
Optimizing Large Language Models Assisted Smart Home Assistant Systems at
the Edge: An Empirical Study

Krishna Sruthi Velaga1, Yifan Guo1

1Department of Computer & Information Sciences, Towson University, Towson, MD 21204 USA
kvelaga1@students.towson.edu, yguo@towson.edu

Abstract

The last decade has witnessed the widespread adoption of AI-
assisted smart home applications on the network edge, sup-
ported by improvements in edge device hardware accelera-
tions and AI computing algorithms. Particularly, the surge of
Large Language Models (LLMs) in 2022 pushes smart home
applications to handle more complicated and multiple tasks,
such as chat-bots, video surveillance, signal sensing, voice
controls, etc. However, new changes have appeared in re-
sponse precisions, delays, and power consumption with lim-
ited computation power and resources when utilizing LLM
services in resource-constrained edge environments. To this
end, in this study, we develop a testbed to evaluate the efficacy
and latency of real-time responses and actions from on-device
models directly in smart home environments. Based on it,
we leverage lightweight and fine-tuned LLMs optimized for
seamless integration with benchmark home assistant systems,
a popular open-source platform for smart home automation,
on resource-constrained edge devices like Raspberry Pis. Fur-
thermore, we optimize the search engines for configured de-
vices in system configurations, shortening the response delay
further. In our evaluation, we have utilized four models to
evaluate their real-time on-device performance, including a
pre-trained model (serving as our baseline), e.g., the Home-
1B model, and three customized and fine-tuned models, e.g.,
TinyHome, TinyHome-Qwen, and StableHome, based on a
medium-sized synthetic smart home dataset tailored to smart
home environments. Evaluation results show that our opti-
mized models maintain high accuracy in understanding and
executing user commands. More importantly, with optimiza-
tions, we reduce the response time by around 82%, from orig-
inally 45.1 seconds to 7.9 seconds, on average, for four mod-
els. Our demo video can be reached with the
link: https://youtu.be/zukPKLNWR54.

Introduction
Large Language Models (LLMs) are advanced artificial in-
telligence systems based on transformer model architec-
tures, designed to process and generate human-like language
by identifying sequential patterns within tons of volumes
of datasets. They excel in understanding context, generat-
ing coherent responses, and performing tasks such as text
summarization, language translation, and conversational in-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

teractions. Smart home assistants, on the other hand, are AI-
driven systems that manage connected devices like lights,
thermostats, and security cameras. Integrated into devices
such as smart speakers or smartphones, they use natural lan-
guage processing to execute commands, automate tasks, and
provide personalized control based on user behavior.

Integrating LLMs with smart home assistants enhances
home automation by enabling more precise and intelligent
interactions. These models improve the assistant’s ability
to interpret complex commands and personalize user expe-
riences by analyzing preferences and behaviors to suggest
optimized routines or recommend energy-saving practices.
By unifying devices into a cohesive ecosystem, this integra-
tion ensures smooth interoperability, supports natural con-
versational interactions, and creates a smarter, more adaptive
home environment. For instance, (Shi et al. 2024) and (King
et al. 2024) introduced AwareAuto and Sasha, enabling ac-
curate automation and open-ended communication interpre-
tation. (Civitarese et al. 2024) and (Zeng et al. 2024b) devel-
oped ADL-LLM and GestureGPT for precise activity and
gesture recognition using sensor data and common-sense
reasoning. (Takeda et al. 2024) highlighted LLMs’ effective-
ness in zero-shot learning, while (Gao et al. 2024) and (Zeng
et al. 2024a) improved efficiency with edge training.

However, when LLMs-enabled smart home assistant sys-
tems perform on low-power devices, low precision and long
latency in responses still remain critical issues that prevent
the broader utilization of LLMs in real smart home appli-
cations. Thus, how to fine-tune the model tailored for smart
home environments with more precise responses and opti-
mize the model architecture and the search engine of smart
home assistants to reduce the overall latency has become our
major concern. In this paper, we have developed a testbed
with an LLM-enabled Home Assistant platform on Rasp-
berry Pi 5 to evaluate the response precision and delay em-
pirically. We finetune the model with post-training tech-
niques like prompt tuning and LoRA to reduce inference
latency with improved response performance tailored for
smart home environments. Also, we optimize the search en-
gine of configured devices, which significantly shortens the
response time. Evaluation performance verifies the efficacy
of our solutions, with more precise answers and significantly
short delay.

