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ABSTRACT

Most algorithms in reinforcement learning (RL) require that the objective is for-
malised with a Markovian reward function. However, it is well-known that certain
tasks cannot be expressed by means of an objective in the Markov rewards formal-
ism, motivating the study of alternative objective-specification formalisms in RL
such as Linear Temporal Logic and Multi-Objective Reinforcement Learning. To
date, there has not yet been any thorough analysis of how these formalisms relate
to each other in terms of their expressivity. We fill this gap in the existing literature
by providing a comprehensive comparison of 17 salient objective-specification
formalisms. We place these formalisms in a preorder based on their expressive
power, and present this preorder as a Hasse diagram. We find a variety of limita-
tions for the different formalisms, and argue that no formalism is both dominantly
expressive and straightforward to optimise with current techniques. For example,
we prove that each of Regularised RL, (Outer) Nonlinear Markov Rewards, Reward
Machines, Linear Temporal Logic, and Limit Average Rewards can express a
task that the others cannot. The significance of our results is twofold. First, we
identify important expressivity limitations to consider when specifying objectives
for policy optimization. Second, our results highlight the need for future research
which adapts reward learning to work with a greater variety of formalisms, since
many existing reward learning methods assume that the desired objective takes a
Markovian form. Our work contributes towards a more cohesive understanding of
the costs and benefits of different RL objective-specification formalisms.

1 INTRODUCTION

There are many ways of specifying objectives in Reinforcement Learning (RL). The most common
method is to maximise the expected time-discounted sum of scalar Markovian rewards.1 While this
method has achieved wide-ranging success, recent work has identified practical objectives that cannot
be specified using standard Markov rewards (Skalse & Abate (2023); Abel et al. (2022); Bowling et al.
(2022)). Numerous other formalisms have been proposed and utilised for specifying objectives in
practice, including Multi-Objective RL (Hayes et al. (2022); Roijers et al. (2013); Coello Coello et al.
(2002)), Maximum Entropy RL (Hazan et al. (2019); Mutti et al. (2023); Ziebart et al. (2008)), Linear
Temporal Logic (Littman et al. (2017); Lahijanian et al. (2011); Ding et al. (2011)), and Reward
Machines (Icarte et al. (2018); Toro Icarte et al. (2022); Camacho et al. (2019)). Additionally, there
are various abstract formalisms (such as arbitrary functions from trajectories to the real numbers),
which are generally intractable to optimise but which capture intuitive classes of objectives.

In this paper, we comprehensively compare the expressivities of 17 formalisms, which are listed and
defined in Table 1. We say that a formalism A can express another formalism B if in all environments,
A can express all objectives that B can express. We formalise this notion in Section 2. Our main
results are summarised in Figure 1, a Hasse diagram displaying the relative expressivities of all the
formalisms we consider. We find that in many cases, there is no simple answer to the question of
which of two formalisms is preferable to use for policy optimisation in practice because each can

1A reward function is Markovian if it depends only on the most recent transition.

1



express objectives that the other cannot. While there are formalisms at the top of our diagram that
can express every formalism below them, we suspect that none of these are tractable to optimise in
general. Therefore, we advise RL practitioners to familiarise themselves with a variety of formalisms
and think carefully about which to select depending on the desired use case. Our analysis describes
some of the strengths and limitations of each formalism, which can be used to inform this selection.

Our results are relevant not only for policy optimisation but also for reward learning. Reward learning
is often used when it is difficult to hardcode a reward function for a task but easy to evaluate attempts
at that task. For instance, (Christiano et al. (2017)) train a reward model which incentivises an RL
agent to do backflips in a simulated environment. Notably, the structure of reward models in many
prior works have implicitly assumed that the desired task is expressible with Markov rewards, since
reward models output real numbers given a transition as input (Christiano et al., 2017; Hadfield-
Menell et al., 2016; Skalse et al., 2023). Our findings highlight the limitations of Markov rewards
and the importance of advancing reward learning methods for the other formalisms we discuss.

In Section 2, we briefly introduce core concepts from RL relevant to our paper, make the nature of
our formalism comparisons precise, and define the objective-specification formalisms that we are
comparing in this work. We provide our primary results in Section 3. These are summarised in
Figure 1, a Hasse diagram that depicts all the expressivity relationships among the formalisms. We
also present many of the theorems and propositions on which the diagram is based; the remaining
statements and all proofs are found in Appendix B. In Section 4, we discuss the implications of our
findings in the context of prior research, along with limitations and directions for future work.

2 PRELIMINARIES

2.1 BASIC DEFINITIONS

Many of the concepts in this paper are derived from the study of Markov Decision Processes (MDPs)
(Sutton & Barto (2018)). An MDP is a 6-tuple (S,A, T , I,R, γ) where S is a set of states, A is
a set of actions, T : S × A → ∆S is a transition function and I ∈ ∆S is the initial distribution
over states. In this work, we assume S and A are finite and only consider stochastic stationary
policies π : S → ∆A, solutions to the MDP which stochastically output an action in any state.2 A
(rewardless) trajectory is an infinite sequence ξ = (s0, a0, s1, a1, · · · ) such that ai ∈ A, si ∈ S for
all i, where s0 ∼ I , a0 ∼ π(s0), s1 ∼ T (s0, a0) and so on; we denote the set of (infinite) trajectories
as Ξ = S × (A× S)ω. The reward function R : S ×A× S → R gives a reward at each time step
rt = R(st, at, st+1), and γ ∈ [0, 1) gives a discount factor.

The return of a trajectory ξ for R and γ is GR,γ(ξ) =
∞∑
t=0

γtR(st, at, st+1) and the expected return

of a policy is taken over trajectories sampled using the environment and the policy: JE
OMR

(π) =
Eξ∼π,T ,I [G(ξ)].

Since we consider various ways to define an objective, we separate our decision process into an
environment and an objective specification.
Definition 2.1 (E, ΠE , Envs). We refer to the 4-tuple (S,A, T , I) as the environment and denote
it E. We denote the set of finite environments as Envs.3 A given environment determines the
stationary-policy space ΠE = {π | π : S → ∆(A)}.

Using a Markovian Reward R and geometric discounting factor γ is one way to specify an objective.
However, in this work we want to compare and contrast ways to specify objectives. To do this, we
introduce the notion of an objective specification.
Definition 2.2 (O, ⪰ E

O). Given an environment E, an objective specification is a tuple O that allows
us to rank policies in ΠE . Formally, O defines ⪰ E

O a total preorder over ΠE . Total preorders are
transitive and strongly connected.

2We assume that the state and action spaces are finite and only consider stationary policies in order to make
our findings more relevant to common RL algorithms. For example, Q-learning only has a convergence guarantee
for finite state and action spaces and only considers stationary policies.

3We can formally define Envs, the set of environments as Envs := {(S,A, T , I) |
S,A are any two finite sets, T : S ×A → ∆S, I ∈ ∆(S)}.
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Definition 2.3. (MR, OMR, ⪰ E
O) For environment E, an objective specification in the Markovian

reward formalism is a pair OMR = (R, γ) with R : S ×A× S → R and γ ∈ [0, 1). The ordering
over ΠE induced by OMR is given by: π1 ⪰ E

OMR
π2 ⇐⇒ J(R,γ)(π1) ≥ J(R,γ)(π2).

To compare different objective-specification formalisms, it will be important to consider the set of
policy orderings possible in a given formalism. Since the set of valid objective specifications and
orderings depends on the environment, we define a function Ord.
Definition 2.4 (Objective specification formalismX ,OrdX andOrdMR). An objective-specification
formalism X is valid if it defines a function from environments to orderings over policies in that
environment. Given an objective-specification formalism X , we denote the set of possible orderings
for a given environment asOrdX(E) whereOrdX(E) ⊆ P(ΠE×ΠE). For example,OrdMR(E) =
{⪰ E

OMR
| R : S ×A× S → R and γ ∈ [0, 1)}.

Finally, we define a partial order expressivity relation over objective specification formalisms.
Definition 2.5 ( ⪰ EXPR). . We define an order over objective specification formalisms ⪰ EXPR.
For any two objective specification formalisms X and Y , X ⪰ EXPRY if and only if X can express
all policy orderings that Y can express, in all environments. Formally:

X ⪰ EXPRY ⇐⇒ ∀E ∈ Envs, OrdX(E) ⊇ OrdY (E)

Note that ⪰ EXPR is reflexive and transitive.

Like Abel et al. (2022) and Skalse & Abate (2023), we focus on the ability of formalisms to express
policy orderings, as opposed to alternatives such as their ability to induce a desired optimal policy.
One key reason we define expressivity in this way is that it is sometimes infeasible to train an agent
to find an optimal policy in practice; in such cases, an objective specification is more likely to provide
an effective training signal if it expresses a desired policy ordering than if it merely induces a desired
optimal policy. We motivate the choice to focus on policy orderings further in Appendix A.1.4

2.2 FORMALISM DEFINITIONS

In Table 1, we present the definitions of all the formalisms we consider in this work. These definitions
are supplemented with a few additional details in Section 2.2.1. Past work related to many of these
formalisms is discussed in Section 4. For formalisms which have ambiguous or varying definitions
in past literature, we attempt to select the definitions that best allow for meaningful expressivity
comparisons. In some cases, the appeal of these formalisms also becomes clearer in the context of
our results and proofs.

In Appendix A.2, we argue that objective specifications in all of the formalisms in Table 1 induce
total preorders on the set of policies.

2.2.1 ADDITIONAL MACHINERY

Here, we provide a few additional definitions that the formalisms in Table 1 depend upon. The first is
for Linear Temporal Logic (LTL) formulas, which are required for specifying objectives with the
LTL formalism.
Definition 2.6. Linear Temporal Logic Formula. An LTL formula is built up from a set of atomic
propositions; the logic connectives: negation (¬), disjunction (∨), conjunction (∧) and material
implication (→); and the temporal modal operators: next (⃝), always (□), eventually (♢) and until
(U ). We take the set of atomic propositions to be S ×A× S , the set of transitions. An LTL formula
φ is either true or false for a trajectory ξ ∈ Ξ = S × (A × S)ω; we say φ(ξ) = 1 if the formula
evaluates to true in ξ and φ(ξ) = 0 if the formula evaluates to false (Littman et al. (2017); Manna &
Pnueli (1992); Baier & Katoen (2008)).

4The definitions in Section 2.1 use detailed indexing to clearly convey that some symbols correspond to
specific environments and / or objective specifications. In other sections (particularly Appendix B), we often
drop these indices when the meaning of the symbols is evident.
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Formalism Name Objective
Tuple

Types and definitions Policy ordering method.
For scalar J functions, π1 ⪰ E

Oπ2 ⇐⇒ J(π1) ≥ J(π2)

Markov Rewards
(MR)

(R, γ) R : S × A × S → R
γ ∈ [0, 1)

J(π) := Eξ

[
∞∑
t=0

γtR(st, at, st+1)

]

Limit Average
Reward (LAR)

(R) R : S × A × S → R J(π) := lim
N→∞

[
1
N

Eξ

[
N−1∑
t=0

R(st, at, st+1)

]]
Linear Temporal
Logic (LTL)

(φ) φ : Ξ → {0, 1} is an LTL formula
(See Definition 2.6)

J(π) := Eξ [φ(ξ)]

Reward Machines
(RM)

(U, u0, δU ,
δR, γ)

U is a finite set of machine states
u0 ∈ U is the start state
δU : U ×S ×A×S → U is a transition
function for machine states
δR : U × U → [S × A × S → R] is a
transition function that outputs a reward
function given a machine transition
γ ∈ [0, 1)

J(π) := Eξ

[
∞∑
t=0

γtRt(st, at, st+1)

]
, where

Rt = δR(ut, ut+1)

Inner Nonlinear
Markov Rewards
(INMR)

(R, f, γ) R : S × A × S → R
f : R → R
γ ∈ [0, 1)

J(π) := Eξ

[
f

(
∞∑
t=0

γtR(st, at, st+1)

)]

Inner
Multi-Objective RL
(IMORL)

(k,R, f, γ) k ∈ N
R : S × A × S → Rk is a k-dimensional
reward function
f : Rk → R
γ ∈ [0, 1)

J(π) := Eξ [f (G1(ξ), ..., Gk(ξ))], where

Gi(ξ) :=
∞∑
t=0

γtRi(st, at, st+1) and

Ri is the ith dimension of R

Functions from
Trajectories to Reals
(FTR)

(f) f : Ξ → R J(π) := Eξ [f(ξ)]

Regularised RL
(RRL)

(R, α, F, γ) R : S × A × S → R
α ∈ R
F : ∆(A) → R
γ ∈ [0, 1)

J(π) := Eξ

[
∞∑
t=0

γt (R(st, at, st+1) − αF [π(st)]
)]

Outer Nonlinear
Markov Rewards
(ONMR)

(R, f, γ) R : S × A × S → R
f : R → R
γ ∈ [0, 1)

J(π) := f

(
Eξ

[
∞∑
t=0

γtR(st, at, st+1)

])

Outer
Multi-Objective RL
(OMORL)

(k,R, f, γ) k ∈ N
R : S × A × S → Rk is a k-dimensional
reward function
f : Rk → R, γ ∈ [0, 1)

J(π) := f (J1(π), ..., Jk(π)), where

Ji(π) := Eξ

[
∞∑
t=0

γtRi(st, at, st+1)

]
Functions from
Occupancy
Measures to Reals
(FOMR)

(f, γ) f : m⃗(Π) → R, γ ∈ [0, 1) J(π) := f(m⃗(π))
(See Definition 2.7)

Functions from
Trajectory Lotteries
to Reals (FTLR)

(f) f : LΠS,A
→ R

(See Definition 2.8)

J(π) := f(Lπ)

Functions from
Policies to Reals
(FPR)

(J) J : ΠS,A → R J(π) (arbitrary)

Occupancy Measure
Orderings (OMO)

(γ,⪰m) ⪰m is a total preorder on
m⃗(Π) = {m⃗(π) : π ∈ ΠS,A}
γ ∈ [0, 1)
(See Definition 2.7)

π1 ⪰ π2 ⇐⇒ m⃗(π1) ⪰m m⃗(π2)

Trajectory Lottery
Orderings (TLO)

(⪰L) ⪰L is a total preorder on LΠS,A
(See Definition 2.8)

π1 ⪰ π2 ⇐⇒ Lπ1
⪰L Lπ2

Generalised Outer
Multi-Objective RL
(GOMORL)

(k,R,
γ,⪰J )

k ∈ N
R : S × A × S → Rk is a k-dimensional
reward function
γ ∈ [0, 1)

⪰J is a total preorder on Rk

J⃗(π) := ⟨J1(π), ..., Jk(π)⟩, where

Ji(π) := Eξ

[
∞∑
t=0

γtRi(st, at, st+1)

]
π1 ⪰ π2 ⇐⇒ J⃗(π1) ⪰J J⃗(π2)

Policy Orderings
(PO)

(⪰) ⪰ is a total preorder on ΠS,A π1 ⪰ π2 (directly specified)

Table 1: This table provides the objective tuple along with definitions for all 17 formalisms considered
in this paper. It also explicitly states the method by which each formalism orders policies. All
expectations are taken over trajectories in the environment sampled using the policy.

Next, we define occupancy measures, which are a central object for the formalisms of Functions from
Occupancy Measures to Reals and Occupancy Measure Orderings.
Definition 2.7. Occupancy Measures. Given a policy π, an environment E = (S,A, T , I), and a
discount factor γ, the occupancy measure m⃗(π) is a vector in R|S||A||S|, where:

m⃗(π)[s, a, s′] :=

∞∑
t=0

γtPξ∼π,T ,I [st = s, at = a, st+1 = s′]

As the name suggests, m⃗(π) measures the extent to which a policy "occupies" each transition, in
expectation, across the entirety of a trajectory.
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For the formalisms of Functions from Trajectory Lotteries to Reals and Trajectory Lottery Orderings,
we must define trajectory lotteries. To avoid concerns related to non-measurable sets that arise with
generic distributions over the set of all trajectories, we define trajectory lotteries using an infinite
sequence of lotteries over finite trajectory segments.
Definition 2.8. Trajectory Lotteries. Let Ξk be the set of all initial trajectory segments of length
2k + 1. We write [ξ]k for the first 2k + 1 elements of ξ. Define Lk,π ∈ ∆(Ξk) : Lk,π(ξk =
(s0, a0, ..., sk)) = Pξ∼π,T,I([ξ]k = ξk). A trajectory lottery Lπ is then defined as the infinite
sequence of Lk,π values: Lπ := (L0,π, L1,π, L2,π, ...). The set of trajectory lotteries generated by
any policy in an environment E = (S,A, T , I) is defined to be LΠS,A

:= {Lπ|π ∈ ΠS,A}.

3 RESULTS

Figure 1: This Hasse diagram displays all expressivity re-
lationships between our formalisms. An arrow or chain of
arrows from one formalism to another indicates that the first
formalism can express all policy orderings that the second
formalism can express, in all environments. Arrows going
both directions mean that the formalisms have the same ex-
pressivity. If there is no chain of arrows from one formalism
to another, there are policy orderings that the latter can express
and the former cannot express.

In this section, we present our expres-
sivity results. For each of the 289
ordered pairs of formalisms (X,Y ),
we prove either that X ⪰ EXPRY
or that X ̸⪰ EXPRY .5 Figure 1 de-
picts the expressivity relationships
between all formalisms. Note that
the absence of a sequence of arrows
from one formalism to another is as
significant as the presence of a se-
quence of arrows: the presence of a
sequence of arrows means that the
first formalism can express all policy
orderings that the second can express,
and the absence of a sequence of ar-
rows means that there exists a pol-
icy ordering that the second formal-
ism can express and the first cannot
express. A considerable part of our
contribution in this work is to demon-
strate the expressive limitations of
these formalisms, and these limita-
tions are represented by the absence
of arrows. In this section we will
state and provide intuition for many
of the nontrivial positive and nega-
tive expressivity results that serve as
the basis for the Hasse diagram. The
remaining results, and all proofs, can
be found in Appendix B.

