 10 as negative ones to train a
dual-encoder neural retriever, GTR |Ni et al.|(2022), which is subsequently used for demonstration
retrieval.

* Rewrite|Madine|(2024). We perform KNN-based demonstration retrieval and rewrite the retrieved
samples according to the style of the test sample, so that the demonstrations better align with the
target domain. In contrast to the original method, we adapt the rewriting strategy under a strict
target-unavailable setting, where only a single test instance is exposed at a time, rather than a set
of target samples.

» InfICLS. et al.| (2024). It estimates the influence of each candidate demonstration on the model’s
prediction for a given test input, and to select those demonstrations that have the most benefi-
cial effect. By leveraging gradient-based influence approximations, the method identifies which
demonstrations most positively affect the model’s output distribution without requiring extensive
evaluation over all combinations.

C.3 MORE EXPERIMENTAL SETTINGS

To prevent potential bias caused by an imbalanced number of samples per label in the demonstra-
tions, we retrieve the same number of samples IV for each label. Therefore, for classification tasks,
the total number of demonstrations is NV x |Y'|, where |Y| is the number of labels. However, for gen-
erative tasks that do not involve specific class labels, we directly set the number of demonstrations
to N. For classification tasks, we set the number of demonstrations C' in the initial demonstration
set to |Y'|, while for generative tasks, we directly set C' to 1. For instruction fine-tuning, we use the
source domain data and convert it into training samples following the instruction format of BOSS.
During training, we apply LoRA with a learning rate of 1e-5 for one epoch. For GPT40-mini and
GPT3.5-turbo, we make the call using the interface provided by xi—aﬂ

To compare the performance of DOPA and baselines across multiple datasets, we employ the
Wilcoxon Signed-Rank Test which is widely used for model comparison across multiple bench-
marksDemsar|(2006). This non-parametric statistical test is specifically designed for paired samples
and does not assume normality of the underlying distribution. In our setting, the paired observations
correspond to the performance scores of the two models (DOPA and any other baseline) on the same
datasets. If DOPA shows statistically significant improvements (p < 0.05) over all baselines, we
denote it as DOPA*.

D MORE VISUALIZATION RESULTS

We further present KDE distributions of sample representations across various tasks in Figure [6] to
demonstrate the generality of DOPA in selecting appropriate samples. Overall, the samples selected
by the proxy consistently exhibit a distribution that shifts away from the source domain and moves
closer to the target domain. For example, on the implicit_hate dataset, the proxy-based distribution
almost completely overlaps with that of the target domain. This demonstrates DOPA’s capability
to effectively identify samples with similar underlying distributions to the target domain. But we
also observe that in a few cases (e.g., anli), the proxy-based distribution fails to effectively deviate

"https://api.xi-ai.cn/
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Figure 7: Euclidean distance comparison to target domain samples for retrieval results with and
without the diversity constraint (with MahDist and w/o MahDist) on all tasks.
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