The contributions of this paper are listed below:



• We have developed a testbed with an LLM-enabled
Home Assistant platform on Raspberry Pi 5 to evaluate
the on-device and real-time response precision and delay
empirically.

• We finetune the model with post-training techniques
like prompt tuning and LoRA on synthetic smart home
datasets tailored to smart home environments to reduce
inference latency with improved response performance.
Also, we optimize the search engine of configured de-
vices, which significantly shortens the response time.

• We testify the performance of four lightweight models
on the edge device. Evaluation results show that our op-
timized models maintain high accuracy in understanding
and executing user commands. More importantly, with
optimizations, we reduce the response time by around
82%, from 45.1 seconds to 7.9 seconds, on average.

Related Work
The recent advancements in Enhanced User Programming
(EUP) systems demonstrate significant progress in user-
centered automation through the integration of LLMs. For
instance, (Shi et al. 2024) introduced AwareAuto, which
standardized user expressions and utilizes a two-step infer-
ence with LLMs to generate automation, achieving an im-
pressive 91.7% accuracy in aligning with user intentions.
Building on this foundation, (Rey-Jouanchicot et al. 2024)
developed a proactive system that not only leveraged LLMs
but also interacted with the environment, resulting in a 20-
fold increase in operational speed and a 26.4% improvement
in performance over larger, less specialized models.

The application of LLMs has also been expanded to ac-
tivity recognition and smart home assistance. (Civitarese
et al. 2024) implemented ADL-LLM that transforms raw
sensor data into textual descriptions for zero-shot recogni-
tion of Activities of Daily Living (ADLs), with an option
to boost accuracy via few-shot prompting. Similarly, (Zeng
et al. 2024b) and (King et al. 2024) introduced GestureGPT
and Sasha, respectively; the former integrated LLM’s rea-
soning to analyze gestures within a triple-agent framework,
achieving high accuracy in smart home tasks, while the lat-
ter used an LLM to interpret open-ended commands for
natural user-device interaction. These systems underscored
the versatility of LLMs in understanding and facilitating
human-machine interaction in everyday environments. For
models dealing with sparse data, (Takeda et al. 2024) dis-
cussed LLMs like GPT-3.5 and GPT-4 excel in zero- and
few-shot learning, addressing early-stage activity recogni-
tion when labeled data were limited. Similarly, (Cleland
et al. 2024)’s approach leveraged LLMs’ contextual under-
standing and language modeling to process natural language
descriptions derived from binary sensor data in smart home
environments. Focusing on mental state monitoring, (Fan
et al. 2024) explored integrating foundation models and im-
ages from vacuum robots to detect behaviors indicative of
mental states, specifically focusing on identifying smoking-
and drinking-alone behaviors.

In terms of deployment efficiency, significant strides have
been made to optimize LLM deployment. For example, (Gao

et al. 2024) and (Zeng et al. 2024a) discussed methods like
parallelized randomized gradient estimation and collabora-
tive edge training to enhance the efficiency of on-device
AI training, reducing reliance on remote cloud processing.
(Ur Rahman et al. 2023) described large-scale models that
can be converted to an optimized FlatBuffer format for de-
ployment on resource-limited edge devices, with evalua-
tions focusing on latency, performance, and resource effi-
ciency. (Yonekura et al. 2024) further explored leveraging
LLMs to simulate human-like activities, utilizing their expe-
riential knowledge and adaptability to enhance intelligence
and responsiveness in smart home environments. Finally,
(Paul et al. 2024) demonstrated how large language mod-
els (LLMs) could enhance small language models for device
control tasks by developing an automated system that uses
LLMs to generate device control planning data.