3.1 POSITIVE RESULTS

Several of the positive connections
in the Hasse diagram are relatively trivial; these are discussed in Appendix B.1. Here, we focus on
the most substantive results. Proofs for the results in this subsection are available in Appendix B.2
and referenced beside each result.
Theorem 3.1. Inner Nonlinear Markov Rewards (INMR), Inner Multi-Objective RL (IMORL), and
Functions from Trajectories to Reals (FTR) are equally expressive. Proof: B.21

It is straightforward to see that IMORL can express all policy orderings that INMR can express
and that FTR can express all policy orderings that IMORL can express (and we show these results

5We study 17 formalisms, so there are 172 = 289 ordered pairs of formalisms. This includes the ordered
pairs of a formalism with itself; trivially, any formalism can express itself. The expressivity results for some
other ordered pairs of formalisms are also fairly straightforward, and many results follow from the transitivity of
the expressivity relation. Table 2 in the appendix depicts all proof dependencies for these results.
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explicitly in Appendix B.1). Therefore, the following proposition is sufficient to conclude that INMR,
IMORL, and FTR are equally expressive:
Proposition 3.2. Any policy ordering expressible with Functions from Trajectories to Reals (FTR)
can be expressed with Inner Nonlinear Markov Rewards (INMR). Proof: B.21

Briefly, our proof demonstrates that it is possible to express an arbitrary function from trajectories to
reals fFTR with an INMR specification (R, fINMR, γ) by selecting R and γ so that the trajectory
return function G is injective, and then setting fINMR equal fFTR ◦ G−1. The full proof is in
Appendix B.2. This proof notably relies on allowing fINMR to be an arbitrary function that need
not satisfy properties such as differentiability, continuity, or monotonicity. Since many possible
nonequivalent constraints might be of interest, we choose to define a very general version of INMR;
we discuss the implications of this choice in the next section, and in more detail in Appendix A.4.
Theorem 3.3. Outer Multi-Objective Reinforcement Learning (OMORL), Functions from Occupancy
Measures to Reals (FOMR), and Functions from Trajectory Lotteries to Reals (FTLR) are equally
expressive. Proof: B.24

We show that a) two policies have the same occupancy measure if and only if they generate the same
trajectory lottery, and b) it is always possible to specify an OMORL objective such that two policies
have the same policy evaluation vector (J⃗(π) := ⟨J1(π), ..., Jk(π)⟩) if and only if they have the same
occupancy measure. Therefore, the expressivity of a function from policy evaluation vectors to reals
is exactly the same as a function from occupancy measures to reals and a function from trajectory
lotteries to reals. It is worth noting that in order to possess this expressive power, OMORL requires
access to |S||A||S| reward functions for any environment E = (S,A, T , I). It may be infeasible
to specify and optimise an objective with so many reward functions in practice; in Section 4 and
Appendix A.4, we discuss the possibility of restricting the number of reward functions a multi-reward
objective can include.

Our third theorem is very similar to Theorem 3.3:
Theorem 3.4. Generalised Outer Multi-Objective RL (GOMORL), Occupancy Measures Orderings
(OMO), and Trajectory Lottery Orderings (TLO) are equally expressive. Proof: B.25

The proof of this theorem utilises the same lemmas as the proof of Theorem 3.3. Total preorders
over policy evaluation vectors, occupancy measure, and trajectory lotteries are all equally expressive,
because two policies share a trajectory lottery if and only if they share an occupancy measure if and
only if they share a policy evaluation vector (with appropriately selected reward functions).

3.2 NEGATIVE RESULTS

All proofs for the results in this subsection can be found in Appendix B.3.
Proposition 3.5. There exists a policy ordering that Linear Temporal Logic (LTL) and Limit Average
Rewards (LAR) can express but Reward Machines (RM) and Markov Rewards (MR) cannot express.
Proof: B.26

RM specifications can only induce policy evaluation functions that are continuous (in the sense that
infinitesimal changes to a policy can only lead to infinitesimal changes to the policy evaluation). Note
that it must also be true that Markov Rewards (MR) can only induce continuous policy evaluation
functions, because as shown in Appendix B.1, RM can express any policy evaluation function that
MR can express. LTL and LAR can induce discontinuous policy evaluation functions.
Proposition 3.6. There exists a policy ordering that Markov Rewards (MR) and Limit Average
Rewards (LAR) can express but Linear Temporal Logic (LTL) cannot express. Proof: B.24

An LTL specification can only assign a value of φ(ξ) = 0 or φ(ξ) = 1 to a trajectory, since
an LTL formula φ is either true or false for any given trajectory ξ. MR and LAR, on the other
hand, can give any scalar-valued rewards. In certain cases, this prevents LTL from differentiating
between trajectories — and lotteries over trajectories generated by policies — that MR and LAR
can distinguish. For instance, LTL cannot induce any strict ordering of 3 deterministic policies in a
deterministic environment.
Proposition 3.7. There exists a policy ordering that Linear Temporal Logic (LTL) and Markov
Rewards (MR) can express but Limit Average Rewards (LAR) cannot express. Proof: B.29
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LAR cannot distinguish between policies that generate the same trajectory lottery after a finite amount
of time, even if the lotteries they generate over initial trajectory segments are different. LTL and MR
can distinguish between policies based on differences that appear only early on in trajectories.
Proposition 3.8. There exists a policy ordering that Outer Nonlinear Markov Rewards (ONMR) can
express but Functions from Trajectories to Reals (FTR) cannot express. Proof: B.34

ONMR can express the objective of making a trajectory occur with at least some desired threshold
probability, while being indifferent to achieving probabilities higher than the threshold. For example,
this can be achieved (for a particular environment and reward specification) with the wrapper function

fONMR(x) =

{
1 if x ≥ 0.5,

0 otherwise
. By contrast, for an FTR specification (fFTR) to incentivise a

trajectory, fFTR must assign a higher value to that trajectory than others. However, this would
incentivise maximizing the probability of that trajectory, not merely meeting a threshold.
Proposition 3.9. There exists a policy ordering that Functions from Policies to Reals (FPR) can
express but Generalised Outer Multi-Objective RL (GOMORL) cannot express. Proof: B.36

A function from policies to reals can assign different values to any two distinct policies, even if
they only differ on states that both policies have probability zero of ever visiting. GOMORL cannot
express preferences between policies that are identical on all states visited with nonzero probability.
Proposition 3.10. There exists a policy ordering that Generalised Outer Multi-Objective RL (GO-
MORL) can express but Functions from Policies to Reals (FPR) cannot express. Proof: B.37

There exist lexicographic preference orderings of GOMORL policy evaluation vectors that cannot
be represented by any real-valued function (Steen & Seebach (2012)). These orderings of policy
evaluation vectors can be used to express tasks in GOMORL that are inexpressible in FPR.

4 DISCUSSION AND RELATED WORK

Previous work has attempted to settle the reward hypothesis, which states that "all of what we mean
by goals and purposes can be well thought of as maximization of the expected value of the cumulative
sum of a received scalar signal (called reward)" (Sutton (2004)). Related to this is the von Neumann-
Morgenstern (VNM) utility theorem, which states that an agent’s preferences between lotteries over
a finite set of outcomes can be represented as ordered according to the expected value of a scalar
utility function of the outcomes if and only if these preferences satisfy four axioms of rationality (the
VNM axioms) (Von Neumann & Morgenstern (1944)). Consequently, if one’s preferences cannot be
represented by a utility function, the preferences must violate at least one of these axioms.

The VNM theorem is typically considered in the context of single-decision problems, while RL is
applied to sequential decision-making. Without modification, the VNM theorem can be applied to
RL settings by taking the outcome space to be a finite set of (full) trajectories. It then states that an
agent’s preferences about lotteries over a finite number of trajectories can be expressed as a function
from trajectories to the reals (i.e., in the FTR formalism) if and only if those preferences satisfy the
VNM axioms. Close relatives of the FTR formalism as defined in this work have been studied in
Chatterji et al. (2022) and Pacchiano et al. (2021), though in these works the formalism is restricted
to trajectories of finite length (among other differences). Other recent work has proven stronger
statements about the required form of the trajectory return function under the supposition of additional
axioms for preferences over temporally extended outcomes that supplement the VNM axioms.

Pitis (2019), Shakerinava & Ravanbakhsh (2022), and Bowling et al. (2022) all identify axioms
from which it is possible to prove that preferences regarding temporally extended outcomes can be
expressed using Markovian rewards. All three papers identify slightly different axioms that, when
supplemented with the VNM axioms, enable this proof. One caveat is that all three papers show that
preferences can be represented with a Markovian reward function along with a transition-dependent
discount factor, rather than the traditional constant discount factor in MDPs.

The VNM theorem and the work that has adapted it to sequential decision-making settings present
axioms that must be violated for an objective to be inexpressible with Markov rewards or a function
from trajectories to reals. Our work demonstrates several objectives that Markov rewards and
functions from trajectories to reals cannot express, which raises the question: are there reasonable
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objectives that violate the axioms, or are the objectives we present unreasonable? We elaborate on
this tension in Appendix A.5, particularly for violations of the VNM axioms. In our work we also
assume a conventional constant discount factor, but future work could compare the expressive power
of formalisms that allow transition-dependent discount factors with the formalisms we consider.

Abel et al. (2022) formalise a task in three different ways. One is a set of acceptable policies, another
is an ordering over policies and the third is an ordering over trajectories. They find that for each
notion of a task there exists an instance that no Markov reward function can capture. The second
formalisation, policy orderings, is the one that we use, and we adapt their proof that Markov Rewards
cannot express an "XOR" policy ordering to display the expressive limitations of several formalisms.

Multi-Objective RL (MORL) has received considerable attention in the literature. Silver et al. (2021)
argues that maximization of a scalar reward is enough to drive most behaviour in natural and artificial
intelligence, while Vamplew et al. (2022) argue that multi-objective rewards are necessary. In
particular, Vamplew et al. (2022) argue that scalar reward is insufficient to develop and align Artificial
General Intelligence. Miura (2023) shows that multi-dimensional reward functions are also not
universally expressive; they state necessary and sufficient conditions under which a task defined as a
set of acceptable policies can be expressed with a multi-dimensional reward function. They use a
definition of MORL where a policy is acceptable if each dimension of reward is above a given lower
bound — we generalise this notion for one of our formulations of MORL . Algorithms for solving
multi-objective problems have been developed and used in several applications (Hayes et al. (2022);
Jalalimanesh et al. (2017); Castelletti et al. (2013)).

Skalse & Abate (2023) demonstrate that some multi-objective, risk-sensitive, and modal tasks
cannot be expressed with Markovian rewards. We analyse several formalisms related to this paper:
Generalised Outer MORL (GOMORL) is based on this paper’s definition of MORL, and our Inner
Nonlinear Markov Rewards (INMR) is partially motivated as a generalisation for risk-sensitive tasks.
We extend these definitions to study what we call Outer MORL (OMORL), Inner MORL (IMORL),
and Outer Nonlinear Markov Rewards (ONMR), which enables a robust comparison of the expressive
power of wrapper functions that are applied before and after taking an expected value over trajectories.
Skalse & Abate (2023) also use occupancy measures in a proof to demonstrate limitations of Markov
Rewards, and we find occupancy measures a sufficiently useful tool for reasoning about formalism
expressivity that we include Functions from Occupancy Measures to Reals and Occupancy Measure
Orderings as formalisms in our analysis. Our extensions are further justified by their relationships to
other prior work: Convex RL (e.g. Zahavy et al. (2023); Mutti et al. (2023)), also referred to as RL
with general utilities (Zhang et al., 2020), is equivalent to Functions from Occupancy Measures to
Reals (FOMR) except with a convexity constraint on the functions, and RL with vectorial rewards
(Cheung, 2019) is a special case of IMORL in the time-average reward setting.

Prior work has studied Reward Machines (RM), Limit Average Rewards (LAR), and Linear Temporal
Logic (LTL) as well. Icarte et al. (2018) point out that reward machines can trivially express all
objectives that Markov Rewards can express and provide rewards that depend on a finite number of
features of the history so far, rather than just the most recent transition. This paper also applies RM
specifications to toy tasks. Mahadevan (1996) investigates algorithms for learning goals specified
with Limit Average Rewards (LAR), but we have not found any work on the expressivity of LAR.

Littman et al. (2017) study LTL, which was previously utilised in control theory (Bacchus et al., 1970;
Puterman, 1994), in an RL setting. The authors mention that many common tasks can be expressed
with LTL, and are sometimes easier to express with LTL than with Markov Rewards. Related to LTL
is Signal Temporal Logic (STL), an extension of LTL to the continuous time domain, which has a
number of desirable properties (Balakrishnan & Deshmukh, 2019; Wang et al., 2023). However, in
this work we focus on objective specifications in discrete environments and using discrete time, for
which STL is equivalent to LTL.

When attempting to reverse engineer an agent’s utility function from its behavior, Maximum Entropy
Inverse RL makes an assumption that an agent’s distribution over actions has maximum entropy
(Ziebart et al. (2008)). Our formalism of Regularised RL relates to this concept by allowing any
function of the distributions over actions to be included in the RL objective.
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4.1 LIMITATIONS AND FUTURE WORK

In this paper, we focus on stationary policies, and define objectives as orderings of stationary policies.
In principle, however, policies can be history-dependent; that is, an agent can select actions based on
the history rather than just the most recent state. We make the choice to focus on stationary policies
because common RL algorithms (such as Q-learning (Watkins & Dayan (1992))) derive exclusively
stationary policies from state-action value functions. Many, but not all, of our expressivity results
carry over to the history-dependent setting. We hope to see future research extend our study to
history-dependent policies, and we discuss this topic in more detail in Appendix A.3.

A few of our results rely heavily on the technical details of the formalisms in ways that may reduce
their practical significance. For instance, Theorem 3.1 relies on the ability of Inner Nonlinear Markov
Rewards to utilise an arbitrary wrapper function for the trajectory return, and Theorems 3.3 and 3.4
require allowing multi-objective formalisms access to an arbitrary number of reward functions. One
direction for future work is to replicate our analysis under various restricting conditions; we discuss
some conditions that may be of interest in Appendix A.4.

Another limitation of our results is that we do not assess the important tradeoff between expressivity
and tractability. An important area for future work might be to identify which of the more expressive
formalisms considered here could be implemented in practice and provide guidance for balancing
expressivity and tractability in various practical settings. The research community can address this
question gradually by developing new algorithms to solve a range of problems with a variety of
formalisms. Understanding the expressivity-tractability tradeoff might also involve considering
restricting conditions for the formalisms, since the conditions required to make a formalism tractable
to optimise could reduce its expressivity.

Until the tractability of these formalisms is studied more carefully, it is difficult to draw a clear
conclusion about which formalisms are best to use in practice. A more immediate takeaway from our
results is that many of the formalisms are expressively incommensurable; for example, Limit Average
Reward, Linear Temporal Logic, Reward Machines, Regularised RL, and Outer Nonlinear Markov
Rewards can each express policy orderings that none of the others can express. This highlights the
importance of carefully selecting a formalism for any task of interest; our results elucidate strengths
and limitations of different formalisms that can inform these selections.

Future research can also explore reward learning with formalisms other than Markov Rewards. There
have been preliminary efforts in the direction of reward learning for Reward Machines (Icarte et al.
(2019)), Linear Temporal Logic (Neider & Gavran (2018)), and Limit Average Reward (Wu et al.
(2023)), but given the range of objectives that we show cannot be specified with Markov Rewards, it
may be important to further develop reward learning alternatives that allow us to reliably express the
objectives we desire across a variety of domains.

5 CONCLUSION

This paper provides a complete map of the relative expressivities of seventeen formalisms for specify-
ing objectives in RL. We discovered meaningful expressive limitations to all of these formalisms,6
including many of the alternatives and extensions to Markov rewards that have been discussed in the
existing literature. We also related practical formalisms to a number of theoretical constructs, such as
trajectory lotteries and occupancy measures, which help to fill out a richer intuitive picture of where
each formalism stands in the expressivity hierarchy. We hope our work will serve as a reference point
for future discussions of these methods for specifying temporally extended objectives, as well as
provide an impetus for future work that contextualises these results in light of the tradeoff between
expressivity and tractability that appears in both policy optimisation and reward learning.

REPRODUCIBILITY STATEMENT

All of our results are theoretical. All proofs can be found in Appendix B. For our definitions of
environments, objectives, total order and formalisms see Section 2. Any further assumptions have
been stated in the proofs.

6With the exception of Policy Orderings, which by our definition can express all objectives.
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7

21 + 34 +
7 + 24

21 + 34 +
7 + 24

21 + 34 +
7 + 24 +
9

21 + 34 +
7 + 11 +
25

21 + 34 +
7 + 24 +
10

21 + 34 +
7 + 11

21 + 34 +
12

FTR 15 + 1 13 14 15 21 21 35 34 34 + 7 34 + 7 +
24

34 + 7 +
24

34 + 7 +
24 + 9

34 + 7 +
11 + 25

34 + 7 +
24 + 10

34 + 7 +
11

34 + 12

RRL 5 39 31 31 31 + 15 +
21

31 + 15 +
21

31 + 15 31 31 + 7 31 + 7 +
24

31 + 7 +
24

31 + 7 +
24 + 9

31 + 7 +
11 + 25

31 + 7 +
24 + 10

31 + 7 +
11 + 25

31 + 12

ONMR 6 32 33 40 40 + 15 +
21

40 + 15 +
21

40 + 15 38 34 + 8 +
24

34 + 8 +
24

34 + 8 34 + 8 +
9

34 + 8 +
10 + 25

34 + 8 +
10

34 + 8 +
10 + 25

32 + 12

OMORL 7 + 6 24 + 8 +
13

24 + 8 +
14

24 + 8 +
15

24 + 8 +
21

24 + 8 +
21

24 + 8 24 + P2 7 24 24 11 + 36 24 + 9 +
37 + 25

24 + 9 +
37 + 25

24 + 9 +
37

11 + 36 +
12

FOMR 24 + 7 +
6

24 + 8 +
13

24 + 8 +
14

24 + 8 +
15

24 + 8 +
21

24 + 8 +
21

24 + 8 24 + P2 24 + 7 24 24 24 + 11 +
36

24 + 9 +
37 + 25

24 + 9 +
37 + 25

24 + 9 +
37

24 + 9 +
37 + 12

FTLR 8 + 15 +
1

8 + 13 8 + 14 8 + 15 8 + 21 8 + 21 8 P2 24 + 7 24 24 24 + 11 +
36

9 + 37 +
25

9 + 37 +
25

9 + 37 9 + 37 +
12

FPR 9 + 8 +
15 + 1

9 + 8 +
13

9 + 8 +
14

9 + 8 +
15

9 + 8 +
21

9 + 8 +
21

9 + 8 9 + P2 9 + 24 +
7

9 + 24 9 + 24 9 37 + 25 37 + 25 37 37 + 12

OMO 25 + 11 +
7 + 6

25 + 10 +
8 + 13

25 + 10 +
8 + 14

25 + 10 +
8 + 15

25 + 10 +
8 + 21

25 + 10 +
8 + 21

25 + 10 +
8

25 + 10 +
P2

25 + 11 +
7

25 + 11 25 + 10 +
24

25 + 10 +
24

25 + 36 25 25 25 + 36 +
12

TLO 10 + 8 +
15 + 1

10 + 8 +
13

10 + 8 +
14

10 + 8 +
15

10 + 8 +
21

10 + 8 +
21

10 + 8 10 + P2 25 + 11 +
7

25 + 11 10 + 24 10 25 + 36 25 25 25 + 36 +
12

GOMORL 11 + 7 +
6

25 + 10 +
8 + 13

25 + 10 +
8 + 14

25 + 10 +
8 + 15

25 + 10 +
8 + 21

25 + 10 +
8 + 21

25 + 10 +
8

25 + 10 +
P2

11 + 7 11 11 + 24 11 + 24 36 25 25 36 + 12

PO 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Table 2: Comprehensive table of expressivity comparisons. A green cell indicates that the formalism in the ROW can express the formalism in the COLUMN, and a
red cell indicates that it cannot. The numbers in the cells are the numbers of the propositions which prove the result in question.
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A APPENDIX: FURTHER DISCUSSION

A.1 POLICY ORDERINGS AS THE MEASURE OF EXPRESSIVITY

We opted to compare the expressivities of different objective-specification formalisms in terms of the
policy orderings they can induce because the policy ordering is the most fine-grained unit of analysis
(that we are aware of) for this purpose. We explain why we believe it would be less informative
to consider only a formalism’s ability to induce a desired optimal policy in Section 2.1. Another
alternative is to consider a formalism’s ability to induce a desired set of acceptable policies (SOAP),
as proposed in Abel et al. (2022). SOAPs are constructed by choosing a cutoff value to divide the
policies into two classes (i.e., the acceptable and the unacceptable), and discarding all information
about how the policies are ordered within each class. Thus, it is straightforward to see that policy
orderings contain strictly more information than do SOAPs, and so any difference in expressivity that
is captured by a SOAP task definition is also captured by the policy ordering task definition. The
latter is therefore the one that is maximally sensitive to expressive differences.

Additionally, our choice to use the total preorder over policies as the unit of analysis is more
continuous with the theoretical framework standardly employed in the formal theory of individual
decision-making. In that context, the central question takes the form: Which preference orderings
can be represented by a utility function (of a given sort)? For each of the formalisms considered in
our paper, we ask a similar question: Which policy orderings can be represented by an objective
specification in the formalism? We thought it would be valuable to maintain the parallels between
these two questions in our paper (and discuss the connection explicitly in Section 4 and Appendix A.5).

A.2 INDUCING TOTAL PREORDERS

Most of the formalisms in our work induce a scalar policy evaluation function, which in turn produces
a total preorder on the set of policies because the "≥" relation on R is a total preorder. The four
formalisms that do not induce a scalar policy evaluation function (Occupancy Measure Orderings,
Trajectory Lottery Orderings, Generalised Outer Multi-Objective RL, and Policy Orderings) all
include a total preorder on some set in their objective specifications, and the policy orderings they
produce inherit transitivity and strong connectedness from the specified total preorder.

A.3 HISTORY-DEPENDENT POLICIES

As mentioned in Section 4.1, one limitation of our work is that an analysis of formalisms’ ability to
express orderings over the set of stationary policies may not match a similar analysis that considers
orderings over the set of history-dependent policies. It is worth noting that many of our expressivity
results directly carry over to history-dependent policies. Firstly, if formalism A can express a
stationary policy ordering that is not expressible by formalism B, then clearly A can express an
ordering over history-dependent policies that B cannot. So every negative expressivity result (i.e.,
every red box in Table 2) carries over directly. Further, several of our positive proofs do not assume
that we are considering only stationary policies. For example, all trivial results in Appendix B.1
apply for history-dependent policies as well. Unfortunately, not all of our results carry over to the
history-dependent setting: it is fairly straightforward to show that a reward machine can provide
different amounts of reward to two history-dependent policies that have the same occupancy measure,
so Occupancy Measure Orderings (OMO) cannot express all history-dependent policy orderings that
Reward Machines (RM) can express. This is a significant departure from our findings, in which
OMO is near the top of the Hasse diagram and RM is near the bottom. We consider it an interesting
direction for future research to round out a comprehensive comparison of expressivity for history-
dependent policies, especially given that some formalisms (such as Functions from Trajectories
to Reals and Reward Machines) seem particularly well-suited to expressing tasks where history-
dependent policies are essential. To support such an endeavor, we include an incomplete table of
expressivity relationships for history-dependent policies below (Table 3).

A.4 EXPRESSIVITY UNDER RESTRICTING CONDITIONS

One concern about the practical utility of some of our results as they stand is that they are largely
blind to the ease or difficulty of using the theoretically available capabilities of the more expressive

15



formalisms for training models on objectives that cannot be captured by less expressive formalisms.
Some of our proofs lean heavily on technicalities of the formal definitions we offer, with little regard
for whether those technicalities can reasonably be trusted to lie available to RL algorithms in practice.
For example, the proof that INMR can express FTR relies on the fact that the Markovian trajectory
return can be chosen to be an injective function into the reals. In practice, however, computers can
only store numbers with finite precision, so we cannot assume that arbitrarily close real numbers will
always be distinguishable to an RL algorithm.

An obvious suggestion for how this problem might be solved is to attempt to redefine each formalism
in such a way that unreasonable technicalities are eliminated. Unfortunately, this strategy runs into a
familiar problem: virtually any formal definition of an informal concept can be “gamed” to flaunt
the intended spirit of that concept. For this reason, we believe an alternative strategy might be more
fruitful: Replicate these results under various carefully chosen restricting conditions, whose purpose
is to ensure that our theoretically sound results can be trusted to hold up in practice.

We offer the following (highly incomplete) list of potential restricting conditions:

1. Introduce a cutoff to the precision of the inputs available to the functions wrapping the
trajectory return(s) in INMR and IMORL, and wrapping the policy value(s) in ONMR and
OMORL. This cutoff could correspond to the precision with which modern-day computers
can store real numbers.

2. Introduce various other constraints on these wrapper functions. For instance, we might
require that they be continuous, differentiable, monotonic, analytic, or computable, among
other options.

3. Introduce an upper limit to the number of reward functions that may be employed in IMORL,
OMORL, and GOMORL. In particular, do not assume that this number may reach (or
exceed) the number of transitions in an environment |S ×A× S|.

A.5 CONNECTION TO THE VNM THEOREM

It is interesting to consider our results in light of the Von Neumann-Morgenstern (VNM) Utility
Theorem. In particular, subject to a few assumptions, we have the following:
Any trajectory lottery ordering that cannot be induced by FTR must violate at least one of the VNM
axioms.

To apply the VNM axioms, we need to restrict to an environment E in which only a finite number of
trajectories are possible, ΞE = {ξ1, ..., ξn}. Then, the VNM axioms read as follows:

1. Total Preorder: ⪰ over ∆(ΞE) is complete and transitive.
2. Continuity: For all Lπ1 , Lπ2 , Lπ3 ∈ ∆(ΞE) such that Lπ1 ≻ Lπ2 and Lπ2 ≻ Lπ3 , there

exist α, β ∈ (0, 1) such that Lπ1αLπ3 ≻ Lπ2 and Lπ2 ≻ Lπ1βLπ3 .
3. Independence: For all Lπ1

, Lπ2
, Lπ3

∈ ∆(ΞE) and for all α ∈ (0, 1):
Lπ1 ≻ Lπ2 ⇐⇒ Lπ1αLπ3 ≻ Lπ2αLπ3 .

(Here LαM = αL+ (1− α)M is the mixing operation.)

VNM Theorem: ⪰ over ∆(ΞE) respects Total Preorder, Continuity, and Independence if and only
if there exists a function u : ΞE → R such that for all Lπ1

, Lπ2
∈ ∆(ΞE),

Lπ1
⪰ Lπ2

⇐⇒ Eξ∼π1,T,I [u(ξ)] ≥ Eξ∼π2,T,I [u(ξ)]

Under the assumption that our policy preferences are determined by our preferences over trajectory-
lotteries (such that Lπ1

⪰ Lπ2
=⇒ π1 ⪰ π2), the RHS simply states the condition that there exists

an FTR objective specification, given by fFTR = u, which induces this policy ordering. Thus, in an
environment in which there are only finitely many possible trajectories, any policy ordering that
FTR cannot induce must violate either Continuity or Independence (Total Preorder is guaranteed
to hold by definition). Insofar as it is reasonable to evaluate policies based on the trajectory-lotteries
that they give rise to, and insofar as our preferences over trajectory lotteries ought to conform to
Continuity and Independence, we might justifiably wonder whether there is much to be gained from
moving up the Hasse diagram beyond FTR.
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Can ROW
express
COL-
UMN?

MR LAR LTL RM INMR IMORL FTR RRL ONMR OMORL FOMR FTLR FPR OMO TLO GOMORL PO

MR 26 26 31 26 + 13 +
21

26 + 13 +
21

26 + 13 1 + 15 +
35

1 + 15 +
34

1 + 15 +
34 + 7

26 + 13 +
8 + 24

26 + 13 +
8

26 + 13 +
8 + 9

26 + 13 +
8 + 10 +
25

26 + 13 +
8 + 10

1 + 15 +
34 + 7 +
11

26 + 12

LAR 29 29 29 + 1 29 + 1 +
15 + 21

29 + 1 +
15 + 21

29 + 1 +
15

13 + 35 13 + 34 13 + 34 +
7

13 + 34 +
7 + 24

13 + 34 +
7 + 24

13 + 34 +
7 + 24 +
9

13 + 34 +
7 + 11 +
25

13 + 34 +
7 + 11 +
25

13 + 34 +
7 + 11

29 + 12

LTL 30 30 30 + 15 30 + 1 +
15 + 21

30 + 1 +
15 + 21

30 + 1 +
15

14 + 35 14 + 34 14 + 34 +
7

14 + 34 +
7 + 24

14 + 34 +
7 + 24

14 + 34 +
7 + 24 +
9

14 + 34 +
7 + 11 +
25

14 + 34 +
7 + 11 +
25

14 + 34 +
7 + 11

30 + 12

RM 1 26 26 26 + 13 +
21

26 + 13 +
21

26 + 13 15 + 35 15 + 34 15 + 34 +
7

15 + 34 +
7 + 24

15 + 34 +
7 + 24

15 + 34 +
7 + 24 +
9

15 + 34 +
7 + 11 +
25

15 + 34 +
7 + 24 +
10

15 + 34 +
7 + 11

15 + 34 +
12

INMR 2 21 + 13 21 + 14 21 + 15 21 21 21 + 35 21 + 34 21 + 34 +
7

21 + 34 +
7 + 24

21 + 34 +
7 + 24

21 + 34 +
7 + 24 +
9

21 + 34 +
7 + 11 +
25

21 + 34 +
7 + 24 +
10

21 + 34 +
7 + 11

21 + 34 +
12

IMORL 21 + 2 21 + 13 21 + 14 21 + 15 21 21 21 + 35 21 + 34 21 + 34 +
7

21 + 34 +
7 + 24

21 + 34 +
7 + 24

21 + 34 +
7 + 24 +
9

21 + 34 +
7 + 11 +
25

21 + 34 +
7 + 24 +
10

21 + 34 +
7 + 11

21 + 34 +
12

FTR 15 + 1 13 14 15 21 21 35 34 34 + 7 34 + 7 +
24

34 + 7 +
24

34 + 7 +
24 + 9

34 + 7 +
11 + 25

34 + 7 +
24 + 10

34 + 7 +
11

34 + 12

RRL 5 39 31 31 31 + 15 +
21

31 + 15 +
21

31 + 15 31 31 + 7 31 + 7 +
24

31 + 7 +
24

31 + 7 +
24 + 9

31 + 7 +
11 + 25

31 + 7 +
24 + 10

31 + 7 +
11 + 25

31 + 12

ONMR 6 32 33 40 40 + 15 +
21

40 + 15 +
21

40 + 15 38 34 + 8 +
24

34 + 8 +
24

34 + 8 34 + 8 +
9

34 + 8 +
10 + 25

34 + 8 +
10

34 + 8 +
10 + 25

32 + 12

OMORL 7 + 6 7 24 11 + 36 24 + 9 +
37 + 25

24 + 9 +
37 + 25

24 + 9 +
37

11 + 36 +
12

FOMR 24 + 7 +
6

24 + 11 +
36

24 + 9 +
37 + 25

24 + 9 +
37 + 25

24 + 9 +
37

24 + 9 +
37 + 12

FTLR 8 + 15 +
1

8 + 13 8 + 14 8 + 15 8 + 21 8 + 21 8 P2 24 + 7 24 24 24 + 11 +
36

9 + 37 +
25

9 + 37 +
25

9 + 37 9 + 37 +
12

FPR 9 + 8 +
15 + 1

9 + 8 +
13

9 + 8 +
14

9 + 8 +
15

9 + 8 +
21

9 + 8 +
21

9 + 8 9 + P2 9 + 24 +
7

9 + 24 9 + 24 9 37 + 25 37 + 25 37 37 + 12

OMO 25 + 11 +
7 + 6

A.3 A.3 + 21
+ 15

A.3 + 21
+ 15

A.3 + 15 A.3 + 15
+ 8

25 + 36 A.3 + 15
+ 8 + 10

25 + 36 +
12

TLO 10 + 8 +
15 + 1

10 + 8 +
13

10 + 8 +
14

10 + 8 +
15

10 + 8 +
21

10 + 8 +
21

10 + 8 10 + P2 25 + 11 +
7

25 + 11 10 + 24 10 25 + 36 25 25 25 + 36 +
12

GOMORL 11 + 7 +
6

11 + 7 11 11 + 24 36 25 36 + 12

PO 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Table 3: Incomplete table of expressivity comparisons using history-dependent policies. A green cell indicates that the formalism in the ROW can express all
history-dependent policy orderings that the formalism in the COLUMN can express, a red cell indicates that the formalism in the ROW cannot do this, and a white
cell indicates that the result is not yet known. The numbers in the cells are the numbers of the propositions which prove the result in question.
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B APPENDIX: THEOREMS AND PROOFS

B.1 TRIVIAL RESULTS OF EXPRESSIVITY(X ⪰ Y )

Figure 2: This diagram displays straightforward inclusions of formalisms that are not necessarily
strict. Unlike in Figure 1, the absence of a sequence of arrows between two formalisms does not mean
anything here. This diagram is simply a useful guide to some basic positive results of expressivity
proven in this section.

The propositions in this section are proven formally, but each proof is preceded by an intuitive
argument. It will likely be helpful to have Table 1 readily available for reference while reading these
results and proofs.

Proposition B.1 (RM ⪰EXPR MR). Any policy ordering expressible with Markov Rewards can be
expressed with Reward Machines.

Intuition: A reward machine can use different reward functions depending on aspects of the history
it has seen so far. However, it can also use a constant reward function, in which case it is equivalent
to a Markov Rewards specification.

Proof. Let (RMR, γMR) be an arbitrary MR objective specification in an arbitrary environment.
Then the following RM specification (U, u0, δU , δR, γ) expresses the same policy ordering:

• U := {u0}

• u0 := u0

• ∀s ∈ S, δU (u0, s) := u0, where S is the set of states in the environment

• δR(u0, u0) := RMR

• γ := γMR
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Since the specified reward machine always utilises the same reward function and discount factor as
the MR specification, it yields the same exact policy evaluation function.

JRM (π) = Eξ∼π,T,I,δU ,u0

[ ∞∑
t=0

γtRt(st, at, st+1)

]
, where Rt = δR(ut, ut+1)

= Eξ∼π,T,I

[ ∞∑
t=0

γtMRRMR(st, at, st+1)

]
, since ut = u0∀t and δR(u0, u0) = RMR

= JMR(π)

Both RM and MR derive policy orderings directly from the policy evaluation functions, so this
means the two specifications induce the same policy ordering. Therefore, for any MR specification in
any environment, it is possible to construct an RM specification which expresses the same policy
ordering.

Proposition B.2 (INMR ⪰EXPR MR). Any Markovian Reward specification can be captured by
an Inner Nonlinear Markovian Reward specification. (∀E ∈ Envs, OrdMR(E) ⊆ OrdINMR(E))

Intuition: If the wrapper function in INMR is set to be the identity function, then that function
becomes idle, and the INMR policy evaluation function reduces to the MR policy evaluation function:

JINMR(π) :=
E,π

E
ξ
[f(G(ξ))] =

E,π

E
ξ
[G(ξ)] =: JMR(π)

Proof. We must show that for any environment E and Markovian Reward specification OMR =
(R, γ), there is an Inner-nonlinear specificationOINMR = (R̃, f̃ , γ̃) such that ⪯E,OINMR

is identical
to ⪯E,OMR

. We construct OINMR as follows:

• R̃ := R

• f̃ : R → R is the identity (f̃(x) = x).

• γ̃ := γ

We can see immediately that JE,OMR
(π) = JE,OINMR

(π) for all π ∈ ΠE , and thus these two
specifications induce the same policy ordering.

Proposition B.3 (IMORL ⪰EXPR INMR). Any policy ordering expressible with an Inner Non-
linear Markov Reward specification can be expressed with an Inner Multi-Objective RL specification.

Intuition: IMORL can always choose to use the same reward function, wrapper function, and
discount factor as INMR, and can always choose not to use more than one reward function.

Proof. Let (RINMR, fINMR, γINMR) be an arbitrary INMR objective specification in an arbitrary
environment. Construct the IMORL specification (k,R, f, γ) as follows:

• k = 1

• R = RINMR (since k = 1, Rk = R and R is a function from S ×A× S to R)

• f = fINMR

• γ = γINMR

We can see immediately that JIMORL(π) = JINMR(π) for all π ∈ ΠE , and thus these two
specifications induce the same policy ordering.

Proposition B.4 (FTR ⪰EXPR IMORL). Any policy ordering expressible with an Inner Multi-
Objective RL specification can be expressed with a Function from Trajectories to Reals.
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Intuition: The expression f(G1(ξ), ..., Gk(ξ)) in the IMORL policy evaluation function is a function
from trajectories to reals.