From a security perspective, several pioneered works have
been conducted to safeguard sensitive operations. Particu-
larly, (Woszczyk, Lee, and Demetriou 2021) and (Li et al.
2024) addressed the vulnerabilities of voice-controlled sys-
tems to acoustic attacks and model theft, proposing solu-
tions like Sesame and CoreGuard to ensure robust security
measures on edge devices. These innovations are crucial for
maintaining the integrity and privacy of user data in increas-
ingly automated environments.

System Implementation
Our Overall System Architecture
The system architecture in our developed testbed is metic-
ulously designed to integrate various components that col-
lectively enhance home automation and control, as illus-
trated in Fig. 1. It comprises four major components and
their functions within the system: 1) Remote Monitoring
Devices (Laptop/PC). They are connected wirelessly to the
home network and serve as the primary user interface, facil-
itating remote access and command execution via SSH to a
Raspberry Pi. 2) Edge Devices (Raspberry Pi 5). They host
Home Assistant systems for smart device control and de-
ploying and running LLMs to process commands. To ensure
stable communication performance, a wired connection to
the Wi-Fi router is used in our testbed. 3) Wi-Fi Routers. The
routers are crucial, acting as the central hub that links the
laptop, Raspberry Pi, and various smart devices like smart
plugs, light bulbs, and cameras, ensuring a reliable inter-
net connection and seamless data flow across the network.
4) Smart Devices (Smart Plug and Associated Devices like
Light Bulb/Camera). These smart devices are managed wire-
lessly through commands from the Raspberry Pi, enabling
sophisticated automation tasks such as power toggling and
scheduling.

Edge Devices
We utilize Raspberry Pi 5 acting as our edge device in
the system, which offers a 2-3x improvement in CPU per-
formance over its predecessor, Raspberry Pi 4. Beneficial
from its advantages in low cost, modularity, open design,
and compatibility with HDMI and USB standards, it has a
wide range of applications in robotics, home automation,



Figure 1: The System Architecture of Our LLM-Assisted
Smart Home System

industrial automation, etc. The Raspberry Pi 5 is powered
by a quad-core ARM Cortex-A76 processor, operating at
2.4 GHz, and equipped with 4 GB of LPDDR4X RAM.
For graphics, it features the advanced VideoCore VII GPU,
which supports dual 4K displays at 60Hz, enhancing its util-
ity in high-definition applications. In terms of connectivity,
it includes two USB 3.0 ports, two USB 2.0 ports, Gigabit
Ethernet, Wi-Fi 5 (802.11ac), and Bluetooth 5.0. Storage so-
lutions include a MicroSD card slot and a PCIe 2.0 x1 inter-
face for external SSDs. The device operates with a USB-C
power input that requires a 5V, 5A power supply, ensuring
efficient energy usage while maintaining high performance.

The Home Assistant Platform
In our testbed, we utilize the Home Assistant1 platform to
enhance development efficiency and ensure seamless inte-
gration of various devices. It is a free, open-source software
platform designed to manage smart home devices through
an intuitive user interface. As an on-premise solution, Home
Assistant offers significant security advantages by storing
and processing data locally, without the need for external
servers or cloud services. It has the following key features:

• Broad Compatibility and Flexibility of Hardware Plat-
forms. Home Assistant supports a diverse range of hard-
ware and operating systems, from single-board comput-
ers like Hardkernel ODROID, Raspberry Pi, Asus Tin-
kerboard, Intel NUC systems, etc., to traditional comput-
ing platforms, including Windows, macOS, and Linux,
and can be installed on both virtual and physical storage
systems.

• Customized Control Dashboard. Home Assistant fea-
tures the Lovelace dashboard as shown in Fig. 2, which
provides real-time monitoring and control of devices
with a fully customizable interface through YAML code
for tailored user experiences.