Proof. Let (k,R, fIMORL, γ) be an arbitrary IMORL objective specification in an arbitrary environ-
ment. Then the following FTR specification (fFTR) expresses the same policy ordering:

• fFTR(ξ) = fIMORL

( ∞∑
t=0

γtR1(st, at, st+1), ...,
∞∑
t=0

γtRk(st, at, st+1)

)
Here, Ri(s, a, s

′) := R(s, a, s′)[i]. This is a function from trajectories to reals because a trajectory
ξ = (s0, a0, s1, a1, ...) uniquely defines (st, at, st+1) for all t.

Proposition B.5 (RRL ⪰EXPR MR). Any policy ordering expressible with Markov Rewards can
be expressed with Regularised RL. (∀E ∈ Envs, OrdMR(E) ⊆ OrdRRL(E))

Intuition: The additional term in the RRL objective, αF [π(s)], can be set to zero by selecting α = 0.
This makes the RRL objective identical to the MR objective.

Proof. We must show that, for any environment E and Markovian Reward specification OMR =
(R, γ), there is a Regularised RL Specification ORRL = (R̃, α̃, F̃ , γ̃) such that ⪯E,ORRL

is identical
to ⪯E,OMR

. We construct ORRL as follows:

• R̃ := R

• F̃ : ∆A→ R is any function.

• α̃ := 0

• γ̃ := γ

We can see immediately that JE,OMR
(π) = JE,ORRL

(π) for all π ∈ ΠE , and so these two specifica-
tions induce the same policy ordering.

Proposition B.6 (ONMR ⪰EXPR MR). Any policy ordering expressible with a Markov Reward
specification can be expressed with an Outer Nonlinear Markov Reward specification.

Intuition: ONMR can specify the same reward function and discount factor as MR, then select the
identity as a wrapper function so that the function does not affect anything.

Proof. Let (RMR, γMR) be an arbitrary MR objective specification in an arbitrary environment.
Construct an ONMR specification (RONMR, f, γONMR) as follows:

• RONMR = RMR

• f : R → R is the identity function, f(x) = x

• γONMR = γMR

We can see immediately that JE,OONMR
(π) = JE,OMR

(π) for all π ∈ ΠE , and so these two
specifications induce the same policy ordering.

Proposition B.7 (OMORL ⪰EXPR ONMR). Any policy ordering expressible with an Outer Non-
linear Markov Reward specification can be expressed with an Outer Multi-Objective RL specification.

Intuition: The OMORL specification can use the same reward function, discount factor, and wrapper
function as ONMR, and can simply not use more than one reward function.

Proof. Let (RONMR, fONMR, γONMR) be an arbitrary ONMR objective specification in an arbi-
trary environment. Construct an OMORL specification (k,R, f, γ) as follows:
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• k = 1

• R = RONMR (since k = 1, Rk = R and R is a function from S ×A× S to Rk = R)

• f = fONMR

• γ = γONMR

We can see immediately that JE,OOMORL
(π) = JE,OONMR

(π) for all π ∈ ΠE , and so these two
specifications induce the same policy ordering.

Proposition B.8 (FTLR ⪰EXPR FTR). Any policy ordering expressible with Functions from
Trajectories to Reals can be expressed with Functions from Trajectory Lotteries to Reals.

Intuition: One way to evaluate a trajectory lottery is to assign values to each individual trajectory
and then use the probabilities from the lottery to take an expectation. A function from trajectory
lotteries to the reals that does this is equivalent to an FTR specification that assigns the same values
to individual trajectories.

Proof. Let (fFTR) be an arbitrary FTR objective specification in an arbitrary environment. Then the
following FTLR specification (fFTLR) expresses the same policy ordering:

• fFTLR(Lπ) = EE,π
ξ [fFTR(ξ)]

Here, Lπ is the lottery over trajectories that is produced by policy π in the environment. Since
JFTLR(π) := fFTLR(Lπ), the equivalency of JFTLR and JFTR is immediate: JFTLR(π) :=

fFTLR(Lπ) = EE,π
ξ [fFTR(ξ)] =: JFTR(π).

Proposition B.9 (FPR ⪰EXPR FTLR). Any policy ordering expressible with Functions from
Trajectory Lotteries to Reals can be expressed with Functions from Policies to Reals.

Intuition: An FTLR specification assigns a value to each policy based on the trajectory lottery it
generates. This is evidently expressible as a policy evaluation function.

Proof. Let (fFTLR) be an arbitrary FTLR objective specification in an arbitrary environment. Then
the following FPR specification (JFPR) expresses the same policy ordering:

• JFPR(π) := fFTLR(Lπ)

Here, Lπ is the lottery over trajectories that is produced by policy π in the environment. Since
JFTLR(π) := fFTLR(Lπ), the equivalency of JFTLR and JFPR is immediate.

Proposition B.10 (TLO ⪰EXPR FTLR). Any policy ordering expressible with a Function from
Trajectory Lotteries to Reals can be expressed with a Trajectory Lottery Ordering.

Intuition: A function from trajectory lotteries to the reals induces a total preorder because the "≥"
relation on R is a total preorder. This same total preorder can always be expressed directly over the
trajectory lotteries as well.

Proof. Let (fFTLR) be an arbitrary FTLR objective specification in an arbitrary environment. Then
the following TLO specification (⪰L) expresses the same policy ordering:

• Lπ1
⪰L Lπ2

⇐⇒ fFTLR(Lπ1
) ≥ fFTLR(Lπ2

)

Here, Lπ is the lottery over trajectories that is produced by policy π in the environment. This ⪰L is a
valid total preorder on LΠ because it is transitive and strongly connected.
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Now:

π1 ⪰OTLO
π2 ⇐⇒ Lπ1

⪰L Lπ2

⇐⇒ fFTLR(Lπ1) ≥ fFTLR(Lπ2)

⇐⇒ JFTLR(π1) ≥ JFTLR(π2)

⇐⇒ π1 ⪰OFTLR
π2

Proposition B.11 (GOMORL ⪰EXPR OMORL ). Any policy ordering expressible with an Outer
Multi-Objective RL specification can be expressed with a Generalised Outer Multi-Objective RL
specification.

Intuition: An OMORL specification orders policies according to the values assigned by a function
from policy-evaluation vectors J⃗(π) to the reals. A GOMORL specification can directly order the
policy evaluation vectors the same way. That is, f(J⃗1) ≥ f(J⃗2) ⇐⇒ J⃗1 ⪰J J⃗2.

Proof. Let (kOMORL,ROMORL, f, γOMORL) be an arbitrary OMORL objective speci-
fication in an arbitrary environment. Then the following GOMORL specification
(kGOMORL,RGOMORL, γGOMORL,⪰J) expresses the same policy ordering:

• kGOMORL = kOMORL = k

• RGOMORL = ROMORL

• γGOMORL = γOMORL

• ∀J⃗1, J⃗2 ∈ Rk : f(J⃗1) ≥ f(J⃗2) ⇐⇒ J⃗1 ⪰J J⃗2

With this specification:

π1 ⪰OOMORL
π2 ⇐⇒ f(J⃗(π1)) ≥ f(J⃗(π2))

⇐⇒ J(π1) ⪰J J⃗(π2)

⇐⇒ π1 ⪰OGOMORL
π2

Proposition B.12 (PO ⪰EXPR F , for any objective specification formalism F ).

By definition, any policy ordering in any environment is expressible with a Policy Ordering specifica-
tion (⪰π).

Proposition B.13 (FTR ⪰EXPR LAR). Any policy ordering expressible with a Limit Average
Reward specification can be expressed with a Function from Trajectories to Reals.

Intuition: The limit average reward is a value assigned to a trajectory. A function from trajectories
to reals can assign the limit average reward of a particular reward function to each trajectory.

Proof. Let (R) be an arbitrary LAR objective specification in an arbitrary environment. Then the
following FTR specification (fFTR) expresses the same policy ordering:

fFTR(ξ) = lim
N→∞

[
1

N

N−1∑
t=0

R(st, at, st+1)

]

Then:

JLAR(π) = lim
N→∞

[
Eπ,T,I

[
1

N

N−1∑
t=0

R(st, at, st+1)

]]
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We have bounded rewards, i.e. ∀(st, at, st+1), R(st, at, st+1) < Rmax, where Rmax is the maxi-
mum reward assigned to any transition by the reward function. This means that the average reward
converges: limN→∞

[
1
N

∑N−1
t=0 R(st, at, st+1)

]
= X < ∞. These two facts and Lebesgue’s

Dominated Convergence Theorem imply that we can move the expectation outside the limit. So:

JLAR(π) = Eπ,T,I

[
lim

N→∞

[
1

N

N−1∑
t=0

R(st, at, st+1)

]]

The expression inside the expectation is equal to fFTR(ξ), therefore:

JLAR(π) = Eπ,T,I [fFTR(ξ]] = JFTR(π)

Proposition B.14 (FTR ⪰EXPR LTL). Any policy ordering expressible with Linear Temporal
Logic can be expressed with Functions from Trajectories to Reals.

Intuition: An LTL formula is a function that assigns the value 0 to trajectories in which the formula
is false and the value 1 to trajectories in which the formula is true. This is a special case of a function
from trajectories to reals.

Proof. Let (φ) be an arbitrary LTL objective specification in an arbitrary environment. Then the
following FTR specification (fFTR) expresses the same policy ordering:

• fFTR(ξ) := φ(ξ)

(An LTL formula assigns a truth value of 0 or 1 to any given trajectory, so a formula is a function
from trajectories to {0, 1}. This is a special case of a function from trajectories to reals.)

Proposition B.15 (FTR ⪰EXPR RM ). Any policy ordering expressible with Reward Machines
(RM) can be expressed with Functions from Trajectories to Reals (FTR).

Intuition: Reward machines give step-by-step rewards in a trajectory based on aspects of the history
so far. The behavior of a reward machine for an entire trajectory is fixed by the states and actions
in the trajectory, so the discounted sum of rewards that a reward machine yields is a function from
trajectories to reals.

Proof. Let (U, u0, δU , δR, γ) be an arbitrary RM objective specification in an arbitrary environment.
Then the following FTR specification (fFTR) expresses the same policy ordering:

• fFTR(ξ) :=
∞∑
t=0

γt (δR(ut, ut+1)(st, at, st+1))

Here, ut is the state of the specified reward machine at time step t. This value is well-defined given
U, u0, δU , and ξ, because u0 is the starting machine state, and given a machine state at any time t,
ut+1 = δU (ut, st, at, st+1). ξ specifies st and at for all t, and given u0 and δU , the machine state at
any time step can be derived using this rule iteratively starting from u0.

Since ut is well-defined for all t, so is δR(ut, ut+1), and so is fFTR(ξ).

This FTR specification induces the same policy ordering as the RM specification above:

JFTR(π) :=
E,π

E
ξ
[fFTR(ξ)]

=
E,π,u0,δU

E
ξ

[ ∞∑
t=0

γt (δR(ut, ut+1)(st, at, st+1))

]
= JRM (π)
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Both FTR and RM derive policy orderings directly from the policy evaluation functions, so this
means the two specifications induce the same policy ordering.

Proposition B.16 (FTLR ⪰EXPR RRL). Any policy ordering expressible with Regularised RL
(RRL) can be expressed with Functions from Trajectory Lotteries to Reals (FTLR).

Intuition: Two policies generate the same trajectory lottery if and only if they are identical on
all states that either policy ever visits with nonzero probability. If two policies are identical on all
states visited with nonzero probability, then an RRL specification must assign them the same value.
Therefore, a well-defined function can take a trajectory lottery as input and output the value assigned
by an RRL specification to all policies that generate the given trajectory lottery.

Proof. Let (R, α, F, γ) be an arbitrary RRL objective specification in an arbitrary environment. Then
the following FTLR specification (fFTLR) expresses the same policy ordering:

• fFTLR(Lπ) := JRRL(π) := EE,π
ξ

[ ∞∑
t=0

γt (R(St, At, St+1)− αF [π(St)])

]
Here, Lπ is the lottery over trajectories that is produced by policy π in the environment. Since
JFTLR(π) := fFTLR(Lπ), the equality of JFTLR and JRRL on all policies is immediate. However,
we must verify that this function from trajectory lotteries to reals is well-defined, i.e. that Lπ1

=
Lπ2

=⇒ JRRL(π1) = JRRL(π2).

Since rewards in Regularised RL are given step-by-step, the policy evaluation function can be
rewritten as follows:

JRRL(π) :=
E,π

E
ξ

[ ∞∑
t=0

γt (R(St, At, St+1)− αF [π(St)])

]

JRRL(π) :=

∞∑
t=0

∑
(s,a,s′)∈S×A×S

PE,π
ξ [St = s,At = a, St+1 = s′]

(
γt(R(s, a, s′)− αF [π(s)])

)

Lemma B.17. If Lπ1
= Lπ2

, then for all t and for all (s, a, s′) ∈ S ×A× S:

PE,π1

ξ [St = s,At = a, St+1 = s′] = PE,π2

ξ [St = s,At = a, St+1 = s′]

Proof of Lemma. First recall the definition of a trajectory lottery:

Let Ξk be the set of all initial trajectory segments of length 2(k+1). We write [ξ]k for the first 2(k+1)
elements of ξ. Define Lk,π ∈ ∆(Ξk) : Lk,π(ξk = ⟨s0, a0, ..., sk, ak⟩) = Pξ∼π,T,I([ξ]k = ξk). A
trajectory lottery Lπ is then defined as the infinite sequence of Lk,π , Lπ := (L0,π, L1,π, L2,π, ...).

Now, let Ξt+1,(s,a,s′) be the set of trajectory segments of length 2(t+ 2) which have (s, a, s′) as the
most recently completed transition. We can then see that for a given t and π:

PE,π
ξ [St = s,At = a, St+1 = s′] =

∑
ξt+1,(s,a,s′)∈Ξt+1,(s,a,s′)

Lt+1,π(ξt+1,(s,a,s′))

Equivalently, in words, the probability that the transition (s, a, s′) is taken from time step t to t+ 1
is equal to the sum of the probabilities of all the trajectory segments of length t + 2 that have the
transition (s, a, s′) from time step t to t+ 1. (The reason we look at trajectory segments of length
t+ 2 is that time indexing starts at 0, so we need t+ 2 steps to get to the step indexed by t+ 1.)

The right-hand side of this equation is fully determined by Lπ, so the left-hand side is also fully
determined by Lπ . This completes the proof of Lemma B.17.

Corollary B.17.1. If Lπ1 = Lπ2 , then for all t and for all s ∈ S,PE,π1

ξ [St = s] = PE,π2

ξ [St = s].
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This follows straightforwardly from Lemma B.17 by marginalising over a and s′.

Corollary B.17.2. If Lπ1
= Lπ2

, then for all t and for all (s, a) ∈ S ×A,PE,π1

ξ [St = s,At = a] =

PE,π2

ξ [St = s,At = a].

This follows straightforwardly from Lemma B.17 by marginalising over s′.

Corollary B.17.3. If Lπ1 = Lπ2 , then π1(s) = π2(s) for all states s that either policy ever visits
with nonzero probability.

Proof of B.17.3. First, note that if either π1 or π2 ever visits a state s∗ with nonzero probability, then
by B.17.1, there exists t∗ such that PE,π1

ξ [St∗ = s∗] = PE,π2

ξ [St∗ = s∗] > 0. If π1(s∗) ̸= π2(s
∗),

there must be an action a∗ such that π1(a∗|s∗) > π2(a
∗|s∗). But by B.17.2, we know that since

Lπ1
= Lπ2

, PE,π1

ξ [St = s∗, At = a∗] = PE,π2

ξ [St = s∗, At = a∗]. Thus:

PE,π1

ξ [St = s∗, At = a∗] = PE,π2

ξ [St = s∗, At = a∗]

PE,π1

ξ [St = s∗]π1(a
∗|s∗) = PE,π2

ξ [St = s∗]π2(a
∗|s∗)

PE,π1

ξ [St = s∗]π1(a
∗|s∗) = PE,π1

ξ [St = s∗]π2(a
∗|s∗) (by Corollary B.17.1)

π1(a
∗|s∗) = π2(a

∗|s∗)

So the two policies must agree on s∗ after all.

We require one more lemma to show that Lπ1 = Lπ2 =⇒ JRRL(π1) = JRRL(π2).

Lemma B.18. If Lπ1
= Lπ2

, then for all t and for all (s, a, s′) ∈ S ×A× S:
PE,π1

ξ [St = s,At = a, St+1 = s′] (γt(R(s, a, s′)− αF [π1(s)])) = PE,π2

ξ [St = s,At = a, St+1 =

s′] (γt(R(s, a, s′)− αF [π2(s)])) for any RRL specification (R, α, F, γ).

Proof of B.18. Lemma B.17 states that if Lπ1 = Lπ2 , then for all t and for all (s, a, s′) ∈ S×A×S:

PE,π1

ξ [St = s,At = a, St+1 = s′] = PE,π2

ξ [St = s,At = a, St+1 = s′]

So it remains to be shown that PE,π1

ξ [St = s,At = a, St+1 = s′] (γt(R(s, a, s′)− αF [π1(s)])) =

PE,π1

ξ [St = s,At = a, St+1 = s′] (γt(R(s, a, s′)− αF [π2(s)])). Consider the following two cases.
Case 1: PE,π1

ξ [St=s,At=a, St+1=s
′] = 0. In this case, because both sides are equal to 0:

PE,π1

ξ [St=s,At=a, St+1=s
′]
(
γt(R(s, a, s′)− αF [π1(s)])

)
= . . .

PE,π1

ξ [St=s,At=a, St+1=s
′]
(
γt(R(s, a, s′)− αF [π2(s)])

)
Case 2: PE,π1

ξ [St = s,At = a, St+1 = s′] > 0. In this case, π1(s) = π2(s) by Corollary B.17.3.
Therefore, (γt(R(s, a, s′)− αF [π1(s)])) = (γt(R(s, a, s′)− αF [π2(s)])), and by extension:

PE,π1

ξ [St = s,At = a, St+1 = s′]
(
γt(R(s, a, s′)− αF [π1(s)])

)
= . . .

PE,π1

ξ [St = s,At = a, St+1 = s′]
(
γt(R(s, a, s′)− αF [π2(s)])

)
Since these cases are exhaustive, this concludes the proof of the lemma.

Finally, recall that:

JRRL(π) :=

∞∑
t=0

∑
(s,a,s′)∈S×A×S

PE,π
ξ [St = s,At = a, St+1 = s′]

(
γt(R(s, a, s′)− αF [π(s)])

)
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By Lemma B.18, Lπ1
= Lπ2

=⇒ JRRL(π1) = JRRL(π2). This means that the FTLR specification
given by fFTLR(Lπ) := JRRL(π) is well-defined.