1https://github.com/home-assistant/core

Figure 2: Home Assistant’s Lovelace Dashboard

Figure 3: Home Assistant’s Energy Dashboard

• Integrated Automation and Monitoring System. Home
Assistant merges various devices and services into a uni-
fied system with a rule-based automation engine, en-
abling the creation of custom routines for efficient home
management. It allows users to create custom routines
based on specific triggers, conditions, and actions. Use
cases include automating lighting, managing security
alarms and video surveillance, and monitoring energy.

Home Assistant User Interfaces
Home Assistant inherently provides user interfaces (UIs),
add-ons, and statistical dashboards for configured devices,
such as smart plugs and the Fios router, to track energy con-
sumption and daily activities, as well as more personalized
automation options. It displays detailed information about
each device, allowing users to check their status quickly.

Energy Monitoring and Management UI. Energy man-
agement is an important feature of Home Assistant, which
offers a dashboard that tracks energy usage statistics for con-
figured devices as illustrated in Fig. 3. By displaying real-
time and historical energy data, the system gives insights
into how much energy each device consumes, along with
grid usage. This allows users to manage and optimize energy
efficiency across their homes, helping them make informed
decisions about device usage.

Voice Assistant UI. One practical use in this tested is the
integration of the voice assistant UI with a locally deployed
model. For example, we created a custom voice assistant
named “Aurora”, shown in Fig.4, which was connected to
the local LLM and had access to various device entities in



Figure 4: An Illustration of Interactions with Voice Assistant
“Aurora” based on Locally Deployed LLMs

the system. This allowed Aurora to interact intelligently with
the smart home, providing natural language control over de-
vices. It enables precise actions and responses based on lo-
cal models as a “personal assistant” without relying on cloud
services. Our goal is to enable our conversation agent, Au-
rora, to understand user commands correctly and process
commands locally with relatively low latency, allowing for
real-time, natural language interactions within the system.

The Logbook feature. This feature is designed to track
all activities and changes within the system after it has been
activated. It records interactions with smart devices and the
commands executed by the deployed language model, as
well as a detailed history of automation activities and system
modifications. For example, the logbook could record multi-
ple instances of a smart plug2 controlled device being turned
on and off, as well as changes made to the LLM model ini-
tiated by the user, and provide a detailed history of automa-
tion activities and system modifications, which is essential
for monitoring and troubleshooting the smart home system.

LLM Deployment on the Home Assistant Platform
We initially integrate the pre-trained Home-1B-v3-GGUF3

model into our Home Assistant platform using the
Llama.cpp4 backend, designed to function optimally on
resource-constrained devices without dedicated GPUs, such
as a Raspberry Pi. This model is also optimized for de-
vices with limited memory, such as those with under 4GB
of RAM. The Home Assistant has provided the Local
LLM Conversation functions (under the conditioning
Devices and Services section) to run models locally
using Llama.cpp as part of the system. It also provides the
quantization level setting, which provides an ideal balance
between performance and compatibility, allowing the model
to use system resources efficiently. In our practices, we also
find that to improve response speed, we should consider lim-
iting the number of entities that the model processes, as this
can help it run more smoothly.

2We utilize the Kasa KP125M Smart Wi-Fi Plug as our smart
control device, which is seamlessly integrated with Home Assistant
API in energy monitoring and voice control.

3https://huggingface.co/acon96/Home-1B-v3-GGUF
4https://github.com/ggerganov/llama.cpp

Figure 5: High Latency in Responses

Limitations of Current System Designs
Based on the results from our implemented testbed, we have
identified two significant challenges that impede perfor-
mance during on-device deployment: non-precise responses
and high latency. Firstly, the responses from the pre-trained
model tend to be generic and lack the ability to adapt to indi-
vidual user behavior patterns, limiting their effectiveness in
personalized scenarios. Secondly, the response time is con-
siderably extended, primarily due to the time consumed by
model inference on the device and device searching, which
affects the overall user experience and system efficiency. For
instance, as demonstrated in Fig. 5, processing a straight-
forward command like “turn off smart plug” takes approx-
imately 45 seconds. This significant delay underscores the
critical need to optimize local LLM inference on power-
constrained edge devices.

System Optimization
To address these two issues, we implement a two-fold op-
timization strategy for our system. First, we enhance the
model by applying post-training techniques, such as prompt
tuning and LoRA, using synthetic smart home datasets tai-
lored to smart home environments. This approach aims to re-
duce inference latency and improve response performance,
ensuring that interactions are tailored to the preferences
of each individual customer. Additionally, we optimize the
search engine settings in querying configured devices, which
significantly accelerates the response speed.

Synthetic Smart Home Dataset Generation
The dataset generation process for a smart home assistant
involves compiling diverse interaction sets that accurately
mirror real-world user requests and the corresponding re-
sponses of the assistant within a smart home setting5. These
interactions are crucial for training the assistant to accurately
interpret and respond to user commands, address a variety
of queries, and effectively manage edge cases. The dataset
is structured in English and adopts a medium-sized format
in the “ShareGPT” configuration, comprising 34,250 train-
ing examples and 2,532 test examples. This comprehensive
dataset is essential for enhancing the assistant’s performance
in realistic scenarios.

5https://github.com/acon96/home-llm/tree/develop/data



The generation process begins by loading essential data
components, known as “piles”, which supply the contex-
tual data necessary for generating a diverse range of smart
home interactions. These piles include: a catalog of de-
vice names organized by types, such as lights, thermostats,
and media players; templated actions that use placeholders
like <device name> and <temperature> to simulate
commands for various devices; specific actions that are di-
rect and straightforward; standard responses and common
queries about device status; and other components like lists
of conjunctions, media titles, durations, and to-do items.
These components are controlled by the language parameter
to ensure the dataset aligns with the linguistic and contex-
tual requirements of the target examples. It also offers five
different languages to generate the system prompts, includ-
ing English, German, French, Spanish, and Polish. In this
case, English is our configured language.

Each generated prompt encompasses three primary com-
ponents designed to train the smart home assistant effec-
tively: 1) Static Actions. They consist of direct commands
such as “Turn on the living room light,” which require
the assistant to respond directly, covering basic commands
for straightforward interactions. 1) Templated Actions. They
feature dynamic placeholders that fill in specifics like de-
vice names, states, and values, for example, transforming
the template “Set the thermostat to <temperature>” into
“Set the thermostat to 72 degrees.” 3) Status Requests. They
involve inquiries about device conditions, such as “Is the
front door locked?” teaching the assistant to accurately han-
dle and respond to specific status queries. Additionally, the
dataset incorporates Direct Preference Optimization (DPO)
examples that simulate incorrect responses, including mis-
takes like wrong arguments or unnecessary service calls,
which are crucial for training the assistant to recognize and
correct common errors and to ignore irrelevant commands.

In terms of presentation style, each prompt is formatted in
a natural, conversational style using the ShareGPT conver-
sational format to mimic realistic user-assistant interactions.
When the system role is enabled, the conversation begins
with a system prompt listing available devices (e.g., “De-
vices: light, thermostat”) and services (e.g., “Services: turn
on, adjust temperature”). Each example consists of a user
command (e.g., “Turn on the living room light”) followed by
the assistant’s response (e.g., “Turn on the living room light
now”). If the response includes a specific action, a JSON-
style code block is appended, detailing the service call (e.g.,
action turn on, target device living room light, and necessary
parameters).

We showcase a sample system prompt generated below.
In this example, the AI assistant “Al” is tasked with con-
trolling smart home devices through a natural language
interface. The conversation begins with a prompt show-
ing the assistant’s name, purpose, current date and time,
and a list of available services, including commands like
cover.close cover and light.turn on for various
device types. Devices are listed along with their current
states, such as: light.front lounge ge ’Front
Lounge Light’ = on providing an overview of each
device’s status in the home environment. When the

user asks “Al” to “lower the kitchen blinds,” the assis-
tant correctly interprets this as a request to close the
kitchen blinds (cover.kitchen). It uses the appropriate
cover.close cover service to perform the action and
responds with the confirmation “closing the blinds as you
requested.” This confirmation ensures that the user knows
the request was understood and completed. Similarly, When
the user asks AI to “increase the fan speed in the guest
room,” the assistant interprets this as a request to raise the
speed of the fan in the guest room (fan.guest room).
It uses the appropriate fan.increase speed service to
execute the action and responds with the confirmation “in-
creasing speed of Guest Room.” This confirmation reassures
the user that the request was understood and fulfilled.