Both FTLR and RRL derive policy orderings directly from the policy evaluation functions, so this
means the two specifications induce the same policy ordering. Therefore, we’ve shown that for
any RRL specification in any environment, it is possible to construct an FTLR specification which
expresses the same policy ordering. This concludes the proof of the proposition.

Proposition B.19 (FTLR ⪰EXPR OMORL). Any policy ordering expressible with Outer Multi-
Objective RL (OMORL) can be expressed with Functions from Trajectory Lotteries to Reals (FTLR).

Intuition: Two policies generate the same trajectory lottery if and only if they are identical on all
states that either policy ever visits with nonzero probability. If two policies are identical on all states
visited with nonzero probability, then an OMORL specification must assign them the same value.
Therefore, a well-defined function can take a trajectory lottery as input and output the value assigned
by an OMORL specification to all policies that generate the given trajectory lottery.

Proof. Let k,R, f, γ be an arbitrary OMORL objective specification in an arbitrary environment.
Then the following FTLR specification (fFTLR) expresses the same policy ordering:

• fFTLR(Lπ) := JOMORL(π) := f (J1(π), ..., Jk(π)), where

Ji(π) := Eξ

[ ∞∑
t=0

γtRi(st, at, st+1)

]
Here, Lπ is the lottery over trajectories that is produced by policy π in the environment. Since
JFTLR(π) := fFTLR(Lπ), the equivalency of JFTLR and JOMORL is immediate: JFTLR(π) :=
fFTLR(Lπ) := JOMORL(π). However, we must verify that this function from trajectory lotteries
to reals is well-defined, i.e. that Lπ1

= Lπ2
=⇒ JOMORL(π1) = JOMORL(π2). A trajectory

lottery and an OMORL specification together fix all relevant quantities for computing Ji(π) :=

Eξ

[ ∞∑
t=0

γtRi(st, at, st+1)

]
for all i ∈ [k]. Given all the Ji values, the OMORL specification also

fixes f (J1(π), ..., Jk(π)). Therefore, a trajectory lottery and an OMORL specification together
uniquely specify a value of JOMORL(π) := f (J1(π), ..., Jk(π)), and fFTLR above is well-defined.

Both FTLR and OMORL derive policy orderings directly from the policy evaluation functions, so this
means the two specifications induce the same policy ordering. Therefore, we’ve shown that for any
OMORL specification in any environment, it is possible to construct an FTLR specification which
expresses the same policy ordering.
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B.2 NOVEL RESULTS OF EXPRESIVITY (X ⪰ Y )

Lemma B.20. For any environment E = (S,A,T,I), there exists a reward function R : S ×A×S → R
and discount factor γ ∈ [0, 1) such that the trajectory return functionG(ξ) :=

∞∑
t=0

γtR(St, At, St+1)

is injective.

Proof. Let X be a finite set with |X| > 1 and let Ξ = Xω be the set of infinite sequences of
members of X . Let R : X → R be a reward function and let γ ∈ [0, 1) be a discount factor. Define
GR : Ξ → R such that G(ξ) :=

∑∞
t=0 γ

tR(xt).

Let the reward function R be any injective function. Since X is finite and R is injective, there exists
a positive real number M = maxx,y∈X(|R(x)−R(y)|). Also, since R is injective, there exists a
nonzero positive real number m = minx,y∈X(|R(x)−R(y)|) (for x ̸= y).

Now let ξ1 and ξ2 be two sequences that differ first at position s. Then:

G(ξ1)−G(ξ2) =

∞∑
t=0

γt(R(xt)−R(yt)) = γs
∞∑
r=0

γr(R(xr)−R(yr))

Since ξ1 and ξ2 must differ at position s (r = 0), the difference of rewards at that position must be at
least m. Subsequently, the difference of rewards can be at most M . So we can try to compensate for
the difference of m at r = 0 by subtracting differences of M at positions r > 0.

We will never be able to fully compensate if m > γM
1−γ ⇒ m(1− γ) > γM (∗) .

Note that since M > m, we must have γ < 1/2.

But also, the maximum difference between reward assignments must be at least (|X| − 1) times the
minimum difference, so we have the constraint: M ≥ m(|X| − 1). Combined with (∗), this entails
that γ < 1/|X| .

Thus, for any γ satisfying this constraint, simply take an injective reward function R : X →
{0,m, ...,m(|X| − 1)}. Then for any two sequences ξ1 and ξ2 that differ anywhere, the difference
between their corresponding trajectory returns G(ξ1) and G(ξ2) will be nonzero. Thus, we have
chosen R and γ such that G : Ξ → R is injective (and we can always make it surjective by restricting
the codomain to the image of Ξ under G).

Note that this scheme will result in a very small γ for large enviroments. Next we will use this lemma
to prove that INMR, IMORL, and FTR are equivalent.

Theorem B.21 (INMR ∼EXPR IMORL ∼EXPR FTR (Theorem 3.1 in Section 3)). Inner
Nonlinear MR (INMR), Inner Multi-Objective RL (IMORL) and Functions from Trajectories to Reals
(FTR) can each express every policy ordering on any environment that the other two formalisms can
express

Proof. It is trivial that IMORL can express INMR and that FTR can express IMORL and INMR, so
if we prove that INMR can express FTR we have proved that the three formalisms are equivelent.

We need to show that, given any FTR objective specification (f) , there exists an INMR objective
specification (R, γ, h) such that f = h ◦GR.

To show this, we use B.20.

If the state space S and action space A are both finite, then it is always possible to specify a reward
function R : S ×A× S → R and a discount factor γ ∈ [0, 1) such that the function GR,γ : Ξ → R
is an injective function.

Hence, choose (R, γ) such that GR,γ(ξ) is injective. We can also make it surjective by restricting
the codomain R to the image of Ξ under GR,γ . Thus, we can make GR,γ invertible.

Then, construct h : R → R as: h = f ◦G−1
R,γ .
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As discussed previously this proof requires arbitrarily complex functions and infinite precision to
hold in the general case. In many practical situations it would be reasonable to say that FTR≻EXPR

IMORL ≻EXPR INMR but it is still interesting that these formalisms are equivalent in the unrestricted
mathematical sense.

Lemma B.22. Let J⃗OMORL(π) = ⟨J1(π), ..., Jk(π)⟩ ∈ Rk for an OMORL specification
OOMORL = (k,R, f, γ). Then for any environment E = (S,A, T , I) and any FOMR specifi-
cation (fFOMR, γFOMR), there exists an OMORL specification OOMORL = (k,R, f, γ) such that
J⃗OMORL(π) = m⃗(π).

Proof. Since m⃗(π) ∈ R|S||A||S| and J⃗OMORL(π) ∈ Rk, k must equal |S||A||S| in order to allow
J⃗OMORL(π) = m⃗(π). Let us define |S| × |A| × |S| reward functions indexed by a s, a, s′ triple, as
follows: Rijk(sl, am, sn) = δilδjmδkn. Here, δ is the Kronecker delta function:

δab :=

{
1, if a = b,

0, otherwise.

Essentially, reward function Rijk provides reward 1 for the transition (si, aj , sk) and reward 0 for all
other transitions. Also, let γ = γFOMR. Then,

Jijk(π) =
∑
l,m,n

∑
t

γtP (st = sl, at = am, st+1 = sn)Rijk(sl, am, sn)

=
∑
l,m,n

∑
t

γtFOMRP (st = sl, at = am, st+1 = sn) δilδjmδkn

=
∑
t

γtFOMRP (st = si, at = aj , st+1 = sk) =: m⃗(π)[si, aj , sk]

Since all components of J⃗OMORL(π) and m⃗(π) match, J⃗OMORL(π) = m⃗(π).

S×A×S could be a very large number of reward functions and therefore in many practical situations
FOMR ≻EXPR OMORL and OMO ≻EXPR GOMORL.

Lemma B.23. For any environment E = (S,A, T , I) and discount factor γ, m⃗(π1) = m⃗(π2) ⇐⇒
Lπ1 = Lπ2 .

Proof. Direction 1: Lπ1
= Lπ2

=⇒ m⃗(π1) = m⃗(π2)

Consider the set Ξ∗
k = {ξk ∈ Ξk | sk = s, ak = a, sk+1 = s′}. Then,

Pπ(sk = s, ak = a, sk+1 = s′) =
∑

ξk∈Ξ∗
k

Lk,π(ξk)

If Lπ1 = Lπ2 , then Lk,π1 = Lk,π2 ∀k ∈ N. Thus, at every time-step t:

Pπ1
(st = s, at = a, st+1 = s′) =

∑
ξt∈Ξ∗

t

Lt,π1
(ξt) =

∑
ξt∈Ξ∗

t

Lt,π2
(ξt) = Pπ2

(st = s, at = a, st+1 = s′)

Therefore,

m⃗(π1)[s, a, s
′] =

∞∑
t=0

γtPπ1(st = s, at = a, st+1 = s′) =

∞∑
t=0

γtPπ2(st = s, at = a, st+1 = s′) = m⃗(π2)[s, a, s
′]

Direction 2: m⃗(π1) = m⃗(π2) =⇒ Lπ1 = Lπ2

To prove this direction we will show the contrapositive, i.e. Lπ1
̸= Lπ2

=⇒ m⃗(π1) ̸= m⃗(π2).
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Suppose Lπ1
̸= Lπ2

. This means there exists some state s and a subsequent state s′ that both
policies visit with the same nonzero probability such that π1(s) ̸= π2(s). (This might be the initial
state, if they diverge right away.) If they were identical on every visited state, they would produce
the same trajectory lottery. There must be two actions, a1 and a2, such that π1(a1|s) > π2(a1|s)
and π2(a2|s) > π1(a2|s). For both sets of probabilities to sum to one, π1 can’t assign a greater
probability to all actions at s.

Now, considering the transition to s′:

m⃗(π1)[s, a1, s
′]

m⃗(π1)[s, a2, s′]
=

∑
t γ

tPπ1(st = s, at = a1, st+1 = s′)∑
t γ

tPπ1(st = s, at = a2, st+1 = s′)

=

∑
t γ

tPπ1(st = s)π1(at = a1|st = s)T (st+1 = s′|at = a1, st = s)∑
t γ

tPπ1(st = s)π1(at = a2|st = s)T (st+1 = s′|at = a2, st = s)

Since we’re considering stationary policies only, π1(at = a|st = s) = π1(a|s). The transition
function is also time independent. Therefore:

m⃗(π1)[s, a1, s
′]

m⃗(π1)[s, a2, s′]
=
π1(a1|s)T (s′|a1, s)

∑
t γ

tPπ1
(st = s)

π1(a2|s)T (s′|a2, s)
∑

t γ
tPπ1

(st = s)
=
π1(a1|s)T (s′|a1, s)
π1(a2|s)T (s′|a2, s)

Similarly,

m⃗(π2)[s, a1, s
′]

m⃗(π2)[s, a2, s′]
=
π2(a1|s)T (s′|a1, s)
π2(a2|s)T (s′|a2, s)

From the inequalities π1(a1|s) > π2(a1|s) and π2(a2|s) > π1(a2|s), we deduce:

π1(a1|s)
π1(a2|s)

>
π2(a1|s)
π2(a2|s)

⇒ m⃗(π1)[s, a1, s
′]

m⃗(π1)[s, a2, s′]
>
m⃗(π2)[s, a1, s

′]

m⃗(π2)[s, a2, s′]

Thus, m⃗(π1) ̸= m⃗(π2).

Note that this proof requires stationary policies; on non-stationary policies, the above will not
necessarily hold.

Theorems B.24 and B.25 follow fairly straightforwardly from Lemmas B.22 and B.23.

Theorem B.24 (OMORL ∼EXPR FOMR ∼EXPR FTLR (Theorem 3.3 in Section 3)). Outer Multi-
Objective RL (OMORL), Functions from Occupancy Measures to Reals (FOMR), and Functions
from Trajectory Lotteries to Reals (FTLR) can each express every stationary policy ordering on any
environment that the other two formalisms can express.

Proof. From lemma B.22 we can choose the OMORL reward functions Rijk such that the associated
Markovian policy evaluation functions Jijk form the components of the policy’s occupancy measure.
If we apply the same function f to both the vector of Jijk functions and the occupancy measure we get
that JOMORL(π) = f(J⃗OMORL(π)) = f(m⃗(π)) = JFOMR(π). From lemma B.23 we have that
occupancy measures and trajectory lotteries uniquely determine each other and as such we can choose
corresponding functions fFOMR and fFTLR such that both FOMR and FTLR induce the same policy
orderings. We have now proven that OMORL, FOMR, and FTLR are equally expressive.

Theorem B.25 (GOMORL ∼EXPR OMO ∼EXPR TLO (Theorem 3.4 in Section 3)). Generalised
Outer Multi-Objective RL (GOMORL), Occupancy Measures Orderings (OMO), and Trajectory
Lottery Orderings (TLO) can each express every stationary policy ordering on any environment that
the other two formalisms can express.
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Proof. A GOMORL objective specification consists of an ordering on the set of policy evaluation
functions {J⃗OMORL(π)|π ∈ ΠE}, while an OMO objective specification consists of an ordering
on the occupation measures {m⃗(π)|π ∈ ΠE}. As in Theorem B.24, Lemma B.22 says that we can
choose our reward functions Rijk such that J⃗OMORL(π) = m⃗(π),∀π ∈ ΠE . Naturally, if we apply
the same ordering to both the policy evaluation vectors and to the occupancy measures, this then
results in the same induced policy ordering. From Lemma B.23 we have that occupancy measures
and trajectory lotteries uniquely determine each other, so any ordering of one uniquely determines an
ordering of the other. Thus, orderings over occupation measures can induce all and only those policy
orderings that can be induced by orderings over trajectory lotteries. Therefore, GOMORL, OMO,
and TLO are equally expressive.
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B.3 NOVEL RESULTS OF NON-EXPRESSIVITY (X ̸⪰ Y )

Proposition B.26 (RM,MR ̸⪰EXPR LAR,LTL). There is an environment and an ordering over
policies in that environment that LAR and LTL can induce, but RM and MR cannot.

Proof by construction. Note that since reward machines are strictly more expressive than Markov
Rewards (RM ⪰EXPR MR;), we only need to show that RM ̸⪰EXPR LAR and RM ̸⪰EXPR

LTL. However, the reason RM and MR cannot express LTL and LAR is the same: LAR and
LTL can give JE

O functions that are discontinuous in the policy space, but RM and MR cannot.
The proof will proceed in three stages. First, we construct the environment E and a subset of policy
space Π′ ⊂ Π. Second, Lemma B.27 shows that LAR and LTL can achieve a particular ordering
over Π′. Third, Lemma B.28 demonstrates that MR and RM cannot achieve that policy ordering.

Figure 3: A simple environment consisting of two states s0 and sA and three actions aA which leads
from s0 to itself ,aB which leads from s0 to sA and aC which leads from sA to itself. The starting
state is s0

Lemma B.27. Consider the following ordering over Π′ : πA ≻ πB ∼ πα ∀ α 0 < α < 1 Where:

• πA is the policy which takes action aA in state s0

• πB is the policy which takes action aB in state s0

• πα is a policy which takes action aB with probability α and action aA with probability
1− α

There exists an LAR specification and an LTL specification that each induces this ordering over Π′.
In particular, they do so by setting JE

O(πα) = 1[α = 0].

• (A) OLAR := (R[LAR]), where R[LAR](s, a, s′) = 1[s = s0], gives expected return
JE
OLAR

(πα) = 1[α = 0]. Therefore, ⪰ E
OLAR

induces the ordering.

• (B) OLTL := (ψ), where ψ(ξ) = ¬♢sA, gives expected return JE
OLAR

(πα) = 1[α = 0].
Therefore, ⪰ E

OLAR
induces the ordering.

See lemma B.27 for proof of this. Intuitively, both LAR and LTL allow a discontinuity in JE
O(πα) at

α = 0, allowing πA ≻ πα for arbitrarily small, but nonzero, values of α. Any α > 0 gives some prob-
ability of transitioning to sA at each time-step, and therefore a certainty of transitioning and getting
stuck at some point in an infinite trajectory. For LAR, the finite sequence of R[LAR](s0, aA, s0) = 1
rewards will be dominated by the infinite sequence of R[LAR](sA, aC , sA) = 0 rewards. For LTL,
♢sA will be true with probability 1, and therefore ¬♢sA will be true with probability 0. If α = 0, the
agent will always loop at s0 indefinitely, getting a consistent reward of 1 in LAR. Similarly, since
there is 0 probability of entering sA, ¬♢sA is true.

To finish the counter-example, it remains to show that the ordering over Π′ cannot be captured by
any objective specification OMR or ORM . To do this, we first show that JE

OMR
(πα) and JE

ORM
(πα)

must be continuous at α = 0.

31



Lemma B.28. For all ORM and OMR, limα→0+ J
E
O(πα) = JE

O(πA)

For a proof of this lemma, see appendix B.3.2. Intuitively, for any finite-time horizon, arbitrarily
small values α lead to small probabilities of entering sA. Since the infinite-horizon return for MR
and RM is closely approximated by a finite-time horizon return, arbitrarily small values of α should
lead to small changes to the expected return.

Corollary B.28.1. For all ORM and OMR, if ∀α ∈ (0, 1), πB ∼ E
Oπα, then πB ∼ πA.

This corollary follows from the fact that πB ∼ πα implies that JE
O(πα) = JE

O(πB) and there-
fore the limit is given by: limα→0+ J

E
O(πα) = JE

O(πB). Since lemma B.28 also shows that
limα→0+ J

E
O(πα) = JE

O(πA), we have that JE
O(πA) = JE

O(πB) for any OMR or ORM .

Combining lemma B.27 and lemma B.28 tells us that, no MR and RM cannot induce an ordering
with πA ≻ πB , and πα ∼ πB , even though LAR and LTL can. Therefore, for this particularE, there
is an ordering over Π′ that LAR and LTL can induce but MR and RM cannot. This is sufficient to
show that RM ̸⪰EXPR LAR, RM ̸⪰EXPR LTL, MR ̸⪰EXPR LAR, and MR ̸⪰EXPR LTL.