Example System Prompt

You are ’Al’, a helpful AI Assistant that controls
the devices in a house. Complete the following task
as instructed or answer the following question with
the information provided only.
The current time and date is 7:13 AM on Monday,
October 14, 2024.
Services: cover.close cover, cover.open cover,
cover.stop cover, cover.toggle, fan.decrease speed,
fan.increase speed, light.turn on, light.turn off.
Devices: cover.close cover = on; cover.kitchen =
on; fan.guest room ‘Guest Room Fan’ = on;
light.front lounge ge ‘Front Lounge Light’ = on.
User: Lower the kitchen blinds.
Assistant: Closing the blinds as you requested.
Action:

homeassistant:
{

"service": "cover.close_cover",
"target_device": "cover.kitchen"

}
User: Increase the fan speed in the guest room.
Assistant: Increasing speed of Guest Room.
Action:

homeassistant:
{

"service": "fan.increase_speed",
"target_device": "fan.guest_room"

}

Model Fine-Tuning
To locally fine-tune the models, we consider both prompt
tuning (Lester, Al-Rfou, and Constant 2021) and LoRA
(Low-Rank Adaptation) (Hu et al. 2021) techniques based
on our generated prompts from the synthetic smart home
dataset. Meanwhile, to better fit into edge environments, we
also involve 4-bit and 8-bit model quantization in our model
re-training process. We finetune the models using generated
training sample prompts and save the model’s state (check-
point) with the highest evaluation performance on testing
prompts. Particularly, in LoRA, we consider low-rank ma-
trix adaption to be at a rank of 64 with a scaling factor of
128 for low-rank updates (as the adapter’s contribution).



Figure 6: Optimized Configured Devices in the Search En-
gine

Figure 7: Reduced Latency after Search Engine Optimiza-
tion

Search Engine Optimization
Given the large number of smart devices and associated
APIs managed by the search engine in Home Assistant, ex-
cessive time spent searching for non-task-related devices can
significantly impact overall response times. To address this,
a task-oriented search engine configuration should be prior-
itized. We find that by narrowing the scope of entities ex-
posed by the search engine to only the pre-configured de-
vices necessary for core voice assistant functionalities, such
as those illustrated in Fig. 6, response delays can be sub-
stantially reduced. For example, initially, when we exposed
around 20 entities, it resulted in a 45-second delay, as in
Fig. 5. By reducing the number of exposed entities to 8
(which are the core task-related functions) in Fig. 6, the
response time for tasks such as turning on a smart plug is
down to just 16 seconds as in Fig. 7. This approach demon-
strates the efficiency gains through task-oriented and opti-
mized search engine configurations.

Performance Evaluation
Model and Training Environment Setup
Besides the pre-trained Home-1B model serves as our
baseline, we consider three other models, e.g., TinyHome,
TinyHome-Qwen, and StableHome, for model fine-tuning
and performance evaluation. Particularly, for TinyHome-
Qwen and StableHome, they also adopt LoRA techniques
for performance comparisons. All models are locally re-
trained on a workstation equipped with two Nvidea RTX
3090 GPUs. The initial learning rate is set as 2 × 10−5

for Home-1B, TinyHome, and TinyHome-Qwen and 10−5

for StableHome, respectively, followed by learning rate de-
cay. The batch size is 128. For Home-1B, TinyHome, and
TinyHome-Qwen, we use 4-bit quantization. For Stable-
Home, we use 8-bit quantization.

For evaluation metrics, we focus on two key metrics: on-
device response latency and precision. Latency is measured
using the built-in functionality of the home Assistant sys-
tem, including its logbook. Precision is assessed through a
qualitative evaluation of the feedback by people, focusing
on clarity and level of detail.