B.3.1 PROOF OF LEMMA B.27

Proof of lemma B.27 (A). We will show that JE
OLAR

(πα) = 1[α = 0]. First recall that
R[LAR](s, a, s′) s0 := 1[st = s0 s0]. Next, recall the definition of JE,OLAR

:

JE,OLAR
(πα) = lim

N→∞

1

N

E,π

E
ξ

[N−1∑
t=0

R[LAR](st, at, st+1)

]
(by definition)

= lim
N→∞

1

N

N−1∑
t=0

E,π

E
ξ

[
1(st = s0)

]
(by linearity of expectation)

= lim
N→∞

1

N

N−1∑
t=0

E,π

P
ξ

[
st = s0

]
(Since E[1(X)] = P[X])

We consider two cases. First, if α = 0, then PE,π
ξ

[
st = s0

]
= 1 for all t. Therefore JE,OLAR

(πA) =

limN→∞
1
N

∑N−1
t=0 1 = 1. Second, if α > 0, then PE,π

ξ

[
st = s0

]
= (1−α)t

∑N−1
t=0 (1−α)t is the

finite sum of a geometric series with a = 1 and r = (1− α) < 1:

JE,OLAR
(πα) = lim

N→∞

1

N

N−1∑
t=0

(1−α)t = lim
N→∞

1

N

1− (1− α)N

1− (1− α)
=

1

α
lim

N→∞

1

N
− (1− α)N

N
= 0

Proof of lemma B.27 (B). We will show that JE
OLTL

(πα) = 1[α = 0]. First define OLTL = (ψ)

with ψ(ξ) := ¬♢sA. Next, recall the definition of JE
OLTL

:

JE
OLTL

(πα) =
E,π

E
ξ

[
ψ(ξ)

]
(by definition)

=
E,π

P
ξ

[
¬♢sA

]
= 1−

E,π

P
ξ

[
♢sA

]
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We consider two cases. First, if α = 0, then PE,π
ξ

[
♢sA

]
= 0 since aB is never chosen. Second, if

α > 0, then PE,π
ξ

[
♢sA

]
= 1, since aB will eventually be chosen.
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B.3.2 PROOF OF LEMMA B.28

Proof of lemma B.28. We will show that

lim
α→0+

JE
O(πα)) = JE

O(π0)

for all ORM and OMR. Since MR is a special case of RM where | U |= 1, to prove the lemma, it
will suffice to show that limα→0+(| JE

ORM
(πα)− JE

ORM
(πA) |) = 0. Again, recall the definition of

a reward machine specification, ORM = (U, u0, δU , δR, γ) with return given by:

JE
ORM

(π) =
E,π

E
ξ

[ ∞∑
t=0

γtRt(st, at, st+1)

]
Here Rt = δR(ut, ut+1) and ut+1 := δu(ut, st). Noting that Rt(st, at, st+1) depends only on
st, at, st+1 and ut, we can rewrite it as R′(st, at, st+1, ut) := δR(ut, δu(ut, st))(st, at, st+1).
Furthermore, because we have bounded rewards the series is absolutely convergent meaning we can,
we can rewrite the whole expression:

JE
ORM

(π) =

∞∑
t=0

γt
E,π

E
ξ

[R′(st, at, st+1, ut)]

We can then rewrite the expression in terms of the difference between expected rewards at a given
timestep:

JE
ORM

(πα)− JE
ORM

(πA) =

∞∑
t=0

γt
(

E,π

E
ξ

[R′(st, at, st+1, ut)]−
E,π

E
ξ

[R′(st, at, st+1, ut)]

)

Label this difference δt := EE,π
ξ [R′(st, at, st+1, ut)] − EE,π

ξ [R′(st, at, st+1, ut)]. We will find a
particular expression for δt. First, note that there are a finite number of transitions (s, a, s′). This
allows us to marginalise the expectation for the reward at a particular timestep:

E,π

E
ξ

[R′(st, at, st+1, ut)] =
∑
s,a,s′

pt,πs,a,s′r
t,π
s,a,s′

Where:

pt,πs,a,s′ :=
E,π

P
ξ

[(st, at, st+1) = (s, a, s′)]

rt,πs,a,s′ :=
E,π

E
ξ

[R′(s, a, s′, ut) | (st, at, st+1) = (s, a, s′)]

Now, consider our particular E and πα for α ∈ [0, 1]. At any timestep, there are only three possible
transitions: (s0, aA, s0), (s0, aB , sA), and (sA, aB , sA). We can, therefore write out a case-by-case
expression for pt,πα

s,a,s′ :

pt,πα
s0,aA,s0 = (1− α)t+1

pt,πα
s0,aB ,sA = α(1− α)t

pt,πα
s0,aB ,sA = 1− (1− α)t

pt,πα

s,a,s′ = 0 otherwise

Noting that pt,πA
s0,aA,s0 = 1, we can write the difference between the expected rewards between πα and

πA at a given timestep as:

34



δt = −(1− pt,πα
s0,aA,s0)r

t,π
s0,aA,s0 + pt,πα

s0,aB ,sAr
t,πα
s0,aB ,sA + pt,πα

s0,aB ,sAr
t,πα
s0,aB ,sA (1)

Note that R′(st, at, st+1, ut) is bounded, since S , A and U are finite. Therefore, there exists some c
such that |R′(st, at, st+1, ut)| ≤ c. It follows that:

| δt | =
∣∣pt,πα

s0,aB ,sAr
t,πα
s0,aB ,sA + pt,πα

s0,aB ,sAr
t,πα
s0,aB ,sA − (1− pt,πα

s0,aA,s0)r
t,π
s0,aA,s0

∣∣
= pt,πα

s0,aB ,sA

∣∣rt,πα
s0,aB ,sA

∣∣+ pt,πα
s0,aB ,sA

∣∣rt,πα
s0,aB ,sA

∣∣+ (1− pt,πα
s0,aA,s0)

∣∣rt,πs0,aA,s0

∣∣
≤ c ·

(
pt,πα
s0,aB ,sA + pt,πα

s0,aB ,sA + (1− pt,πα
s0,aA,s0)

)
= c ·

(
1− (1− α)t + α(1− α)t + (1− (1− α)t+1)

)
= 2c ·

(
1− (1− α)t + α(1− α)t

)

We can use this to bound the difference in JE
O values.

| JE
ORM

(πα)− JE
ORM

(πA) | =|
∞∑
t=0

γtδt |

≤
∞∑
t=0

γt | δt |

≤
∞∑
t=0

γt2c ·
(
1− (1− α)t + α(1− α)t

)
= 2c

( ∞∑
t=0

γt −
∞∑
t=0

γt · (1− α)t + α

∞∑
t=0

γt · (1− α)t
)

= 2c

(
1

1− γ
− 1

1− γ(1− α)
+ (α)

1

1− γ(1− α)

)
:= Z

If we have that | JE
ORM

(πα) − JE
ORM

(πA) |≤ Z, then to show that limα→0+(J
E
ORM

(πα)) =

JE
ORM

(πA) it suffices to show that limα→0+(Z) = 0.

lim
α→0+

(Z) = lim
α→0+

2c

(
1

1− γ
− 1

1− γ(1− α)
+

α

1− γ(1− α)

)
= 2c

(
1

1− γ
− lim

α→0+

1

1− γ(1− α)
+ lim

α→0+

α

1− γ(1− α)

)
= 2c

(
1

1− γ
− 1

1− γ
+ 0

)
= 0
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Proposition B.29 (LAR ̸⪰EXPR MR,LTL). There is an environment and an ordering over
policies in that environment that Markov Rewards (MR) and Linear Temporal Logic (LTL) can induce,
but Limit Average Reward (LAR) cannot.

Figure 4: An environment consisting of four states s0, sA, sB , sC and five actions aA, aB , aC , aD, aE .
The starting state is s0.

Proof by construction. In the environment above there are two possible deterministic policies, πu
taking the upper path through sA and πl taking the lower path through sB . We argue that LAR cannot
express the policy ordering

πu ≻ πl
while MR and LTL can. First we will argue that LAR cannot express this policy ordering: Both
policies take action aE an infinite number of times while they only take the other actions at most
once.

JE
OLAR

(πu) = lim
N→∞

[
1

N

N−1∑
t=0

R(st, at, st+1)

]

= lim
N→∞

[
1

N

(
R(s0, aA, sA) +R(sA, aC , sC) +

N−1∑
t=2

R(sC , aE , sC)

)]
= R(sC , aE , sC)

JE
OLAR

(πl) = lim
N→∞

[
1

N

N−1∑
t=0

R(st, at, st+1)

]

= lim
N→∞

[
1

N

(
R(s0, aB , sB) +R(sB , aD, sB) +

N−1∑
t=2

R(sC , aE , sC)

)]
= R(sC , aE , sC)

Meaning that JE
OLAR

(πu) = JE
OLAR

(πl) and so πu ∼ πl. Next we will show that MR can express
this policy ordering: let R(s0, aA, sA) := 1 and all other rewards := 0. Then:

JE
OMR

(πu) = 1

JE
OMR

(πl) = 0

resulting in our desired ordering.

Next we will show that LTL can express this policy ordering: Consider the LTL predicate ♢sA i.e.
finally sA this will give reward 1 to all trajectories which include sA and 0 otherwise. This gives:

JE
OLTL

(πu) = 1

JE
OLTL

(πl) = 0

i.e. our desired ordering.
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Proposition B.30 (LTL ̸⪰EXPR MR,LAR). There is an environment and an ordering over
policies in that environment that Markov Rewards (MR) and Limit Average Reward (LAR) can induce,
but Linear Temporal Logic (LTL) cannot.

Figure 5: An environment with a single state s0 with three actions aA, aB and aC which all lead back
to itself.

Proof by construction. Consider the deterministic policies, πA, πB and πC corresponding to taking
actions aA,aB or aC respectively.

We argue that LTL cannot express the policy ordering:

πA ≻ πB ≻ πC

while MR and LAR can.

First we will show that LTL cannot express this policy ordering:

πA ≻ πB =⇒ φ (ξA) > φ (ξB)

=⇒ φ (ξA) = 1 and φ (ξB) = 0 (as deterministic environment)

however,

πB ≻ πC =⇒ φ (ξB) > φ (ξC)

=⇒ φ (ξB) = 1 and φ (ξC) = 0 (as deterministic environment)

leading to a contradiction. For deterministic policies on deterministic environments LTL can only
divide policies into two categories and as such cannot order 3 or more policies.

MR can clearly express this ordering by setting R(s0, aA, s0) := 1, R(s0, aB , s0) := 0 and
R(s0, aB , s0) := −1 leading to:

JE
OMR

(πA) =
1

1− γ

JE
OMR

(πB) = 0

JE
OMR

(πC) =
−1

1− γ
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LAR can also clearly express this ordering by again setting R(s0, aA, s0) := 1, R(s0, aB , s0) := 0
and R(s0, aB , s0) := −1 which leads to

JE
OLAR

(πA) = 1

JE
OLAR

(πB) = 0

JE
OLAR

(πC) = −1
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Proposition B.31 (MR,RRL ̸⪰EXPR RM,ONMR,LTL). There is an environment and an
ordering over policies in that environment that Reward Machines (RM), Outer Nonlinear MR (ONMR)
and Linear Temporal Logic (LTL) can induce, but Markov Rewards (MR) and Regularised RL (RRL)
cannot.

Figure 6: A two state environment with 2 actions aA and aB going from each state to the other state.
The initial state is random, i.e. sA and sB with equal probability.

Proof by construction. The figure above shows a simple 2-state system where 2 different actions aA
and aB are possible in each state. Let πij denote the policy which takes action i in state sA and action
j in state sB . There are 4 possible trajectories following deterministic stationary policies, namely,
(sAaAsBaB)

∗, (sAaBsBaA)∗ , (sAaAsBaA)∗ and (sAaBsBaB)
∗ which correspond to policy πAB ,

πBA, πAA and πBB respectively.

We claim that MR and RRL cannot implement the XOR function, i.e. the policy ordering πAB ∼
πBA ≻ πAA ∼ πBB while RM, ONMR and LTL can.

First we will show that MR cannot express this policy ordering:

We want to describe the ordering JE
OMR

(πAB) = JE
OMR

(πBA) > JE
OMR

(πAA) = JE
OMR

(πBB).
Each trajectory only has two unique state-action pairs, and since the initial state is random, in
expectation each action a policy contains will be taken 50% of the time at each time step.

This means that:

JE
OMR

(πAB) > JE
OMR

(πAA) =⇒
1

2

∞∑
t=0

γtR(sA, aA, sB) +
1

2

∞∑
t=0

γtR(sB , aB , sA) >

1

2

∞∑
t=0

γtR(sA, aA, sB) +
1

2

∞∑
t=0

γtR(sB , aA, sA) =⇒

∞∑
t=0

γtR(sB , aB , sA) >

∞∑
t=0

γtR(sB , aA, sA) =⇒

R(sB , aB , sA) > R(sB , aA, sA).

However,
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JE
OMR

(πBA) > JE
OMR

(πBB) =⇒
1

2

∞∑
t=0

γtR(sA, aB , sB) +
1

2

∞∑
t=0

γtR(sB , aA, sA) >

1

2

∞∑
t=0

γtR(sA, aB , sB) +
1

2

∞∑
t=0

γtR(sB , aB , sA) =⇒

∞∑
t=0

γtR(sB , aA, sA) >

∞∑
t=0

γtR(sB , aB , sA) =⇒

R(sB , aA, sA) > R(sB , aB , sA),

in contradiction with the previous relation.

Next we will show that Regularised RL cannot express this policy ordering either. Recall the policy
evaluation function in Regularised RL:

JE
ORRL

(π) = Eξ∼π,T,I [

∞∑
t=0

γt(R(st, at) + αF [π(st)])]

In the case above, maintaining full generality we can write F [π(st)] = f(P (aA|st), P (aB |st)), for
arbitrary f : ∆(A) → R. Thus, for the four deterministic policies considered above, we have:

F [πAB(sA)] = f(1, 0); F [πAB(sB)] = f(0, 1)

F [πBA(sA)] = f(0, 1); F [πBA(sB)] = f(1, 0)

F [πAA(sA)] = f(1, 0); F [πAA(sB)] = f(1, 0)

F [πBB(sA)] = f(0, 1); F [πBB(sB)] = f(0, 1)

Following through the same argument from above, we derive the contradictory conditions:

JE
ORRL

(πAB) > JE
ORRL

(πAA) =⇒ R(sB , aB , sA) + αf(0, 1) > R(sB , aA, sA) + αf(1, 0) (1)

JE
ORRL

(πBA) > JE
ORRL

(πBB) =⇒ R(sB , aA, sA) + αf(1, 0) > R(sB , aB , sA) + αf(0, 1) (2)

Next we will show that ONMR can express this policy ordering. Recall that:

JE
OONMR

(π) = f(Eξ∼π,T,I [

∞∑
t=0

γtR(st, at, s
′
t)])

Let:

R(sA, aA, sB) = −1

R(sA, aB , sB) = 1

R(sB , aA, sA) = 1

R(sB , aB , sA) = −1

f(x) = |x|
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Now:

JE
OONMR

(πAB) =

∣∣∣∣∣12
∞∑
t=0

γt +
1

2

∞∑
t=0

γt

∣∣∣∣∣ = | 1

1− γ
| = 1

1− γ

JE
OONMR

(πBA) =

∣∣∣∣∣12
∞∑
t=0

−γt + 1

2

∞∑
t=0

−γt
∣∣∣∣∣ = | −1

1− γ
| = 1

1− γ

JE
OONMR

(πAA) =

∣∣∣∣∣12
∞∑
t=0

γt +
1

2

∞∑
t=0

−γt
∣∣∣∣∣ = |0| = 0

JE
OONMR

(πBB) =

∣∣∣∣∣12
∞∑
t=0

−γt + 1

2

∞∑
t=0

γt

∣∣∣∣∣ = |0| = 0

giving us our desired policy ordering.

Next we will show that RM can do this policy ordering:

Figure 7: A reward machine which can express the desired policy ordering.
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The reward machine looks as above. The reward functions are:

R1(s0, aA, sA) = 0

R1(s0, aB , sA) = 1

R1(sA, aA, s0) = 0

R1(sA, aB , s0) = 1

R2(s0, aA, sA) = 1

R2(s0, aB , sA) = 0

R2(sA, aA, s0) = 1

R2(sA, aB , s0) = 0

For πAA we first transition δu(u0, s0, aA) = uA or δu(u0, sA, aA) = uA depending on if we start at
0 or 1. For this δR = R0 so we get no reward. Next we will always transition δu(uA, s0, aA) = uA
or δu(uA, sA, aA) = uA which gives δR = R1 which results in 0 reward, therefore

JE
ORM

(πAA) = 0

For πBB we first transition δu(u0, s0, aB) = uB or δu(u0, sA, aB) = uB depending on if we start at
0 or 1. For this δR = R0 so we get no reward. Next we will always transition δu(uA, s0, aB) = uB
or δu(uA, sA, aB) = uB which gives δR = R2 which results in 0 reward, therefore

JE
ORM

(πBB) = 0

Now for π12 we instead have δu(u0, s0, aA) = uA or δu(u0, sA, aB) = uB For this δR = R0 so
we get no reward. Next we have δu(uA, sA, aB) = uB or δu(uB , s0, aA) = uA which give reward
δR = R1(sA, aB , s0) = 1 or δR = R2(s0, aA, sA) = 1 meaning

JE
ORM

(πBB) =

∞∑
t=1

γ =
γ

1− γ

Similarly for π21 we have δu(u0, s0, aB) = uB or δu(u0, sA, aA) = uA For this δR = R0 so we
get no reward. Next we have δu(uB , sA, aA) = uA or δu(uA, s0, aB) = uB which give reward
δR = R2(s0, aB , sA) = 1 or δR = R1(sA, aA, s0) = 1 meaning

JE
ORM

(πBB) =

∞∑
t=1

γ =
γ

1− γ

This gives us our desired policy ordering.

Next we will show that LTL can also express this policy ordering. We will use the shorthand of
referring to atomic propositions (which we have defined to be transitions in S ×A× S) as actions;
a shorthand atomic proposition a evaluates to true at a time t if and only if the transition at time t
includes a as its action.

Consider the LTL formula ((aA → ⃝aB) ∧ (aB → ⃝aA)), which reads "aA implies next aB and
aB implies next aA." Clearly this is false for πAA as the action taken after aA in not always aB and
false for πBB as the action taken after aB is not always aA. For πAB and πBA however, the formula
is true as action aA is always followed by aB and action aB is always followed by aA. Consequently,

JE
ORM

(πAA) = 0

JE
ORM

(πBB) = 0

JE
ORM

(πAB) = 1

JE
ORM

(πBA) = 1

which gives us the desired policy ordering.
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Proposition B.32 (ONMR ̸⪰EXPR LAR). There is an environment and an ordering over policies
in that environment that Limit Average Reward (LAR) can induce, but Outer Nonlinear MR (ONMR)
cannot.