Evaluation Results
Learning Convergence. Fig. 8 shows the learning con-
vergence curves for three different models, e.g., tinyhome,
tinyhome-qwen, and stablehome, arranged from the first to
the third row, respectively. Each row illustrates the model’s
training and evaluation dynamics through four key metrics:
training loss, training gradient norm, training learning rate,
and evaluation loss. In each plot, we observe the steady
decreases in magnitudes for each metric, which showcases
the learning convergence for each training and reflects our
fine-tuned models’ generalization capabilities with both de-
creased training and evaluation losses.

Reduced Latency and Enhanced Response Precision
for On-device Inferences. Fig. 9 demonstrates the impact
of model fine-tuning and search engine optimization on re-
ducing latency and improving response precision in Home
Assistant based on the Home-1B model. For Prompt 1, the
system completes the task of turning on a smart plug in
7.68 seconds. In Prompt 2, it retrieves temperature data
(”44 degrees Celsius”) in 4.01 seconds, and for Prompt 3,
it provides weather information (”partly cloudy”) in 12.44
seconds. These examples highlight efficient task execution
and data retrieval, showcasing the enhanced performance
achieved through optimized natural language processing and
search configurations, compared with the benchmark setting
with an average of 45.1 seconds delay. We also evaluate the
performance of two customized models, e.g., TinyHome and
TinyHome-Qwen. TinyHome-Qwen (with both prompt tun-
ing and LoRA) emerged as the most efficient model, achiev-
ing an average response time of 4.55 seconds, which out-
performs Home-1B in 8.04 seconds and TinyHome in 11.18
seconds. In terms of response precision, we also discover
that the responses from the fine-tuned model cover more
details related to each individual user compared with those
from the pre-trained model.

Energy Consumption. The platform also provides built-
in visualization tools for tracking and managing the energy
usage of the smart plug device over time. As indicated in
Fig. 10, the device showed a peak consumption of approx-
imately 8 watts at around 11:00 AM, followed by a sharp
decline to 0 watts shortly after. We aim to involve the energy
information as parts of prompts for fine-tuning in our future
study to better learn customized and personalized models.

Final Remarks
In this paper, we present a pilot study to evaluate the real-
time performance of the edge deployment of LLMs on



(a) Training Loss (b) Training Gradient Norm (c) Training Learning Rate (d) Evaluation Loss

(e) Training Loss (f) Training Gradient Norm (g) Training Learning Rate (h) Evaluation Loss

(i) Training Loss (j) Training Gradient Norm (k) Training Learning Rate (l) Evaluation Loss

Figure 8: Learning Convergence Curves for Different Models (Results from models tinyhome, tinyhome-qwen, and stablehome
are indicated from the first to the third row, respectively)

(a) Prompt 1 (b) Prompt 2 (c) Prompt 3

Figure 9: Reduced Latency and Enhanced Response Precision with Model Fine-Tuning and Search Engine Optimization

Figure 10: Energy Consumption Measurements

practical resource-constrained devices. Particularly, we de-
velop a testbed with an LLM-enabled Home Assistant plat-
form on Raspberry Pi 5 to evaluate the on-device and real-
time response precision and delay empirically. Based on
our observed issues in non-precise responses and high la-
tency in benchmark system settings, we implement a two-
fold optimization strategy for our system. We finetune the
model with post-training techniques like prompt tuning and
LoRA on synthetic smart home datasets to reduce infer-
ence latency with improved response performance tailored
for smart home environments. Also, we optimize the search
engine of configured devices, which significantly shortens
the response time. By evaluating the performance of four
lightweight models on the edge device, we find that our op-
timized models maintain high accuracy in understanding and
executing user commands. More importantly, with optimiza-
tions, we reduce the response time by around 82%, from
originally 45.1 seconds to 7.9 seconds, on average.