Figure 8: An environment with 2 states s0 and sA with 4 possible actions in state s0, namely
aA, aB , aC and aX and 2 possible actions in state sA, namely aD and aE . The starting state is s0.

Proof by construction. Consider the environment above. We start in state s0 and have 5 deterministic
policies, πA, πB and πC which correspond to taking action aA, aB or aC in state s0 and policies πD
and πE which correspond to taking action ax in state s0 and action aD or aE in state sA, respectively.
We also have stochastic policies defined by the conditions

πθIJ(aI |s0) = θ

πθIJ(aX |s0) = 1− θ

πθIJ(aJ |sA) = 1,

for I ∈ {A,B,C} and J ∈ {D,E}.

We would like the policy ordering:

πE ∼ πθAE ∼ πθBE ∼ πθCE ≻ πD ∼ πθAD ∼ πθBD ∼ πθCD ≻ πB ≻ πA

This can be done in LAR by setting RE > RD > RC > RB > RA and RX = 0. For all policies
which have a finite probability of taking aX , JE

OLAR
(π) only depends on what the the policy does in

state two meaning that: πE ∼ πθAE ∼ πθBE ∼ πθCE and πD ∼ πθAD ∼ πθBD ∼ πθCD. Setting
the rewards as above completes the rest of the ordering.

Now we will show that ONMR cannot express this policy ordering:

JE
OONMR

(πθIJ) = f(Eξ∼πθ
[G(ξ)]) = f(JE

OMR
(πθIJ))) =

f

(
RI

1− θγ
+

1

1− (1− θ)γ

(
Rx +

RJ

1− γ

))

It is possible to choose Rx such that JE
OMR

(πθIJ) = JE
OMR

(πJ) however it is not possible to
choose Rx such that both JE

OMR
(πθID) = JE

OMR
(πD) and JE

OMR
(πθIE) = JE

OMR
(πE). Let us

assume we have chosen Rx such that JE
OMR

(πθIE) = JE
OMR

(πE) and we can therefore not make
JE
OMR

(πθID) = JE
OMR

(πD). (Of course, an analogous proof goes through under the contrary
assumption.)

We need JE
OONMR

(πθAD) = JE
OONMR

(πθBD) = JE
OONMR

(πθCD) = JE
OONMR

(πD) ∀θ ∈ [0, 1) so
f must map the ranges
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(
JE
OMR

(πθAD), JE
OMR

(πD)
]
→ f(JE

OMR
(πD))(

JE
OMR

(πθBD), JE
OMR

(πD)
]
→ f(JE

OMR
(πD))(

JE
OMR

(πθCD), JE
OMR

(πD)
]
→ f(JE

OMR
(πD))

Either one or more of JE
OMR

(πA), JE
OMR

(πB) or JE
OMR

(πC) are equal which contradicts our desired
policy ordering or one of JE

OMR
(πA), JE

OMR
(πB) or JE

OMR
(πC) must be within the range which is

mapped to JE
OONMR

(πD) above. This is also against our policy ordering. Therefore ONMR cannot
express this policy ordering.
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Proposition B.33 (ONMR ̸⪰EXPR LTL). There is an environment and an ordering over policies
in that environment that Linear Temporal Logic (LTL) can induce, but Outer Nonlinear MR (ONMR)
cannot.

Proof by construction. Consider the following environment, and the linear temporal logic (LTL)
formula below.

Figure 9: An environment with a single state s0 with three actions aA, aB and aC which all lead back
to itself.

This environment has policies παβθ where α ∈ [0, 1], β ∈ [0, 1] and θ ∈ [0, 1] represents the
probability of taking action aA, aB and aC respectively. We would like the policy ordering

παβθ ≻ πα′β′θ′

Where: α > 0 ∧ β > 0 ∧ θ > 0 and α′ = 0 ∨ β′ = 0 ∨ θ′ = 0 I.e assign the same reward to
all policies which have a positive probability of taking all three actions and the same lower reward
otherwise. LTL can express this policy ordering with the following LTL formula:

φ = ⋄aA ∧ ⋄aB ∧ ⋄aC

This LTL formula reads "Eventually aA and eventually aB and eventually aC ," and is satisfied by a
trajectory if and only if the actions aA, aB , and aC are all taken at some point. Since our trajectories
are infinite and we only have one state, eventually taking an action is equivalent to having positive
probability of taking an action. Therefore LTL gives us:

JE
OLTL

(παβθ) = 1 ∀ α > 0 ∧ β > 0 ∧ θ > 0

JE
OLTL

(παβθ) = 0 ∀ α = 0 ∨ β = 0 ∨ θ = 0

Which is our desired policy ordering. Now let us show that ONMR cannot express the same policy
ordering:

Let

RA = R(s0, aA, s0)

RB = R(s0, aB , s0)

RC = R(s0, aC , s0)

Either one or more of these rewards are equal (we will return to the equality case below) or one
reward lies between the other two. To fulfill this policy ordering the ONMR function must map all
MR rewards of policies which sometimes take all actions to one value, lets call this RH . The function
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must also map all policies which do not do this to another value, RL. Specifically it must map all
policies which only take two actions with any probability to the same value:(

RA

1− γ
,
RB

1− γ

)
→ RL(

RA

1− γ
,
RC

1− γ

)
→ RL(

RB

1− γ
,
RC

1− γ

)
→ RL

However, we also need to map the range:(
min(RA,RB ,RC)

1− γ
,
max(RA,RB ,RC)

1− γ

)
→ RH

These ranges clearly overlap and no function can map the same value to two different values. In the
case that two or more rewards are the same the proof is even simpler. Call the rewards which are
equal RA and RB with RC being the other reward. The ONMR function must for instance map

1

3
RA +

1

3
RB +

1

3
RC → RH

2

3
RA +

1

3
RC → RL

But these two expressions are equal. Thus, we prove that ONMR cannot express this policy ordering.
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Proposition B.34 (FTR ̸⪰EXPR ONMR). There is an environment and an ordering over policies
in that environment that Outer Nonlinear MR (ONMR) can induce, but Functions from Trajectories
to Reals (FTR) cannot.

Proof by construction. Consider the environment depicted in the diagram below.

Figure 10: A three-state environment with two possible trajectories corresponding to choosing aA or
aB in the starting state s0.

We will show that in this environment, the following ONMR specification (R, f, γ) cannot be
expressed with any FTR specification.

RA := R(s0, aA, sA) = 1,RB := R(s0, aB , sB) = 0 (as depicted above)

f(x) = 1

[
x ≥ 1

2

]
=

{
1 if x ≥ 1

2

0 if x < 1
2

γ = 0.99

With this specification:

JE
OONMR

(π) := f

(
E

ξ∼π,T,I

[ ∞∑
t=0

γtR(st, at, st+1)

])
(by definition)

= f

(
E

ξ∼π,T,I
[R(st=0, at=0, st=1)]

)
(Rewards are 0 after the first step)

= f (π(aA|s0)R(s0, aA, sA) + π(aB |s0)R(s0, aB , sB))

= f (π(aA|s0)(1) + π(aB |s0)(0))
= f (π(aA|s0))

=

{
1 if π(aA|s0) ≥ 1

2

0 if π(aA|s0) < 1
2
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So this ONMR specification prefers policies that satisfy π(aA|s0) ≥ 1
2 to those which do not, and has

no other preferences. Now, we will show that no FTR specification can express this policy ordering.

In this environment, there are only two possible trajectories: ξA := (s0, aA, (sA, SA)
∗) and ξB :=

(s0, aB , (sB , SB)
∗). Suppose there is an FTR specification (fFTR) which induces the same policy

ordering as the ONMR specification described above. One property this specification must satisfy is
that the policy πA that takes action aA deterministically must be preferred to the policy πB that takes
action aB deterministically.

JE
OFTR

(πA) = E
ξ∼πA,T,I

[fFTR(ξ)] > JE
OFTR

(πB) = E
ξ∼πB ,T,I

[fFTR(ξ)]

=⇒ fFTR(ξA) > fFTR(ξB)

Additionally, if πmix(aA|s0) = πmix(aB |s0) = 1
2 , then to match the ONMR specification, the FTR

specification should have no preference between πmix and πA.

JE
OFTR

(πA) = E
ξ∼πA,T,I

[fFTR(ξ)] = JE
OFTR

(πmix) = E
ξ∼πmix,T,I

[fFTR(ξ)]

=⇒ fFTR(ξA) =
1

2
fFTR(ξA) +

1

2
fFTR(ξB)

=⇒ 1

2
fFTR(ξA) =

1

2
fFTR(ξB)

=⇒ fFTR(ξA) = fFTR(ξB)

Since it cannot simultaneously be true that fFTR(ξA) > fFTR(ξB) and fFTR(ξA) = fFTR(ξB),
this means there is no FTR specification which prefers πA to πB but has no preference between πA
and πmix. Therefore, FTR cannot express this policy ordering, concluding the proof.

This proof highlights that the expectation in the definition of FTR limits it to linearly interpolating
between the possible trajectories that a policy can produce. Meanwhile, ONMR specifications can
express more complex preferences over trajectory lotteries, such as setting a minimum acceptable
probability for a trajectory.
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Proposition B.35 (FTR ̸⪰EXPR RRL). There is an environment and an ordering over policies in
that environment that Regularised RL (RRL) can induce, but Functions from Trajectories to Reals
(FTR) cannot.

Figure 11: A three-state environment with two possible trajectories corresponding to choosing aA or
aB in the starting state s0.

Proof by construction. J(π) = Eξ∼π[
∑∞

t=0 γ
t(R(st, at)− αF [π(st)])]

where F : ∆(A) → R is a functional of the policy’s distribution over actions at a given state.

We construct an example of a task that can be expressed in Regularised RL with F [π(s)] = H[π(s)] =
−
∑

i π(ai|s) log π(ai|s) (the Shannon entropy), and then prove that it cannot be expressed by any
FTR objective.

Suppose we have the environment above with only two trajectories ξA, ξB through it, both of which
can be reached by means of deterministic policies. Let us specify the reward function R so that both
trajectories have the same discounted sum of rewards. Three possible policies are:

πL: Deterministic policy that takes ξA with probability 1

πR: Deterministic policy that takes ξB with probability 1

πm: Indeterministic policy that takes ξA with probability p and ξB with probability 1− p

Since H[πL(s)] = H[πR(s)] = 0, and G(ξA) = G(ξB) by stipulation, J(πL) = J(πR).

Moreover, for α > 0, it is easy to show that J(πm) < J(πL) = J(πR). Thus Regularised RL in this
environment can express the task πm ≺ πL ∼ πR.

Now consider FTR. The policy evaluation function is:

J(π) = Eξ∼π[f(ξ)] = P (ξA)f(ξA) + P (ξB)f(ξB)

So:

J(πL) = f(ξA) = a

J(πR) = f(ξB) = b
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J(πm) = pf(ξA) + (1− p)f(ξB)

Since p ∈ (0, 1) the latter is a convex combination of the former and so we must have EITHER:

πR ≺ πm ≺ πL (a > b)

πL ≺ πm ≺ πR (b > a)

πL ∼ πm ∼ πR (a = b)

None of these gives us the policy ordering induced by the Regularised RL specification above.
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Proposition B.36 (GOMORL ̸⪰EXPR FPR). There is an environment and an ordering over
policies in that environment that Functions from Policies to Reals (FPR) can induce, but Generalised
Outer Multi-Objective RL (GOMORL) cannot.

Proof by construction. The essential idea of this proof is that FPR can express preferences between
policies that are only distinct on states that neither policy ever visits, while GOMORL cannot.
Consider the following environment:

Figure 12: A two-state environment with two actions in the starting state s0 taking aA back to itself
and action aB leading to state sA. In state sA we have two actions leading back to itself.

Now consider the following two policies within this environment, π1 and π2:

π1(aA|s0) = 1, π1(aB |s0) = 0, π1(aC |sA) = 1, π1(aD|sA) = 0. That is, π1 deterministically
chooses aA from s0 and aC from sA.

π2(aA|s0) = 1, π2(aB |s0) = 0, π2(aC |sA) = 0, π2(aD|sA) = 1. That is, π2 deterministically
chooses aA from s0 and aD from sA.

The policy ordering induced by any GOMORL specification (k,R, γ,⪰J) cannot have any preference
between π1 and π2. To see this, first notice that both of these policies deterministically result in the
trajectory (s0, aA, s0, aA, s0, ...). This means that each of the k policy evaluation functions, Ji(π)
for all i ∈ [k], returns the same value for both policies:

Ji(π1) = E
ξ∼π1,T,I

[

∞∑
t=0

γtRi(st, at, st+1)] =
Ri(s0, aA, s0)

1− γ
= Ji(π2).

Thus, J⃗(π1) = J⃗(π2). Since ⪰J must be reflexive as a weak order, J⃗(π1) ⪰J J⃗(π2) and J⃗(π2) ⪰J

J⃗(π1). So in this environment, GOMORL must induce the ordering π1 ∼ π2.

Clearly, an FPR specification (JFPR) need not respect this equality. For instance, the specification
could be:

JFPR(π) =

{
1 if π = π1
0 else

The policy ordering this induces has π1 ≻ π2, so cannot be expressed by GOMORL. This concludes
the proof.

Recall that GOMORL has the same expressivity as Trajectory Lottery Orderings (TLO) and Oc-
cupancy Measure Orderings (OMO), so FPR is also not expressively dominated by either of those
formalisms.
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Proposition B.37 (FPR ̸⪰EXPR GOMORL). There is an environment and an ordering over
policies in that environment that Generalised Outer Multi-Objective RL (GOMORL) can induce, but
Functions from Policies to Reals (FPR) cannot.

Proof by construction. Consider the following environment, and the GOMORL specification
(k,R, γ,⪰J) below.

Figure 13: Three state system consisting of the starting state s0 with actions aA and aC leading to
sA, the state sA which has two actions aB and aD which lead to sB and finally the state sB which
has action aE leading to itself. The figure also shows the reward functions R1 which give 1 reward to
action aA and 0 to everything else and R2 which give 1 reward to action aB and 0 to everything else.

• k = 2

• R1 and R2 are included in the diagram above. R1 only rewards taking action aA, and R2

only rewards taking action aB .

• γ = 0.99 (though this particular value is not important)

• Let J⃗1 = ⟨J11, J12⟩ ∈ R2 and let J⃗2 = ⟨J21, J22⟩. ⪰J is specified such that J⃗1 ⪰J J⃗2 if
and only if J11 > J21, or J11 = J21 and J12 ≥ J22. This is a lexicographic ordering on R2.

Let us clarify the policy ordering expressed by this specification, starting by writing out the policy
evaluation functions.

J⃗(π) =

〈
E,π

E
ξ

[ ∞∑
t=0

γtR1(st, at, st+1)

]
, ...,

E,π

E
ξ

[ ∞∑
t=0

γtRk(st, at, st+1)

]〉

=

〈
E,π

E
ξ

[ ∞∑
t=0

γtR1(st, at, st+1)

]
,
E,π

E
ξ

[ ∞∑
t=0

γtR2(st, at, st+1)

]〉
= ⟨π(aA|s0), γπ(aB |sA)⟩

The last line is true because the only transition that R1 gives nonzero reward to is (s0, aA, sA), and
the only transition that R2 gives nonzero reward to is (sA, aA, sB) (which can be taken after one
step, so must be discounted by γ).

Now we can look at the policy ordering in terms of the probabilities assigned to aA and aB . The
lexicographic ordering selected turns into the following: π1 ⪰ π2 if and only if J⃗(π1) ⪰J J⃗(π2) if
and only if π1(aA|s0) > π2(aA|s0), or π1(aA|s0) = π2(aA|s0) and π1(aB |sA) ≥ π2(aB |sA).
Next, let us show that FPR cannot express this policy ordering.

Suppose towards contradiction that (JFPR) is an FPR specification that expresses the same lex-
icographic policy ordering. First, note that if J⃗(π1) = J⃗(π2), then J⃗(π1) ⪰J J⃗(π2) and
J⃗(π2) ⪰J J⃗(π1), so π1 ∼ π2 according to the GOMORL specification above. Therefore, for
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(JFPR) to express the same policy ordering, it must be the case that J⃗(π1) = J⃗(π2) implies
JFPR(π1) = JFPR(π2). This means that JFPR, which was have assumed expresses this lexico-
graphic policy ordering, can be decomposed into the GOMORL function from policies to J vectors
in R2, J⃗ : Π → R2, and a function from J vectors in R2 to reals, fJ : R2 → R. So JFPR = fJ ◦ J⃗ .
Now we will show that no mapping fJ : R2 → R can express the lexicographic policy ordering given
by ⪰J above, so the supposed JFPR which expresses this policy ordering cannot exist.

For fJ to express the same policy ordering as ⪰J , it must be true that fJ(J⃗(π1)) ≥ fJ(J⃗(π2)) ⇐⇒
J⃗(π1) ⪰J J⃗(π2). Next, let us establish a few notations and facts which will allow us to demonstrate
that there is no fJ which satisfies this requirement.

1. Let Ba be the set of possible values for J2 that a policy can have if it has J1(π) = a. That
is, let Ba = {b ∈ R : ∃π ∈ Π s.t. J1(π) = a, J2(π) = b}, where J1 and J2 are the policy
evaluation functions associated with R1 and R2 from the GOMORL specification above.

In the environment we have specified, we have established that J1(π) = π(aA|s0) and
J2(π) = γπ(aB |sA). So J1(π) = π(aA|s0) ∈ [0, 1], J2(π) = γπ(aB |sA) ∈ [0, γ],
and since the policy’s behavior in sA is not constrained by its behavior in s0, J⃗(Π) =
[0, 1]× [0, γ]. Therefore, Ba = [0, γ] for all a ∈ [0, 1]. Since γ = 0.99 > 0, Ba = [0, 0.99]
is an uncountable set. Importantly for this proof, |Ba| > 1 for all a ∈ J1(Π). (Although
in this case Ba is the same for all values of a, we keep the notation Ba, as this makes the
proof applicable to any environment in which there are uncountable values of a such that
|Ba| > 1.)

2. Suppose a, a′ ∈ J1(Π) with a′ > a. To induce the lexicographic policy ordering through
fJ , it is necessary that

fJ(a
′, b′) > fJ(a, b) ∀b ∈ Ba, b

′ ∈ Ba′ .