References
Civitarese, G.; Fiori, M.; Choudhary, P.; and Bettini, C.
2024. Large Language Models are Zero-Shot Recog-
nizers for Activities of Daily Living. arXiv preprint
arXiv:2407.01238.
Cleland, I.; Nugent, L.; Cruciani, F.; and Nugent, C. 2024.
Leveraging Large Language Models for Activity Recogni-
tion in Smart Environments. In 2024 International Confer-
ence on Activity and Behavior Computing (ABC), 1–8.
Fan, Y.; Nie, J.; Sun, X.; and Jiang, X. 2024. Exploring
Foundation Models in Detecting Concerning Daily Func-
tioning in Psychotherapeutic Context Based on Images from
Smart Home Devices. In 2024 IEEE International Workshop
on Foundation Models for Cyber-Physical Systems Internet
of Things (FMSys), 44–49.
Gao, L.; Ziashahabi, A.; Niu, Y.; Avestimehr, S.; and
Annavaram, M. 2024. Enabling Resource-Efficient On-
Device Fine-Tuning of LLMs Using Only Inference En-
gines. arXiv:2409.15520.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
King, E.; Yu, H.; Lee, S.; and Julien, C. 2024. Sasha: cre-
ative goal-oriented reasoning in smart homes with large lan-
guage models. Proceedings of the ACM on Interactive, Mo-
bile, Wearable and Ubiquitous Technologies, 8(1): 1–38.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The
power of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691.
Li, Q.; Xie, Y.; Du, T.; Shen, Z.; Qin, Z.; Peng, H.; Zhao,
X.; Zhu, X.; Yin, J.; and Zhang, X. 2024. CoreGuard: Safe-
guarding Foundational Capabilities of LLMs Against Model
Stealing in Edge Deployment. arXiv:2410.13903.
Paul, S.; Zhang, L.; Shen, Y.; and Jin, H. 2024. Enabling
Device Control Planning Capabilities of Small Language
Model. In ICASSP 2024 - 2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
12066–12070.
Rey-Jouanchicot, J.; Bottaro, A.; Campo, E.; Bouraoui, J.-
L.; Vigouroux, N.; and Vella, F. 2024. Leveraging Large
Language Models for enhanced personalised user experi-
ence in Smart Homes. arXiv:2407.12024.
Shi, Y.; Liu, X.; Yu, C.; Yang, T.; Gao, C.; Liang, C.; and
Shi, Y. 2024. Bridging the gap between natural user ex-
pression with complex automation programming in smart
homes. arXiv:2408.12687.
Takeda, N.; Legaspi, R.; Nishimura, Y.; Ikeda, K.; Plötz,
T.; and Chernova, S. 2024. A Synergistic Large Language
Model and Supervised Learning Approach to Zero-Shot
and Continual Activity Recognition in Smart Homes. In
2024 9th International Conference on Big Data Analytics
(ICBDA), 113–122.
Ur Rahman, M. W.; Abrar, M. M.; Copening, H. G.; Hariri,
S.; Shao, S.; Satam, P.; and Salehi, S. 2023. Quantized
Transformer Language Model Implementations on Edge De-
vices. In 2023 International Conference on Machine Learn-
ing and Applications (ICMLA), 709–716.

Woszczyk, D.; Lee, A.; and Demetriou, S. 2021. Open,
Sesame!: Introducing Access Control to Voice Services. In
Proceedings of the 1st Workshop on Security and Privacy
for Mobile AI, MobiSys ’21, 7–12. ACM.
Yonekura, H.; Tanaka, F.; Mizumoto, T.; and Yamaguchi, H.
2024. Generating Human Daily Activities with LLM for
Smart Home Simulator Agents. In 2024 International Con-
ference on Intelligent Environments (IE), 93–96.
Zeng, L.; Ye, S.; Chen, X.; and Yang, Y. 2024a. Implemen-
tation of Big AI Models for Wireless Networks with Collab-
orative Edge Computing. arXiv:2404.17766.
Zeng, X.; Wang, X.; Zhang, T.; Yu, C.; Zhao, S.; and Chen,
Y. 2024b. GestureGPT: Toward Zero-shot Interactive Ges-
ture Understanding and Grounding with Large Language
Model Agents. arXiv:2310.12821.