3. Suppose b, b′ ∈ Ba with b′ > b. To induce the lexicographic policy ordering, it is necessary
that for any a ∈ J1(Π)

fJ(a, b
′) > fJ(a, b).

4. Define fJ,a : Ba → R as fJ,a(b) := fJ(a, b). Considering the range of fJ,a, denoted as
fJ,a(Ba), let

m1,a = inf(fJ,a(Ba)) and m2,a = sup(fJ,a(Ba)).

Let IfJ,a = [m1,a,m2,a], a subset of the reals such that fJ(a, b) lies within this range for all
b ∈ Ba. Given point 3 and the fact that |Ba| > 1 for all a ∈ J1(Π), we have m2,a > m1,a.

5. For a′ ̸= a, point 2 implies that fJ(a′, b) /∈ IfJ,a for any b ∈ Ba. By extension, a′ ̸=
a =⇒ IfJ,a ∩ IfJ,a′ = ∅.

6. Let I = {IfJ,a : a ∈ J1(Π)}. We define a function Int : J1(Π) → I as

Int(a) = IfJ,a ,

where “Int” stands for interval. Note that the function Int is injective.

7. Since the rationals are dense in the reals, every closed interval of reals containing at least
two distinct real numbers also contains at least one rational. Therefore, we can define a
function σ : I → Q which, when given an interval as input, outputs a rational within that
interval. Owing to the disjoint nature of all IfJ,a (from point 5), σ is injective.

Recall that J1(Π) = [0, 1] is uncountable. Given the assumption that an FPR specification induces
the lexicographic policy ordering, we have constructed injective functions Int : J1(Π) → I and
σ : I → Q. Composing these, we get an injective function

σ ◦ Int : J1(Π) → Q.
This leads to a contradiction: J1(Π) is uncountable and Q is countable, so there cannot be an
injective function from J1(Π) to Q. Thus, FPR cannot express this lexicographic policy ordering,
and GOMORL can represent policy orderings which FPR cannot.
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Note that this proof does not rely heavily on the specific environment depicted above or the specific
reward functions used by GOMORL; the only features which are relevant to the proof are that there
are uncountable values of J1(π) that each have at least 2 values of J2(π). This proof also extends to
lexicographic preferences with more than 2 reward functions.
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Proposition B.38 (ONMR ̸⪰EXPR RRL). There is an environment and an ordering over policies
in that environment that Regularised RL (RRL) can induce, but Outer Nonlinear Markov Reward
(ONMR) cannot.

Proof by construction. Consider the following environment.

Figure 14: A four-state environment with three possible trajectories corresponding to the choice of
aA, aB or aC in the starting state s0.

Consider the Regularised RL (RRL) specification given by:

• ∀(s, a, s′) ∈ S ×A× S : R(s, a, s′) = 0

• α = −1

• F [π(s)] = |{ai : π(ai|s) = 0}|. (This F and α incentivise assigning probability 0 to as
many actions as possible, which is one way of incentivising more deterministic behavior.)

• γ = 0.9 (although this is unimportant)

After the first step, all policies deterministically select action aD. Let FD be the value of F [π(s)] if
π deterministically selects aD from s. Then with this RRL specification:
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JE
ORRL

(π) = Eξ∼π,T,I

[ ∞∑
t=0

γt (R(st, at, st+1)− αF [π(st)])

]

= Eξ∼π,T,I

[
γ0 (0− (−1)F [π(s0)]) +

γFD

1− γ

]
= Eξ∼π,T,I

[
F [π(s0)] +

γFD

1− γ

]
= F [π(s0)] +

γFD

1− γ

= |{ai : π(ai|s0) = 0}|+ γFD

1− γ

=


2 + γFD

1−γ if π selects any one action deterministically
1 + γFD

1−γ if π assigns nonzero probability to exactly two actions
γFD

1−γ if π assigns nonzero probability to all three actions

Now let us show that ONMR cannot express the same policy ordering.

Conceptually, the limitation of ONMR that this proof will exploit is that if there are three different
possible trajectories, each receiving a different trajectory return, then ONMR cannot distinguish
between a policy that deterministically takes this intermediate trajectory and a policy that produces
an appropriate probabilistic mixture of the other two.

Suppose towards contradiction that (R, f, γ) is an ONMR specification that expresses this policy
ordering. Let RA = R(s0, aA, sA), RB = R(s0, aB , sB), RC = R(s0, aC , sC), and RD =
R(sA, aD, sA). Without loss of generality, we can assume that we have numbered the states and
actions such that RA ≤ RB ≤ RC . For now, assume that RA < RB < RC ; we will return to the
equality case below. This means that RB = qRA + (1 − q)RC for some real number q ∈ (0, 1).
(Specifically, q = RC−RB

RC−RA
.)

Now suppose we focus our attention on a class of policies of the following form:

π(aB |s0) = θ, π(aA|s0) = (1− θ)q, π(aC |s0) = (1− θ)(1− q)

Note that an ONMR specification has fixed q in advance, so the only variable is θ. Now, we will
show that the ONMR specification must assign the same value to all policies of this form for any
θ ∈ [0, 1]. First, recall that JE

OONMR
(πθ) = f(JE

OMR
(πθ)). Therefore, we can analyse JE

OMR
(πθ)

before returning to JE
OONMR

(πθ):

JE
OMR

(πθ) =
E,π

E
ξ

[ ∞∑
t=0

γtR(st, At, st+1)

]
= γ0 (θRB + (1− θ)qRA + (1− θ)(1− q)RC) +

γ

1− γ
RD

= θRB + (1− θ)(qRA + (1− q)RC) +
γ

1− γ
RD

= θRB + (1− θ)RB +
γ

1− γ
RD

= RB +
γ

1− γ
RD

Connecting this analysis back to ONMR, we get:

JE
OONMR

(πθ) = f(JE
OMR

(πθ))

= f

(
RB +

γ

1− γ
RD

)
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Since this is independent of θ, any ONMR specification that uses three distinct reward values for
the three transitions must not have any preference between πθ=1 and πθ=0.5. However, the RRL
specification above does have a preference: πθ=1 deterministically selects aB , while πθ=0.5 assigns
nonzero probability to all three actions. So JE

ORRL
(πθ=1) = 2 + γFD

1−γ > γFD

1−γ = JE
ORRL

(πθ=0.5).

The only case left to address is when the reward function R in the ONMR specification assigns the
same reward to any two transitions. That is, Rα = Rβ for some α, β ∈ {A,B,C}, α ̸= β. No such
ONMR specification can express this RRL policy ordering either, because no such specification can
distinguish deterministically selecting action aα or aβ from assigning nonzero probability to both.
Let πα be a policy that selects aα deterministically and let πα,β be a policy that selects each of aα
and aβ with probability 0.5.

JE
OMR

(πα,β) =
E,πα,β

E
ξ

[ ∞∑
t=0

γtR(st, At, st+1)

]
= γ0(0.5(Rα) + 0.5(Rβ)) +

γ

1− γ
RD

= Rα +
γ

1− γ
RD

= JE
OMR

(πα)

Thus,
JE
OONMR

(πα,β) = f(JE
OMR

(πα,β)) = f(JE
OMR

(πα)) = JE
OONMR

(πα)

So any ONMR specification that assigns the same reward to two transitions cannot express a
preference between πα and πα,β . Meanwhile, the RRL specification above prefers πα to πα,β ,
since πα deterministically selects aα while πα,β assigns nonzero probability to both aα and aβ .
Therefore, no ONMR specification (whether it assigns equal rewards to two transitions or not) can
express the policy ordering expressed by this RRL specification.
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Proposition B.39 (RRL ̸⪰EXPR LAR). There is an environment and an ordering over policies in
that environment that Limit Average Reward (LAR) can induce, but Regularised RL (RRL) cannot.

Figure 15: A 2 state environment with a starting state s0 which has 2 actions aA and aB leading to
sA and state sA which has an action aC leading to s0 and an action aD leading to itself.

Proof by construction. In the figure above we have two states s0 and sA. s0 has actions aA and aB
which both lead to sA with reward RA and RB respectively. sA has actions aD which takes it to
itself and aC which leads to s0, these have reward RD and RC . Let the initial state be s0 and sA
with equal probability 1

2 . There are 3 possible deterministic limit cycles here:

• Going from state 1 to state 1 forever via aD

• Alternating between the states via aA and aC

• Alternating between the states via aB and aC

There are 4 possible deterministic policies which we will call πij corresponding to taking action i in
state 0 and action j in state 1. We would like to express the policy ordering:

πAD ∼ πBD > πAC > πBC

This is easy to do in LAR, JE
OLAR

for the different policies is:

JE
OLAR

(πAD) = JE
OLAR

(πBD) = RD

JE
OLAR

(πAC) =
RA +RC

2

JE
OLAR

(πBC) =
RB +RC

2

We can simply set RD > RA+RC

2 and RA > RB leading to the desired ordering.

It is not possible to express this policy ordering in MR however. Looking at JE
OMR

of the different
policies we get:

JE
OMR

(πAD) = Eξ∼πAD,I [GMR(ξ)] =
1

2
Eξ∼πAD,s0 [GMR(ξ)] +

1

2
Eξ∼πAD,sA [GMR(ξ)] =

1

2
RA − 1

2
RD +

∞∑
t=0

γtRD

JE
OMR

(πBD) =
1

2
RB − 1

2
RD +

∞∑
t=0

γtRD

58



Setting these two to be equal we get:

JE
OMR

(πAD) = JE
OMR

(πBD) =⇒ RA = RB

However,

JE
OMR

(πAC) =
1

2

∞∑
t=0

γ2tRA +
1

2

∞∑
t=0

γ2t+1RC +
1

2

∞∑
t=0

γ2tRC +
1

2

∞∑
t=0

γ2t+1RA =

1

2

∞∑
t=0

γtRA +
1

2

∞∑
t=0

γtRC

Similarly:

JE
OMR

(πBC) =
1

2

∞∑
t=0

γtRB +
1

2

∞∑
t=0

γtRC

JE
OMR

(πAC) > JE
OMR

(πBC) =⇒ 1

2

∞∑
t=0

γtRA +
1

2

∞∑
t=0

γtRC >
1

2

∞∑
t=0

γtRB +
1

2

∞∑
t=0

γtRC =⇒

1

2

∞∑
t=0

γtRA >
1

2

∞∑
t=0

γtRB =⇒ RA > RB

This contradicts RA = RB . Therefore MR cannot express this policy ordering meaning that MR
cannot express all tasks LAR can.

With a minor modification, this proof also shows that LAR can express some tasks that Regularised
RL cannot. Recall the Regularised RL policy evaluation is defined as:

JE
ORRL

(π) = Eξ∼π,T,I [

∞∑
t=0

γt(R(st, at) + αF [π(st)])]

In this environment we have only four actions (aD, aA, aB , aC), and so we can write F [π(st)] as an
arbitrary function of four probabilities:

αF [π(st)] = f(P (aD|st), P (aA|st), P (aB |st), P (aC |st))

Then we have a closed-form expression for each of our four policies under ORRL:

JE
ORRL

(πAD) =
1

2
(RA + f(0, 1, 0, 0))− 1

2
(RD + f(1, 0, 0, 0)) +

∞∑
t=0

γt(RD + f(1, 0, 0, 0))

JE
ORRL

(πBD) =
1

2
(RB + f(0, 0, 1, 0))− 1

2
(RD + f(1, 0, 0, 0)) +

∞∑
t=0

γt(RD + f(1, 0, 0, 0))

JE
ORRL

(πAC) =
1

2

∞∑
t=0

γt(RA + f(0, 1, 0, 0)) +
1

2

∞∑
t=0

γt(RC + f(0, 0, 0, 1))

JE
ORRL

(πBC) =
1

2

∞∑
t=0

γt(RB + f(0, 0, 1, 0)) +
1

2

∞∑
t=0

γt(RC + f(0, 0, 0, 1))

Using the first two equations allows us to get:
πAD ∼ πBD ⇒ JE

ORRL
(πAD) = JE

ORRL
(πBD)

⇒ RA + f(0, 1, 0, 0) = RB + f(0, 0, 1, 0)
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This contradicts our assumption when combined with the second equations:

πAC ≻ πBC ⇒ JE
ORRL

(πAC) = JE
ORRL

(πBC)

⇒ RA + f(0, 1, 0, 0) > RB + f(0, 0, 1, 0)

So Regularised RL cannot express the policy ordering

πAD ∼ πBD ≻ πAC ≻ πBC
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Figure 16: An environment with a single state s0 with three actions aA, aB and aC which all lead
back to itself.

Proposition B.40 (ONMR ̸⪰EXPR RM ). There is an environment and an ordering over policies
in that environment that Reward Machines (RM) can induce, but Outer Nonlinear Markov Reward
(ONMR) cannot.

Proof by construction. Consider the following environment, and the Reward Machine (RM) specifi-
cation (U, u0, δU , δR, γ):

• The environment E is detailed in Figure 16.

• See Figure 17 below for a specification of U, u0, and δU . The transitions are labeled with
actions as shorthand notation, enabled by the fact that this transition function δU depends
only on the action. For instance, the arrow from u0 to uA labeled with aA indicates that
δU (u0, s, aA, s

′) = uA for all s and s′.

• δR(u, u′)(s, a, s′) =

{
1 if u′ = uABC ,

0 otherwise.
.

• γ = 0.99

Intuitively, this RM specification gives reward exactly 1 in a trajectory if and only if all three actions
are taken in the trajectory, because that is when machine state uABC is visited. After giving a reward
once, the machine enters state uend and can never give further rewards. The states in the reward
machine keep track of which distinct actions have been taken so far (and are named accordingly).
The cumulative discounted reward is 0 if any of the actions are never taken, and nonzero if all three
actions are taken.

With this specification, a policy that takes all three actions with nonzero probability has probability
1 of eventually taking all three actions and receiving some nonzero discounted reward when the
third distinct action is taken, while all policies that assign 0 probability to at least one action are
guaranteed to receive 0 cumulative discounted reward. Therefore, a policy that takes all three actions
with nonzero probability is preferred to all policies that assign 0 probability to at least one action. We
can show that it is impossible to express a policy ordering that satisfies this property with ONMR.
Note that much of this proof is very similar to the proof above that ONMR cannot express Regularised
RL (RRL).

Suppose towards contradiction that (R, f, γ) is an ONMR specification that induces a policy ordering
in which any policy that takes all three actions with nonzero probability is preferred to all policies
that assign 0 probability to at least one action. Let RA = R(s0, aA, s0), RB = R(s0, aB , s0), and
RC = R(s0, aC , s0). Without loss of generality, we can assume that we have labeled the actions
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Figure 17: A reward machine which keeps track of which of the three states sA, sB amd sC have
been visited.

such that RA ≤ RB ≤ RC . For now, assume that RA < RB < RC ; we will return to the equality
case below. This means RB = qRA + (1− q)RC for some real number q ∈ (0, 1).

Now suppose we focus our attention on a class of policies of the following form:

π(aB |s0) = θ, π(aA|s0) = (1− θ)q, π(aC |s0) = (1− θ)(1− q)

Note that an ONMR specification has fixed q in advance, so the only variable is θ. Now, we will
show that the ONMR specification must assign the same value to all policies of this form for any
θ ∈ [0, 1]. First, recall that JE

OONMR
(πθ) = f(JE

OMR
(πθ)). Therefore, we can analyse JE

OMR
(πθ)

before returning to JE
OONMR

(πθ):

JE
OMR

(πθ) =
E,π

E
ξ

[ ∞∑
t=0

γtR(st, At, st+1)

]
JE
OMR

(πθ) = γ0 (θRB + (1− θ)qRA + (1− θ)(1− q)RC)

JE
OMR

(πθ) = θRB + (1− θ)(qRA + (1− q)RC)

JE
OMR

(πθ) = θRB + (1− θ)RB

JE
OMR

(πθ) = RB

Connecting this analysis back to ONMR, we get:

JE
OONMR

(πθ) = f(JE
OMR

(πθ))

JE
OONMR

(πθ) = f(RB)

Since JE
OONMR

(πθ) = f(RB) for all θ ∈ [0, 1], any ONMR specification with 3 different reward
values for the three transitions must not have any preference between πθ=1 and πθ=0.5. However, the
RM specification above does have a preference between these policies. πθ=1 deterministically selects
aB , while πθ=0.5 assigns nonzero probability to all three actions. So JE

ORM
(πθ=0.5) > JE

ORM
(πθ=1).

The only case left to address is when the reward function R in the ONMR specification assigns the
same reward to any two transitions. That is, Rα = Rβ for some α, β ∈ {A,B,C}, α ̸= β. No such
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ONMR specification can express this RM policy ordering either, because no such specification can
distinguish between policies that assign the same total probability to aα and aβ together, but divide
that probability across the two actions differently. Let πα,ϵ be a policy that assigns probability 0.5
to aα, probability 0 to aβ , and probability 0.5 to the third action (call it aϵ). Let πα,β,ϵ be a policy
that selects each of aα and aβ with probability 0.25 and assigns probability 0.5 to aϵ. Again, we can
begin by analysing JE

OMR
for these policies.

JE
OMR

(πα,β,ϵ) =
E,πα,β,ϵ

E
ξ

[ ∞∑
t=0

γtR(st, At, st+1)

]

=

[ ∞∑
t=0

γt(0.5Rϵ + 0.25Rα + 0.25Rβ))

]

=

[ ∞∑
t=0

γt(0.5Rϵ + 0.5Rα))

]

=
E,πα,ϵ

E
ξ

[ ∞∑
t=0

γtR(st, At, st+1)

]
= JE

OMR
(πα,ϵ)

Returning to the ONMR policy evaluation function and using the fact that JE
OMR

(πα,β,ϵ) =

JE
OMR

(πα,ϵ), we get:

JE
OONMR

(πα,β,ϵ) = f(JE
OMR

(πα,β,ϵ))

= f(JE
OMR

(πα,ϵ))

= JE
OONMR

(πα,ϵ))

So any ONMR specification that assigns the same reward to two transitions cannot express a
preference between πα,ϵ and πα,β,ϵ. Meanwhile, the RM specification above prefers πα,β,ϵ to
πα,ϵ, since πα,β,ϵ assigns nonzero probability to all three actions while πα,ϵ assigns probability 0 to
aβ . Therefore, no ONMR specification (whether it assigns equal rewards to two transitions or not)
can express the policy ordering expressed by this RM specification.
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